msaammm:uumuquﬂauﬂé’uﬁﬁmmvlmﬁm%mﬁu

wuUNasHvaualaaldnIa eI u gL 8

AUEINENINYINS
RN TUUMING AT

%mﬁwuﬁﬁﬁuémﬁﬁwaamsﬁnmmw&’ﬂgmsﬂ%zyzyﬁmﬂﬁumamumﬁ’mﬁm
aaninimnsmlni medadensanlaih
ALIFINTINANGAT ARINTUNAINENSE
dn19finen 2553

(3

5%3?}%%mammmzﬁum%mé’a



DESIGN OF FEEDBACK CONTROL SYSTEMS WITH A SECTOR-BOUNDED
NONLINEARITY USING ZAKIAN’S FRAMEWORK

AULINENINYINT
AN UNBANNA Y

7 esis Submitted in illment of the Requirements
for the Degree of Master of Engineering Program in Electrical Engineering
Department of Electrical Engineering
Faculty of Engineering
Chulalongkorn University
Academic Year 2010
Copyright of Chulalongkorn University



Thesis Title DESIGN OF FEEDBACK CONTROL SYSTEMS WITH A SECTOR-
BOUNDED NONLINEARITY USING ZAKIAN’S FRAMEWORK

By Mr. Van Sy Mai
Field of Study Electrical Engineering
Thesis Advisor Assistant Professor Suchin Arunsawatwong, Ph.D.

Accepted by the F lalongkorn University in Partial Ful-

fillment of the Requirements for th

........... A .evev..... Chairman
........ ———'——— ~ . /Thesis Advisor

................................... Examiner

(S""Fﬁj Fe ) 275
' Md//‘“’"_ te aminer
WA S ARy TAE



iv

Sud la: miaaﬂme:uumuquﬁauﬂé’uﬁﬁm'm"laiLﬁm%mﬁmmumﬂma%ﬁmaumm
Tael¥nsaveuaassnieau. (DESIGN OF FEEDBACK CONTROL SYSTEMS WITH
A SECTOR-BOUNDED NONLINEARITY USING ZAKIAN'S FRAMEWORK),
8. iUSnE Aneiinuingn: ne.as. qou aqmai’aﬁwﬁ‘, 78 Wi

=

ﬂumﬁaquumsaamwmmummumm&?{?mmmaeﬁmm &% (Zakian) vl@lﬂﬂﬂﬂ‘]:ﬂ

U

Fsathaniwrnedmiusroudednliulanf o %muu dAmSuszuuliGodu
Qs Y W A o ! s = [} a & o dt o ada

wlludihdeifadnandenoidulamidaagh 61’mm@;mm&ﬁuwuﬁﬂuumqum'sﬁms
ponuULLESUATR M ST LURITR e Auiranuile auienaudawaudiidwdodu

Tsndsivaanlyaunan  (@1@sa

At ue8) sim%auﬁ’umwvlmﬁm%qLﬁuuu‘uaﬁm

o  Taguszaednasde yﬁwmamw mwmuwumnuu AafudTziuinWelTu

ANAANALAR DULATFY YU BBN 2 B9G) 'Uﬂmmﬂmﬂlmaumwﬂ’mu@maa@nm iy

dyarmandhndulilélag ol *rta‘t}ah@w{nuwuﬁauuum:naumaammu am
wanAnTEiasnmeesiugs Eure) lum'yuwmamq ammmmaaﬂmaummaua
L aNeumaLaTANT U D IR AN DL wmw'ﬁam‘wz{ 7 AN pEnsaNewIadauninil

mmauuaaﬂﬁaﬁmwﬂﬂﬂﬂaw (Popov) WAITILLAY

=l

agensluaTemn i lduaneli
uLaammwlumﬁmmamwmsmLama:ﬁ_ mumﬁfummmmﬂm maﬂmsﬂwnnmaiw

Hvouiae wamﬂmﬂﬂuﬂﬂhwwmaaum'iﬁ'm‘summmaﬂmnﬁsmwlmmﬁmnmmmm

Iudwfigesiu  wissan ﬁmsnm‘saanLmumummﬂ'lumm‘smu,_ahlﬂnmmmvlﬂ PRER) bt
ﬂs:ﬁw}?aaumsaanLmum'm.nmlﬂﬁmmﬂ'm@;u ﬁaaa@maammpam:mﬂﬂwaammm’m&iu
1u3waammsﬁmiaammmmuﬁ ﬁ’uas;i'mL"E\ﬂLa"ugnﬁﬁmuauaum@ﬂﬁtﬁuaﬁw&’mLauﬁﬂ

a a 1 < Ao & = A [ o &
ﬂsza‘nﬁmwmmummamiaanLmuamquJmznu'nwwmmulmmmwuﬁauuu

medan ... mnnlwih
A Fensaninih

Fansdinme .23 .



##517 06916 21: MAJOR ELECTRICAL ENGINEERING

KEYWORDS: NONLINEAR SYSTEMS/INPUT-OUTPUT STABILITY /LUR’E SYSTEMS
/ SECTOR-BOUNDED NONLINEARITY /POPOV CRITERION / PEAK OUTPUT/ WORST
CASE PERFORMANCE / CONTROL SYSTEMS DESIGN / PRINCIPLE OF MATCHING /
METHOD OF INEQUALITIES

VAN SY MAI: DESIGN OF FEEDBACK CONTROL SYSTEMS WITH A SECTOR-
BOUNDED NONLINEARITY USING ZAKIAN’S FRAMEWORK. THESIS ADVI-
SOR: ASST. PROF. SUCHIN ARUNSAWATWONG, Ph.D., 78 pp.

J
So far control systems design by-#akian’s principle of matching has been investigated exten-
sively for linear time-invariant.systems. - Tiorn general nonlinear systems, this is still an open
problem. In this regard, this thesis'deyelops a prac:ltical method for designing a class of feedback
control systems where the plant is@ linear ime-invatiant (possibly uncertain) subsystem in cas-
cade connection with a static memoryless norﬁmeaﬂty The design objective considered here is
to ensure that the error function and the comroller,aoutput stay within respective bounds for all
time and for all possible inputs. The research conducted in the thesis comprises two parts. Part
I considers the stability of Lur’e gystems in the sense };hat the outputs are bounded whenever the
magnitude and the slope of the input are bounded Itis shewn by a straightforward extension of
known results that if the Popov condition is satisfied 1:h§n the system is stable in the above sense
for any nonlinearity lying in a sector bound. Based on 'Cfli's‘r“esult, an inequality for determining
stability points by numericalimethods is developed. In Part I, since.the original design criteria

are computationally intractable, design inequalities that can be used for determining a controller
satisfying the design objective are derived, thereby providing surrogate design criteria. The nu-
merical examples are carried outand clearly illustrate the effectiveness of the systematic design
approach developed herel

Department: . Electrical Engineering  g,dent’s Signature: . ..
Field of Study: Electrical Engineering A qyisor’s Signature: |
Academic Year: .......c000 ...




Vi

Acknowledgements

I would like to express my deepest gratitude to my thesis supervisor, Assistant Profes-
sor Suchin Arunsawatwong, for his careful guidance and considerable support from the very
beginning of my study at Chulalongkorn University. This thesis would not have been possible
without his great encouragement and constantsupervision. He always makes himself available
for having insightful conversations, giviné ter( t critiques and making useful suggestions
not only on doing research but also on many aspe/ct:("gurfe for which | am extremely grateful.

| am thankful to Chulalongkorn Unlvarsny, in par.tmu]ar the Department of Electrical En-
gineering, for making an.exeellént.a
Assistant Professor Suchw )

fessor Manop Wongsaisu a

prafessional working environment. | am indebted to

twong, Professor David Banjerdpongchai, Assistant Pro-
Ciat » Professor Watcharapong Khovidhungij, who are

dition, I am also grateful t0 is nt Professo; §uqh|n Arunsawatwong, Professor David Ban-
jerdpongchai, Associate Pr Valea.ﬁnrn Jagysmha and Dr. Somboon Sangwongwanich for
embErs of my‘fBEﬁ, Their useful comments and constructive
advices are absolutely invaluable. Thaaks also ;,m_:wall my friends at Chulalongkorn University,
especially students of the Controf%ystems Resb'ai’t:H“I:aborato %/ for their great friendship and
support. “

| gratefully ackndiledge the full financial support fromJ\UN/SEED Net collaborative
research program for mx_jnaster s degreein Thailand. The f[ggnC|aI support from the Interna-
tional School of Engineering, Chulalongkorn University, for my trip to Taiwan in August 2010
to attend the SIGE annuabconference is alsorhighly: appreciated:

Finally, but'most importantly, I'would'like to dedieate this'thesis to my parents and my

brother for their endless love and support.

agreeing to be the committee




Contents

Page

ADSTract (Thal) ... e iv

Abstract (English) . . ... v

Acknowledgements............. L vi

Contents................. = el . . . L vii

Listof Tables ........ 7 RS X

Listof Figures ........... i RN Xi

List of Notations . . ... A 0 e Xiii
CHAPTER

| INTRODUCTIONS. . A e b, 1

1.1 Introduction. . . . Il 8. ... 1

1.2 Literature ReVIEW . . i i vi it b e 3

1.2.1  The Method of I P 3

1.2.2  The Principle of Maiching 4 e 4

1.3 Objectives i b 4

14 Scopeof ThesiS ... ... .. .. ... o o 4

1.5 Methodology m ..................... .. 5

1.6 Expected Outcom@s ......................................... 5

¥ e NN INENT 5

Il STABILITY/CONDITIONS AND NUMERICAL STABILIZATION ............ 7

SRS NN 7

Vi ﬁmmmm NYINY. ;

2 1 Boundedness of output with respectto P . . . . ... ... L. 8

2.2.2 Boundedness of output with respectto Poo -« o o o v oo oo 11

2.3 Numerical Stabilization. . ... ... .. . . 12

2.4 Numerical Example . ... . . ... 15

2.4.1 Stability Conditions of Systems with Input Nonlinearity . .......... 15

2.4.2  Stabilization of a Heat-Conduction Process . . . . ................ 15

2.5 Conclusions and DIiSCUSSION . . . . . . oot 16

11l DESIGN OF FEEDBACK SYSTEMS WITH INPUT NONLINEARITY ........ 19



viii

CHAPTER Page
3.1 Introduction. . ... .. 19
3.2 MainResults . ... ... e 20
3.3 Surrogate Design Criteria . .. ... e 25
3.4 Stability Condition . . . ... ... .. . 26
3.5 Controller Design for a Hydraulic System . . ........................ 28

36 Conclusi i n.... 4 ..................... 32

IV DESIGN OF FEE _ 1. OUT NONLINEARITY ...... 33
4.1 Introduction. i g iyl B R N . - . . 33
4.2 MainResults . .. & 4.0 0. -2 , e 34
4.3 ili 4 ZEET )\ N 38
4.4 i LT AN 39
4.5 i e WA 41

V DESIGN OF FEEDB ITH UNCERTAIN PLANT

AND INPUT NONLIN . = B e 43
5.1 on........] N T ... 43
5.2 i ian’s MAJOrARIS. L i, . . .. 44
an’s Criterion of Approximation . ...« /., . ... ... ... ... 45

s Majorants for Vague Systems . . .. 0 ... ... ... ... .. 47

5.3 Design of Unc j i | 48
5.4 Stability Conditions . .. ... . 51
5.5  Numer B T O ekl B i ke e 52
56 cOncﬁ scbsh) ﬂ.‘]/.].‘j NeanL... 56

VI CONCLUSIONS ......................................................... 57
m&mmmmummmaﬂ -------- 7
6.2 FUtUre WOIKS . . . .. oo 58

REFERENCES ... .. 60

APPENDICES
APPEND X A o 65
APPEND X B .o 71

APPEND X C o 72



APPENDICES Page
APPENDIX D . 76

BIOG R APHY 78

AULINENINYINT
IR TN TN



List of Tables

TABLE Page

2.1 Algorithm for determining &, using the convex hull of the Popov plot. . ... .. 14

AULINENINYINT
IR TN TN



Xi

List of Figures

FIGURE Page
1.1 Afeedback control system. . ....... ... . . .. ... 2

1.2 Nonlinear plant models: a) with an input nonlinearity, b) with an output nonlin-
AN, .« . 3

2.1 Luresystem........... 7
2.2 The nonlinearity 1 8
2.3 Equivalent closed- I 9
2.4 The Popov plot Iy|n 3 13
2.5 A feedback control ani n i i . 15
2.6 The heating metalli . NN ' 16
2.7 The Popov pl ‘ N 17
3.1 A feedback coatrol vith'an: inearit 19
3.2 Decomposition o ': ‘ L% 21
3.3 Equivalent system f YS! _’ 3% BN 21
3.4 Auxiliary nonlinear system. 257 | % 22
3.5 Nominal linear systei oﬂ@stem 34).0. 24
3.6 The dead-zone characterlstjc—-FFFthe ydraulic 28
37 Atestinput fi P characterized by (3.38) IV. 29
3.8 Responses 0 he-noiiinear sysiei 0-the-iipi nput /- usin sign solution (3.41)... 30
3.9 Therelationbetweengand w. . ... oo nnl L 31
3.10 Responses of tﬁnonlmear system to the input f usﬂ design solution (3.44)... 31

. ;‘JESQ’FWEJﬁM néwermns o

4.3 Auxma nonlinear system. . o I I 35
W’v&'{lll /] a E] ........ 37
q; utp ﬁﬁmmm t-conduc nﬂ ................. 39
4.6 Atestinput f € P characterized by (4.28). . ..... ... .. .. ... ... ... 40
4.7 Responses of the nonlinear system to input f using design solution (4.31). .... 41
5.1 A feedback control system with uncertain plant and with input nonlinearity. ... 43
5.2 Uncertain linear system with two inputs. ... ............. .. ......... 45
5.3 The nominal system connected with the one in Figure 5.2. . .............. 45
5.4 Auxiliary linear System. . ... ... ... 49
5.5 Thenominal linear system. .. ... ...... ... . . . 50

5.6 The input nonlinearity of the heat-conduction process. . ................ 53



xii

FIGURE Page
5.7 Popov plots of G(s) witha =18 :0.5:21and A =0.9:0.05:1.1. ........ 54
58 Atestinput f € P characterized by (5.50). ... ...... ... 55
5.9 Responses e and  of the nonlinear system to input f with @ = 18,19, 20, 21

and A =0.9,1.0, 1.1, ... . 55

6.1 Decomposition of the nonlineari JO). . 59

A.1 Equivalent Lur’e . 5 65
C.1 Linear feedback system™ o . . 5. o 72
C.2 The loop transfo ' ins one integrator. .. ............. 74
C.3 The loop transfermatien when & . ¢ontains one integrator. . .............. 74

