
การปรับเฉพาะสำหรับการจำแนกประเภท

นายภาสกร ตั้งชนะชัยอนันต์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต
สาขาวิชาวิศวกรรมคอมพิวเตอร์ ภาควิชาวิศวกรรมคอมพิวเตอร์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย
ปีการศึกษา 2553

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CUSTOMIZATION FOR CLASSIFICATION

Mr. Pasakorn Tangchanachaianan

A Dissertation Submitted in Partial Fulfillment of the Requirements

for the Degree of Doctor of Philosophy Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2010

Copyright of Chulalongkorn University

Thesis Title CUSTOMIZATION FOR CLASSIFICATION

By Mr. Pasakorn Tangchanachaianan

Field of Study Computer Engineering

Thesis Advisor Professor Boonserm Kijsirikul, Ph.D.

Accepted by the Faculty of Engineering, Chulalongkom University in

Partial Fulfillment of the Requirements for the Doctoral Degree

d;.~ Dean of the Faculty of Engineering

(Associate Professor Boonsom Lerdhirunwong, Dr.Ing.)

THESIS COMMITTEE

f1}Of) ~
. ~.~ Chairman

(Professor Prabhas Chongstitvattana), Ph.D.)

..... . k..? Thesis Advisor

(Professor Boonserm Kijsirikul, Ph. D.)

. .. ~ .. ~ Examiner

(Assistant Professor Chotirat Ratanamahatana, Ph.D.)

..... ~ .. . l.tll:~ Examiner

(Assistant Professor Sukree Sinthupinyo, Ph.D.)

Examiner

(Assistant Professor Cholwich Nattee, Ph.D.)

......... £SSZ LR.U~.tLU~

,. . ~ ... mHI.!LItM.nLUlA.tLRU.trrlA.·GGJl.GrtUL~ /r:I(f ,. 't:Ji' ~ 8=J'1-1F=I'

............. ~ ... ~ .. ~'JJItG~GrtUL~
~/Y' " ~

.•. .tQ~ltM.rtQ~rt.tWt.Yt .•.
.. .. LJl.~Ln.LJJ

,
... .tQ~ttM.rtQ~rt.tWt.Yt ...

.. .. ,
LJl.tYW ..

Q ItJJtL It LULU !Ltt-Qn.~H!L IA.JJ:: .tftt-U It lttltlt-~JJ 11IlQJJ ~ IA. .tLU ~H H&~ Qrt lA.~ftQn.UL &
o F' t:r~ 1i:P '=' I=" P" V' I Pt=" "

t-L.tJJ!&~il Qn.~](,Jl. l U~ lit ,ttL~lt trt~~QU ~gIlQJJ~1A. UUL!A~ 1::~ 11 ~!S ~~ .tLU::~ 11 1A.1It:: .tftU It ttl ~ .tLU
". "" ". "

IlkltLPrt~~QU~gQItJJ1L!l~1 L.tl ~rt ltt-~t-Q;~tt-Qn.!.ItU ~t.tLU nL~1t l nLt-UL& .tL::QnLt-llkltLPt L~
" "I"" "

It,tt~~trtl LtbQ~Q~U~l ItJl.Ul ::.tftJl.lft L L!lUU::& 1t,tt~~trtl!&.tLut-Qn.~.uL~It!'>~1!L~Qn.UL&Lrtt-QIt1
" '"'' PIC ~" "I I"" f'

ItLHQn.IA.ll!::.trmu~QItn.iA.rtlA..tQU~QJl.lU~lrt~trtM.1UM.tLULIA.::&IA.UQmt-LIA.QItJJlt-&L.tmm~ /!I • .f'F' 5"9 10" '='!'" ~ 0 F' ... P:: Itt

~Q

Jl.l t-~LU 1A.~~trtlm.tlA.rtl Q.tlt 1t1t~~trtlll.tltLJJrtlA..tQU~Qrtrtl UL&t-QIt1~1 Jl.lLrtrtJJ::Lrt lttlA.rtlA..tQU
" Ie 0 F" , lit fr':: 10 O.,'=' It> p. ~ " " ~ F" .. '="

~gLlt UUrtLJJ rt1!& UlW It l Lltlh.[L~ ~~1::mlIA.1I1::.tft::~~11~~trtl ItkltLP rtlt l rt~~QU ~g~t-Q~::~ It l
. . .." " ~H t-JJ~ It,tt Jl.l!&~~trtlll1!~Q 1t~::&U£tIt,ttL~lttrt~~QU ~gQ~~ rt~trt~t!.ItU ~l.tLU It l rt~~QU ~gt-Qn.

I ." I I" "I I "

ft 1 t~~1!L~Qn. rtL~U.tL HUG ~L 1tn.t-Q;~lt-Gn.!.ItU~1.tLUltl ~Ht-lftllkft.tLU Itl UtJl.:: & t-JbItJl.Ul ::.tft~!&
• " p '" l' I " I t-', I

~ilQn.ltl}t:: & It ,ttt~ llLrt !.ItU ~t!&~ ~trtl !. .tLULt!& nLK~ rtrtJJUk'LQ::& It ,tt::LM. t! m kft .tLU Q~~U ~trt~trt ~t
" "tC" I " I I " I

~ilQfloUL&Lrtltn.rtlt l ~~trtl H.tJJ.tLUUL& t-L~U~l1!&t-g 1t~~~L rt~trt~milQn.Il1!J(, l LrtL!lU.tLrtLJJlt l G~t
" .f' • " I. I " " I "" " '

t~ttLrt !.ItU~t!&~~trtl n.L U11 .tLU It l t-GWt t-Gflo !.ItU ~t.tLUHIA. .tLU Itt It ::W lt~t::LM.t!mkft .tLU
" "I " f'"

·Lltlt
iC

9L. I~U~!t~~ rt~JJtlhh . .t~ . .Y : U!1lt!LItM.!}LnIA.~LRU~ft!&·Q (NOllVJlillSSVlJ NOd , ,

NOllVZIWO.LSflJ) 1A.1It::.tftUltl1L~.tLUltkltLp::LM.t!mkft.tLu : ~1t,ttGU~::ItJl.t-~ WJJW
, iC

AI

##4971822121 : MAJOR COMPUTER ENGINEERING

KEYWORDS: CUSTOMIZATION / CLASSIFICATION / DIMENSIONALITY

REDUCTION

PASAKORN TANGCHANACHAIANAN : CUSTOMIZATION FOR

CLASSIFICATION. ADVISOR: PROF. BOONSERM KlJSIRIKUL, Ph.D.,

76pp.

Customization is a machine learning approach in modifying a learned

model to be better adapted with additional data. In contrast to training a new

model from the additional data, customization relies on the hypothesis that

knowing the learned model will serve as useful information which could im­

prove the result of machine learning. However, a common limitation for cus­

tomization algorithms is that they are specific on the type of model. This results

in requiring new algorithms for each type of models and problem could arise if

the user is unable to determine appropriate algorithms due to the lack of algo­

rithms for that model or the difficulty in determining the type of models.

Therefore, we propose an alternative of performing customization with

the algorithm that is based on the task since the minimum requirement for

a model to be useful is to know the task it is for. From among all possible

tasks, we present customization frameworks and algorithms for classification

and dimensionality reduction and perform experiments on them using real­

world dataset. This experimental results show the effectiveness of our pro­

posed methods.

v

Department :

Field of Study:

. Computer Engineering .

. Computer Engineering .

Student's Signature 4;. ...
Advisor's Signature ~

Academic Year: 2010

vi

Acknowledgments

First of all, I would like to express my gratitude to my advisor, for be-

ing patient and understanding and having his faith on a student like me, and

also trying to support me in everyway he can. I am grateful to Prof. Prabhas

Chongstitvattana for his concern due to my abnormal situation and as well as

other of my thesis committee members who have to give away their precious

time and provide me with their comments.

I would like to thank Ratthachat Chatpatanasiri, who provides a lot of

advice concerning my works, Teesid Korsrilabutr, the owner of LATEX template

which I modify into my dissertation, Tanasanee Phienthrakul, for keeping me

company even when there is almost no other appearing member in our lab,

and also for other MIND lab members for keeping me company and giving me

precious experiences. Also, I would like to extend my thanks to other graduate

students in our departments whom either keep me company and even provide

me with supports that come in all forms.

And most importantly, I wish to thank the Thailand Research Fund for

giving me scholarship, which greatly assists me in financial issue.

Contents
Page

Abstract (Thai) . iv

Abstract (English) . v

Acknowledgments . vi

Contents . vii

List of Tables . x

List of Figures . xii

Chapter

1 Introduction . 1

1.1 Objectives . 3

1.2 Scope . 3

1.3 Procedure . 4

1.4 Contributions . 4

1.5 Organization of the Thesis . 4

2 Background . 5

2.1 Conventions . 5

2.2 Customization . 5

2.3 Classification . 6

2.3.1 Weighted Nearest Neighbor . 6

2.3.2 Max Wins . 6

2.3.3 Adaptive Directed Acyclic Graph 6

2.3.4 Optical Character Recognition 7

2.3.5 Handwriting Recognition . 8

2.4 Dimensionality Reduction . 8

2.4.1 Linear Dimensionality Reduction 10

2.4.1.1 Principal Component Analysis 10

2.4.1.2 Linear Discriminant Analysis 11

2.4.2 KPCA Methods of Mahalanobis Distance Learning for

Nearest Neighbor . 12

viii

Page

2.5 Halton Sequence . 12

3 Task-based Customization . 15

3.1 Concept of Task-Based Customization 15

3.2 Advantages and Drawbacks . 16

4 Customization for Classification . 17

4.1 Customization for Classification by Transforming Input Space . . 17

4.1.1 Generating sequence of transformation for probabilistic

classifiers . 17

4.1.1.1 Algorithm . 17

4.1.1.2 Numerical Results . 20

4.1.2 Applying with other classifiers 21

4.1.2.1 Algorithm . 21

4.1.2.2 Numerical Results . 23

4.1.3 Overall Framework . 26

4.2 Customization for Classification by Patching 27

4.2.1 Algorithms . 27

4.2.2 Numerical Results . 32

4.3 Customization for Classification with Nonlinear Dimension-

ality Reduction . 35

4.3.1 Numerical Results . 36

5 Customization for Dimensionality Reduction 44

5.1 Framework of Customization for Dimensionality Reduction . . . 44

5.2 Combining Results from Linear Dimensionality Reduction 45

5.2.1 Algorithm . 45

5.2.2 Theoretical Results . 51

5.3 Numerical Results . 67

6 Conclusion and Future Work . 71

6.1 Conclusion . 71

ix

Page

6.2 Future Work . 71

References . 73

Biography . 76

x

List of Tables
Page

2.1 First few terms in Halton sequence for two dimensional space. 13

4.1 Accuracy comparison between customization data, mapped cus-

tomization data and mapped customization data using the pro-

posed output function. 21

4.2 Accuracy from the generated classifier when using the algorithm

that is applicable to non-probabilistic classifier. 23

4.3 Accuracy of each transformed subclassifier. 24

4.4 Accuracy of the combined classifier created from transformed sub-

classifiers. 25

4.5 Accuracy of each transformed subclassifier when using generated

subclassifiers to determine the transformation. 25

4.6 Accuracy of the combined classifier created from transformed sub-

classifiers when using generated subclassifiers to determine the

transformation. 26

4.7 Accuracy of patched subclassifiers from pendigits data. 33

4.8 Accuracy of patched subclassifiers from optdigits data. 33

4.9 Accuracy of combined classifier from patched subclassifier. 34

4.10 Accuracy of patched combined classifier. 35

4.11 Result from customization using linear dimensionality reduction

algorithm. 37

4.12 Result from customization using the KMMLN algorithm. 37

5.1 Detail of all datasets used in the experiments of combining results

from linear dimensionality reduction. The numbers of attributes

shown are the numbers of attributes used in dimensionality reduc-

tion, omitting some useless attributes like index or specific name. . . . 67

5.2 Result from using the proposed frameworks with linear dimen-

sionality reduction. Numbers whose values are minimal in their

rows are typeset bold. The second column shows the reduced di-

mension. All of the equal values are different in higher precision. . . . 68

xi

List of Tables (cont.)
Page

5.3 Classification accuracy after performing customization upon di-

mensionality reduction. (G) and (S) are the results from original

data and customization data respectively, and (N) is the one cre-

ated from both models with our algorithm. 70

xii

List of Figures
Page

2.1 Visualization for Adaptive Directed Acyclic Graph. 8

2.2 300 sampled data in two dimensions ([0, 1]2) and dispersion value

measured with box space. The box shows the area which results in

dispersion value. 14

4.1 Visualization of the problem in determining objective for mapping.

The class of data are shown by depicting each of them as square

and circle. The solid line is a likely decision boundary resulted

from summing the objective value calculated from each data and

the dashed line is the most suitable decision boundary. 19

4.2 Plotting of output function s(x) = 1− ((1− p(x))2). 20

4.3 Visualization of results from transforming generated probabilistic

classifiers. 38

4.4 Framework of customization for classification by Transforming In-

put Space. 39

4.5 Framework of customization for classification with nonlinear di-

mensionality reduction. 40

4.6 New classifier from the framework for customization of classifica-

tion with nonlinear dimensionality reduction. 41

4.7 Visualization of generated dataset. 42

4.8 Embedding the data into a higher dimension. 43

5.1 Framework for customization for dimensionality reduction. 46

5.2 The new dimension reducer as the result of using the framework. . . . 47

CHAPTER I

INTRODUCTION

Classification or supervised learning is the process in identifying the class

or group to which a data belongs, based on the basis of a training set of data

whose classes are given. For example, in the task where we want to identify the

type of creatures from their DNA sequence, each class is a possible type of crea-

tures while the information to be used for prediction is the DNA sequence. The

most logical way is to use our knowledge about the DNA sequence to deter-

mine to which kind of animals this DNA sequence belongs. However, the task

of machine learning is not only to apply the knowledge that we have learned,

but also to extract these knowledge from the data as well. The algorithm for

classification will base its decision upon the dataset of DNA sequences with

given classes of the creatures, interpret these information in some way and pro-

vide an output as a process of decision making called classifier.

The problem we are interested in is called customization, or in some re-

search work is called user-adaptation. A simple description of customization is

that there will be additional information about the problem in the form that we

will be given an existing machine learning model that has already been trained

to be suitable to the dataset in question up to some degree. For general us-

age, this model will be suitable to a dataset generated from a distribution with

high similarity to the distribution of the dataset we are interested in. The main

problem of customization is how we should use this model to boost or improve

the result in the task of machine learning, and generally, the task would be in-

versely viewed as using the customization data to improve the model instead

of using the model to improve the result from just using the customization data

on the task. An obvious and practical real-world example of the problem in

customization is Handwriting Recognition.

The situation in handwriting recognition is that we want to predict char-

acters a person has written, with the information about how the writing tool

has been stroked. An obvious characteristic of this problem is that every per-

2

son has different handwriting and there might not be any classifier that can

correctly classify handwriting of everyone due to different writing habit. An

obvious example would be for the characters with high similarity such as letter

"O" and number "0" or letter "S" and number "5"; different people may write

them with the same kind of strokes and hence given a data about the strokes

used in writing a character, the result from classification of the character will

depend on the writer as well. As a result, we will have to use handwriting

data of each person to make a perfect handwriting classifier for himself. As

in other tasks of machine learning, the higher the number of data, the higher

probability that the resulted model will be good. Since handwriting of each per-

son differs from each other, each of the input data must be generated by that

specific person. Suppose that we want to have 10 samples of each character

from a set of numbers 0-9 and alphabets A-Z. The total number of characters

that the person in question must write will be (10 + 26) ∗ 10 = 360, and that

just might not be enough to create a good classifier for characters with similar

writing pattern. The reason that handwriting recognition is a perfect task for

customization is also because even though handwriting of everyone may be

different from each other, but the same character of each person must be based

on the same standard that it should be able for a man to read and recognize the

character using his prior knowledge in the language. By using the language

standard, we can create a classifier that fully employs additional information to

perform customization.

Another advantage of customization is time efficiency. As the model does

not have to be learned from scratch, performing customization is more efficient

in time and it does not require the data previously used in making the model.

One may view customization as incremental training which is performed by

a new dataset at each time, where the model is adapted to the dataset while

retaining the previous information up to some degree. Hence, the approach

of customization will be suitable for the dataset of which characteristics can

change overtime.

There are many algorithms for customization, but most of them have a

common limitation that they usually make use of inner parameters of the model,

3

and thus they are model-specific (Fu et al., 2000; Lyu et al., 1995; Cao and Bal-

akrishnan, 2005). Knowing the parameters of the model serves as additional in-

formation which would likely lead to better performance of the algorithm, but

it also acts as additional constraint as well. If every algorithm for customization

is model-specific, it will be obvious that we will need to have a customization

algorithm for each type of models. This surely will be problematic when the

type of the model cannot be identified correctly or when there is no customiza-

tion algorithm for the model, which might likely be the case for any new kind

of model. Therefore, we see the benefits of studying on how to perform cus-

tomization in the way that can be applied to many types of models.

Though the concept of customization can be used on many tasks of ma-

chine learning, but this work will focus mainly on classification, due to the

obvious application mentioned above. Also, we will base our interest only on

the algorithm that can be applied to many types of models.

1.1 Objectives

1. To introduce the approach for performing customization which is not spe-

cific to the type of the model.

2. To give the guideline and some examples in how to perform customiza-

tion that is not specific to the type of the model.

1.2 Scope

1. We will propose a framework and algorithms with the constraints that

can be applied to many types of models.

2. We will focus on the task of classification and dimensionality reduction as

a preprocess of the classification.

3. We will perform numerical experiments to evaluate the performance of

the proposed method.

4

1.3 Procedure

1. Propose the framework for the task or subtask.

2. Propose an algorithm for the framework.

3. Conduct experiments using the proposed algorithm.

1.4 Contributions

1. We introduce the approach in performing customization which is not spe-

cific to the type of the model and also propose some frameworks and al-

gorithms that belong to this approach.

2. Our work could lead to more development on the algorithms of the same

kind.

1.5 Organization of the Thesis

We will make the settings of the problem more precise by providing some

background knowledges in Chapter 2. In Chapter 3, we will introduce the con-

cept of task-based customization and compare its advantages and drawbacks

to the result from model specific algorithms. In Chapter 4 and Chapter 5, we

will introduce some frameworks that are based on the concept of task-based

customization on classification and dimensionality reduction and also give ex-

amples of algorithms that follows the approach, along with numerical results.

Conclusion and future work are given in Chapter 6.

CHAPTER II

BACKGROUND

2.1 Conventions

We state here the definition that will commonly be used in the following

sections. We will use an uppercase character such as X to refer to a matrix,

while any lowercase character such as x will refer to a constant. The boldface

letter such as x will refer to a vector, and we will denote it as a matrix with one

column. Another commonly used convention will be Im which will refer to an

identity matrix with m rows. For a dataset X, each column of X represents each

data where each row represents the value of each attribute.

2.2 Customization

Customization or user-adaptation is an approach in modifying/improving

the model that is previously trained on a dataset to be better fit to a new dataset.

The most useful thing about this approach is that it does not require having the

previous data and should be more efficient in the time of operation. However,

one obvious drawback could be in the performance of the model resulted from

performing customization with the new dataset, comparing with the model that

is retrained using both the new dataset and the previous dataset from scratch.

In customization, there will be a problem of how to weight the importance

between the previously learned model and customization data appropriately in

the case that both of these datasets come from the same distribution. However,

it could be proved as a useful approach if the distribution migrates overtime.

Each time we perform customization on a model, it will act as trying to make

the model be better fit to the new dataset and at the same time slowly making

the model forget what it has learned from the previous dataset by a degree.

This is why it seems as a good approach to adapt a well learned model to an-

other distribution with some similarity, and it also can be viewed as training an

existing model so that it will yield better result with another dataset.

6

2.3 Classification

The task of classification is to predict the value of an attribute of a data,

based on the value of other attributes of data as input. There are two tasks

which fit this description, namely classification and regression, but the differ-

ence between them is in the possible value of the predicted attribute, i.e. the

value from classification is discrete and the value from regression is continu-

ous.

2.3.1 Weighted Nearest Neighbor

The original k-nearest neighbor algorithm (k-NN) (Mitchell, 1997; Hastie

et al., 2001; Michie et al., 1994; Han and Kamber, 2000) is considered the simplest

algorithm for classification in discussion. The algorithm is based on the idea of

voting for the resulted class among k of the most similar training examples,

measured in the feature space. In order to improve this algorithm for better

accuracy and also for smoother regression in the probability of the prediction,

each chosen candidate for voting will be given with its impact on the classifi-

cation result, based on how close they are to the target of the prediction. One

can also view k-nearest neighbor as a special case of weighted nearest neighbor

with the weight function limk→∞xk when x is the Euclidean distance measured

between the training data and input data, or to say the infinite norm (|| · ||∞) of

the measured distance.

2.3.2 Max Wins

Max Wins (Friedman, 1996), so called voting scheme, is a well-known ap-

proach to combine many binary classifiers into one multiclass classifier. This

method could be easily described as performing voting between all binary clas-

sifiers. The most voted class will be the result of the classification for the multi-

class classifier.

2.3.3 Adaptive Directed Acyclic Graph

Adaptive Directed Acyclic Graph (ADAG) (Kijsirikul et al., 2002) is an-

other approach to combine many binary classifiers into one multiclass classifier.

7

The method would generally be portrayed as traversing an inverse binary de-

cision tree with each of possible classes as its leaf, as shown in Figure 2.1. The

prerequisite requirement of this algorithm is to have existing binary classifiers

between each pair of possible classes. At each node, the binary classifier for the

pair of respective classes will be used on the data, and the unlikely class will

be eliminated from consideration while the more likely one will be passed on

along the tree and be used again in the comparison at the next node, until the

root is reached with the most likely class. Compared to Max Wins, the main

advantage of ADAG is that it requires n − 1 times of classification by binary

classifiers to eliminate n − 1 unlikely answers instead of n(n − 1)/2 times of

classification by using Max Wins. However, its prediction result would still be

inferior to Max Wins. Another characteristic of ADAG is that, given that there

is an improvement on each of subclassifiers, the expected improvement on the

classifier created by ADAG should yield greater improvement than Max Wins,

since the classification would improve on each of the classifiers along the path

from the correct class comparing to linear improvement from Max Wins.

Note that though there is an improved version of ADAG called Reorder-

ing Adaptive Directed Acyclic Graph (RADAG) (Phetkaew et al., 2003) which

could yield even better result than Max Wins, but its characteristic in relying on

error estimation for each of the binary classifiers would make it be more com-

plicated to use on any classifiers other than support vector machines (SVMs),

requiring k-fold cross validation to estimate the error itself, and hence it will

not be used in this dissertation.

2.3.4 Optical Character Recognition

Optical Character Recognition (OCR) is a kind of classification task where

we want to predict a character given an image of that character. The most usual

form of OCR input is the value in each pixel of the image with fixed size of

the character. The process of this task usually begins by scanning a paper for

the text. After scanning is done, the next step is to separate the whole image

into several individual images of characters before performing OCR on each of

them. After that, the results are then combined into words and processed back

8

B2

Output Class

A1 vs A2 A3 vs A4

B1 vs B2

1 vs 8 2 vs 7 3 vs 6 4 vs 5

A1 A2 A3 A4

B1

Figure 2.1: Visualization for Adaptive Directed Acyclic Graph.

into predicted text of the page.

2.3.5 Handwriting Recognition

Handwriting Recognition (HWR) is another kind of task in classification

that we want to predict characters a person writes, with the information about

how the writing tool has been stroked. The most general form of input of this

task is the pen stroke that designates the position and traces how the pen is

drawn and lift. Two-dimensional time series data is generated with the value

designating the current position of the pen. However, in many cases, features

from this time series will be extracted and be used as in normal classification.

2.4 Dimensionality Reduction

Dimensionality reduction refers to a process in reducing the number of

attributes of data for further use. Namely, the algorithm for dimensionality

reduction will yield the output as a function or process µ : Rn → Rm when n is

the number of attributes as the input and m is the desired number of attributes.

9

Instead of using a dataset M for that task as usual, we will use the result from

the transformation, µ(M), as dataset for the task instead.

There are many motivations to perform dimensionality reduction. The

most obvious is for the efficiency. Suppose that the task to be performed re-

quires a lot of resource so it cannot satisfy some constraint in time and mem-

ory. The choice will be either to change the algorithm or to reduce the load by

reducing the size of data. Instead of reducing the number of examples, dimen-

sionality reduction removes some information about each data. The matter to

be considered in dimensionality reduction is how to do it in the fashion that the

resulted data will be as useful as possible for the task.

Another purpose of dimensionality reduction is not because of limitation,

but to improve the result. Usually, a dataset may contain many useless infor-

mation that could be considered as noise. Performing dimensionality reduction

will act as attempting to eliminate the most useless information from the data,

namely eliminate the noise, and hence it will be useful for the algorithm that is

noise sensitive. Another example is in altering the space of decision for the al-

gorithm. Dimensionality reduction may act as transformation of input space in

which the algorithm for the task does not effectively perform, and thus alter the

possible decision which the algorithm can produce. As a result, the algorithm

will be able to handle more complicated task by using dimensionality reduc-

tion as preprocessing. A good example is performing nonlinear dimensionality

reduction before applying an algorithm whose decision is based on a limited

number of linear planes. In this way we could perform better on the dataset

which requires more complicated space of decision.

The main issues about dimensionality reduction can be described as fol-

lowing. The first is how to determine if the result from optimization should

perform well on the upcoming task. That is choosing the value to be optimized

with the expectation that the resulted dataset will be good for the algorithm

which performs the desired machine learning task. The next issue is how to

find the function or create the process µ(M) that provides good score on that

goal, namely the process of optimization. The last one is the constraint or limi-

10

tation in the space of dimensionality reduction.

2.4.1 Linear Dimensionality Reduction

Linear dimensionality reduction is dimensionality reduction with the con-

straint that µ(M) must be linear transformation. This can be viewed as project-

ing the dataset on a linear subspace. Linear dimensionality reduction is impor-

tant because of the optimization method. Limiting the space of transformation

to be linear transformation results in better formulation of the problem and pro-

duces the form of semidefinite programming or quadratic programming which

could be optimized with a well-known efficient procedure. In such a case, the

method yields the optimal solution, not just a good one.