AULINENINYINT
ARIAATAUNNIING A Y



Symbols

Ly
R
Ry

|f|ln  m-norm of a function
Acronyms

SISO Single Input Si

BIBO Bounded Inp

MBP  Moving Bounda

Mol Method of Ine

PoM  Principle of Matc

List of Notations

convolution algebra
field of complex numbers

space of function f : R, — R that || f|l, < co;n € [1, ).
field of real numbers N
field of nonnegative realnu

LTI

\Z
i

AULINENINYINT

PAIATUAMINYAE

Xiii



CHAPTER I

INTRODUCTION

1.1 Introduction

In recent decades, advances in the design of é’oﬁﬂ@systems have been made. With significant
developments of computing facilities, designers’ us more on the problem formulations
and let all computational tasksbe-carried outby compﬂgﬁ_s.using efficient numerical algorithms.
As a consequence, the desig'n’f)rfl can be formulated-in a more realistic manner, which
reflects more accurately tb&rf(w i"the contral requirements. In this direction, the framework

proposed by Zakian [1,2], which.€onsisis of the Principle of Matching (PoM) and the Method of

—

—

k"f[l.rIZ],ét is readily appreciated that a principal aim in
Y ddd
control systems design is'to guarantee tha1 a respgnf:e (or an output) v of the system stays within

cordingly, the design,criterion can be expressed as
d ey

—

-J{Z),(J;E Slfa-,’g—i&;fi“ﬁ SR, -

. bie-tnput f,and e is the largest value
of |v(t, f)| that can be!é'éféepted. Criterion (1.1) is frequently e.tﬁbloyed in practice by engineers
to monitor the performancfles of the control systems and has long been investigated by a number
of researchers (see, for examiple, [1,2,7,14,17, 28} and the references therein) with various sets
of f. Furthermare, criterion (1.1)1is particularlyyuseful in the desigrnof critical systems [2,19]
(see also [20]), imywhich any violation of the bound & may result In an unacceptable operation.
See [8,10, 12] for examples of critical systems.

Tihis work congidérs the design of a feedback control system shown inFigure 1.1, where
G.(s,p) fis the transfer function of the controller with the design parameter p € R™ and the
input f is known only to the extent that it belongs to a possible set P (that is, a set that contains
all possible inputs). The system is assumed to be at rest for ¢ < 0.

Following previous works (see, for example, [1,2,7,9,10,13,14,18)), it is readily appre-
ciated that P should contain all inputs satisfying bounding conditions on both magnitude and
slope. Therefore, in this work, we consider the following two possible sets.

where v(t, f) is the vajug

P2 {f|feLs felaf (1.2)

Pooé{f]feLoo,feLoo} (1.3)



y

Ge(s,p) > Plant

where L,, (n = 2, 00) netions f : Ry — R satisfying | f]],, . As
usual,

(1.4)

(1.5)

The set P, is suitable f
for all time) whereas P.i

is, inputs that vary persistently
‘ t inputs (that is, those that do
not). In comparison with -Q'-a‘nd P~ as possible sets make the
design formulation mor ) _ s‘é‘nputs in L., may have stepwise
discontinuities and those i - itudes, and hence these features may

(1.6)

1.7

U<UmaX7 U—Sup Sup‘u(fv )’7

where the pert il &Jas'@e%] ot i @%&J calda o) peak values of ¢ and v,

respectively. Evﬁbntly, inequalities (162) become useful design criteria once ¢ and @ can be

TR T e

In earchmg for a solution of (1.7) in R™, it is necessary that a search algorithm should
start from a stability point, that is, a point p for which

é(p) <oo and a(p) < oo. (1.8)

From the above, it is seen clearly that (1.8) is a necessary condition for the satisfaction of the
design criteria (1.7). For more discussion on this, see, for example, [2] and the references cited
therein.

So far, in connection with the possible sets P, and P, the problem of solving (1.7) has
been developed only for the case of linear time-invariant plants. See [14] for the latest review
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Figure 1.2: Nonlinear plant models: a) with an input nonlinearity, b) with an output nonlinearity.

and also the references therein. Therefore, it ISIOfJY aim in this thesis to extend the framework for
cases of nonlinear systems. Specifically, in this ' we assume that the plant is represented
as a cascade connection of a transfer function Gp(s-}'aﬂ,a,nonlinearity 1. See Figure 1.2. Note
that nonlinear systems of this type, where tﬁe nonlinearity is introduced to simulate the effect
of either actuator or sensw characteristics, constitute an important class of systems

found in practice [21].

In the context of tHe Pri e of IV atch‘ing', the main ebjective of this thesis is to develop a
systematic and practical ingd
where the plant takes the fo either Figur& 1:2a or Figure 1.2b, so as to guarantee that the
criteria (1.7) are satisfied:” To'thi end ‘f.he Sfdblllty problem (1.8) needs to be resolved first.

tabllshpractl cal conditions for determining stability points of
the system. Once such a point i obtamed thezsg

numerical methods, provided that & e andru can bﬁeﬂﬁputed in practice.

That is to say, it is necessar
P criteria (1.7) are suitable for solutions by

-'J—;""‘)-"-",:—-l' ' ,JI g Iu.-_
1.2 Literature Reyl_fw _,j’:g
Y A
In this section, the de5|gn framework, which consists of the P'rmuple of Matching (PoM) and
the Method of Inequalltle§ (Mol) is briefly described. -

1.2.1 The Method of Inequalities

The Method of Inequalities [2, 3,18, 22] s a design method that expresses,constrains and design
specifications of acailtrol system-asiaiset of inequalities; thatlis;

¢z<p) < €, 1=1,2,...m, (19)

where ¢;(p) is a performance measure that characterizes a particular behavior of the system,
p € R”™, as usual, denotes the design parameter, and ¢; is the maximum value of ¢;(p) that can
be accepted. The design solution is any point p that satisfies (1.9).

In practice, these inequalities are usually solved numerically using search algorithms in
the space of design parameters. Throughout this work, an algorithm called the Moving Bound-
aries Process (MBP) [3] is used. Alternatively, other algorithms for solving (1.9) may be used
(see, for example, [2] and the references therein).



1.2.2 The Principle of Matching

In the systems design by the Principle of Matching [1, 2, 4], designers are concerned with the
relation between the system and its environment. Specifically, the environment affects the sys-
tem by some signals. If, using appropriate and well-defined criteria, the resulted responses are
acceptable, then these signals are call tolerable inputs, and the system and its environment are
said to be matched. As far as the system performances are taken into account, a practical model
of the environment is required and usually characterized by a possible set P (see, Section 1.1).
Let 7 denote a set containing all tolerable mp’u;t’ /C nsequently, the main objective of a match
is to ensure that /0

R C - """ (1.10)

For the problem consideri‘l’pﬁ?{h s, crgdltlon (1.10) 1s'equivalent to (1.7).
0cC

In a practical desigiy are the sets 2 and 7, praetical criteria (in forms of inequal-
ities) are required (see, for i/ 2] @
the design problem can be s mgthgformulatlon described in Section 1.2.1.

also Section 1.1). Once the criteria are obtained,

o ' _5 4
1.3 Objectives Lo
The purpose of this thesis is 4 ez
,|1J .:"ﬁ‘

1. Study the input-output abv[ﬂ;y propertles*ﬂf.aLur e feedback systems to ensure that the
outputs are bounded for any | mpu;m the sa% or 7300, where the linear subsystem belongs
to a large subclass_lof convolution systems f

s
"v_ql —

2. Based on the ob%a#hed results, develop a useful mequallty.feir determining stability points
of the system by numerlcal methods. .

3. By using Zakian’s Pringiple of Matching [1/2], develop a practical method for designing
feedback ‘€ontrol systems where-the plant takes the form of either Figure 1.2a or Fig-
ure 1.2b, s@ as to ensure that the error function e and the controller output « stay within
respective bounds for all time and for all possibleinputs.

4. Design controllers for some practical applications to illustrate the effectiveness of the

developed method.

1.4 Scope of Thesis

The scope of this research work is specified as follows. Consider the nonlinear feedback system
as shown in Figure 1.1.

1. Provide stability conditions, and then develop a computationally tractable inequality for
determining stability points in connection with the possible sets P and Pn..



2. Develop a practical method for designing the system where the plant is a linear time-
invariant subsystem and is subject to a nonlinearity in its input or output channels (see
Figure 1.2), so as to ensure the satisfaction of the design criteria (1.7).

3. Design controllers for some SISO systems whose the plant may be infinite-dimensional
by using the developed method.

1.5 Methodology

This thesis extends Zakian’s framework [2] fo'r'ééﬁgﬂin_g a feedback control system shown in
Figure 1.1. 2 e
First, stability points‘c:a;rl,be ebtained efficiently uéiﬁg the stability results developed in
Chapter 2. ' o/
Second, it is suggeste
nonlinearity +) can be re

3 ’that by he decomposmon technlque used in [24, 25] the

in a linear system subject

methods. J -,;___J{.__‘

1.6 Expected Outcomes ' £

|
\

The outcome of this re"s*ejar.ch work is expected to include -

)
J

1. A numerical procedure for determining stability points of a class of nonlinear systems.

2. A practicabmethod for designing. the feedback control system shown in Figure 1.1 using
Zakian’s framework, which is considered as the most significant contribution of the thesis.

3. Numerical'examples showirgihe usefulnegss/of the deyeloped method:

1.7 Thesis Outline

The rest of the thesis is organized as follows. Chapter 2 considers the input-output stability of
Lur’e systems in the above sense. The stability results and a numerical method for stabilizing
the system are presented. Chapter 3 develops a practical method for designing feedback control
systems with input nonlinearity. To illustrate the usefulness of the method, a numerical design
of a hydraulic force control system is carried out. The developed method is extended to the
case of systems with output nonlinearity in Chapter 4. The design of a heat-conduction process
shows that the control problem of an infinite-dimensional system can be solved efficiently using



the proposed approach. Chapter 5 considers the design problem of a class of uncertain nonlinear
systems. Finally, we conclude the thesis in Chapter 6.

AULINENINYINT
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CHAPTER 11

STABILITY CONDITIONS AND NUMERICAL

STABILIZATION
This chapter considers the stablllty 0 in the sense that the outputs are bounded
for any input in the sets P» and system belongs to a large subclass of

convolution systems. It is s
—
system is stable in the above

opov criterion is satisfied, then the

|n a sector bound. Based on the
Ilty points by numerical methods is
illustrated by a numerical example, in

Popov criterion, a practical i
then developed. The useful
which the plant is a no

2.1 Lur’e Systems

Ps or Py

Y

ﬂ‘LlEJ’J P G )5
Assumh;)n 2.1. The nonlinear function ﬁJ R — RiScontinuous, time-invariant and memo-

wes ap g0 I T A VT IVIE TR E

Thg nonlinearity ¢ is said to lie in the sector [k1, k2, denoted by ¢ € sector [k1, ko], if

»(0)=0 and Kk <¢g)<k: Vo # 0. (2.1)

See [28, p.2] for equivalent forms of (2.1) and see Figure 2.2 for its graphical description.

Assumption 2.2. Thelinear part is a time-invariant and non-anticipative subsystem with zero
initial conditions, and is characterized by a transfer function G(s). The input v and the output
y are related by the convolution integral

y(t) = gwu(t) £ /0 ot - u(rydr, >0, 2.2)



<
E
o

k1

tems, infinite-dimensio vith ays (also see Section 2.4).
Let A denote the ¢ ebra Whose elements take the form

, (2:3)
t<0
where 6(+) is the Dirac delt e constants and
(2.4)
Accordingly, A can bgﬁen asa g impuls of all BIBO stable linear-time
invariant systems. Fo -;'-"'-"~: or exampls
. M
2.2 Stability COhdIJnS for Lur’e Systems
o Q
This section pr mﬁaﬁaﬁﬁtﬂlm ﬁﬂfiﬁl ﬂnﬁdness of the system out-
puts for the case of t SN Psy orem 2.1), the case of the inputs in P, (Theo-

rem 2.2).

AR TN INIa Y

2.2.1 Bqundedness of output wi

When the system inputs are restricted in the two-norms of their magnitude and slope, the fol-
lowing theorem, which is essentially an extension of the result in [30] (see also [28]), can be
used.

Theorem 2.1. Let Assumptions 2.1 and 2.2 be satisfied. Suppose that f1, fo € P2 and that
g, g € A. Theresponses e, u and y are bounded for any ¢ € sector [0, k] if thereexist ¢ € R
and 5 € R such that

Re [(1 + qjw) G (jw)] + % >8>0, VYw>0. (2.5)



Proof. By using the linearity of G(s), the input f> can be replaced by an equivalent input r, at
/1. See Figure 2.3, where ys =y — r.