2.4.1.1 Principal Component Analysis

Principal component analysis (PCA) (Han and Kamber, 2000) is an unsu-

pervised linear dimensionality reduction algorithm and is usually considered

as the simplest form of dimensionality reduction which is widely used. The

goal of PCA is to maximize the variance of a transformed dataset with a fixed

number of attributes.

Principal component analysis consists of two main steps. The first is to

calculate a covariance matrix of the dataset, i.e. the generalization of variances

in many dimensions. Each element of covariance matrix C in row i and column

j is according to the formula cij = ∑(xi − x̄)(xj − x̄j), or if X is a matrix of the

dataset with each row as each of the data that is translated to have zero mean

then C = XXT.

The second step of principal component analysis is to perform eigenvalue

decomposition of the covariance matrix. Since the matrix XXT is squared, sym-

metric and positive semidefinite, it follows that all the eigenvalues of the matrix

are nonnegative real values. We can find the set of orthonormal eigenvectors of

the matrix that span the entire space, and we can perform eigenvalue decom-

position of the matrix. This means that we can find an orthogonal matrix U that

C = UδUT where δ is the diagonal matrix of eigenvalues ordered by their sizes.

11

Transformation by principal component analysis to reduce the number

of dimensions to m will be made by using the m eigenvectors with maximum

eigenvalues as the new axis, in which the resulted new attributes are projection

of the data on them. Let us consider this to have better understanding of prin-

cipal component analysis. If we transform dataset X with orthogonal matrix U

by projecting the data on its axis, then the new dataset will become UTX. We

can calculate the covariance of this new matrix as following:

UTX(UTX)T = UTXXTU,

= UTCU,

= UTUδUTU,

= ImδIm,

= δ.

This means that the value of covariance matrix created from the transformed

dataset will only exist in the diagonal elements. In another aspect, if we want

a dimension that maximizes the variance along that direction, then it will be

obvious that the first eigenvector will be the first column of U. By repeating

this process of choosing the direction in the linear space that is orthogonal to

all the already chosen directions, we will get the resulted axis of m-dimensional

space as the m eigenvectors with the maximum eigenvalues of the covariance

matrix.

2.4.1.2 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is among one of the simplest super-

vised linear dimensionality reduction. The goal of linear discriminant analysis

is to find a linear transformation that maximizes the discrimination between

classes.

12

2.4.2 KPCA Methods of Mahalanobis Distance Learning for Nearest Neigh-

bor

KPCA methods of Mahalanobis distance learning for nearest neighbor

(KMMLN) (Chatpatanasiri et al., 2010, 2008) is a group of algorithms for di-

mensionality reduction. The idea of this type of algorithms is that given a lin-

ear dimensionality reduction, the algorithms make a nonlinear dimensionality

reduction in the way that is similar to kernel trick of support vector machine

by using Kernel Principal Component Analysis (KPCA) (Schölkopf et al., 1998).

The algorithm consists of 3 steps, i.e. finding optimal kernel, performing KPCA,

then using linear dimensionality reduction algorithms.

2.5 Halton Sequence

When there is the need to perform a well distributed sampling inside a

close boundary of n-dimensional space, the easiest way will be to sample with

uniform randomization. However, if the result from sampling is made in one or

two dimensional box and the result of sampling is visualized by the scattering

of the result when viewing the close boundary then, in most cases, one could

easily feel that all the sampling result could be better distributed if hand-picked

by man, as shown in Figure 2.2. In order to evaluate the sampling quality,

there are two values called discrepancy and dispersion which serve as mea-

surements, and can be formulated as following (Choset et al., 2005).

D(P, R) = supR∈R

∣∣∣∣µ(R)
µ(X)

− |P∩R|
N

∣∣∣∣
δ(P, ρ) = supx∈Xminp∈Pρ(x, p)

where D is discrepancy, δ is dispersion, P is a set of point samples on the space

X, N is the number of points in P, R is the set of possible spaces used in mea-

suring the value, µ is a measure of space or size of the space and ρ is a metric

measuring the distance. Both equations can be interpreted as following: dis-

crepancy measures how the sampling is distributed, comparing the difference

between ratio of sampled data and sampling space, while dispersion measures

the size of the largest region in which none of the sampling could be found,

13

Table 2.1: First few terms in Halton sequence for two dimensional space.

n n2 n3 Φ2(n)2 Φ3(n)3 Φ2(n) Φ3(n)
1 1 1 .1 .1 1/2 1/3
2 10 2 .01 .2 1/4 2/3
3 11 10 .11 .01 3/4 1/9
4 100 11 .001 .11 1/8 4/9
5 101 12 .101 .21 5/8 7/9
6 110 20 .011 .02 3/8 2/9
7 111 21 .111 .12 7/8 5/9
8 1000 22 .0001 .22 1/16 8/9
9 1001 100 .1001 .001 9/16 1/27
10 1010 101 .0101 .101 5/16 10/27

which is a ball in this equation.

In order to achieve better result than randomization and to guarantee the

worst case result, one would have to resort to quasirandom sampling, that is

using deterministic scheme to determine the sampling sequence, which could

be further perturbed by adding some small randomization. One of well-known

methods is Halton sequence (Halton, 1960), which could be formulated as fol-

lowing.

pn = (Φb1(n), Φb2(n), ..., Φbd
(n)).

Φbj(n) = ∑ aijb
−(i+1)
j .

Where d is the number of dimensions, bj is the jth prime, and aij is the ith digit of

number n when written as based j numeral and written backward from behind

the decimal, as shown in Table 2.1.

14

(a) random number generator (dispersion=0.0383)

(b) Halton sequence (dispersion=0.0164)

Figure 2.2: 300 sampled data in two dimensions ([0, 1]2) and dispersion value
measured with box space. The box shows the area which results in dispersion
value.

CHAPTER III

TASK-BASED CUSTOMIZATION

In this chapter, we will introduce the concept of task-based customization

and also provide some backup arguments for the benefit of algorithms that

follow this concept.

3.1 Concept of Task-Based Customization

As described in Chapter 2, customization is an approach in machine learn-

ing to modify/improve a model in order for it to yield better result. The most

important requirement for customization is having the new dataset which we

want the model to be adapted to. Also, in order to estimate the improvement

from customization, it will require the minimum knowledges about the goal,

which is the type of the task which the customization is made on. It is obvi-

ous that these knowledges are necessary for customization and by some more

consideration ones can see that they are sufficient to perform a customization.

However, with additional information, we should be able to perform even bet-

ter.

Suppose that we do not know about any additional information other than

the necessary ones for performing customization. It is obvious that the inner de-

cision of the process will not be clarifiable and thus could only be estimated by

observing outputs of some inputs we provide to the process. In simpler words,

we must treat the process as a black box. Methods for using the information

from this black box can be separated into two kinds. The first one is to keep

the black box for future use by conducting some decision process on it and its

results instead of using them as the entire process. The other one is to extract

the available information from the black box, and then use the information to

create a new process that can be clearly identify, and thus discard the black box.

The most common additional information that is used in customization

will be the information about the model. Knowing the exact method for cal-

culation of the process will surely yield better understanding than trying to

16

extract them by observing the results obtained from providing the model with

the input. Moreover, once the model is known, the algorithm can alter the inner

parameters in meaningful way which will sensibly yield better results.

The other bit of additional knowledge is the algorithm that is used to cre-

ate the model. Many algorithms may produce similar kind of models which

perform the same task. They usually have the same final goal, but the differ-

ence between them can be either how they strive to reach that goal or the def-

inition of how they interprete the final goal into the measurement used by the

algorithm. For the first case, there are two alternatives in trying to optimize a

goal. One method would yield better result but require a lot of resources while

the other method may be faster but not guaranteed to provide the optimum

solution. For the second case, a good example is dimensionality reduction. The

common goal for dimensionality reduction is that the resulted data yields good

result for the upcoming task, but each algorithm may interprete the subgoal to

achieve this result differently.

3.2 Advantages and Drawbacks

An obvious statement is that, in general, model-specific algorithms should

yield better result than task-based customization. However, there are many

cases in which task-based customization is necessary due to the lack of infor-

mation or available methods, e.g. models are in the forms that cannot be inter-

preted easily, the process is a black box by its nature, there is no algorithm for

customization for the model.

CHAPTER IV

CUSTOMIZATION FOR CLASSIFICATION

In this chapter, we will propose our frameworks in performing customiza-

tion for classification. We will also propose some algorithms that behave ac-

cording to each framework and conduct numerical experiments to evaluate

their performances.

4.1 Customization for Classification by Transforming Input Space

Here we will present the first approach. The intuition behind this ap-

proach is based on an expectation that the space described by the original clas-

sifier and the customization data could be very similar to each other. By being

similar, we expect that the optimal decision boundary for customization data

can be transformed into the decision space resulted from the original classifier

via the operation that preserves its topology, namely both of these spaces are

homeomorphic to each other.

4.1.1 Generating sequence of transformation for probabilistic classifiers

4.1.1.1 Algorithm

The main objective of this approach is to determine a mapping µ : Rn →
Rn to be applied to input data, in order to make the data be better adapted to

the classifier. The problem in performing task-based customization for classi-

fication is due to the nature of classification that yields discrete output. In the

task of classification, there may be many classifiers which classify data correctly.

Suppose that there are some data which are not classified correctly and we want

to change or customize the classifier on them. Therefore, the issue is how much

of the change should be made. If the change is as small as possible, which

should be the ideal case when we want to preserve the result from the original

classifier, then the decision boundary will be depended mostly on those data

and will not have any effect on surrounding the data as much as they should

be. Because of the difficulty in determining the proper decision boundary, we

18

decide to perform the task on probabilistic values of classification results, which

can be thought of as performing regression and will be easier for the task-based

constraint. Here, we present an algorithm for generating the mapping for a

probabilistic binary classifier in Algorithm 1.

input : an original classifier, customization data

output: transformation sequence

1 stepsize← initial_stepsize;

2 transform_sequence← ∅;

3 curdata← customization data;

4 cur_total_prob← ∑ p(curdata,classifier);

5 while stepsize > stepsize_limit do

6 center← getnext(halton_sequence);

7 direction← estimate_gradient(center,classifier);

8 transformation← (center,direction,stepsize);

9 mapdata← transform(curdata,transformation);

10 map_total_prob← ∑ p(mapdata,classifier);

11 if map_total_prob > cur_total_prob then

12 curdata←mapdata;

13 cur_total_prob←map_total_prob;

14 transform_sequence←
append(transform_sequence,transformation);

15 end

16 stepsize← α× stepsize;

17 end
Algorithm 1: Generating transformation sequence.

The mapping is separated into many transformation sequences, for its

flexibility in order to achieve complicated nonlinear transformation. As shown

in Algorithm 1, it will pick the center of each transformation from Halton se-

quence, to guarantee coverage of the input space. Then according to the current

stepsize and estimated gradient, we will have a candidate for transformation

described by three factors, i.e. the center of transformation, direction and mag-

nitude. The transformation will be kept if it is likely to lead to better result.

The change on space around the center of transformation is calculated as being

19

influenced by the attempt to move the space at center of transformation to a

new position. For simplicity of calculation, we let the change be in the same

direction to the change on the center, while the magnitude of the change is cal-

culated by a distribution, proportional to the size of the change on the center.

To achieve convergence, stepsize is gradually reduced in each loop.

In order to improve the algorithm, we further consider about the prob-

lem with imbalance on the number of training data, i.e. there are some classes

with overwhelmingly more or less number of training instances. A problem

may arise when using the proposed algorithm by summing up the probabilistic

values of predictions resulted from all customization data, which could cause

the algorithm to be over-biased on some classes with high number of training

instances, as shown in Figure 4.1. In order to be better cope with this prob-

lem and to lessen the difference from getting probabilistic outputs from dif-

ferent type of classifiers, we introduce the idea of using an output function.

The purpose is to assign more importance to the data with higher probabilistic

values, which gives the effect that all customization data will be more likely

to be correctly classified, and lessens the effect which will mislead the decision

boundary by other customization data. Therefore, instead of using probabilistic

values directly, in this paper, we propose using the value from output function

s(x) = 1− ((1− p(x))2) which its shape is as shown in Figure 4.2.

Figure 4.1: Visualization of the problem in determining objective for mapping.
The class of data are shown by depicting each of them as square and circle.
The solid line is a likely decision boundary resulted from summing the objec-
tive value calculated from each data and the dashed line is the most suitable
decision boundary.

20

Figure 4.2: Plotting of output function s(x) = 1− ((1− p(x))2).

4.1.1.2 Numerical Results

To demonstrate the usefulness of this algorithm, we generated experimen-

tal data in two dimensions. The result for the original probabilistic classifier

was determined by equation p1 = x+y√
2

. The decision boundary was a straight

diagonal line separating half of the input space, given that the input data was

normalized into the range of [0, 1]2. The probabilistic value was directly propor-

tional to the distance measured from the decision boundary, with the minimum

and maximum values of 0 and 1, respectively. On the other hand, customiza-

tion data was generated from different distribution, determined by whether

values of both attributes were less than 0.7. We applied Algorithm 1 with the

parameter initial_stepsize= 0.1, stepsize_limit= 0.001, α = 0.99 and with chang-

ing impact as exponential function: e−x/β where β = 1. We conducted an ex-

periment using the mentioned probabilistic classifier, and a weighted nearest

neighbor classifier generated from randomly sampled data according to the de-

cision boundary from the equation, using 1/xk as weight function where k is

the number of attributes, considering only 10 nearest neighbors for each class.

These setting of parameters will be used as default value in the rest of this work.

The result is shown in Table 4.1 and can be visualized as in Figure 4.3.

In Table 4.1, the result from classifying mapped customization data us-

ing the original classifier yielded some improvement compared to the result

from classifying customization data. This means that the process transforms

21

Table 4.1: Accuracy comparison between customization data, mapped cus-
tomization data and mapped customization data using the proposed output
function.

CUST DATA MAPPED CUST DATA OUTPUT FUNCTION

ORIGINAL CLASSIFIER 82.40 82.90 87.70
WNN 87.00 85.30 89.00

the space of customization data to be better fit with the space of the original

classifier. However, when we tried using data sampled from the original clas-

sifier to create a probabilistic classifier, which was weighted nearest neighbor

(WNN), the result from using the weighted nearest neighbor for mapped cus-

tomization data became worse due to misleading of the probabilistic value from

voting. By using the concept of output function, the problem was lessened and

the result was shown with obvious improvement.

4.1.2 Applying with other classifiers

4.1.2.1 Algorithm

In order to apply the algorithm for probabilistic classifiers to all non-

probabilistic classifiers, we propose an algorithm to create a probabilistic clas-

sifier from the former one, for the sole use of generation of transformation se-

quence. To treat the original classifier as a black box, we have to perform sam-

pling and classify them using the classifier, whose result will be used as data to

train the generated probabilistic classifier. Moreover to keep the influence from

the nature of the classifier model at minimum, we decide to use an instance-

based classifier. This results in the following algorithm to create a weighted

nearest neighbor through sampling for a binary classifier in Algorithm 2.

22

input : original classifier

output: weighted nearest neighbor classifier

1 NN_data← ∅;

2 NN_weight← ∅;

3 while size(NN_data) < datasize do

4 newdata← getnext(halton_sequence);

5 predictweight← classify(newdata,NN_data,NN_weight);

6 if predictweight <0.5 then

7 NN_data← append(NN_data,curdata);

8 NN_weight← append(NN_weight,1-(2 × predictweight));

9 end

10 end
Algorithm 2: Generating a weighted nearest neighbor classifier from an ex-

isting classifier.

The main idea for this algorithm is that the newly generated data will be

classified by the current classifier. If the classification result is wrong, then the

current classifier will be improved by adding the newly generated data as a

new instance. The weight of the instance is determined by the weight from the

classification result.

For the generated classifier to be appropriately useful, there are two con-

ditions which should be satisfied. Firstly, the classifier should be able to provide

probabilistic prediction for each class, in a meaningful sense. Secondly, its de-

cision boundary should be similar to that of the original classifier at least up

to some degree. The sampling approach used in the algorithm implies curse

of dimensionality, i.e. the amount of sampling required to satisfy the second

condition exponentially increases with the number of attributes. In order to fix

this problem, we decide to use the method of combining the result from the

generated classifier with the original one.

Given that the weight for the original classifier is higher, the combined

classifier will obviously predict the same result as the original, and the gener-

ated classifier will act as an alteration on probabilistic values, as in the following

equation.

23

Table 4.2: Accuracy from the generated classifier when using the algorithm that
is applicable to non-probabilistic classifier.

CUSTOMIZATION DATA 82.40
MAPPED CUSTOMIZATION DATA 82.40

MAPPED WITH OUTPUT FUNCTION 83.20

pnew = ((1 + α)poriginal + pgenerated)/(2 + α).

Where α is a small positive real. The drawback of this method is that in order

to achieve the same classification result as the original classifier, we have to

trade that off with the continuity on the probabilistic value from the generated

classifier.

We performed an experiment to evaluate the generated classifier in the

previous subsection, using Algorithm 2 with datasize equal to 2,000. We re-

placed the original classifier with the generated one while all other parameters

were set in the same way as in the previous experiment. The result is shown in

Table 4.2.

Comparing results between Table 4.1 and Table 4.2, it is not surprising

that the result from using the algorithm that is applicable to non-probabilistic

classifier was inferior due to the additional error resulted from having the ad-

ditional step in generating a probabilistic classifier from non-probabilistic one.

However, the result in Table 4.2 still show slight improvement compared to the

result before mapping.

4.1.2.2 Numerical Results

We conducted an experiment to demonstrate the improvement made by

the algorithm. In order to measure the performance we used the real-world

datasets obtained from the UCI machine learning repository (Asuncion and

Newman, 2007), pendigits, representing the tasks of classifying numeral digits

for handwriting recognition, to demonstrate the task in adapting the classifier

to another similar dataset. In the reality, the input data from handwriting recog-

24

Table 4.3: Accuracy of each transformed subclassifier.

ORIGINAL TRANSFORMED

WNN 99.39 ± 1.03 99.69 ± 0.57
NEURAL NET 98.86 ± 1.42 99.40 ± 0.98

SVMS 99.46 ± 0.68 99.59 ± 0.66

nition is sequence of pen strokes, which is sequence of time series. However, all

16 attributes in the pendigits dataset were extracted features from this sequence

of time series and we used these values for classification. The original training

data was used to train the classifier, while the original test data, being gener-

ated from different group of users, was separated into two groups for the task

of customization and testing. The original training data and the other set of

data had 7,494 and 3,498 instances respectively which were almost equally dis-

tributed to 10 classes representing digits 0-9, and for each class, we assigned 50

instances as customization data. As a result, we had roughly 750 training data,

50 customization data and 300 test data for each class. The setting of parame-

ters was the default value as stated in the previous subsection and all of data

were normalized to be in the range of [0, 1].

In this experiment, we used three types of classifiers: weighted nearest

neighbor, neural networks (Mitchell, 1997; Hastie et al., 2001; Michie et al., 1994;

Han and Kamber, 2000) and support vector machines (Cristianini and Shawe-

Taylor, 2000), to create one-against-one classifiers between each pair of classes

to which the customization was applied. Then these subclassifiers were com-

bined by two methods of voting and decision trees. So, there were 45 subclas-

sifiers for each type which were trained with roughly 1,500 training data. We

performed customization on each subclassifier with 100 customization data and

the experimental result was taken from about 300 test data for the experiment

on subclassifiers and all 2,998 test data for the combined classifier. The results

are as shown in Table 4.3 and Table 4.4.

An important note is that in Table 4.3, the value of standard deviation was

not from cross validation but was the standard variation from the classifier of

each class. Thus, high value of standard deviation means that there were high

25

Table 4.4: Accuracy of the combined classifier created from transformed sub-
classifiers.

COMBINING METHOD ALGORITHM ORIGINAL TRANSFORMED

MAX WINS WNN 97.80 98.13
NEURAL NET 95.43 96.90

SVMS 97.67 98.37
ADAG WNN 97.80 98.10

NEURAL NET 95.76 97.73
SVMS 97.67 98.37

Table 4.5: Accuracy of each transformed subclassifier when using generated
subclassifiers to determine the transformation.

ORIGINAL TRANSFORMED

NEURAL NETWORK 98.86 ± 1.42 98.72 ± 1.39
SVMS 99.46 ± 0.68 98.71 ± 1.61

differences in difficulties in classifying each pair of digits. This fact is obvious

since some digits like 1 and 7 are harder to classify apart with writing strokes,

compared to classification between 0 and 4 which there are differences in the

numbers of pen strokes, curve of the pen strokes and direction of pen strokes.

For the experiment on the method that is appliable to non-probabilistic clas-

sifiers, we used Algorithm 2 to generate weighted nearest neighbor classifiers

with 2,000 data. The results are shown in Table 4.5 and Table 4.6.

In Table 4.5 and Table 4.6, we did not conduct the experiment with weighted

nearest neighbor on this matter since it is more realistic to use the data used in

weighted nearest neighbor itself instead of generating new data. The results

obviously imply that the generated probabilistic classifier obtained by trans-

formation is worse than the original classifier. However, there still exists the

problem about curse of dimensionality as previously stated. Since pendigits has

sixteen attributes then it will require at least 216 = 65, 536 for the data to exist

in every orthants; each sector determines the positiveness of the value in each

axis. So it can be seen by how sparse the generated dataset with 2,000 instances

is in the sixteen dimensional space.

26

Table 4.6: Accuracy of the combined classifier created from transformed sub-
classifiers when using generated subclassifiers to determine the transformation.

COMBINING METHOD ALGORITHM ORIGINAL TRANSFORMED

MAX WINS NEURAL NETWORK 95.43 95.00
SVMS 97.67 94.96

ADAG NEURAL NETWORK 95.76 94.80
SVMS 97.67 94.70

Though the result was not good for data with many attributes, in the case

of a small number of attributes, this method was still able to yield satisfying

result. The other issue is that though the classifiers are already probabilistic

but each probabilistic classifier may return the value of probability in different

sense so it may be a good idea to also use this method to generate a probabilistic

classifier to guarantee the worst case in determining transformation sequence.

4.1.3 Overall Framework

Combining with the algorithm previously mentioned, we will get the frame-

work of customization for classification as shown in Figure 4.4. All diagrams in

our works follow this description. A block with rectangular shape represents a

process and an oval shaped block represents data. A solid arrow represents the

relation of being input to a process while a dashed arrow represents the relation

of a process generating its output. A dashed box covers parts of the diagram

that are kept as important result for continual usage. In this diagram, the box

also shows the process within a customized classifier.

The framework starts with the original classifier which we want to per-

form customization on. Next, we generate a probabilistic classifier to be used in

the process from the customization data and the original classifier. Then we de-

termine the transformation sequence to make the customization data be better

fit to the generated classifiers (since the generated classifiers have the same de-

cision boundary to the original classifiers, the transformed customization data

will also be better fit to the original classifiers as well). The customized classifier

consists of the transformation sequence and the original classifier. Each time

27

classification is performed, the input data will be mapped with the transforma-

tion sequence then the mapped data will be classified by the original classifier,

giving the prediction.

4.2 Customization for Classification by Patching

Here, we will present another alternative approach. The goal of this ap-

proach is to use customization data to classify if the result from the original

classifier is trustable in a region. Otherwise, we will classify it with the other

classifier created from the customization data instead. In our case, we will com-

bine these processes into a classifier called patcher, which contains the same set

of classes as those of the original classifier with one more class representing that

the answer should be left to the original classifier. The reason that we name this

approach patching is because this method provides the intuition that the result

from the original classifier will be corrected in untrustable region by patching it

with the result from another classifier, while the result in trustable region which

needs no correction will be left as is. Thus, this gives the intuition as the original

classifier is patched to fix the bad result.

4.2.1 Algorithms

We will present four algorithms which belong to this approach in this sub-

section.

input : original classifier, customization data

output: patching classifier

1 NN_data← customization_data;

2 foreach data in NN_data do

3 if classify_1nn(data,NN_data) = data.class then

4 data.class← original_classifier;

5 end

6 end
Algorithm 3: Patching using 1-nearest neighbor.

Algorithm 3 is the simplest among the four algorithms of this group which

will be presented within this section. The idea is to use 1-nearest neighbor and

28

use the result from the original classifier if the data from 1-nearest neighbor is

classified by the original classifier correctly.

input : original classifier, customization data

output: patching classifier

1 data_queue← customization_data;

2 NN_data← ∅;

3 correctset← ∅;

4 while notempty(data_queue) do

5 data← dequeue(data_queue);

6 if classify_1nnpatcher(data,NN_data,original_classifier)

= data.class then

7 correctset← append(correctset,data);

8 end

9 else

10 if classify(data,original_classifier) = data.class then

11 data.class = original_classifier;

12 end

13 NN_data← append(NN_data,data);

14 foreach correctdata in correctset do

15 if

classify_1nnpatcher(correctdata,NN_data,original_classifier)

̸= data.class then

16 remove(correctset,correctdata);

17 enqueue(data_queue,correctdata);

18 end

19 end

20 end

21 end
Algorithm 4: Patching using 1-nearest neighbor with the reduced number of

instances.

Algorithm 4 is a slight modification version of Algorithm 3 in order to

reduce the number of data used in the 1-nearest neighbor patcher. The idea is

to add one data into the patching classifier at a time, and try not to add it if it

29

is classified correctly. Different from Algorithm 3, the classifier resulted from

using Algorithm 4 will also depend on the order of data used in the algorithm.

The procedure which we try to reduce the number of training data for 1-nearest

neighbor will reduce the time used in classification and will also reduce the

complexity of decision boundary, which might yield better result as well.

30

input : original classifier, customization data

output: patching classifier

1 data_queue← customization_data;

2 patch_data← ∅,correctset← ∅;

3 while notempty(data_queue) do

4 data← dequeue(data_queue);

5 if classify_patcher(data,patch_data,ori_classifier) = data.class then

6 correctset← append(correctset,data);

7 else

8 if classify_patch(data,patch_data) = ori_classifier then

9 data.radius← find_radius(data,patch_data,correctset);

10 patch_data← append(patch_data,data);

11 else if classify(data,ori_classifier) ̸= data.class then

12 data.radius← find_radius(data,patch_data,correctset);

13 foreach ball in patch_data do

14 ball.radius← reduce_radius(ball, data);

15 end

16 patch_data← append(patch_data,data);

17 else

18 foreach ball in patch_data do

19 ball.radius← reduce_radius(ball, data);

20 end

21 end

22 foreach correctdata in correctset do

23 if classify(correctdata,ori_classifier) ̸= correctdata.class then

24 remove(correctset,correctdata);

25 enqueue(data_queue,correctdata);

26 end

27 end

28 end

29 end
Algorithm 5: Patching with a reduced number of hyperspheres.