Ys

y

Clearly,
(2.6)

Since g € Aand g € Ay
fact that if g contains any._i

pulse. This can be seen by the
er impulses and thus would not

a consequence, equatio
By employing the
proof [28] that is different fr
From the equivalent

r € Py. Hence, [ € Ps.
nat y; € L. In the following, the

(2.7)

By differentiation, we fiave £
e fm ot Grrple) g0 e) (2.8)

Thus, for any positive T

O -

l9+qg + qg
Using @ﬁﬁﬂ@z@eﬂﬁﬂ&%ﬁq&ﬁf’w Ei A a El
/ (f +af)b(e)dt < (Ifllz+ alfl2)ll(e)llar, (2.10)
[e - @} Y(e) >0, (2.11)

where [[¢(e) |2, £ fO [¢(e)]?dt. Moreover, by virtue of Lemma A.1 in Appendix A, we can
assume that ¢ > 0. Thus,

T e(t) e(0)
’ / cp(edt = q [ ple)de>—q [ w(e)de. (2.12)
0 e(0) 0
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In connection with (2.5) and from the above, we obtain

. e(0)
(I£1l2 + all £ll2) 1 (e)llar > Blle(e)l3r — a ; P(e)de. (2.13)

Inequality (2.13) implies that there exists a real number C' > 0 such that

[ (e)llor < C. (2.14)
It is easy to see that C' does not depend on T'. Hence, i)(e) € Lo. Then e € Ps by (2.7)

and (2.8).
It is shown ( [2, p. 59], see a‘lsh‘ W3 in Appendix A) that if f € P, then

f € Loo. Asaresult, e, ug, ys Smce and y = y, + r, it readily follows that
Uy, Y € Loo. ——"'—' O

Condition (2.5) is tMr P ovlcrlte for example, [21,29-31]). Tradi-
tionally, the criterion has-eel rante "i‘.he ;:g%mptotlc stability of Lur’e systems
for any ¢ € sector [0, k sta' ility). It |s‘u;grestmg to note that the concept

f Ceetswt@

. In this work, however, the Popov criterion

conduction processes or systems Wltl’fﬁﬁ‘\e de

It may be noted*ﬁ\at if one needs to’ensure’ the bow

condition that f> € 731' .................. nd repiaced w ----—--_ - In this case, the input f, and
hence « may not be boun:led but e and dy are a

Remark 2.1. From TheOJem 2.1, it follows that when k& — od, 2 5) becomes

Remark 2.2, pﬁ ueﬁrﬁ Hmiﬁﬂlﬂﬁ (2.15)
A NNTUNTTIEY o

yields 4 & sector [0, ko — k1]. Hence, inequality (2.5) becomes
~ 1
1 . .
Re [( +qJW)G(JW)} Alym—
Remark 2.3. It is noted that Theorem 2.1 requires g € .A. However, it is also applicable for
the case of systems which have one pole at the origin. In this case, all the assumptions are the

same asthose in Theorem 2.1 except that the nonlinearity ¢ € sector [e, k + €] for a sufficiently
small € > 0 and that ¢ can be decomposed as

gty =c+aq(t), t>0, (2.18)

>0, VYw>0. (2.17)

wherec > 0,g9; € Aand g; € A.
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2.2.2 Boundedness of output with respect to P,

When the system inputs are persistent, the boundedness of the system outputs can be ensured by
the following theorem, in which an additional assumption on g is required. Note that Bergen [32]
considered a similar problem for rational systems with only input f; € P.

Theorem 2.2. Let Assumptions 2.1 and 2.2 be satisfied. Suppose that f1, fo € P, and that
g, g € A. Theoutputs e, v and y are bounded for any ¢ € sector [0, k] if thereexist ¢ € R,
B € Rand « > 0 such that (2.5) |ssat| |

(2.19)
Proof. Consider the equival n in Figure 2.3, where r is defined
by (2.6) and f1, fo € P, i : ; and hence f € P.,. The rest of the
proof readily follows the technifque ind, e sake of completeness, the outline is

given as follows.

According to [31,3
reduced sector [¢, k — ¢
can assume that ¢ > 0 (se

to'be proved for the nonlinearity ) in the
Is* without loss of generality, we

Note that
et) = ! f e —=T) () dr (2.20)
Using the triangle inequality and C'auéla‘y_-Sc Wi " Zi quallty (a special case of Holder inequal-
ity) yields Lo NN S AR
- N £

1/2
le(®) <[] u?(T)dT] - (2.21)

—

* ;
By Lemma A.5 (see Apﬂ?ndix A), it follows that if all the conditions of Theorem 2.2 are satis-

fied, then the foFo]wﬂme uatity holds for sufficiently small o > 0
e qw Jgiap)

/ 2ar Q(TM — f(T) +qf(r)| dr+ — de Vt>0. (2.22)
o B p

@m“ﬁﬂaﬁ@&ﬂ@m AR § B

le(?)] slf( )|+ UO 200 g (a )d:c]l/2 {%/Ot ~2a(t=r) [f( ) +af(r )rdT

«(0) 1/2
+ @e_%‘t / ¢(e)de} .
p 0

According to the conditions of Theorem 2.2, it is easy to show that the right-hand side of inequal-
ity (2.23) is bounded for all ¢ > 0. It follows immediately that e is bounded. As a consequence,
u, us and y are also bounded. O

(2.23)
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Obviously, the class of G(s) in Theorem 2.2 is a subset of that in Theorem 2.1. One can
see that if ¢ decays to zero exponentially, then condition (2.19) is always satisfied. Therefore,
Theorem 2.2 is applicable to an important subclass of convolution systems (comprising, for
example, rational systems, retarded delay differential systems and feedback systems with a heat
equation).

Note, in passing, that condition (2.19) arises as a consequence of using the exponential
weighting technique (see, for example, [28,32]) in proving Theorem 2.2.

It is also worth noting that Remarks 2.} and 2.2 in the preceding subsection are also
valid in this case. An extension of Theorem 2.24_6{?'1}case that G(s) contains one integrator is

>

presented in Remark 2.4. il
d .

Remark 2.4. For the case Gs)has.ore pole at the origif, all the assumptions are the same as
those in Theorem 2.2 exceg],thé(’ €. secton e, k + €| forasufficiently small € > 0 and

(t) = ¢ gilth P20 (2.24)
w | & J‘;
wherec > 0, ¢g1,91 € Aandt stser >;esuchthat
o \5 %
/ AP It X 00, (2.25)
¢ 0.-'. Y

) v L

Furthermore, the condition f _@-3;;0 caﬁé&_.rglaxed to fo € Lo, without having to change
the theorem’s results. In addition, ii*'is"jown [@tﬁé‘t for ¢ = 0, the system is L, stable. That
is to say, the bounding conditions ,_gpﬁhe slop@;t‘bg inputs are not necessary. If this is the
case, then the nonlinear element may be time-varying as long/as it satisfies the sector bound
condition (2.1). |7 =]

¥ i

| |
2.3 Numerical Stabitization -

This section develops a practical ineguality for-ebtdining design-parameters (which are usually
coefficients in controller transfer functions) such'that the'system reésponses are guaranteed to be
bounded with respect to the set P or P5, and for any penlinearity lying insa sector bound.

Theorems 2.1"and 2.2 provide sufficient conditions to ensuré the beundedness of the
outputs of the closed-loop system in Figure 2.1. Both theorems share the same condition (2.5)
that can be tested graphically based on the analysis of the Popov plot of G(jw), which is the
plot of wim [G(jw)] versus Re [G(jw)]. Since 5 > 0 can be arbitrarily small, inequality (2.5)
is equivalent to the following: the Popov plot lies to the right and is bounded away from the
straight line that has a slope 1/¢ and passes through the point K = (—1/k, 0). This line is
called the Popov line. See Figure 2.4.

Define €2 as the convex hull of the Popov plot (that is, the minimal convex set containing
the plot). Then, the relation between the Popov plot and its convex hull is stated in the following
proposition.
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Popov line Convex hull of Popov plot

iS, ky, = o0). Then it
ed away from the Popov line if and only if the

s tc Mﬁector 0, k], condition (2.5)
U a (2.26)

Note that, for aglverkP‘:Eov plot {Re G(jw, U + jwIm G(jw) : w € [0, 0] }, the convex
hull €2 can be ¢ tl \ﬁamﬂ ﬂeﬁ thesis, the method given
in [33] is used.%u abja warm can‘be-dete asily. In this connection,
the algorithm for evaluatlng kn, 1s outlined in Table 2.1s,

)@ WN% [3.4 ﬂ ﬁ' alue k,,, depend
onIy on can be obtained numerically. 1t should be noted that when the Popov plot of

G(jw) has a complex shape (see Figure 2.4), it is easier to determine k,, from 2 than from the
Popov plot. Therefore, inequality (2.26) provides a computationally tractable test for checking
the satisfaction of Theorems 2.1 and 2.2.

Furthermore, condition (2.26) can be used to develop a useful inequality for stabilizing
the system in conjunction with the method of inequalities. To this end, let p € R"™ be a vector
of design parameters in G (s, p). Also let ¢(p) = k — k,,(p) and replace (2.26) by

o(p) < -7, (2.27)
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input:  Popov plot

output: k,,

begin
compute €2;
P2 {(, y)|(z,y)€Q <0, y=0}
if P ={},

km:OO;‘ |

else

Table 2.1: Algorithmfor dete // 0 \\\ ex hull of the Popov plot.

. - ; £ > . \
2,57 \
where ~ is a small positivemiumbers Clearly, as ,abv|> DO obtained by solving (2.27). Since

¢(p) can readily be computgc in' pr oﬁt%it‘ ollows uality (2.27) provides a practical
condition for obtaining a‘Stabilit pom%;? The itic in keeping with the method of
inequalities [3] and is alwayg so Ie’byﬁ mefical methods

canbe obtained numerically for w € [0, oo] if it

Proposition 2.2. If thexr SPONSE ¢ OF & ransi ign (s) can be decomposed as
§ opov plot of G(s) liesinthe
finite plane.

Proof. First, notice that

ATl I nensnenns oo
ﬂwwaqfﬁ.ﬁ gﬁﬁﬁjﬂgqﬂﬂ (2.29)

Second, it can be shown [28, 29] that if g; € A, then the function w — Gi(jw) is
continuous and bounded on R. That is to say,

Hence,

|Re [G1(jw)]| < 00, Vw € R. (2.30)
Similarly, condition ¢; € A implies that the function w — jwG1(jw) is bounded on R. Thus,
IRe {jw[G1(jw)]}| = |wIm [G1(jw)]| < 0o, Yw € R. (2.31)

It follows from (2.29), (2.30) and (2.31) that Re [G(jw)] and wIm [G(jw)] are bounded on R.
This completes the proof. O
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Proposition 2.2 is stated and proved for cases where G(s) may have one pole at the origin.
Therefore, it is applicable to the class of G(s) in Theorems 2.1, 2.2 and Remarks 2.3, 2.4.

2.4 Numerical Example

2.4.1 Stability Conditions of Systems with Input Nonlinearity

The aim of this subsection is to demonstrate that the stability results for Lur’e systems developed

in Section 2.2 can easily be applied tq\x‘ Tyth a nonlinearity at the input channel of the
plant.

Consider the system shqmlgure 2.5, \@ and G.(s, p) are the transfer func-
tions of the plant and the Wlth deS| er p € R, respectively. Clearly,
this system can be transformed 10 "_ f rm..of & system shown in Figure 2.1, where
G(s,p) 2 G(s,p)Gp(). I\énot:wx\nmulse responses of G(s), Ge(s)

and G(s), respectively. ‘\1

Figure 2.5: A feedback contfoLswaTn yv:%ut nonlmearlty and with two inputs.

Proposition 2.3. Con thesystem inFigure :hré 27) holdsand if g., gp, g €
A, then the system responses e, u, g ounded @th respect to P, for any ¢ €
sector [0, k. In addition, dj condition (2.19) |s also satisfied, then the system responses are

bounded with rmﬁ ﬁ zm EJ w

Proof. By straightforward manlpulatlons the proof readlly follows from Theorems 2.1and2.2.

AR LANLA, ALAANEOAL, e

transformations, it can be shown that the system responses are always bounded. For details on
this, see Appendix C.

2.4.2 Stabilization of a Heat-Conduction Process

In order to illustrate that the stability conditions in Theorem 2.1 and 2.2 are applicable to a
wide range of linear time-invariant subsystems, consider a heat-conduction process in a metallic
rod; see Figure 2.6. The rod has length L, cross-sectional area A, and is made of material with
density p, heat capacity C' and thermal conductivity o.
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Figure 2.6: The heating metallic rod.

injected at = = 0. The output y(¢) = 6(L,t) is

The control signal «(t) is the heat f
i hat with appropriate boundary conditions,

;.ﬂé - (2.32)
where a £ 1/(c A) and A{ A \ ., setting, we have
VPN (2.33)
It is known (see, for examp 2 ' Gp(s) has one pole at the origin
and the others on the neg e j_ » 1S given by
t>0. (2.34)

For the case G.(s) = 1, th&mﬁé r;i o & gy satisfies Remarks 2.3 and 2.4, and there-
fore both Theorems .I)and 2.2 are applicable. I_ ives k,, = 0.8899, ensuring
that the responses e, i,

Now suppose thatﬁ VSO that the outputs of the system
are bounded with respect to Pz, or P, for any nonllnearltyl‘pmg in a wider sector bound, for

R @Wﬂﬁ’mﬁ T

Whegﬁm@zsﬂ-wwsﬁ%wﬁm e e

an

In this thesis, inequality (2.27) is solved by using the MBP algorithm [3]. From a starting
point pg = [1, 1], a stability point p = [0.35, 13.10]7 is located within 10 iterations for which
¢(p) = —0.5553 (the corresponding k,, = 2.5553). The Popov plots of G),(s) and G(s) are
displayed in Figure 2.7.

(2.35)

2.5 Conclusions and Discussion

This chapter has considered input-output stability properties of Lur’e systems, in which the
linear subsystem is allowed to be a nonrational transfer function belonging to a subclass of A.
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(-1.123,0) -

gctor bound. Based on the obtained results,
this chapter develops a practical Smﬁn fo

ining stability points that is readily soluble
by numerical methods:The merit of the contributi :

example, where the pT"g

In control syste:ﬁesigr_l__gsing Zakie ork —the problem of finding stability
points arises in the following way. A chief design objective ist@ ensure that the output v always
stays within a desired bound during operation fog any input f € P, that is to say,

AUYINLNIWLINT
‘ 4 ! ) ferP t>0 !
where £ > 0 is given. In searching for & solution in thésspace R”, it is necessary that a search
s A ST 0 B o b
i 0(p) < oo.
It is important to note [2, 36] that in general, inequality (2.37) cannot be solved by numerical

methods using only the performance function ©. Therefore, it is necessary to replace (2.37) by
a practical (either equivalent or sufficient) condition of the form

#(p) < C, (2.38)

where ¢(p) is always finite and can be computed in practice, and C' is a specified bound (see,
for example, inequality (2.27)). Accordingly, condition (2.38) provides a useful inequality for
obtaining stability points by numerical methods. For further discussion, see [36] and [2].

(2.37)
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In connection with the results obtained in this chapter for determining stability points,
the design problem for Lur’e systems based on the criterion of the form (2.36) is soluble by
numerical methods if the peak output © can be computed in practice.

AUEINENINYINS
RN TUUMING AT



CHAPTER 111

DESIGN OF FEEDBACK SYSTEMS WITH INPUT
NONLINEARITY

This chapter develops a practical metmigyl ing a feedback control system comprising a
static memoryless nonlinearity angxﬁ%_ ime-invariant convolution subsystems so as to ensure
that the error function and th r o%out ﬂ&h prescribed bounds for all time and
T T —

for all inputs having bounde

e. Since the original design criteria
are computationally intracta ient conditions for ensuring them. The
conditions provide surrogat: ing with the method of inequalities.
Essentially, the nonline i yith-afi ai and an‘equivalent disturbance; thus, the
nominal system used durig
measures are readily obtai ' ’ netk ign example of a hydraulic force
control system is carried '

3.1 Introduction

. - ==
;--‘--j- - o "

—_———

This chapter considers the design ofaﬁdpgg system shown in Figure 3.1, where ¥ (-)

;":;',. - (i T . = .
is a continuous, time-iﬁariant and merﬁoryfess non_lMt on, G(s) and G.(s, p) are the
transfer functions b'__ .............. nith the design 1parameter p € R™, respectively.