Algorithm 5 will create open balls or hyperspheres without boundary

31

with customization data as their centers. The result within the region of each

ball is classified as belonging to the same class as the customization data which

is the center of the ball. The result for undefined region is taken from the orig-

inal classifier. The algorithm will perform similarly to Algorithm 4 except that

the region of the hypersphere requires different handling. First of all, each hy-

persphere must not intersect with others, and that is why when there are some

changes in patch_data, the algorithm will require more complicated procedure.

Note that there are two functions that require more description in Algorithm 5.

For the first one, reduce_radius will shrink down an existing hypersphere if the

hypersphere is the cause of wrong classification or if the two arguments inter-

sect with each other. If the wrong classification is caused by a new hypersphere

then it will make the two hyperspheres become almost touched, and if it is

a new data in different class then it will make the radius of the hypersphere

half of the distance between the two instances. For the second one, find_radius

will be used when a new hypersphere or data is added. The function will try

to make the new hypersphere as large as possible with some constraints that

it must not intersect with other hyperspheres and that its radius is not more

than half of the distance between its center and other instances not in any patch

region. Since this may not be very obvious we will provide a proof that this

algorithm will terminate as in Proposition 1.

Proposition 1. Algorithm 5 will eventually terminate.

Proof. In each loop, the algorithm will dequeue and perform at least one of the

following actions; add data from the queue into correctset in the case that the

data is correctly classified by the current classifier or add data from the queue

to patch_data then reduce radius of an existing hypersphere in order to fix the

result of the current classifier. Each time enqueue is performed, the data must

be taken from correctset, which causes the total numbers of data in the queue,

correctset and patch_data to always be the same. In each loop when enqueue is

performed, it must also add another instance to patch_data or reduce the size

of a hypersphere. Adding an instance to patch_data will cause the total number

of instances in correctset and the queue to be lower as well and will eventually

make the queue empty. The size of the hypersphere can be reduced for a limited

number of times, bounded by the total number of instances. And if the radius

32

is at the lowest possible, then there cannot be an intersection with any other

data, which causes the loop to perform other action instead. When both of

these actions are not performed any longer then the number of instances in the

queue cannot be increased. Hence, the loop will terminate. �

input : original classifier, customization data

output: patching classifier

1 patch_data← customization_data;

2 foreach data in patch_data do

3 s← patch_data which (.class ̸= data.class);

4 data.radius← minx∈sd(data, x)/2;

5 end
Algorithm 6: Patching with intersectable hypersphere.

Algorithm 6 is different from the rest in that it allows intersection of re-

gions, as long as they are both of the same class. The algorithm will make the

radius of each hypersphere half of the distance between the center of the hy-

persphere and the closest instance in a different class.

4.2.2 Numerical Results

In this section, we conducted experiments on the pendigits dataset and

the classifiers in the previous section. Also, to better demonstrate the result,

we decided to also use other datasets from the UCI machine learning reposi-

tory called optdigits, representing the task of optical character recognition. The

dataset optdigits represents images of digits 0-9 in 8x8 pixels, resulted in 64 at-

tributes each of which is an integer in the range of 0-16 reflecting grayscale

value of the images. The dataset was separated by the group of writers in the

same way as pendigits, consisting of 3,823 instances of original training data and

1,797 instances that were used for customization and testing. For each class, 50

instances were assigned as customization data, and thus we had roughly 380

training data, 50 customization data and 130 test data for each class. We used

principal component analysis to reduce the number of attributes to 16, the same

as in pendigits, and then normalized the value of these 16 attributes to be in the

range [0, 1] before preparing the data for the experiments in the same way. The

33

Table 4.7: Accuracy of patched subclassifiers from pendigits data.

ORIGINAL ALGO 3 ALGO 4 ALGO 5 ALGO 6
WNN 99.39 ± 1.03 99.62 ± 0.83 99.62 ± 0.82 99.61 ± 0.85 99.72 ± 0.74

NN 98.86 ± 1.42 99.41 ± 0.74 99.46 ± 0.71 99.26 ± 0.93 99.51 ± 0.84
SVMS 99.46 ± 0.68 99.63 ± 0.45 99.65 ± 0.47 99.63 ± 0.43 99.75 ± 0.35

Table 4.8: Accuracy of patched subclassifiers from optdigits data.

ORIGINAL ALGO 3 ALGO 4 ALGO 5 ALGO 6
WNN 99.58 ± 0.90 99.53 ± 0.92 99.62 ± 0.82 99.61 ± 0.85 99.72 ± 0.74

NN 98.22 ± 2.02 98.23 ± 2.03 99.46 ± 0.71 99.26 ± 0.93 99.51 ± 0.84
SVMS 99.80 ± 0.37 99.78 ± 0.39 99.65 ± 0.47 99.63 ± 0.43 99.75 ± 0.35

experiments on combined classifiers are shown in Table 4.7, Table 4.8 and Ta-

ble 4.9. Since the algorithm can be applied to multiclass classifiers without any

modification, we also conducted an experiment on combined classifiers, and

the result is shown in Table 4.10.

The result from Table 4.7, Table 4.8, Table 4.9 and Table 4.10, show that

the proposed algorithm improved the classification result in most cases, Al-

gorithm 6 provided the best result among the four proposed algorithms which

perform customization for classification by patching. An interesting issue is the

result from applying the algorithms with multiclass classifiers. In Table 4.9 and

Table 4.10, applying the algorithms with multiclass classifiers brought worse

result in most cases, with the exception of Algorithm 3. For Algorithm 4 and

Algorithm 5, their results depended on the order of the data used in the al-

gorithms, and applying the algorithms with multiclass classifiers gave more

bias resulted from the order of the data. For Algorithm 6, as the radius of the

ball was calculated from the distance to the other data with different class, us-

ing the algorithm with multiclass classifiers provided smaller radius of the hy-

perspheres compared to using the algorithm on each subclassifier because the

number of data in different classes had increased.

Now we compare both frameworks of transforming input space and patch-

ing. Transforming input space seems like a good approach in performing con-

34

Table 4.9: Accuracy of combined classifier from patched subclassifier.

ALGORITHM ORIGINAL ALGO 3 ALGO 4 ALGO 5 ALGO 6
PENDIGITS WNN 97.80 98.10 98.10 97.97 98.50
MAX WINS NEURAL NET 95.43 96.83 97.36 96.46 97.67

SVMS 97.67 98.37 98.50 98.17 98.63
PENDIGITS WNN 97.80 98.20 98.10 98.03 98.50

ADAG NEURAL NET 95.76 97.30 97.40 97.03 97.73
SVMS 97.67 98.33 98.07 98.17 98.60

OPTDIGITS WNN 97.22 97.07 96.38 97.22 97.30
MAX WINS NEURAL NET 93.60 93.99 94.06 93.83 94.37

SVMS 98.54 98.54 98.15 98.61 98.54
OPTDIGITS WNN 97.22 97.07 96.68 97.22 97.30

ADAG NEURAL NET 92.60 93.06 92.37 92.75 93.29
SVMS 98.54 98.54 98.38 98.61 98.54

tinuous changes to create a more suitable classifier. However, an obvious draw-

back from transforming input space is the high number of parameters of the al-

gorithm which is also due to applying the algorithm to the task of classification

which yields discrete result. In contrast, patching is much simpler and has few

parameters which cause it to have much less problem in overfitting. The idea of

patching is to use the result from each of two classifiers, the original one and the

one created from customization data. We can give some estimation like lower

bound or expected performance of a classifier resulted from patching with both

classifiers. Suppose that we determine whether we should believe the original

classifier by random then the expected accuracy of the new classifier should be

the average value of the accuracy from both classifiers. Moreover, by the fact

that our decision is based on a plausible reasoning, the resulted classifier from

patching should obviously yield better result than the average accuracy of both

classifiers. Comparing the result from Table 4.4 and Table 4.9 which are the re-

sults from transforming input space using probabilistic value of pendigits and

patching, patching by Algorithm 6 yields better result. However, this is due to

difficulty in transforming input space. In summary, transforming input space is

an approach with high potential but is hard to achieve and patching is a simple

method but has limited potential in both upper bound and lower bound of the

result.

35

Table 4.10: Accuracy of patched combined classifier.

ALGORITHM ORIGINAL ALGO 3 ALGO 4 ALGO 5 ALGO 6
PENDIGITS WNN 97.80 98.40 97.97 98.17 98.27
MAX WINS NEURAL NET 95.43 97.73 97.40 96.83 96.83

SVMS 97.67 98.27 97.30 98.10 98.30
PENDIGITS WNN 97.80 98.40 97.97 98.17 98.27

ADAG NEURAL NET 95.76 98.03 97.26 97.20 97.26
SVMS 97.67 98.27 97.30 98.10 98.30

OPTDIGITS WNN 97.22 97.07 95.07 97.22 97.30
MAX WINS NEURAL NET 93.60 93.99 89.67 93.83 93.99

SVMS 98.54 98.46 96.92 98.61 98.69
OPTDIGITS WNN 97.22 97.07 95.07 97.22 97.30

ADAG NEURAL NET 92.60 93.06 88.97 92.91 93.06
SVMS 98.54 98.46 96.92 98.61 98.69

4.3 Customization for Classification with Nonlinear Dimensionality Reduc-

tion

This framework is based on the idea of transforming input space as well,

but with a different method in finding the transformation. Instead of finding

sequence of small transformations, this framework will use dimensionality re-

duction to find the transformation between both input spaces. This framework

is shown in Figure 4.5 and the resulted classifier is shown in Figure 4.6.

The framework begins with generating data that represents the original

classifier by randomization for its attribute values and uses the class from pre-

diction of the original classifier. After that, we will embed the space of this

data and the customization data into a higher-dimensional space. We then use

supervised linear dimensionality reduction algorithms, such as KMMLN, with

the expectation that it will align both data sets on each other without changing

their topology. After that we will perform regression such that the data in that

space should be mapped back into the space of the original classifier based on

the value of the generated data. The new classifier will work by transforming

the test data into the space that aligns it with the data belonging to the original

classifier. After that, the values of attributes of the data in the original space cor-

responding to the test data will be calculated by regression, and that attribute

values will be used by the original classifier for prediction.

36

4.3.1 Numerical Results

We show the experimental result of the proposed framework. For visu-

alization, we used 2-dimensional data with no noise and with two possible

classes, to test how the framework performed on each kind of basic linear trans-

formation. We used the same customization data and test data while varying

the original classifier which is 1-nearest neighbor generated from the space that

can be mapped onto customization data perfectly by translation, scaling, and

rotation. All the data in this experiment is shown in Figure 4.7.

The reason for us to choose 1-nearest neighbor as the original classifier is

for easiness in the step of generating data that represents the original classifier.

In this case, we used the data in 1-nearest neighbor directly. The next issue

was how to embed both data into the same space. An easy implementation

may be to use translation, or any kind of rigid transformation that makes both

datasets not overlap with each other, and even easier, we may add another

dimension whose value represents the dataset where each data comes from.

The visualization of this is as in Figure 4.8.

Note that, this framework relies mainly on the expectation that the al-

gorithm for nonlinear dimensionality reduction, which is the algorithm in the

group of KMMLN in this case, will be able to align both datasets onto each

other. To achieve this result, we considered both the method of embedding

and the inner process of the KMMLN algorithm. In this experiment, we used

the algorithm KDNE, KLMNN and KNCA which are the kernelized versions

of linear dimensionality reduction algorithms DNE (Zhang et al., 2007), LMNN

(Weinberger and Saul, 2009) and NCA (Goldberger et al., 2005) respectively,

and the algorithms for them are already stated in the original paper of KMMLN

(Chatpatanasiri et al., 2010, 2008). The results are shown in Table 4.11 and Ta-

ble 4.12.

The results show the accuracy when using an original 1-nearest neighbor

classifier and the accuracy of 1-nearest neighbor with customization data. There

is clearly significant improvement compared to the original classifier, and some

improvement compared to 1-nearest neighbor on customization data. How-

37

Table 4.11: Result from customization using linear dimensionality reduction
algorithm.

ORIGINAL CUSTOM DATA DNE LMNN NCA
TRANSLATION 83.6 93.4 83.6 83.5 83.7

SCALING 86.0 93.4 86.0 86.1 86.3
ROTATION 88.6 93.4 88.6 88.6 88.6

Table 4.12: Result from customization using the KMMLN algorithm.

ORIGINAL CUSTOM DATA KDNE KLMNN KNCA
TRANSLATION 83.6 93.4 87.0 93.8 97.9

SCALING 86.0 93.4 87.7 94.1 87.9
ROTATION 88.6 93.4 91.0 93.6 91.1

ever, two issues need to be noted. First is that all the three datasets in this

experiments are simple linear transformation from a dataset with really sim-

ple decision boundary, as shown in Figure 4.8. The second issue is that though

the numerical result looks fine but from visualization, the two datasets did not

align on each other when using KMMLN, with the exception of performing

KNCA on the translation dataset which yielded much more significant differ-

ence compared to other cases in the experiment. Thus, the algorithm may not

have much potential in higher dimensional datasets with more complicated de-

cision boundary.

In conclusion, the framework seems to have the potential to yield satis-

fying result, but we could not bring experimental results as we expected yet.

So we only present this framework here as it may be a good idea for further

development in this line of work.

38

(a) Original classifier (b) Customization data (c) Randomly generated data
from the original classifier to
be used for weighted nearest
neighbor

(d) Mapped customization
data, using the original
classifier

(e) Mapped customization
data, using the randomly
generated weighted nearest
neighbor

(f) Mapped customization
data, using the new generated
classifier from the proposed
algorithm

(g) Mapped customization
data, using the original
classifier, with the output
function

(h) Mapped customization
data, using the randomly
generated weighted nearest
neighbor, with the output
function

(i) Mapped customization
data, using the new generated
classifier from the proposed
algorithm, with the output
function

Figure 4.3: Visualization of results from transforming generated probabilistic
classifiers.

39

generate probabilistic classifier

generated classifier

generate transformation sequence

transformation sequence

mapped test data

test data

original classifier

prediction result

original classifier

customized classifier

customization data

Figure 4.4: Framework of customization for classification by Transforming In-
put Space.

40

put data in new spacegenerated data

customization data

original classifier

generate data

mapped generated data

regression

mapper to original space

dimension reducer

generated data in higher−dimensional space

put data in new space

combined data in higher−dimensional space

supervised nonlinear dimensionality reduction

Figure 4.5: Framework of customization for classification with nonlinear di-
mensionality reduction.

41

dimension reducer

test data

prediction result

mapper to original space

put data in new space

mapped test data

original classifier

test data in higher−dimensional space

test data aligned with generated data

Figure 4.6: New classifier from the framework for customization of classifica-
tion with nonlinear dimensionality reduction.

42

(a) Customization data (b) Test data

(c) Original data for 1-nn by translation (d) Original data for 1-nn by scaling

(e) Original data for 1-nn by rotation

Figure 4.7: Visualization of generated dataset.

43

Figure 4.8: Embedding the data into a higher dimension.

CHAPTER V

CUSTOMIZATION FOR DIMENSIONALITY

REDUCTION

In this chapter, we will propose a framework for performing customiza-

tion for the task of dimensionality reduction. We will also propose an algo-

rithm for dimensionality reduction with additional constraint that the dimen-

sionality reduction is performed with linear function; it is linear dimensionality

reduction. The additional constraint in this case reduces the generality for cus-

tomization to a subgroup of dimensionality reduction. However, the group of

algorithms that perform linear dimensionality reduction is still large enough

to have considerable impact. With this limitation, we can provide theoretical

result up to much more extent than performing it on the much larger set that

includes nonlinear dimensionality reduction.

5.1 Framework of Customization for Dimensionality Reduction

The goal of dimensionality reduction is finding a mapping function µ :

Rn → Rm that will retain the most usefulness of the data, where the definition

of usefulness can be different for each algorithm by the objective and constraint

on µ. In the most general case where there is no constraint on function µ, this

problem can be solved by training another dimensionality reduction ν : Rn →
Rm based on the customization data and then combining the result when the

set of customization data is transformed by µ and ν.

There seem to be no other feasible approaches for customization on di-

mensionality reduction, due to its nature that is different from classification and

regression. The goal for dimensionality reduction is that the resulted data must

retain the most useful information, and by any definition of the usefulness, it

cannot be measured with just a sole data, k. This is because the usefulness

cannot be determined by just its own nonmapped quality such as class for clas-

sification or continuous value for regression that can be used to determine the

objective, but it must be measured by the information of values of many data

45

in a dataset. This is completely different from classification and regression that

we want the result from the process to be as close as possible to another value

associated with the data.

Suppose that k is transformed by µ and ν to be µ(k) and ν(k) respectively,

and that the values of µ(k) and ν(k) are dependent on each other up to some

degree since they are both generated from k by the procedure. Let us define ρ

as a function which ρ(k) = [µ(k)Tν(k)T]T. If we perform unsupervised dimen-

sionality reduction on the dataset that is mapped into ρ(k) then it will result in

the mapping onto a coordinate of a space that will try to align the value of µ

and ν on each other based on the dataset. Thus we can find the most feasible

mapping using a dataset X by using all the data used in generating the original

dimension reducer and customization data. However, since we might not have

the data used in generating the original dimension reducer by the setting, we

would have to compromise with just using the customization data to represent

the data distribution in the space.

The process of combining two results from dimensionality reduction can

be thought of as performing unsupervised dimensionality reduction on the

data resulted from both dimensionality reduction. The data resulted from k

which will be used in the unsupervised dimensionality reduction is written

as [µ(k)Tν(k)T]T. Following this procedure, we give the framework for cus-

tomization for dimensionality reduction as shown in Figure 5.1 and the resulted

new dimension reducer is as shown in Figure 5.2.

5.2 Combining Results from Linear Dimensionality Reduction

5.2.1 Algorithm

For the most general formulation of linear dimensionality reduction with

n attributes, we can write the linear transformation (Wylie and Barrett, 1982;

Nicholson, 2001) as f (x) = Ax + b where A is an orthogonal matrix of size n

whose rows are sorted in the order of importance and b is a vector of size n.

Given a training procedure for linear dimensionality reduction f (x), one can

determine all the n2 + n parameters of f (x) within A and b by observing the

46

dimensionality reduction algorithm

mapped data mapped data

combine the data by attributes

combined data

unsupervised dimensionality reduction algorithm

dimension reducer for combined data

original dimension reducer new dimension reducer

customization data

Figure 5.1: Framework for customization for dimensionality reduction.

output given to a set of (n + 1) vectors. The simplest of them is a normalized

vector in each dimension and the zero vector, which results in the following:

f (In) = AIn + b1n
T = A + b1n

T,

f (0n) = A0n + b = b,

A = f (In)− b1n
T

= f (In)− f (0n)1n
T.

The customization data will be used to train another linear dimension reducer

with the same objective as the original given procedure, resulting in another

transformation matrix. We will use MT and NT to denote the transformation

47

combine the data by attributes

combined data

dimension reducer for combined data

new dimension reducer

test data

original dimension reducer

mapped test datamapped test data

dimension reduced test data

Figure 5.2: The new dimension reducer as the result of using the framework.

matrix belonging to the original procedure and the transformation matrix cre-

ated from customization data, respectively.

If we want to perform dimensionality reduction of a dataset with n dimen-

sions to a space with m dimensions, the most idealistic way will be to combine

m most important linear spaces resulted from both procedure. The basis for

the most important linear space with m dimensions of a linear transformation

can be represented with the first m columns of M where each of the columns

is a basis vector. For combining two such spaces of the same dimension into

a new linear space with the same dimension, we propose considering covari-

ance from all the basis vectors of both spaces, fixing the mean to be at origin.

The later process will be to find the m most suitable basis vectors for a new

48

m-dimensional linear space that gives the greatest variance. This process can

be easily described as using the m most important orthonormal basis vectors of

both transformation matrices as data to perform PCA, with the mean fixing to

be the zero vector. With this interpretation, the procedure will yield the same

result as using each normal basis vector along with the unit vector in the op-

posite direction which will have in the mean of the all the vectors to be zero,

and have a covariance matrix with twice the value of covariance matrix of basis

vectors with zero mean.

In the case that we want to give a certain weight
√

α and
√

1− α to M and

N respectively, we can perform scaling on the basis vectors from each matrix

with that weight.

Proposition 2. Performing PCA on the data which are any orthonormal basis vectors

that span the same linear space as M and N, with the mean fixed to be zero vector, will

always yield the same result.

Proof. PCA is dependent on calculation of covariance matrix C, which follows

the formula C = DDT when D is the matrix with each column as a data that is

translated to have zero mean. From the view of each element in the matrix, this

formula can alternatively be written as,

Cij = ∑
k

DikDjk,

when Cij and Dij are the values of the matrix in row i and column j respectively.

If we view it from the perspective of each data, C could be written as follows,

C = ∑
k

DkDk
T,

where Dk is the kth row of D.

The last equation implies that covariance matrix of a dataset is the sum-

mation of covariance matrix for each data, using the same mean. In matrix

form, this can be written as:

C = [M|N][M|N]T = MMT + NNT.

49

Any set of orthonormal basis vectors that represent the same m-dimensional

linear space as a set of orthonormal basis vectors D can be written as DO where

O is an orthogonal matrix with m rows. This can be visualized as O represents

all possible sets of orthonormal basis vectors in m dimensions, and D is the

transformation that aligns the sets of basis vectors to the linear subspace. As

shown in the equation, covariance matrix C of a matrix with the data as or-

thonormal basis of two linear subspaces weighted by
√

α and
√

1− α can be

calculated as:

C = [
√

αMOM|
√

1− αNON][
√

αMOM|
√

1− αNON]
T

= (
√

αMOM)(
√

αMOM)T + (
√

1− αNON)(
√

1− αNON)
T

= α(MOM)(MOM)T + (1− α)(NON)(NON)
T

= αMOMOT
M MT + (1− α)NONOT

N NT

= αMImMT + (1− α)NImNT

= αMMT + (1− α)NNT.

Thus we will obtain the same covariance matrix from eigenvalue decomposi-

tion which will yield the same transformation matrix. �

An important note is that the resulted basis vectors from the linear trans-

formation will not be ordered by the importance in each dimension for the data

according to the algorithm for linear dimensionality reduction, but with the

probability that the dimension should be selected as the result from combina-

tion of the two linear transformations. So if the user want to sort the importance

of each axis in the new linear space as in the capability of the linear dimensional

reduction algorithm, he must perform the algorithm for linear dimensionality

reduction on the customization data after they are transformed by the new lin-

ear transformation.

Another note is that this process can also be viewed as combining the

unimportant linear space, as they will yield the same result. The importance of

this aspect is that since the time taken in calculation of PCA also depends on

the number of data, it will be faster to do this if the resulted dimension is more

50

than half of the original, i.e. 2m > n.

Proposition 3. Inverse view of combining linear space with low importance will yield

the same result as combining linear space with high importance.

Proof. Let M = [M1|M2] and N = [N1|N2] be both orthonormal vectors which

fully span the space where M1 and N1 span an m-dimensional linear space.

We want to proof that the m-dimensional linear space resulted from PCA of

[
√

αM1|
√

1− αN1] with zero mean is the same to the least important m-dimensional

linear space from PCA of [
√

αM2|
√

1− αN2].

Let C1 and C2 be covariance matrices of [
√

αM1|
√

1− αN1] and [
√

αM2|
√

1− αN2]

respectively.

C1 = [
√

αM1|
√

1− αN1][
√

αM1|
√

1− αN1]
T

= αM1MT
1 + (1− α)N1NT

1

C2 = αM2MT
2 + (1− α)N2NT

2 .

Since M is an orthogonal matrix,

MMT = In = [M1|M2][M1|M2]
T = M1MT

1 + M2MT
2 ,

M2MT
2 = In −M1MT

1 .

Let CT
1 = UΛUT be the result from eigenvalue decomposition of the covariance

matrix.

C2 = αM2MT
2 + (1− α)N2NT

2

= α(I −M1MT
1) + (1− α)(I − N1NT

1)

= I − αM1MT
1 − (1− α)N1NT

1

= I − (αM1MT
1 + (1− α)N1NT

1)

= I − C1

= I −UΛUT

= U(I −Λ)UT.

Since C2 is summation of two positive semidefinite matrices, C2 is a positive

51

semidefinite matrix as well. The result is that eigenvalues of C2 which are the

diagonal elements of (I − Λ) are nonnegative and are sorted in reverse order

to eigenvalues of C1. Since eigenvectors of both C1 and C2 are the same but in

reverse order, this proves that the resulted linear space spanned by the m most

importance eigenvectors of C1 is the same to the linear space spanned by m least

importance eigenvector of C2. �

We will let both spaces be equally important by setting α = 0.5. This will

yield the same result as letting both weighting terms α and 1− α be 1 which will

simplify the calculation. This setting will be used for all the following proofs in

this section.

5.2.2 Theoretical Results

Proposition 4. We can fully describe a linear space spanned by the set of orthonormal

basis vectors M with MMT.

Proof. First, we will prove that for any orthogonal matrix O with m rows, the

space spanned by any MO which is the same space will result in the same value.

MO(MO)T = MOOT MT

= MImMT

= MMT.

For the inverse, since MMT is both symmetric and positive semidefinite, we

can perform eigenvalue decomposition on MMT. If the space spanned by M

is an m-dimensional linear space then rank of M will be m, and as the result

the rank of MMT will be m as well since it is a product of two matrices with

rank m. Other than that, all of its eigenvalues will be 1 as well. Therefore, by

performing eigenvalue decomposition and eliminating all the elements with 0

in the eigenvalues, we will get the following,

MMT = NImNT,

= NNT,

52

where Im is an identity matrix with m rows and N is another orthonormal basis

vectors with the equal number of rows and columns to M. Hence, from the

equation,

MMT = NNT,

Im = MT NNT M,

= MT N(MT N)T,

and thus MT N is an orthogonal matrix which transforms M into N and that

both M and N span the same linear space. �

From the result of Proposition 4, we will now refer to a linear space spanned

by a set of orthonormal basis vectors M with the matrix MS = MMT.