The system is assumed
belongs to a possible setI described by

where the boun%ﬁ ar gj{jﬂﬂ Ml%Jngh ﬂDﬁ (3.1)
Qq R Gls ol P \ X

is-known only to the extent that it

Figure 3.1: A feedback control system with an input nonlinearity.

The design problem considered in the chapter is to determine a controller transfer function
G.(s, p) such that design objectives (1.7) are satisfied, that is,

é S Emaxa é é ?up HeHOO?

eP
. . 3.2
u < Uma)u U £ sup HUHOCH ( )

fer
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where E. and Uy are the given bounds. Recall that € and @ are the peak values of e and
u With respect to the possible set P, respectively. Evidently, once é and @ can be computed
in practice, inequalities (3.2) become useful design criteria that can be solved by numerical
methods.

So far, the problem of computing é and #, and hence that of solving the design crite-
ria (3.2), have been investigated only for cases of linear time-invariant systems (see, for exam-
ple, [6, 13,14, 17] and also the references therein). In general, computing the peaks é and
for general nonlinear systems are extremely (;IIP‘ICUH since the optimization problems defined
in (3.2) are non-convex and infinite-dimensiona /

The purpose of this chapter.is to develop. a'p’,gtlcal method for designing the con-
troller G.(s) satisfying the design criteria (fZ) for &, (§) representing a lumped- or distributed-

derive sufficient conditions of the form

. —
parameter system. To this M

<,.Emax dand | U <. Uhax (3.3)

to ensure the satisfaction ; hére ?an’d u are readily computable upper bounds of ¢ and
4. As a consequence, inequalities (3 )*are mgse tractable and suitable for solution by numerical
methods for a wide range [ i f-'

The key ideas are as follows: Flrst by,lhe 'decomposnlon technique used in [24], the
nonlinearity ¢ is replaced by a onstanf gam ahéz,n equivalent disturbance, thus resulting in a
linear system subject to two mpufs Second mLs{ﬁg Schauder’s theorem (see, for example,
[37]), sufficient conditions for (3.2} are derlveq;fcb_q:r.the resultant linear system and then are
used to develop practlca.l design inequalities to achieve (3. 2)sia. f

The orgamzatldn j)f this chapter is as follows. Section 3@ ,Uses the decomposition tech-
nique to derive sufﬁmen’[‘pondltlons for ensuring the satisfaction of the original design crite-
ria (3.2); the main resul’f'ls stated in Theorem 3.2. Section 3.3 derives sufficient conditions
for (3.2) that are_in the spirit of the Method of Inequalities, The stability condition to ensure the
boundedness of ithe system outputs is given in Section 3.4. The developed method is illustrated
with a design example of a hydraulic force control system in Section 3.5. Finally, conclusions
and diseussionsare, given in Section 3:6.

3.2 Main Results

This section derives the main results of the chapter by making use of the technique due to [24],
in which the nonlinearity is replaced with a constant gain and an equivalent disturbance. The
result is presented in Theorem 3.2, providing sufficient conditions for the satisfaction of the
original design criteria (3.2). The conditions will be used in Section 3.3 to develop practical
design inequalities for determining a controller G.(s) satisfying the design criteria (3.2).

Assumption 3.1. For everyinput f € P, thereareuniquee : R, — Randu : Ry — R that
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satisfy the following equations

u = gexe
= f—us*ngf—lb(u)*gp,

where g, and g. are the impulse responses of the plant and the controller, and g. * e is the
convolution of g. and e, given by

(3.4)

t>0. (3.5)

Next, the decomposition teck For a fixed value K € R, define a

(3.6)

Consequently, the nonline

Figure 8.2: /D&« he nonlinearity .

As a result, the onIi
Note that if u € L, then so doe:

ent to the system shown in Figure 3.3.

ﬁ'
p\S

igure 3.3: Equivale stem ]or%we sysﬁ'm (34 @ E]

Oldak, Baril and Gutman [24] used the decomposition (3.6) in connection with the design
by quantitative feedback theory (see, for example, [37]) for feedback systems containing hard
nonlinearities found in practice such as saturation, dead-zone, friction, etc. It is important to note
that the design formulation considered here is very different from that in [24]. For example, the
design objectives are different.

Now consider the auxiliary system shown in Figure 3.4, where f € P and w € U, defined

by

UL (@€ Lo | 2]l < Unnax} (37)
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The system in Figure 3.4 is described by

u = gexe
(3.8)
e = f—gpx[Ku +o(w)].
w p(w)
— ¢()
yl
Let A be the impulse
(3.9
Assumption 3.2. Theimp hath € Aandh € A
It should be noted t representation, the plant transfer
function G,(s) in (3.4) can re : puted-parameter system as long as A
satisfies Assumption 3.2. For example, the plant can be a system with time-delays or a heat
conduction process. fad
In the foIIowin e mai i t oved by using the technique due
to [27], which is essentially an app [icatiol see, for example, [26, 27])
Theorem 3.1 (Schaudem heorem o])- sedﬂounded and convex subset in a

Banach space'. Every comgact mapping ® : —> 2 has a fixed point.

ool 8] LA W A A o

x(t), 0St<T

amaﬁﬂ%m RTINYIAY

Also, for@a given X C L, define
XT:{IT|IEX}.

Theorem 3.2. Let Assumptions 3.1 and 3.2 be satisfied. The design criteria (3.2) for the system
in Figure 3.1 are satisfied if the following conditions for the systemin Figure 3.4 hold:

é/ S Emax: é/ é f ;up U ||el||00

cP,we
) ) ’ (3.10)
o < Umaxa o £ sup “uIHOO

fEP, weld

Ywhich is defined as a complete normed vector space (see, for example, [38, 39]).
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Proof. Consider the system in Figure 3.4 with f € P, w € U. From (3.8), we have
v = hy * p(w) + ha * f, (3.11)

where h; and hy are the impulse responses of H;(s) and Ha(s), respectively, given by

_ Gp(s)Ge(s)
14+ KGp(s)Ge(s)’

W < P} (313)
‘ﬁ’ c€Uforall f € Pandall w € U.
waﬁon (3.11) defines an operator

w, (3.14)

o Ge(s)
1+ KGp(5)Ge(s)

Hy(s) = Ho(s) (312)

Now, define

&
Let (3.10) hold. Consequent

Accordingly, for any T W
® : Ur — Ur such thi‘/ ;
’ ;‘: e

Note that U1 is a bou
[0, 00).

Furthermore, by abusefof
by a mapping ¢ : Lo, —

anach space Ly forany T' €

(3.6) as a function generated

(3.15)
Evidently, ¢ is continuous on --.;~  th gontinuity of . Consequently, by virtue of
Lemma D.1, it can be shown that:ﬁ%; A, then.the operator @ is compact over Ur. In
view of Schauder theoﬁin it follows that for a and for each f € Py, there exists

u’ € Uy such that

m (3.16)

Let ef € & denote the asfs%piated error of the system (3.8). Hence,
P

AUEIRENINEINT .,

el = J;,— gp * [KUT + (b(uT)] ) y

@1 NN TP H1INENA

el = f —Ggp * w(UT)
It readily follows from Assumption 3.1 that ef and «' are also the error and the controller output

of the system (3.4) for any 7 > 0. As a result, conditions e € &7 and u! € U imply that (3.2)
is satisfied, and therefore the proof is completed. O

(3.18)

Obviously, ¢, ¢/, 4 and 4, depend on the design parameter p. Theorem 3.2 states that if
there exists a point p satisfying

¢' < Fnax and @' < Upax,
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then
€ < Enax  and 4 < Upax.

In other words, the design problem of the original nonlinear system can now be replaced by that
of the auxiliary system (3.8). This is the key result of this section, providing an important step
in deriving more tractable design inequalities.

It is important to note that the system (3.8) with two inputs f and ¢(w) is linear. Now
define

Dy we U} (3.19)

and consider the system in Fig

Ry A y
AL Nt L
-'r//y () o(5)
' // _-ﬁ\\\ -

. e \ o\
Figure 35: Nominal inez '.w ( system (3.4).
ail ol \
Obviously, this systemfis ¢ ﬁ‘égft’g " (3.8). Consequently, the peak values ¢’
and @’ can be computed as follows -;'-l‘f‘;i’-'?h 4

(3.20)

Since every d € D,, depeno ; o’;‘v‘o be readily employed in the

design. Note, however, that d is always bounded for any w < 4, or more specifically,

AU LR (e i

Thus, by definin

AEaseiilivitendy

< & ééf;udpDHe’Hoo
€P,de
’ . 3.23
o < 4, = sup |u[leo (3.23)
feP,deD

As an immediate consequence, the following result is obvious.

Theorem 3.3. Let Assumptions 3.1 and 3.2 be satisfied. The design criteria (3.2) are satisfied if
€ < Enax and o < Upax. (3.24)

Proof. The proof readily follows from the above discussion. O
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Notice that in contrast to D,,, any input in D does not depend on w. Therefore, é and
@ can be computed numerically by using available methods developed for linear systems (see
Section 3.3). Hence, (3.24) become computationally tractable design inequalities.

3.3 Surrogate Design Criteria

Based on the results in Section 3.2, the aim of this section is to elaborate the computation of the
performance measures € and «, thereby previding design criteria in the form of inequalities that
are suitable for solution by numericai,_h\

By the linearity of the system in Figure ws immediately that
(3.25)
where
(bef
3.26
bus (3.26)
From a well-known result i ample, [28]), the numbers ¢., and
odua are expressed as
d)ed = |ud(5 t)|dt7 (3 27)
where ¢/,(9,t) and u/,(4,t) are the va'luesof d f at time ¢, respectively, with f being zero
and d being the Dirac delta functro'ﬁ"f'f‘réﬁ] (,’3 lear that ¢, and ¢,,4 can be obtained by
standard numerical algori ams. Moreoy »o1-andidy, r can be computed by using
known methods (see, for example, [13, 14, 40 ' ,‘ approach developed in [14] is
employed. Therefore, thﬁalueSea d 7 can readily be obtairjgil in practice.
From the above, deflge
ﬂ‘uﬁd ’}WH%‘%WMWE
(3.28)

ARSI AY v

and thus so do ¢1 and ¢. As a result, to achieve a better design, K can as well be allowed to be
an additional design parameter. To this end, the design problem is now to determine a controller
transfer function G..(s, p) such that the following inequalities are satisfied

¢1(f)) < Emax (3 29)
¢2(15) < Umax; .

where
p2[p’, K" (3.30)

From the above discussion, the main following providing a useful computational tool is stated.
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Theorem 3.4. Let Assumptions 3.1, and 3.2 be satisfied. If inequalities (3.29) hold, then the
design criteria (3.2) are satisfied.

Proof. By Theorems 3.3, the proof follows readily from the above. Ol

Notice that ¢1(p) and ¢2(p) are readily computable. Accordingly, inequalities (3.29)
are practical sufficient conditions that are used for determining a controller G.(s, p) satisfying
the design criteria (3.2) by numerical methods. In addition, (3.29) are appropriately called the
surrogate design criteria.

I
F
v

- 2 et
Following Zakian’s framewerk [2,.3;18, 36], it is readily-appreciated that in searching for a
design solution of (3.29) i _numericgl search algorithm needs to start from a stability

point of the nominal syste auic @ point

3.4 Stability Condition

) for which

‘¢ and \oh(P) <be. (3.31)

It should be noted that for
investigated extensively (see,

ses of méag:éystéys: the problem of finding such a point has been
ample, [2, 15["*3& 41] and the references therein).

Moreover, it followsfro Theprgm 3; 41@3_1 the design solution of the nonlinear system
can be found if the design critéria for-the nomrfaél {I;mear) system (3.29) are satisfied. Recall
that the inequalities (3.29) are sufﬁmeﬁt for (3. ZFI]" (3 29) are not satisfied, then no conclusion
can be drawn about eltfker the eX|stence of the so]utlon of (3. 2)7 or the stability of the original
nonlinear systems. In thi:
the search algorithm cannot locate a design solution, the stablu.ty of the nominal (linear) system
(6 < ocoand @ < o0) is ot enough to ensure the stability ofthe original nonlinear system. (It

ities 13 9) have no solution or when

should be noted that finding a-controller satisfying (3.29) is in general a non-convex problem.
Consequently, the! algarithm might be-caught in a computational trap in the space of design
parameters.) In such a case, it is desirable for designers to stabilize the original nonlinear system,
in other words, to obtain a stability point of this systém. Recall that &'stability point of the
nonlinear system is a.point of design.parameters p satisfying (1.8), that'is,

é(p) <oo and a(p) < oc. (3.32)

For the nonlinear system considered in the chapter, the problem can be solved by using the
results developed in Chapter 2 where the nonlinearity is a sector-bounded function.

Note, in addition, that the points p satisfying that é(p) = oo or 4(p) = oo form a
connected region. Obviously, this region does not contain any solution of (3.2), and hence
that of (3.29). As a result, this region should be excluded from the search-space of design
parameters. From the computational point of view, this helps to narrow down the search-space,
and thus facilitate the progress of the search algorithm. Therefore, from the above discussion, it
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follows that in finding a design solution of (3.2) by solving (3.29), a numerical algorithm needs
to perform the search in the space of design parameters p satisfying both (3.31) and (3.32).
Let ¢ denote the impulse response of the composite transfer function

G(s) 2 Gels, P)Gyls). (3.33)

Assumption 3.3. The impulse responses g,, g. and g satisfies conditions that g,, g., g € A
and there exists o > 0 such that

o9 1 "f‘
/0 o2 tg%% 5. (3.34)

The boundedness of the.responses o and %L‘ﬁn—:be guaranteed by using the following

theorem. -

Theorem 3.5. Consider tM

Ln Figure 3.1 and let Assumption (3.3) hold. The responses
e and v are bounded for ' and f [ any ¢ € seetor [0, ko] if there exist ¢ € R and
5 € R such that

(gw)]..,»i>ﬁ>0 Y > 0. (3.35)

Proof. By noting that P @ P. prodf m?;jedlately follows from Proposition 2.3 in Chap-
tel’ 2 "" wt .-‘..'44 # D

Also, from the stability
satisfied if the following holds: “ — ,"‘
S )
St L .l

) ¢o(p) <28 golp) 2 ko = m;;;(p), (3.36)

where ~ is a small posniti;e_number and k. is the supremal val of the allowable sector bound
obtained from the Popongést. Clearly, oo (p) can‘readily be Q_g_mputed in practice and (3.36) is
in accordance with the method of inequalities [3]. As a consequence, condition (3.36) provides
a useful inequality: for obtaining stability; points:bymumerical"methads.