Proposition 5. Let k be a unit vector and XS be a linear space, XSk is the projection

of k on the space XS.

Proof. Let X be a set of orthonormal basis of XS that is XS = XXT. XTk is the

projection of k onto each of the orthonormal basis of space XS. X(XTk) can

be viewed as multiplying each of the orthonormal basis vectors of XS with the

value that k is projected on them. Hence, XSk is the projection of k on the space

XS. �

Definition 1. Let A,B,C and D be the sets of orthonormal basis vectors which span an

m-dimensional linear space. We say that the difference between the space spanned

by A and B is equal to the difference between the space spanned by C and D if

and only if there exists an orthogonal matrix O which causes the space spanned by AO

and BO be equivalent to the space spanned by C and D respectively.

Definition 1 arises from the property that the operation of an orthogonal

matrix will be equivalent to a sequence of rotation and reflection centered at the

origin, which will preserve the distance between any vectors in the space. We

will have another constraint for a function which measures difference between

two linear spaces.

53

Definition 2. Let M and N be two sets of orthonormal basis vectors. A function

f (M, N) is a measure of difference between the spaces spanned by both M and

N if and only if,

i) f (M, N) = f (N, M),

ii) f (M, N) = f (OM, ON),

iii) f (M, N) = f (MOM, NON),

where O, OM and ON are any orthogonal matrices.

In Definition 2, the first condition is from that the function must be reflex-

ive since it is a measure of difference. The second condition is from Definition 1.

The third condition is from that the function should yield the same output for

any orthonormal basis vectors that span the same space.

Proposition 6. Let M and N be two sets of orthonormal basis vectors which span

an m-dimensional linear space within an n-dimensional space. We can measure the

difference between them with the function f (M, N) = |det(MT N)|

Proof. We will prove that the function satisfies every condition in Definition 2.

For the first condition, by the property of determinant that determinant of

a matrix yields the same value to determinant of its transposed matrix, we can

conclude that the function is reflexive.

f (M, N) = |det(MT N)| = |det((MT N)T)| = |det(NT M)| = f (N, M).

For the second condition, we will prove that if the differences within two sets

of linear spaces are equivalent then the function will provide the same value.

Suppose that M and N be two sets of orthonormal basis vectors and O be an

54

orthogonal matrix.

f (OM, ON) = |det((OM)TON)|

= |det(MTOTON)|

= |det(MT N)|

= f (M, N).

For the third condition, we will prove that any basis vectors which span the

same space will yield the same result. Let OM and ON be orthogonal matrices

with m rows. All the set of basis vectors which span the same space as M and

N can be written as MOM and NON.

f (MOM, NON) = |det((MOM)T NON)|

= |det(OT
M MT NON)|

= |det(OT
M)det(MT N)det(ON)|

= |det(OM)||det(MT N)||det(ON)|

= |det(MT N)|

= f (M, N).

This results from the property of multiplicative distribution of determinant and

from the fact that the determinant of an orthogonal matrix is±1 from its defini-

tion that an orthogonal matrix multiplying to its transposed matrix will result

in an identity matrix. �

To get a better understanding of the function in Proposition 6, we first

consider the case that m = 1. The function |det(MT N)|will become the absolute

value of dot product between two vectors. Its absolute value is the result from

that the spanned linear space is in both positive and negative directions of the

basis vectors.

Furthermore, we will consider min(eig(NT MSN)) where eig(X) is the

function that returns all of the eigenvalues of X. The minimum eigenvalue

will reflect the result of using k, a vector in NS, which minimizes the function

55

kT MSk for all the vectors in NS. The function can be interpreted as project-

ing k onto MS and projecting it back onto NS. Hence, the eigenvalue will be

cos2(α) when α is the angle between k and MS which also serves as the angular

difference between NS and MS.

Proposition 7. Let M and N be two sets of orthonormal basis vectors which span

an m-dimensional linear space. The function f (M, N) = |det(MT N)| will have its

maximum value if and only if M and N span the same linear space.

Proof. We will state a proof that both sets of orthonormal basis vectors will span

the same space if and only if the value of the function is 1. The sufficient condi-

tion uses the knowledge that has been previously applied.

f (M, MOM) = |det(MT MOM)|

= |det(MT M)||det(OM)|

= 1.

For the necessary condition, let us consider the following equation:

f 2(M, N) = |det(MT N)|2

= (det(MT N))2

= det(MT N)det(MT N)

= det(MT N)det(NT M)

= det(MT NNT M)

= det(MT NNT M).

By the property of determinant, its value will be equivalent to the multiplication

of all singular values of the matrix. So if there is a pair of M and N that cause

the value of f (M, N) > 1 then there will be at least an eigenvalue of MT NNT M

that is higher than 1 since MT NNT M is a symmetric positive semidefinite ma-

trix. Suppose that k is the unit eigenvector with the maximum eigenvalue of

56

MT NNT M, it will follow that the eigenvalue of k will be equal to:

kT MT NNT Mk = (Mk)T NNT(Mk),

= (Mk)T NS(Mk).

Since M is an orthonormal basis vector and k is a unit vector, Mk will be a unit

vector that lies in the space spanned by M and (Mk)T NS(Mk) can be viewed as

dot product between the unit vector and the projection of that unit vector onto

the space NS. Since projection does not increase the size of vector, it is clear that

(Mk)T NS(Mk) ≤ 1 and that 1 is the maximum value of f (M, N) �

From Proposition 7, the main contribution of the function |det(M, N)| is

that it can provide an answer if two sets of orthonormal basis vectors span the

same space, without requiring any further interpretation. However, difference

between two linear spaces cannot be fully described with one real value due to

its degree of freedom.

Now, let us consider space MS = MMT and NS = NNT. If the space NS

is exactly the same as MS, then all orthonormal basis vectors of NS must be in

MS. Therefore,

NT MSN = NT N = Im,

where Im is an identity matrix with m rows.

The diagonal elements of NT MSN will be 1 if and only if each basis vector

of NS in N is in MS since MS can be interpreted as projection of the vector onto

that space. Moreover, if that is the case, then NS will span the same space as MS

and the projection of each different orthonormal basis vector in N will still be

orthogonal to each other. So we can conclude that NT MSN = Im if and only if

MS = NS.

From Definition 2 which defines the constraint for functions that measure

the difference between linear spaces from its orthonormal basis vectors. We can

derive the constraints for functions that measure the difference between linear

spaces using the matrix representing the spaces directly.

57

Proposition 8. Let MS and NS be two m-dimensional linear spaces. A function

g(MS, NS) is a measure of difference between the spaces if and only if,

i) g(MS, NS) = g(NS, MS),

ii) g(MS, NS) = g(OMSOT, ONSOT),

where O is any orthogonal matrix with n rows.

Proof. From Definition 2, we can obviously see that g(AAT, BBT) = g(CCT, DDT)

if and only if f (A, B) = f (C, D).

For the first condition, assume the first condition in Definition 2.

f (M, N) = f (N, M)

g(MMT, NNT) = g(NNT, MMT)

g(MT
S , NT

S) = g(NT
S , MT

S).

For the second condition, assume the second condition in Definition 2.

f (M, N) = f (OM, ON)

g(MMT, NNT) = g(OM(OM)T, ON(ON)T)

g(MMT, NNT) = g(OMMTOT, ONNTOT)

g(MS, NS) = g(OMSOT, ONSOT).

Assuming the third condition in Definition 2.

f (M, N) = f (MOM, NON)

g(MMT, NNT) = g(MOM(MOM)T, NON(NON)
T)

g(MMT, NNT) = g(MOMOT
M MT, NONOT

N NT)

g(MMT, NNT) = g(MMT, NNT)

g(MS, NS) = g(MS, NS).

58

Since the third condition from Definition 2 is always true by the definition of

the linear space, it needs no further consideration. �

Proposition 9. We can measure difference between two linear spaces MS and NS with

g(MS, NS) = eig(MS + NS) where eig(X) is the sorted eigenvalues of matrix X.

Proof. We will prove that the function g(MS, NS) = eig(MS + NS) satisfies all

the conditions in Proposition 8.

For the first condition, since matrix addition is associative, this is really

obvious.

g(MS, NS) = eig(MS + NS) = eig(NS + MS) = g(NS, MS)

For the second condition,

g(OMSOT, ONSOT) = eig(OMSOT + ONSOT),

= eig(O(MS + NS)OT).

From the eigenvalue decomposition, let MS + NS = VΛVT.

g(OMSOT, ONSOT) = eig(O(MS + NS)OT)

= eig(OVΛVTOT)

= eig((OV)Λ(OV)T)

= eig(Λ).

The last line of the equation can be considered as extracting the eigenvalues

from the matrix. In the same way,

g(MS, NS) = eig(MS + NS),

= eig(VΛVT),

= eig(Λ),

= g(OMSOT, ONSOT).

�

59

Let us further analyse the function in Proposition 9. It is quite obvious

that the function is better as a measurement of difference between two linear

spaces than the function in Proposition 6, due to its output which has n degree

of freedom when n is the number of dimensions. For the case that both spaces

are the same:

eig(MS + MS) = eig(2MS),

= 2eig(MS),

which means that it will have m eigenvalues which are 2 and the rest of n−m

eigenvalues from calculation will be zero.

Proposition 10. Let MS and NS be two m-dimensional linear spaces. We can fully

describe the difference between MS and NS with the matrix DMN = UT MT
S U when

UT is the eigenvectors of NS sorted by its eigenvalues.

Proof. Since the number of dimensions of MS and NS are equal, they will have

same set of eigenvalues. As a result of eigenvalue decomposition, we have:

MS = VΛVT,

NS = UΛUT,

where V and U are orthogonal matrices. From Proposition 8 the difference

between MS and NS will be equal to the difference between Λ and UT MSU.

Since Λ is also the eigenvalue part from eigenvalue decomposition of UT MSU.

It follows that the difference between MS and NS can be fully described with

the matrix DMN = UT MSU.

Also, a function h(D) can completely measure the difference from the dif-

ference matrix D with h(D) = g(eig(D), D) . By Proposition 8, we will have the

following constraint: h(D) = h(ODOT) if and only if Oeig(D)OT = eig(D). �

From Proposition 10, the first note is that DMN = UT MSU and DNM =

VT NSV are not necessarily the same matrix but they both fully describe the

differences which are equivalent to each other.

60

The constraint in Proposition 10 gives us some guideline in performing

pairwise comparation of the difference. However, there is the following prob-

lems that given two symmetric positive semidefinite matrices A and B, how to

efficiently compute an orthogonal matrix O such that A = OBOT, and how to

compute h(D) that will yield the same output if and only if the difference are

equivalent.

Theorem 1. Let MS and NS be two m-dimensional linear spaces, the m-dimensional

linear space XS which is spanned by the eigenvectors with m highest eigenvalues of

MS + NS is the optimal mean of MS and NS in the sense that it will minimize the value

maxkT MSk=1 or kT NSk=1kTYSk when YS is any m dimensional linear space, meaning

that it will minimize the angular difference between any vectors in MS or NS and the

new linear space.

Proof. From Proposition 3, it is enough to prove the result when m is not greater

than n/2, since performing the process on the none important space will yield

the same result. From this, we will be able to use the assumption that MS and

NS do not intersect each other at any place other than the origin.

Let XS be an m-dimensional linear space that serves as a mirror plane

which transforms the space of MS into NS back and forth; i.e. for a unit vector

k in MS or NS, there will be another unit vector j in the other linear space such

that the result from both of their projection on XS will be exactly the same but

has the exactly opposite direction of projection. This can be visualized that the

linear space XS will act as a mirror between MS and NS. If k and j are both unit

vectors that yield the value of angular difference between MS and NS then it

can be seen that the angular difference between XS and k will be equivalent to

the angular difference between XS and j since the projection from both of them

on XS will be at the same place. It becomes obvious that the angular difference

between other pair of unit vectors in MS and NS will be lower than this value

and thus this XS is an optimal mean space calculated from MS and NS in the

sense of angular difference.

Let XS, MS and NS be created from their orthonormal bases X, M and N.

From the previous definition of XS, MS and NS as in the previous paragraph,

61

and let k be a vector in MS, we can calculate j, a vector in NS corresponding to

k, which will result in the following equation:

k = XSk + (k− XSk),

j = XSk− (k− XSk),

= 2XSk− k,

= (2XS − In)k.

This relies on the fact that MS, NS and XS have the same number of dimensions

and do not intersect each other. That is why for a vector in MS, there should be

a vector in NS which has equal angular difference from XS and will be projected

on XS at the same position but with exactly opposite direction of the projection.

That is why we can write the space NS as following:

NS = NNT,

= (2XS − In)M((2XS − In)M)T,

= (2XS − In)MMT(2XS − In)
T,

= (2XS − In)MS(2XS − In).

Now let us consider the matrix MS + NS.

MS + NS = MS + (2XS − In)MS(2XS − In)

= MS + (4XSMSXS − 2XSMS − 2MSXS + MS)

= 4XSMSXS − 2XSMS − 2MSXS + 2MS.