It should 'be noted'further that the satisfaction of'Ropov criterion (3.35) implies that the
Nyquist diagram of G(s) does not encirgle point (—1/kq, 0). See [30] for the detail on this. As
a conseguence, the INyquist diagrar of G{(s) ‘dlso’doés not/encircle ary, point (—1/k, 0) with
k € [0, kmax) SINCe Emay 1S the supremal value of the allowablé sectorbound. Thus, from the
theory of the Nyquist criterion [42-44] (see also [28]), it can be shown that the linear system
shown in Figure 3.5 is BIBO stable for any K € [0, kmax). Accordingly, the following result is
obvious.

Corollary 3.1. If Assumption 3.3 and the Popov condition are satisfied by G(s), then the system
in Figure 3.5isBIBO stable for any K € [0, kmax)-

Corollary 3.1 reveals that, during the search, if 0 < K < kpn.x, then a stability point p
of the nonlinear system together with the value /& form a stability point of the nominal linear
system.
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3.5 Controller Design for a Hydraulic System

In this section, a nonlinear hydraulic system [45] (see also [13]) is used to demonstrate the
usefulness of the developed method where the plant is a hydraulic actuator equipped with a
low-cost closed-center four-way proportional valve. The plant transfer function G),(s) is given

by
1.1411 x 100

Grls) = (s + 0.0248)(s + 28.57)(s2 + 35.145s + 25190)° (3:37)

The nonlinearity ¢ is the dead-zone fun N’/f n in Figure 3.6, where Uy = 0.1, U; = 0.08
and zp = 0.02. - /

s

oy Y AN :
characteristic he hydraulic actuator.

. ) / _;4 /.
Figure 3.6: The dead Zoﬁi

Abd
The design objective isto keep:the tracki

e or and the control voltage within +£65 N
and +0.1 V, respectively, for all time and Jgr :

. 1 1 ﬂ";"“::a:_,r_‘ ‘{
P where u,:l

any reference force f belonging to a possible set

M =1000N and D = 1000 N ‘ (3.38)

Consequently, the desigrﬁri‘;ﬁerl 2

@ eé<65N andisa <0.1V. (3.39)

o bt kit bl .+ e ot 5,
= PRTAINIUUNIINYIA Y

Suppose that the dead-zone characteristic is neglected and replaced with a constant gain K = 1.
As a result, the peak outputs é and # can be computed by using numerical algorithms developed
for linear time-invariant systems.

The structure of the controller G.. is chosen as

pas® + pss + pe
(s +p1)(s? +pas+p3)’

Ge(s,p) = (3.40)

where p = [p1,p2,p3,p4,P5,06)7 € RO denotes the vector of design parameters. It should
be noted that, of all the possible controllers satisfying the design criteria, the one with simple
structure is usually preferred. That is to say, designers should start searching a design solution
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from a simple controller first. After many attempts with controllers of different orders, the
structure in (3.40) is arrived at.

Throughout this work, inequalities (3.39) are solved by using the MBP algorithm [3].
Alternatively, other algorithms for solving a set of inequalities may be used (see, for example, [2]
and the references cited therein). After a number of iterations, a design solution p is located,
where

p = [4.0622 x 1074, 5.2633 x 102,

and the corresponding performan k
—
(D075 N andsgoyeess.0961 V. (3.42)

To verify the perform | ) a test input f is generated such that
its magnitude and slope are 0 | 1000:N/s, respectively. The waveform of f
and the responses of the- ' iven i

j64 x 10%, 0.8252, 4.8476, 0.3817]1  (3.41)

af/dt (N/s)

20

time (sec)

Figure 3.7: A test input f € P characterized by (3.38).

The simulation results show that the performance of the system using the controller ob-
tained by neglecting the nonlinearity does not satisfy the design criteria (3.39). Specifically, in
response to the input £, the control signal  slightly violates the bound U.,,.« and the maximal
magnitude of e is 79.31 N, which exceeds the bound E\,.x by 22.02%.
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20

0 / ; .m.&’. , \ 20

A
Figure 3.8: Responses of t m*sys eI e input f using design solution (3.41).

.d 3y
3.5.2  Nonlinear System De )

Now the dead-zone e -f-—-—»—-.:.—.::— ————————————————— i qg‘ A controller is obtained by

solving the design crlterﬁ m
| < —1075,

ﬂum%%mnm

The nonlinéa rity ¢ € sector [0, 1l,and is decomposed using (3.6). Accordingly, the rela-

TR TR T TR

N =max {|Kz|, |KUy + 20 — Up|} .

(3.43)

The structure of the controller G.(s) is chosen as in (3.40) where p = [p”, K]T € R”.
By using the MBP algorithm, a design solution

p = [0.0110, 2.6954 x 10%, 1.7476 x 10*, 0.9097, 23.8560, 0.7325, 0.9680]7  (3.44)

is found and the corresponding performance measures are

do(p) = —2.75,
1 (p) = 62.67N, (3.45)
$2(P) = 0.099 V.
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To verify the design, the sii -.,_}:\;“ S with the test input f. The responses of

the closed-loop system are given in-Figure 3.1
well with the results obtained by the de ignpe , the maximal magnitudes of e and « in
response to f are 61.82 N'and U.08716"V, respectively. Clearly, (3.43) and (3.39) are satisfied.

q ! ' time (sec)

Figure 3.10: Responses of the nonlinear system to the input f using design solution (3.44).

From this example, it is seen that the design obtained by neglecting the nonlinearity
can fail to satisfy the design objective (3.2). This is critical in cases where any violation of (3.2)
or (3.2) is unacceptable. Hence, the value of the method developed here is evident.
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3.6 Conclusions and Discussion

This chapter has developed a practical method for designing a controller for the system (3.4)
so as to ensure that the error e and the controller output w stay within the specified ranges
+ Fnax and Uy for all time and for all possible inputs f € P. In connection with Zakian’s
framework, the method can be seen as an adjunct to the principle of matching [1, 2].

Theorem 3.2 provides an essential basis for developing the surrogate design criteria (3.29),
which are used to obtain a solution of t e n
Because the system (3.4) uses the conve

i

ble to both lumped- and distributed-para

I design problem (3.2) by numerical methods.
tation, the developed method is applica-
Iong as Assumption 3.2 is satisfied.

nllnearlty is replaced with a fixed
ominal system used during the

gain and an equivalent b ' NCE. / Mn i i
design becomes linear ti /i associa formance measures (which are

It is interesting t0 no At _ is also applicable to the case
in which the set P is ch / o orms of inputs and their slope.
See Chapter 6 for further i A i ction with the results in [14], the
method is also applicable ; y using more than two bounding
conditions in order to elimi ts that cannot happen in practice)

HUEJ’WIEJWTWEJ']ﬂ‘i
QW’]Mﬂ‘ﬁﬂJﬁJW]’JWMﬂEJ



CHAPTER IV

DESIGN OF FEEDBACK SYSTEMS WITH OUTPUT
NONLINEARITY

This chapter deals with the design of fe (\\nw trol systems where the plant is linear time-
invariant and has a static memor on s output channel. The design problem is
to determine a controller ens the 3ror nd the controller output stay within

respective bounds for all tim

~all in utSI Ie set P. To this end, we extend the
i ard“* al and demonstrate the usefulness of
the method by a design exa whi _- infinite-dimensional.

v <

Figure 4.1: A feedbé,ck:dﬁn'trc’a) mﬂth an output nonlinearity.

- £
Consider a fee& ! arity as shown in Figure 4.1,
where, as usual, w R ﬂ& is a continuot and'memoryless nonlinear function,
Gp(s) and G, (s, p) arethe transfer functions of the plant a@ the controller with the design
parameter p €

TR WAoo s

f is known only félthe extent that it beI%pgs to the p053|ble set P descrlbed by (3.2), that is,

AR MINEAAEY e

As mentloned previously, the design problem considered in the chapter is to determine a
controller transfer function G.(s, p) such that the design objectives (1.7) are satisfied, that is

E max
Umax

>

<
- (4.2)

>

where é and @ are the peak values of e and « defined in (1.7), and the bounds Ey,ax and Upax
are given.

This chapter has two main objectives. First and foremost, by extending the results de-
veloped in previous chapters, we develop a practical method for designing the feedback system
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shown in Figure 4.1 so that the design criteria (4.2) are satisfied, where G, (s) can represent
a lumped- or distributed-parameter system. To this end, we derive sufficient conditions of the

form
E max

Um ax

for ensuring the satisfaction of (4.2), where € and @ are computable upper bounds of é and

€

<
u <

(4.3)

u, respectively. Accordingly, the design criteria (4.3) are suitable for solution by numerical
methods [36]. The key idea is to replace the nonlinearity with a constant gain and a bounded
disturbance. Sufficient conditions for the satigf%}do of the original design criteria are derived
from a nominal linear system, and thus, provide ,u;_rrggate design criteria that are more compu-
tationally tractable. Second, we demenstratgithe useftilfiess of the method proposed by applying
it to the design of a feedbackssystem.it which the plantiis.governed by a heat equation with an
output nonlinearity.

The organization of thi
for ensuring the satisfaction,
result is stated in Theorem 4.1 Pra icaLsufﬁcient conditions.for (4.2) are then developed in
the form of inequalities th
presents a stability condition

er is asifollows. Section 4.2 derives sufficient conditions

hieh, qs:s‘e:ntiajf)’!égg,arantees the boundedness of the nonlinear
system outputs. The developed etﬁoq' is illugtf}tea by a design example of a heat conduction
¥, .

. . . bl A . . .
process in Section 4.4. Finally,€onclusions an ‘u‘ssmn are given in Section 4.5.
P ymadea # g e

—_ T

42 Main Results Lo A
A -~
- ——
This section derives t@gnaln theoretical result of the cm@making use of the technique
due to [15, 24, 25], in wh'i'qh the nonlinearity is replaced with 7 constant gain and an equivalent
bounded disturbance. The principal result is introduced in Theorem 4.1, providing sufficient

conditions for the satisfactionof the design critéria (4.2). The conditions will be used subse-

quently to develop practical design inequalities.that'can be used for determining a controller
G.(s) satisfying the original design criteria (4.2).

Assumption 4.1. Foreveryinput f-¢ P, thereexist'unique ez Ry -»Riw : Ry — R and
v: Ry —xRthat satisfy
= gp*U
u = gekxe (4.4

= f=v()
where g, and g. are the impulse responses of G, and G, respectively.

In the following, the decomposition technique used in Chapter 3 will be recapitulated.
For a given value K € R, define a function ¢ : R — R such that

(z) £ p(x) — Kz, x€R. (4.5)
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<
\

= =
¢+

<

=

It readily follows that the nonlinearity e represented as in Figure 4.2.

Now consider another systen D /J e 4.3, where f € P and w € V, defined
by g / ;

E 20 (4.6)
with an appropriate bouV
l w
()
- 7 + Y
Y ,+é> 7
onlinear system.
The system in Fidure 4.3 is described by

v = gexe 'm 4.7)

Con & = [ KV —¢(w)
wee e palp E TYNENTWEINT
In the following, we will show th@t the design ob'gctives of the oriai‘r;al nonlinear system
proved by using t hwq efin rs, is essentiall QZI tien of the Schauder
fixed point theorem (see, for example, [26, 27]).
Assumption 4.2. The impulse response i of the transfer function

Gp(s)Ge(s)
14+ KGpy(s)Ge(s)

H(s) & (4.8)

satisfies conditions that &, h € A.
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Theorem 4.1. Let Assumptions 4.1 and 4.2 be satisfied. If
¢ < Bupax, €2 sup  |€|
ferP, weld

W < Umax, @2 sup o] (4.9)
fer,weld

'lA)/ S VmaX7 ﬁ/é sup ||v/||00
fer,weld

then the criteria (4.2) are satisfied.

method used in Chapter 3. The details of
llowing.
€ V. From (4.7), we have

Proof. The theorem can be proved b

e..:‘\:‘l ote
'\ with f

(4.10)

(4.11)

w € V. Thus, forany 7' €
® : Vr — Vr such that

LA

.‘f]{"';ﬂ;ﬁ :
(4.12)

Note that Vr is a bounded, CIO§@9§ ax subset of the Banach space Ly for any T' €

[O? OO) L,ﬁ

Furthermore, it car be Seen frofm (¢ 4.5) that ¢ is a con 1S function on R. Consequently,
by virtue of Lemma D.1j" ) i that if h, h € A, then the operator
® is compact over Vp. Inview of Schauder theorem, it followsthat for any 7" € [0, oo) and for
each f € Pr, there exists v eVrsuchthat qu

AULINERINEINT @1

Y

Let ef € & and u' € Ur denote thesassociated errex, function and centroller output of the

system‘%?W‘ﬂea ﬁ ﬂ im %:Lm ’] '3 VI El ,]I a E]

gexel (4.14)
el = f— Kol —g(h).
Equivalently,
ol = gp*uT
ul = gexel (4.15)
el = f—ulh).

It readily follows from Assumption 4.1 that ef, «' and v are also the responses of system (4.4)
for any T > 0. As a result, conditions ef € &, ut € Ur and v' € VY imply that the
criteria (4.2) are satisfied for any 7', and therefore the proof is completed. O
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Theorem 4.1 has a noteworthy consequence that the control problem of the nonlinear sys-
tem (4.4) can be replaced by that of the system (4.7). Specifically, it is shown that, provided
that the gain K and the bound V...« are chosen, the satisfaction of (4.9) implies that of original
design criteria (4.2). This is the key result of this section, providing an important step in devel-
oping more tractable design inequalities. In the following, the derivation of such inequalities is
presented.

It is important to note that the system (4 7) with two inputs f and ¢(w) is linear. Now
define
(4.16)

Figure 4.4 near system (4.1).

Evidently, it follows f ‘]r (4.16 h' the systems in Figures 4.3 and 4.4
are equivalent. Thus, the peak can be computed as follows

(4.17)

Apparently, the set D,, cangot be readily emplo ed in the design since every d in D,, depends

H°Weverﬁ"udﬁ "TW‘EIW? WET:’IT’I?Z I

up l6(w)lloo < N, with N2 su wl (4.18)
Thos bmﬂ’] NI mﬁ']’} Jigas
D2{d€ Lo | ||d] o < N}, (4.19)

it is readily follows that D,, C D, and hence

L

¢/ < e, é sup  ||€]loo
feP,deD
@ < 4, % sup |l
) feP,0eD 0 | (4.20)
< 0, 02 sup V]l
feP,deD

As an immediate consequence, we have the following result.
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Theorem 4.2. Let Assumptions4.1 and 4.2 be satisfied. The design criteria (4.2) are satisfied if

é S Emax
@ < Upax (4.21)
/lj S Vmax-

Proof. The proof readily follows from the above discussion. O

Notice that in contrast to D,,, any i
© can be computed numerically by usi
particular,

p”in D does not depend on w. Therefore, ¢, @ and

y ethods developed for linear systems. In
&4 e4(6, D),

™
Il

u = , up | | |ug (9, t)|dt, (4.22)
0]
where e/;(9,t), ul,(0,1) v’ at time ¢, respectively, with
f=0andd =4(t). See S he computations of ¢4, ¢2 and ¢
Note further that t v : the gain K. Thus, in order to
achieve a better design, K Ve | itional design parameter To this end,

define the augmented design paramet P as in 2 [pf, K|T. As a

(4.23)

Accordingly, (4. Zm and hence (4. ecome computéﬂnally tractable design inequali-

ties.

y Stab...ty@PMttJ’mwvﬁwmnﬁ
ot mmmmm A B sen 2o

Let ¢ denote the impulse response of the composite transfer function
G(s) £ Ge(s,P)Gp(3). (4.24)

Assumption 4.3. The impulse responses g, g. and g satisfy conditions that go, g., § € A and
there exists & > 0 such that [~ e**¢%(t)dt < oc.

The boundedness of the responses e and « can be guaranteed by using the following
theorem.
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Theorem 4.3. Consider system (4.4) and let Assumption 4.3 hold. The responsese, « and v are
bounded for any f € P and for any ¢ € sector [0, ko] if thereexist ¢ € R and 8 € R such that

1
Re [(1 + gjw) G (jw)] + o >p>0, Yw>0. (4.25)
0
Proof. By noting that ? C P, the proof follows from Theorem 2.2. O

Following the results in Chapter 2, the Popov condition (4.25) can be replaced by a more
tractable inequality

} ) E kO - kmax(p)’ (426)

where ~ is a small positive num ; aximum value of the allowable sector

By making use of appiepriate.ioe , it is easy to see that Theorem 4.3 is
also applicable to the case that'C’ () has e it € € origin. For details on this, see Chapter 2.

(4.27)

o =

ATSNEANT

EANNIUNRIANEIA.

Suppose that the control objective is to keep the responses e and u stay within +F, .« =
+0.3 and £U.x = £0.25 for all time and for all inputs in the set P characterized by

M=1 and D =0.5. (4.28)
Consequently, the criteria (4.2) become
€<0.3 and u <0.25. (4.29)

In connection with the surrogate design criteria (4.23), let Vijax = 1.2.
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The design problem is to find a controller satisfying inequalities (4.26) and (4.23). To this
end, assume that the controller transfer function takes the form

Go(s,p) = p1(s + p2)

T 4
- ) = ) I ) S R . 430
Z st P [p1, D2, P3, P4l (4.30)

Notice that, for G, in (4.27), Assumption 4.2 is always satisfied since H (s) is strictly
proper whenever so is G, and since the finiteness of ¢; in (4.23) implies that i, i € A. (See [14]
for the details on the connection between, the,stability issue and the finiteness of ¢; for linear
problems). Moreover, it readily foll%l ég 4.3 and from (2.34) that Assumption 4.3
is also fulfilled. That is to say, '

For convenience, the &I trajsfer un G, is approximated by a truncated
ena hi

eigenfunction expansion o Jproximation is used, no significant
difference in the computed 1d. | N . ing, that one may avoid this approxi-
mation by employing the i ] fo design of retarded fractional delay
differential systems.

By using the MBP

(4.31)

é3(p) = 1.15. (4.32)

0 10 20 30 40 50 60 70 80 90 100

time (sec)

Figure 4.6: A test input f € P characterized by (4.28).
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The responses of the system given in Figure 4.7. The simulation results show that the
performances of the system by using the so-obtained controller satisfy the design criteria (4.29),
thereby clearly illustrating the usefulness of the method.

" AugAnem &%Wmﬂ‘i

Figure 4.7: Igdsponses of the nonlinear system to '.EEUt f using desqwfolution (4.31).

ARIANNIUHNRTIINETIQE

45 Co?nclusions and Discussion

This chapter has developed a practical method for designing a controller for the system with an
output nonlinearity, as shown in Figure 4.1, so as to ensure that e and w stay within the pre-
scribed ranges + Fyax and +Uyax for all time and for all inputs f € P. Specifically, by using
the decomposition (4.2), the nonlinearity is replaced with a constant gain and an bounded dis-
turbance, and hence the original design problem becomes that of a linear time-invariant system
subject to an additional disturbance. As a consequence, Theorem 4.1 provides an essential basis
for developing the surrogate design criteria (4.23), which are used to obtain a solution of the
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original design problem by numerical methods. The simulation results of the heat conduction
process have illustrated the advantage of the proposed method.

It should be noted that the method developed here is also applicable to the cases where
PE{fe€Ly| |flly <My, ||j‘||2 < Ds}, with M, and D being prescribed bounds or P is
characterized by using more than two bounding conditions (see also Chapter 6).
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CHAPTER V

DESIGN OF FEEDBACK CONTROL SYSTEMS WITH
UNCERTAIN PLANT AND INPUT NONLINEARITY

This chapter is motivated by the fact tha\ ystems possess uncertainties. In this con-
nection, the aim of this chapter is m-develop a thod for designing a class of uncertain
nonlinear feedback control s uch 3 wa) rror function and the controller out-

ective bouqd;%me and for all possible inputs in
Jdgalis'to make of the decomposition technique de-

put are ensured to remain W
the presence of uncertaintie
scribed in Chapters 3 and 4
Finally, a controller desi

ian’s methed for designing vague systems [1, 2].
Ju process with'uncertainties is carried out and
the numerical results dem seful?s of t developed method.

-

5.1 Introduction

v <

Figure 5.1: A fee with input nonlinearity.

Consider a feedba‘CL control system shown in Frgure .1, where w ) is a continuous,

time-invariant a ﬁ nc ) and G.(s,p)
are the transferﬁ%@ ﬁ %E\ﬁ %ﬂﬁ %ﬁ/ﬁv ﬁ |gn parameter p € R",
respectively. Suppose that Gp(s) is unc rtain and known only to the extent that it belongs to a
set Gp. en the plant, and
hence tmsm pjﬂ ﬁmgﬁm m’.ﬁ»}aﬁ m ﬂ?jeﬁd (3.1). Moreover,
it is also z%sumed that the system is at rest for ¢ < 0.

Following Zakian’s framework, the design problem is to determine a controller transfer
function G, (s, p) such that the following design criteria are satisfied:

le(f, )] < Emax
[u(f,t)] < Umax

where the bounds E,.x and Uy,ax are given. It is easy to see that the criteria (5.1) are equivalent

} VieP VteR, VG, e G, (5.1)
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to the following conditions

S = B

spuppﬁ < Umax, (5-2)

Gp€elp
where the peak values é and @ are defined as in (1.7) for each G, € G,. Evidently, (5.2)
become practical design criteria, provided that the terms on the left hand-side can be computed
in practice. Nevertheless, the problems of computing Supg,eg, € and Supg,eg, U are obviously
more difficult than those of é and 4, which are now still open. Therefore, the purpose of this
chapter is to develop a method for designing, /ié/é)ntroller G.(s) satisfying the criteria (5.2).
Since (5.2) are computatlonally intractable, we'de }pﬂctlcal sufficient conditions of the form

—_ d —
,,—i-’é'r< Fmax and ¢2 < Un_lax (53)

for ensuring them, Wherx /Y are readily computable. Consequently, (5.3) are more
uti ' erreal methods fora wide range of G ( ).

by using the results presented‘in GJn’apter 2: The-gérjdrtron also provides a readily computable
inequality for determining a robust statj'lrzrng (ﬁ'&r:oller

The organizations _pf this chapter is as foIIow; Section 55{2 presents an extension of Za-
kian’s majorants. SeGtion=5: 5
using the results developed in Section 5.2 and the design method presented in previous chap-
ters. In Section 5.4, the stébrlrty condition of the uncertain nonlinear system is given. A design
of a heat-conduction processswith uncertaintiesiis carried out in Section 5.5 to illustrate the
usefulness of theamethad.-Finally, can¢lusions and discussion aré given in Section 5.6.

5.2 Extension of Zakian’s Majorants

This section presents an extension of Zakian’s majorants [1, 2, 22, 46] to the case of linear feed-
back systems with two inputs.

Consider the system in Figure 5.2 where G (s) and G2 (s) are the transfer functions of the
controller and the plant, the input f belongs to a possible set P C L., and the input d belongs
to the set D defined by

D2 {d€ Lo | |dls < N}. (5.4)
The system is described by
V2 = V1*(g1

55
v1 = [—g2x(d+uv), 49
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s GI(S) > GQ(S)

Y

where ¢; and ¢» are the impulse responses ) d G, respectively.
Suppose that the design prob 2 the transfer function G (s) satisfying

(5.6)

where the bounds Vi ax an Ve, In i esirable to replace the transfer
»(s)), the system in Figure 5.1

(5.7)

y

Figure 5.3: 'me

In the following, we WI|| develop sufficient conditions expressed in terms of the nominal

Y

5.2.1 Zakian’s'@riterion of Approx?atlon

s RAAR GRTAANATNEA i oo o

be seen aqan approximan

2 /0 wi(7)|dr and iy 2 /O fa(7)dr, (5.8)

where w; and wy, are the impulse responses of W7 (s) and Wa(s) given by
s Ga(s) — G5(s) Ga(s) — G5(s)

-one in Figure 5.2.

Wi(s) = . Wa(s) 2@ . 5.9
1(s) 1+ G1(5)G5(s) 2(s) “$1+GmgGy@ (59)
Let 07 and v5 denote the peak values of v} and v, respectively, defined by
5= sup |[villee and 03 = sup [|v3]lco- (5.10)
fEP,dAED fEP,AED '

Now the main result of this subsection is stated as follows.
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Theorem 5.1. Suppose that the system (5.7) isBIBO stableand that 111 < co and s < oo. The
criteria (5.6) for the system (5.5) are satisfied if uo < 1 and if the following holds

¢1 < Vlmam ¢1 £ %
) (5.11)
05 + pa N
< max £ 2—
¢2 > ‘/2 axs ¢2 1_ 11

Proof. From (5.5), it is easy to verify that

Vi(s) = F(s)— D(s)Ga(s “ s
F(s) — D(s)Gp(8) - G (s) — E5s) S_Gl(s)[G2(S)—G§(S)]V1(8).

14 G1(s)@5(s +6 (5)G3(s)™ 1+ G1(s)G5(s)
e (5.12)
It follows from (5.7) and
W3(8)V1(s). (5.13)
Consequently,
vi(t) = w7 )a ws(t — 7)oy () dr (5.14)
and thus, by using (5.8), we ha
sup |v1(7)| < su 1O p |d(T)| + p2 sup |vi(7)]. (5.15)
€[0,1] _ TE[0.1]
From (5.15), it is easyt@verifythat "
Yo
(1 —@) sup | —l—msup |d(T) (5.16)
ref0,] r€[0,t] €[0,t]

Since the syste ays finite. As a result,
provided that 1 h w Wﬁle ng t — oo yields
03 1o + oo 617

ammn‘%%wm@wmaﬂ

Furthermore, by multiplying both sides of (5.13) with G (s) we arrive at

Va(s) = V5 (s) — Gi(s)Wi(s)D(s) — Wa(s)Va(s). (5.18)
In the same way, by noting that W5 (s) = G1(s)W1(s), it can be easily shown that

103 ]l00 + p2lld]l o
1 —po

(5.19)

lv2ll0 <

Therefore, inequalities (5.11) are obtained as a consequence of (5.17) and (5.19). O
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5.2.2 Zakian’s Majorants for Vague Systems

Now consider the case in which the transfer function G2(s) belongs to a set G, containing more
than one distinct elements. As will be seen shortly, the result in the previous subsection will be
used and developed further.

By noting that 11, uo, and hence ¢; depend on G2 € G, the following result is obvious.

Proposition 5.1. Suppose that the system (5.7) is BIBO stable and that ;1; < oo and s < 1 for
any Gy € Go. The criteria (5.6) for the 7.5 are satisfied if the following holds.

_ g/ﬁ i=1.2 (5.20)

Proof. By virtue of Theore ' ) i O

over G, are required in t
In this connection, Zakian

t computationally economical.
upper bounds ji; and thus arrives

at
(5.21)
where ¢; is a majorant of ¢; that & teadily complita
Next, the upper bound of gg;_;s;ﬂggi_{_\@% tha
O\ T Vs
=03 A =TI L), (5.22)

where v (¢, 1) denotes tg value of vy &

T AuYAINERSHEINT o

Now assume thatithe nominal system is BIBO stable. As a consequence, the following limits

= QRIADIUARIINENAY o

Hence, expression (5.22) is equivalent to

response @the input f = 1(¢t) and d = 0,

t
wa(t) = 2(0) [v3(t, 1) — o2 + / 2t —71) [i(1, 1) — o2] dT + 022(2). (5.25)
0
Using a known property of 1-norm of the convolution operator (see, for example, [28, p. 239])
yields
[wa]ly < Aloa| + Bljvy(1) — 021, (5.26)
where

AZsup{||z||1: G2 € Go}, B =2 sup{|z(0)| + ||Z]l1: G2 € G2} (5.27)
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It follows from (5.26) that
po < fiz,  fiz = Aloa| + B3 (1) — o2 (5.28)
Similarly, an upper bound of 1, can be obtained as

pr < iy, ju = Aloy| + Blloi(1) — o1 (5.29)

From the above, it should be noted that t

Therefore, the upper bounds i; an

Wes A and B need to be computed only once.
Finally, let i, < 1 and define

%sed in practice.

L

(5.30)

It is now ready to

Theorem 5.2. Suppo
The criteria (5.6) are sati

leand let i1 and fio befinite.
if the following holds

(5.31)

Proof. The proof is complete
46]).

d the above discussion (see also [1,
O

-

TR0 2 N

7
—

1‘. %
Since the majq@ts $; can readlly bg:g_ ﬁ

useful design inequali
merical methods.

, conditions (5.31) provides
original criteria (5.6) by nu-

LR (R0 1Rt M e S—

The key idea is, by replacing the nonllneﬁrlty with a comstant gain and a bounded disturbance, to

M e e

developed in Section 5.2 can be applied. The practical design inequalities are then developed
based on the main results presented in Theorems 5.3 and 5.4.

This section ca

5.3 Design gncertaﬁvﬂonlmears stéins

Assumption 5.1. For everyinput f € P and every G, € G, thereareuniquee : Ry — R and
u : Ry — R that satisfy the following equations

U = ge*e

(5.32)
= f—us*ngf—T/J(U)*gp-
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d
fo o y
G.(s)— K - Gp(s) >

By usmg the decomposition techni 3 1bed in Chapters 3 and 4 (see also [15,16,24]),
g o ed, where d belongs to the set D given
in (3.22) with the bound N defii

The system in Figur

(5.33)

where G, € G, f € P ait

Foreach G, € G,, le f e’ and u/, respectively, given by

(5.34)

\

(5.35)
B

and h € Aforany G, € Gp.
It should Heﬁj ﬁmhﬁzw Ejr] siatlon the plant transfer
function G),( ﬁ m ms as long as A satisfies
Assumptlon 5. 2 or example, the plantican be a systeawuh time- delawr a heat conduction

QWA LIHHANEIRL, . oo

the auxiliary system (5.33) is stated. (One may notice that this result differs from Theorem 3.3
only to the extent that the system uncertainties are now taken into account).

I
Assumption 5.2. The fu;lltion h satisfies conditions that i

Theorem 5.3. Let Assumptions 5.1 and 5.2 be satisfied. The criteria (5.2) for the systemin
Figure 5.1 are satisfied if the following conditions for the systemin Figure 5.4 hold
sup ¢ < Enax,
Gp€eGp

sup @ < Upax-
Gp€eGp

(5.36)
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Proof. The proof can be completed by the same technique used to prove Theorem 3.2 and
Theorem 3.3 in Chapter 3. O

According to Theorem 5.3, the design problem of the nonlinear system can be replaced
by that of the auxiliary linear system subject to an additional disturbance d. However, comput-
ing the performances ¢’ and 4’ given by (5.36), in general, are very difficult due to the plant
uncertainty. Therefore, it is desirable to replace (5.36) with sufficient conditions by using the
result developed in Section 5.2.

Consider the nominal system i ure 5.5 where f € P, d € D and G (s)

S y
»(5) -
: s em.
Assume that the nomi Stem:ig!| S a result, the following limits exist
lim w*(¢,1). (5.37)
- 2 \ 1L— 00
where e*(t, 1) and u* (¢, 1) are the v 1" at time ¢ in response to the inputs f(¢) =

(5.38)

where

ﬂumtn:amfm By~

Let &* and u* denote the peak values of e* and HIVGI’] by

AWIANT I YV EN % 0

sup Hu Hoo
feP,deD

It is now ready to state the sufficient conditions to ensure the satisfaction of inequalities (5.36).

Theorem 5.4. Suppose that the nominal systemin Figure 5.5 is BIBO stable and that /i; and

f12 defined in (5.38) are finite. The criteria (5.36) for the system in Figure 5.4 are satisfied if

fi2 < 1 and the following inequalities hold
€+ N
-
Ku* + figN
K(1— p2)

Emax7
(5.41)
Umax'
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Proof. By virtue of Theorem 5.2, the proof immediately follows. O

It should be noted that ¢* and @* are the peak outputs of the nominal linear system without
any uncertainties, and therefore they can be computed numerically by using available methods
(see Section 3.3). As a consequence, conditions (5.41) become useful design inequalities, which
are more tractable than those in (5.36).

Define

o 2 N 5)||1+%+m)
(5.42)
¢2 A A ) d)uf + /’LZ)
2 /N K

where ¢(6) and () are-m of ef and-;ﬁ_an-u—me t, respectively, with f = 0 and

d = §(t). Evidently, ¢ d on_i Ngam K. Letp = [p, K.
' ller transfer function G.(s,p)

Accordingly, the desig

(5.43)
Notice that ¢1(p) and ¢2(p) rther details, see Section 3.3
5.4 Stability Conditions
The usefulness of the stability cond::t-rgﬁ y oundedness of the outputs of the non-

ﬁrectlon 3.4. In the following,
i

asnnll mﬁ@ adthns, .
AR TR T

/ 2ot 2()dt < 0o, YV G(s) €G. (5.45)
0

only stability conditi

For each G.(s, )

(5.44)

The boundedness of e and « can be guaranteed by using the following theorem.

Theorem 5.5. Let Assumption 5.3 be satisfied. The responses e and u are bounded for any
f € Pandfor any ¢ € sector [0, ko] if thereexist ¢ € R and 5 € R such that the following
condition is satisfied

Re [(1+ gjew) G (juw)] + kio >8>0, VG(s)eG, Yw>0. (5.46)
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Proof. The proof is completed by the direct application of Theorem 2.2 in Section 2.2 (see
also [47]). Ol

Following the results in Section 2.3, one can see that condition (5.46) can be checked
graphically by using the Popov plots of all G(s) € G. Now define €2 as the convex hull of all
the plots, (that is, the minimal convex set containing all the plots). Then, the following result is
obtained.

Proposition 5.2. The Popov plots of all G'(s ,E/g lie to theright of the Popov lineif and only if

so does Q2. /Z/

Proof. Note thatif g, g € A, thenw— Re [G/(jw)land™ — wim [G(jw)] are continuous and
bounded on R (see, for examples{28]). Therefore, ali-the Popov plots, and hence £2 lie in the
finite plane. The rest of the ows Proposition B.1.in Appendix B. Ol

By virtue of this pr
Consequently, condition (5.

@ Ganr oceed with the Popov test developed in Chapter 2.
isfsatisfied if the'following holds:

—

;577 fl %}(fj) X kO . 4 kmax(p)7 (547)

& .-.f.i
ber and -kmx |§ t'h‘e §upremal value of the allowable sector bound
obtained from the modified Popov testu _in;_

Clearly, once €2 can be obtai.ﬁed in practrCé}&éhdltlon (5.47) provides a useful inequality
for determining stability points of-the system by!n,unlerlcal methods. Note that the number of
elements in G may be igflnlte In such a case, it is desirable tg” approxmate Q by the convex
hull of the Popov plotsymwwm?}‘gg Thus, designers should use
the number ~v as a margma1l tolerance for the error caused by tlrris approximation.

Furthermore, by ers*[raightforward extension of Corollary 3.1 in Chapter 3, the following

where ~ is a small positive n

result is obtained.

Corollary 5.1. If ‘Assumption‘s.3 and-the'Popov condition (5.46) are satisfied by G(s) € G,
then the nominal Systemin Figure 5.5 isBIBO stable for any K € [0, knax)-

The corollary implies that if pisa stability point of the nonlinear Vsystem andif 0 < K <
kmax, then p is a stability point of the nominal linear system.

5.5 Numerical Example

Consider the heat-conduction process considered in Chapter 2. Suppose now that the plant
possesses uncertainties and thus its transfer function is described by

a
Go(s) = —2 ac[18,21], Ae[0.9, 1.1]. 5.48
(s) Vssinhv)\s a€l ] | ] (5.48)
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Note that G,(s) has one pole at the origin and the others on the negative real axis (see, for
example, [35]). Moreover, the impulse response g,, is given by

2a > n2n2t
gp(t) =a+ d(=DreT 5, t>0. (5.49)
n=1

Now assume that the nonlinearity ¢ is described in Figure 5.6, where zy = 0.2, k1 = 0.2
and ko = 1. Obviously, ¢ € sector [ky, ka].

Figure 5.6 inea f the - duction process.

Assume that the contr ive s to Keepith or ¢ and the control input « staying
within £ Fpay and +Upax ; “ ot all inputs belonging to a possible
set P given by (3.1) where

Emax = 6, - _,_-_:c_:. 5% el and D = 25. (5.50)

Accordingly, the desigi- 'V --------------------------- nsfer function G.(s) so that
the following criteria are .“ m

¢o(p) < —0.1,

AugAnihdhenns

To this end, assumz that the controller trinsfer functlon takes the form

AR mag»%;)@ma P ew

(5.51)

where p = [p1, 2, p3, pa, ps)” € R, The nominal model G (s) of the plant is chosen with
a=20, A=1. (5.53)
Since G(0) # 0 and G;(0) = oo, it follows that
o1=0, o02=0. (5.54)

Thus,
= Blle*(1)[|1, fiz = B|u*(1)]1. (5.55)
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Note that the computation of B involves an extensive numerical search in R?. However, B is

required to be computed only once. The search reveals that

B =4.1032 ata=21and A =0.9.

(5.56)

In this example, inequalities (5.51) are solved by using the MBP algorithm. A design

solution
p = [7.2442, 28.7856, 200.4369, 142.0602, 3785.7, 0.9730]%

|
is located and the corresponding performance I‘l{ﬁ‘/pf
d0(p

sf/e’sare
) = _m
Y = 586
e —

Figure 5.7 shows the Pop@f the systems with variouspairs of a and .

%/

F ' r/
' F ’
o - 0
///"_ Jl‘J
4,
Y B

i | ‘S # Popov plots of G’s

wIm G(jw)

ReGE(jw)

Figure 5.7: Popov plots of G(s) witha =18 : 0.5:21and A = 0.9 : 0.05 : 1.1.

(5.57)

(5.58)

To verify the design, the simulation is carried out with the nonlinear system subject to
a test input f, which is generated such that its magnitude and slope are bounded by A and
D, respectively. See Figure 5.8. The responses of the system are given in Figure 5.9, clearly

illustrating the usefulness of the method.
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el \
Figure 5.8¢ A testinput /€ P characterized by (5.50).
Finas
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Figure 5.9: Responses e and u of the nonlinear system to input f with a = 18,19, 20,21 and
A=0.9,1.0,1.1.
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5.6 Conclusions and discussion

In this chapter, we have developed a practical method for designing the feedback control system
shown in Figure 5.1. Following Zakian’s principle of matching, the control objective is to ensure
that e and w stay within the specified ranges + Ey,.x and +Unax, respectively, for all time and
for all inputs f € P in the presence of uncertainties. The results of this chapter are derived from
those in Chapter 3 and from the extension of Zakian’s majorants, which provides a useful tool to
deal with vague systems. The effective ess of the developed method is illustrated by the design

example of an uncertain heat-cond

It should be noted that d.ean.also be applied to the case of uncertain
systems with an output no @adjunct to the results presented in
Chapter 4. H

AULINENINYINT
RN IUNRINYIAY



CHAPTER VI

CONCLUSIONS

In this chapter, we summarize our contributions and discuss some directions for future research.

1,
6.1 Contributions ///

The contributions of this thesq&are as follows. S

First, we develop aspractical
possible set Ps or Py. SM
the linear subsystem is allowed
A, are revisited by extending

proach for stabilizing Lur’e systems with inputs in the
input-output stability properties of Lur’e systems, in which
4 fonrational transfer function belonging to a subclass of
omne results ir}"_[SO] and [32]. It is shown that if the magnitudes

ense of two norms or infinity norms, then the
E:ure the boundedness of the system outputs for

Popov test and devise a pra€tic condlnon f04’ “p})talnmg stability points of the system that is

readily soluble by numerical
Second, in connection Wlth Zman S frmeWork this thesis also develops a practical
method for designing.nonlinear feédback systefnsw"ﬁere the ?Iant is possibly uncertain and
consists of a linear tlme?- pvatiant subsystem and 2 noRlReALIvAIR' its input or output channels,
S0 as to ensure that th‘e’érror function and the controller outpu't-ﬁltay within respective bounds
for all time, for all possgie inputs and in the presence of plant uncertainties. This is consid-
ered as the most significant-contribution of the work in this thesis. A unified and systematic
methodology has.beén intraoduced. In particular-the design procedureis as follows.

1. Replacing the nonlinearity ) with constant gain K and equivalent disturbance ¢ yields
theyequivalentdinean systems asishowni in Figlres 8.4 and4i3:

2. Using the Schauder fixed point theorem to prove that the design problem of the nonliear
system can be repalced by that of the equivalent linear system (see Theorems 3.2 and 4.1).

3. Replacing the set D,, in (3.19) and (4.16) by a tractable set D defined in (3.22) and (4.19)
results in the nominal linear system used during the design.

4. Using the linearity of the nominal system, sufficient conditions for the satisfaction of
the design criteria of the original nonlinear system can be obtained. If the plant transfer
function G,(s) is known, these conditions are also surrogate design criteria (see (3.29)
and (4.23)).
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5. If the plant is vague, surrogate design criteria (5.43) is obtained by using the extension of
Zakian’s majorants (see Section 5.2).

6. Surrogate design criteria (3.29), (4.23), and (5.43) are in accordance with the method of
inequalities and suitable for solutions by numerical methods.

It is shown clearly from the stability results and the design procedure that the developed
method can be used for the design of a large class of nonlinear, possibly uncertain and possibly
infinite-dimensional systems. This can be seen ?s considerable advantage of the research work
presented in this thesis.

The effectiveness of the-method has been d monstrated through some numerical design

examples. In addition, wherw_g,s,ystem isc |t|cal the.value of the method becomes evident.

6.2 Future Works

Possible extensions of this
First, the design

so be a;?g'lled to the case of systems with inputs in the set
P given by

&l

¥/ Lﬂ Hfllfz’ﬁ'Mz, Hf|l2 < Dy}, (6.1)
where M, and D, are the give boun’d§ This iiﬁm:ause the method used to compute the peak
outputs of linear systems [14] is aﬁ{)ilcable to ma ‘ Qossmle sets of which P described in (3.1)
or in (6.1) is only a special case..a,Ln{__I{jl_s conmgﬁ_tﬂw;.the possible set P can be characterized
with many (two or mq__r'“eéthan two) bounding conditions on  the: t;_d?g and/or infinity-norms of the
inputs and their slopes.”8See [14] for further details. Moreoveﬁ_ij can be seen obviously from
the results in Chapter 2 fﬁ@t the stability conditions with respp;ct to the set P, are stricter than
those with respect to ng‘i’herefore, for the set P given in (6.1), the design method can be used

P

in a straightforward manner.

Second, from the decomposition technique (see Chapters|3,/4)and stability conditions in
Chapter 2, it follows that the nonlinearity +/ in the system is allowed to be uncertain as long as
it lies in-a given secter, bound-and-thesbound; ¥, ensthe-magnitude;ofthe-equivalent disturbance
can be obtained. Cansider, for example, the nonlinearity 7/ : [R' x R™*—_R is a continuous
function of its first argument and is parameterized by # € © with

@é{QERm’@'E [Himinﬁimax], Vi:1,...,m}, (62)

where the values 6; min, i max are given. In this case, the decomposition of the nonlinearity is
as in Figure 6.1.
Assume that the condition that ||u |l < Unax is part of the design. Then,

¢(u,0) <N, (6.3)
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where

N = c,0) — Kz|. (6.4)
Note that, in general, this opti tion prob to solve. However, if the number
of parameters m is small and «-has a si ructure,.then the bound N is obtainable. Fur-
thermore, N needs to be complite y/once he design process, provided that K is
fixed. F

2

LTI

-
-
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i
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APPENDIX A

Lemma A.1. Inthe proof of Theorem 2.1, ¢ can be assumed to be nonnegative.

Proof. Assume that Theorem 2.1 has been proved for ¢ > 0. Now let condition (2.5) be satisfied
by the given G(s), k, for some 5 > 0 and ¢ < 0. Note that the given system is equivalent to the
one shown in Figure A.1.

I

Define

(A1)

First, it is easy to !i': ¥ sector [0, k] implies ¢ €
sector [0, k]. 9

Second, we show that the impulse response h of H (s) satisfies the same conditions im-
posed on g. No ist plot of G(s) does not
encircle or go trﬁ:‘u ﬁ Wﬁ% Wﬂoﬁvﬁ % the results in [42] (also
in [28, p. 85] and[29, p. 311]) that A belongs to A. Moreover

ARaN ﬂ’ﬁ{lﬂ HRAIINYINE

= —g—kg(0)h —k(h*g).

Since each term of the right-hand side of the last equation is in .4, hence so is .
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Finally, for all w, we have

. ‘w .w l
Re [(1 — qjw)H (jw) + %] = Re {(—1 + qu)% + %] = Re %
1 ey . 1 = .
— —|1 N kG(jw)|2Re _<quG(jw) + E) (1+ kG(jw))]
1

= —————5Re |G(jw) + ¢jwlG(jw)* + jwG(jw) +

(14 4)Gliw) +

the equivalent system i
that the responses e, us,

responses are in L., implying
also in L. This completes the

: (A.3)
From the above an( \\‘ ollows that Theorem 2.1 is applicable to

proof of the lemma. O
Lemma A.2. In the proof : : he ass meg obenonnegative.
Proof. By using the same m r&ugﬁ a AL, the proof is completed by showing that there
exists a number y > 0 suc 4

(A.4)

First we show th:
then ¢ decays to zero exp

any impulse, lim;_, g(@: ) @

RN Lyl a1 S

It is easy to see that |g(0)| < oo. Then (A.5) |mpI|es that |g(¢)| < oo, ¥t > 0. Furthermore, for

a“”%iﬁﬁéﬁ‘g\iﬁﬁ WATEaY

&7 gt \
1/2
t)|2dt / e 2 Wdt} (A.6)
0

_ {%/few 2(4 )dt} "

It follows from (2.19) and (A.6) that

IN

/00 leTg(t)|dt < . (A7)
0

i
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As a result, e7g(t) — 0ast — oo. Since g is bounded and ¢* is a continuous function, it

follows that |e7!g(t)] is finite for any ¢ € [0, oc]. That is to say, there exists a number C' > 0
such that

leMg(t)] < C, Vt>0 (A.8)

= lg(t)| < Ce ™, Vt>0. (A.9)

Second, we prove that |e7th(t)| is also finite for any ¢ € [0, oo]. From (A.1) we have

(A.10)
By defining

(A.11)
we arrive at

(A.12)
Thus,

|7y (
(A.13)
vt > 0.
By applying Bellman-Gronwall lemifia: ee i ample, [28]) for the above inequality and
using (A.7), we have g
vl < 0. (A.14)

That is to say, [e*h( s ca ‘ to see that A decays to zero
exponentially and satisfi condition (A.4). rJ O

Proof. Letv =

AU NENNT
AN aarsalimingtgy oo

Since f, € Lo, || f|l, and HfH2 are finite. Thus, v € L;.
Moreover, f € Lo implies that f2 — 0 as ¢t — oco. Accordingly,

Lemma A.3. alff AR satisfies the éondition that fﬁe Lo, then f € Ly

foo 2 lim (t) = (A.16)
3ol >3 [ Wf(t)f(t)dt)= 2 = £200) (A7)
2 =91 o0 : '

Hence, f2(0) < co. Asaresult, forany ¢ > 0

/‘f d7'>

= |£2(t) - £2(0)]. (A.18)
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Therefore,
fAt) <oo  Vt>0. (A.19)

That is to say, f € L. Moreover, f(t) — 0ast — oc. O

Lemma A.4. [31] If the three real functions f1(¢), f2(t) and f3(t) belong to Ly and if their
Fourier transforms are related by the equation

V—i— H(jw)F3(jw), (A.20)

. p‘

Fi(jw) =

where Re H (jw) > 6 > 0, Vw 2

dt > 0. (A21)

Proof. Let I = / fi(
0

\

)+ 5 Fz (Jw F3(Jw)} dw

1T R w)
st ) .. ReH(jw)

% B  AINCEE O "

L e X
T Re(jw ,m

SEfANENINEING e

This completes thig proof of Lemma A. 4

e O Y K AN s

sufficiently small o« > 0 such that (2.5) and (2.19) are satisfied, then the following inequality
holds

A%

/Otezmug(f)dfg/ot e;f [f( )+ qf(r d7-+—/ Wle)de, VE>0. (A23)

Proof. From equation (2.20), we have

et = it - | gt - Pus(P)dr — g(O)us(t). (A24)
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Let fr, fr and up be the truncations at 7' of £, f and w, respectively. Then

t
erlt) = o)~ [ glt = rua(rdr (A25)
0
. t
r(t) = fr(t) — /0 it = T ()dr — g(0)usr(b). (A.26)
It turns out that
—er(t) — gér(t) = y qafr(t) 0)usr(t
- [ 9(t — 1) usr (T (A.27)
' ——
By adding (1/k — a)uSTW 0 ho \ d multiplying by e®! with suffi-
ciently small o > 0, we 0 ' N
fi(t) IR v{ 4.q9(0) e uyr(t)
. (A.28)
\ e“Tugp(T)dT
where : . ‘ ‘
f(t) ) : > usT(t)] e
Y & - . (A.29)
f2(t)
Note that all terms in (A.28) be g6 s ¢ ation at 7". Thus, Fourier-transforming

this equationyields =~ _

. i)
Fi(jw) = Fz(jw)ﬁ o U}UST(jw “a). (A30)
v ]
From (2.5), there always exis gl sufficiently smi’a > 0 such that

PrIGEL VRIS, Wﬂﬂﬂﬁam )

Hence, |n V|ew of Lemma A.4 with ¢ —‘ — one obtains

WY .,

Let J denote the left-hand side of (A.32). It follows from (A.29) that

T U T T
J = / (e - f) usedt + q/ cuge®tdt + a/ u§e2atdt
0 0 0

= /OT [e — @] Y(e)e®™dt + o /OT u?(t)e?™dt

T e(t)
—2qoz/O e2ot [/0 P(e)de

oz [T B €(0)
dt + qe ; P(e)de —q ; Y(e)de

(A.33)
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Since v(e) € sector [e, k — €], € > 0 arbitrarily small, we have

e(t)
v(e)de < Se2(t)
‘ ) (A.34)
Y(e) € 2
A >
-9 v = Sew
Accordingly,
(A.35)
P(e)de
Forany e > 0,q < X e always exists asufficiently small « > 0 such that
€2 — k2qa > 0. Hence ' '
L DL G @i v T > 0. (A.36)
On the other hand,
VT >0. (A.37)

ht-hand side of (A.37). Substituting
rms of (A.36) and (A.37) will complete the

this value of o and comparing the
’ O

proof.

k

\Z
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APPENDIX B

Proposition B.1. Let P ¢ R? be a bounded set. Define €2 as the convex hull of P. Let L be a
straight linein R2. Then, it follows that P liesto the right of L if and only if so does €.

Proof. (<) This can be seen easily by notmg that P C €.

where

ore, 2NNy = {}, where {} denotes
the empty set. Since P lies to follows that P € Q. That is to say, 2
is not the minimal convex set conta radicts the definition of €2, and therefore,
the above assumption must be fals r"'fp’*: '.-*' e proof. O

Obviously, €2, and €2, are no

e

E ——
ﬂUEl’J'VIEWI?WEI']ﬂ‘i
ammmm UNIINYAY



APPENDIX C

Definition C.1. Let .A denote the set of all functions G : C+ — C that are Laplace transforms
of elements of A.

Lemma C.1 ( [28,29]). Suppose G(s) € A; then G1(s) e Aif and only if

(C1)

where the impul se responses &, g of
' - onditions: (i) g(t) = c+ g1(t), ¥t >0

. <ooandk I € A
':‘\“\N

o\

CK system

Proposition C.1. Consider the
the transfer functions K (s
with g1, g1 € A, (ii) k * g(¢

Then, the impulse respohse n.Q 73 s [1 + eK(s)G(s)]~! satisfies conditions
thath € Aand h € Afor as '

Proof. We have Y Y |

ae

ﬁgm N 1+s[ + Hy(s @
ﬂUU?ﬂﬁﬂ@ﬂﬁﬁﬂ? 2

qy8un3al wﬁfmﬂ‘iaa

Hi(s), (C3)

qu

)—1+
s+er

we prove that N~1(s) € A for a sufficiently small € > 0. By using the triangular inequality, we
have

IN(s)[ =1 —e [H1(s)]. (C4)

S+er

It can be shown (see, for example, [28]) that if H,(s) € A then there exists M > 0 such that

sup |Hi(s)| < M. (C5)
Res>0
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In addition, it is easy to see that
S

sup < 2. (C.6)
Res>0|S +er
Hence
f |V >1—2eM. g
pnf (IN(s)] 2 1 —2e (C.7)

Thus, for a sufficiently small ¢ > 0,

(C.8)

(C.9)

Since G (s), N(s) that H(s) € A. That is to say,

h e A

? s+ter

\"

Moreover, by differenti gth-Sides-¢ following equation
- (C.10)
we arrive at ‘
Y, , (C.11)
Since k,h € Aand g =m(t) +aq1 € A, ollows that ﬂ A. O

Loop Tra%fﬂé‘]jj%ﬂ]’ﬁ]ﬂ“ﬁlw ﬂFQﬂq

G Contains On@jl ntegrator

oA GRS BBHY 3L Y By B

€ > 0,that gp(t) = ¢+ gp1, Vt > 0 with g,1, g1 € A, and that g, * gp(t) = r + hi(t), Vt > 0
with 0 < r < oo and g., h1 € A. Then, by using the following loop transformation,

P(w) £ Pu) —eu

s Gyl9)Gels) (€12)
e 2 TG0 )00

the given system is equivalent to the one in Figure C.2.

Clearly,
Y € sector [0, k]. (C.13)
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(C.14)

Let ¢’ denote the impulse ows from Proposition C.1 that J.g €
A for a sufficiently small e 4 afore, Theorems ? .\a\- .2 can be applied to the system
in Figure C.2. 4 ’

G. Contains One Integrator

X

Ge(s) @

PR xR
the given systerﬂ %\/Hnt’a’ t%q[)&]' ’V]Q@ w El‘ '] ﬂ ‘j
Y G'(s) ¢ e P w

YRIANIEU N

Consider the system in Figure 2.5. As -thi - sector [e, k + €] for a sufficiently small
e >0, that g.(t) = ¢ i and that g, * g,(t) =7+ hi(t),Vt > 0
with 0 < r < oo andiggh € A. Then, by using-th 2 followine Joop transformation,

(C.15)

-y

Y

Gp(s)

Figure C.3: The loop transformation when G contains one integrator.

Clearly,
Y € sector [0, k]. (C.16)
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Let ¢’ denote the impulse response of G (). Then, it follows from Proposition C.1 that ¢/, ¢’ €
A for a sufficiently small ¢ > 0. Therefore, Proposition 2.3 can be applied to the system in
Figure C.3.
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APPENDIX D

Definition D.1 ( [38, p. 336]). Let F be a set of functions defined and finite-valued on a set .
The functions of F are called equicontinuous if, for every € > 0, there isa § > 0 such that

||a:1 — .’1)2” < (5, V:L‘l,l‘g cF — |f(£1}1) — f(x2)| <€, Vf e F. (Dl)

! %i there exists a finite M/ such that
M < E. D.2
s -

f functions defined, equicontinu-
every sequence { f,,} € F itis

The functions of F are said to be

ous and uniformly bound
possible to select a uniforaly

t X and Y be normed spaces and
and only if it maps every bounded
1 convergent subsequence.

C' is a finite number. For a fixed

(D.3)

Proof. Assume that h, hé A. Let {z, } be any sequence in )m and let {y, } be defined by

AUg AN WYNS o8

First we show that!{y,, } is uniformly bounded For every x € Xy, we have

AW qwnmﬂu %ﬂ’& NHIRY
< / 7)| dr. (D.5)

Since h € A, it follows that there exists My < oo such that [™ |h(7)| dr < M. Thus,

/ h(t — 1)z (T)dr

Therefore, {y, } is uniformly bounded on [0, T'] for any 7' > 0.

19l = sup < MyC. (D.6)
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Next, we show that {y,,} is equicontinuous. For any t1,¢2 € [0,7] and any k& > 0, we

have .
lyk(t1) — yk(t2)| = / {h(t1 —7) — h(ta — 7)} ax(r)dr
0
T
< |h(ty — 7) — h(ta — 7)| |xk(7)| dT (D.7)
0
T AR
where At = t; —ty and Ah = Since i € A by assumption, it follows

fore, y,, is equicontinuou
Note that [0, 77 is. iew of Theorem D.1, {y,} has
equence in Xr and y,, = Hxy,, the

compactness of H follows immediate 20re O

X

1
1l
i¥ |
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