Let k be an eigenvector of MS + NS. We will observe the result when separating

62

k into its elements that are in XS and that are not.

k = XSk + (In − XS)k

(MS + NS)k = (4XSMSXS − 2XSMS − 2MSXS + 2MS)(XSk + (In − XS)k)

= ((4XSMSXS − 2XSMS − 2MSXS + 2MS)XSk)

+((4XSMSXS − 2XSMS − 2MSXS + 2MS)(In − XS)k)

= ((4XSMS − 2XSMS − 2MS + 2MS)XSk)

+((−2XSMS + 2MS)(In − XS)k)

= 2XSMSXSk + 2(In − XS)MS(In − XS)k).

Suppose that k has elements in both XS and in the space orthogonal to XS,

which is the (n− m)-dimensional linear space that does not intersect with XS

except at the origin, denoted by XS⊥ = In − XS. If there is only one optimal

XS by the definition then the angular difference between MS and NS must be

less than π/2 which causes the angular difference between any vectors in MS

and XS to be less than π/4 while also causes the angular difference between

any vectors in MS and XS⊥ to be higher than π/4. For k to be an eigenvector

of MS + NS, XSMSXSk must be in the same direction as XSk and XS⊥MSXS⊥k

must be in the same direction as XS⊥k. If we let the angular difference between

MS and XSk and between MS and XS⊥k be α and β respectively then we will

get the following equations:

(MS + NS)k = 2XSMSXSk + 2(In − XS)MS(In − XS)k)

= 2XSMSXSk + 2XS⊥MSXS⊥k)

= 2cos2(α)XSk + 2cos2(β)XS⊥k)

Since 0 < α < β < π/2, it follows that either XSk or XS⊥k must be the zero

vector. This means that eigenvectors of MS + NS must lie in either XS or XS⊥

and since XS is m-dimensional then there will be m eigenvectors in XS and

(n−m) eigenvectors in XS⊥.

In the same way as MS, angular difference between any vectors in XS and

NS must be less than π/4 and angular difference between any vectors in XS

63

and NS⊥ must be higher than π/4. As a result, for any vector k in XS:

kT(MS + NS)k = kT MSk + kT NSk,

> 2cos2(π/4),

= 1,

> pT(MS + NS)p,

where p is a vector in XS⊥. This means that the m eigenvectors with highest

eigenvalues will all lie in XS and are also orthonormal basis vectors. Thus, the

linear space resulted from the process is the optimal linear space that minimizes

the value of maxkT MSk=1 or kT NSk=1kTYSk when YS is any m dimensional linear

space. �

In the case that the user want to weight MS and NS in a meaningful

way, it seems that the most sensible way is to repeat using the algorithm to

find the mean of two linear spaces until it reaches the satisfying precision, in-

stead of providing the weight to the linear space directly. The algorithm for the

weighted version of both spaces is shown in Algorithm 7.

64

input : M, N, m, α

output: X

1 A← M, B← N, X ← A, a← 0, b← 1, x ← 0;

2 while |α− x| > β do

3 X ← PCA(AAT + BBT, m);

4 x ← (a + b)/2;

5 if α > x then

6 a← x;

7 A← X;

8 else

9 b← x;

10 B← X;

11 end

12 end
Algorithm 7: Finding the optimal mean between two linear spaces with

weight.

In Algorithm 7, PCA(X, m) is the result of using PCA to choose m dimen-

sions from covariance matrix AS, α is a real value in the range [0, 1] which is the

weight for NS while the weight MS will be 1− α, β is the constraint for precision

in calculation for the result, and m is the dimension for both M and N.

Note that in the case that MS and NS are obtained by the linear dimension-

ality reduction of the same dataset, but with a different algorithm, the process

of combining them will act as finding the linear space that is good in both ob-

jectives.

Theorem 2. Using the proposed framework of customization for dimensionality reduc-

tion in Figure 5.1 on linear dimensionality reduction will yield the optimal result if we

can estimate the distribution of data perfectly.

Proof. Let MS and NS be both spaces to be combined which have M and N as

sets of their orthonormal basis vectors. According to the framework, to com-

bine two nonlinear spaces we will have to use the results from mapping cus-

tomization data on both of them in order to estimate the shape of the nonlinear

spaces. However, in the case of linear space, the shape of the space can be fully

65

described with the matrix and we could estimate the distribution from all the

data which are used to generate both spaces by the set of all available data in the

spaces. Since the mapping is linear, we can represent the result from mapping

the data of all input spaces with identity matrix and its negative. Thus, we get

the dataset as [M|N]T[In| − In]. The mean of this dataset is clearly zero due to

that the vectors resulted from [M|N]T[In] will come with their negative vectors

[M|N]T[−In]. The next step is to perform PCA using this dataset to obtain the

following covariance matrix.

[M|N]T[In| − In]([M|N]T[In| − In])
T = [M|N]T[In| − In][In| − In]

T[M|N]

= [M|N]T(In IT
n + (−In)(−In)

T)[M|N]

= [M|N]T(2In IT
n)[M|N]

= 2[M|N]T[M|N].

Since scaling of a matrix will not affect its eigenvectors, we will instead use the

matrix [M|N]T[M|N] which can also be calculated as covariance matrix of the

dataset [M|N]T with its mean fix to zero. By further analysis of the matrix:

[M|N]T[M|N] =

MT

NT

 [
M N

]
,

=

MT M MT N

NT M NT N

 ,

=

 Im MT N

NT M Im

 .

Now, let us consider a vector k which is an eigenvector of the matrix MMT +

NNT with eigenvalue λ.

66

 Im MT N

NT M Im

MT

NT

 k =

MT + MT NNT

NT MMT + NT

 k

=

MTk + MT NNTk

NTk + NT MMTk


=

MTk + MT(λk−MMTk)

NTk + NT(λk− NNTk)


=

MTk + λMTk−MT MMTk

NTk + λNTk− NT NNTk


=

MTk + λMTk− ImMTk

NTk + λNTk− ImNTk


=

MTk + λMTk−MTk

NTk + λNTk− NTk


=

λMTk

λNTk


= λ

MT

NT

 k.

From the above equation, if a vector k is an eigenvector of MMT + NNT with

eigenvalue λ then [M|N]Tk will be an eigenvector of [M|N]T[M|N] with eigen-

value λ. Since the matrix [M|N]T[M|N] is multiplication between [M|N] and

its transpose, the rank of [M|N]T[M|N] will be equal to the rank of [M|N],

and thus its maximum value will be the lesser between its number of rows

and columns which are n and 2m respectively. The result is that in the case

that the number of rows of [M|N]T[M|N] is higher than n the other eigenvec-

tors which are not corresponding to any [M|N]Tk when k is an eigenvector of

MMT + NNT will have zero eigenvalue. One may say that the matrix will have

no other eigenvector. So a vector k will be the eigenvector of MMT + NNT

with the i-th maximum eigenvalue if and only if [M|N]Tk is the eigenvec-

tor of [M|N]T[M|N] with the i-th maximum eigenvalue. Hence, the space re-

sulted from performing PCA on MMT + NNT will be the same as the space

67

resulted from performing PCA on [M|N]T[M|N] after the vector is mapped

onto [M|N]T, that is the result from applying the framework for dimensional-

ity reduction on linear dimensionality reduction. Thus, we can say that using

our proposed framework for dimensionality reduction on linear dimensionality

reduction will yield the optimum result. �

5.3 Numerical Results

We demonstrate the performance of our proposed algorithm with some

datasets from the UCI Machine Learning Repository, whose details are shown

in Table 5.1. In the same way to all of our previous experiments, the data were

normalized into the range of [0, 1]. After that, we separated the data into 4

groups of equal size and performed cross-validation among them. Two of the

groups were used as original training data to train the given linear dimension-

ality reduction process, while the other two of them were used as customization

data and test data, resulted in 4!
2!1!1! = 12 combinations in total. The result was

compared with the result from original linear dimensionality reduction and the

one trained from customization data.

Table 5.1: Detail of all datasets used in the experiments of combining results
from linear dimensionality reduction. The numbers of attributes shown are the
numbers of attributes used in dimensionality reduction, omitting some useless
attributes like index or specific name.

No. of attributes No. of instances
concrete compress 8 1,030

concrete slump 7 103
cpu 6 209

forest 12 517
housing 13 506

parkinsons 19 5,875
servo 4 167

For the linear dimensionality reduction used in the experiments, if one

want to use some algorithms with clearly defined objective as the value in opti-

mization then the score can be easily measured from the transformed test data

in the same way. However, in our experiments, we used PCA. Since PCA sorts

basis vectors for linear space by variance of the data in each axis, the objective

68

is not well-ordered. So as in many research works, we decide to use the value

of determinant and trace of covariance matrix which are the values of products

and summation of eigenvalues of the matrix respectively. The perfect result of

PCA then will align the axis so that all non-diagonal elements of the covari-

ance matrix will be zero. Since we calculate the mean of the value from cross

validation, we will use the natural logarithmic value of determinant instead of

using them directly to retain the sense of arithmetic mean. The result is shown

in Table 5.2.

Table 5.2: Result from using the proposed frameworks with linear dimension-
ality reduction. Numbers whose values are minimal in their rows are typeset
bold. The second column shows the reduced dimension. All of the equal values
are different in higher precision.

dataset m logdet(G) logdet(S) logdet(N) trace(G) trace(S) trace(N)
concrete 1 3.325 3.182 3.346 28.344 25.128 28.996

compress 3 7.957 8.191 8.190 56.180 57.380 57.707
5 11.452 12.434 12.257 78.178 81.335 80.777
7 12.952 12.889 12.944 86.828 86.567 86.810

concrete 1 1.022 1.030 1.093 2.856 2.888 3.024
slump 3 1.969 2.372 2.349 7.322 7.647 7.757

5 0.909 1.914 1.636 9.703 10.269 10.035
cpu 1 1.279 1.241 1.294 3.782 3.660 3.843

3 0.559 0.555 0.566 5.623 5.607 5.663
5 -1.609 -1.679 -1.575 6.968 6.965 6.989

forest 1 3.007 3.000 3.012 20.251 20.114 20.352
3 8.279 8.253 8.282 48.808 48.411 48.855
5 11.588 11.519 11.600 59.888 59.526 59.938
7 13.757 13.720 13.772 66.417 66.256 66.474
9 13.357 12.794 13.328 68.430 68.262 68.442

housing 1 3.947 3.943 3.948 51.814 51.602 51.872
3 8.512 8.475 8.516 72.337 71.891 72.386
5 11.754 11.638 11.769 82.914 82.307 83.033
7 14.132 14.059 14.152 90.018 89.703 90.115
9 15.172 14.859 15.070 94.082 93.572 93.974

parkinsons 1 5.775 5.774 5.775 322.042 321.963 322.063
3 15.148 15.145 15.148 545.028 544.694 545.090
5 22.983 22.981 22.983 647.335 647.225 647.361
7 28.320 28.315 28.321 676.847 676.749 676.868
9 31.271 31.267 31.272 686.197 686.153 686.208

servo 1 2.065 2.040 2.085 7.993 7.829 8.180
3 5.349 5.346 5.351 19.025 19.005 19.032

It is clearly shown in Table 5.2 that the result from combining both linear

69

spaces is better than that from the covariance matrix of mapped data, measured

by the value of logarithm of determinant and trace which both reflect the eigen-

values of the covariance matrix. Ones might think that combining two models

is similar to the idea of customization for classification by patching, but there

are some significant differences. The first thing is that combining two linear

spaces with this algorithm performs with both of them on equal ground, while

the patching approach in customization for classification treats them differently.

The second issue is that, customization for classification by patching predicts

the result using one of the two models, and with plausible bias, the result is ex-

pected to be an improvement. However, combining linear spaces based on the

hypothesis that both of these spaces should be the same but is differed due to

variation or error in both datasets. Thus, the most likely best linear space is the

linear space taken as a mean of them and the improvement in the experimental

result is based on different reason which is less obvious than customization for

classification by patching.

In order to demonstrate that this algorithm is applicable for dimensional-

ity reduction that will be later used in classification, we conducted other exper-

iments by performing customization on dimensionality reduction before clas-

sification. The experiments were conducted on datasets optdigits and pendigits

whose data were normalized into the range of [0, 1] as in all of our previous ex-

periments. However, the dataset optdigits used in this experiment did not have

dimensionality reduced by PCA since this experiment was about dimensional-

ity reduction as well, and thus dataset optdigits had 64 attributes. We performed

10-fold cross validation between data used for customization and test data. We

used linear discriminant analysis as dimensionality reduction algorithm and

1-nearest neighbor for classification. The result is shown in Table 5.3.

In Table 5.3, for dataset optdigits, we can be quite certain that the proposed

algorithm yielded better result, but for pendigits, it was only the case that the

data was reduced to one dimension that was an improvement from both linear

spaces. The main difference between both of these datasets is the numbers of

attributes; optdigits has 64 attributes, pendigits has 16 attributes. Therefore, per-

forming dimensionality reduction on optdigits with the same number of dimen-

70

Table 5.3: Classification accuracy after performing customization upon dimen-
sionality reduction. (G) and (S) are the results from original data and cus-
tomization data respectively, and (N) is the one created from both models with
our algorithm.

dataset m LDA(G) LDA(S) LDA(N)
optdigits 1 33.28 ± 4.03 33.61 ± 6.01 32.23 ± 5.09

3 77.69 ± 2.98 78.19 ± 3.63 78.58 ± 3.19
5 87.65 ± 3.01 88.70 ± 4.74 89.15 ± 3.01
7 93.32 ± 2.12 92.65 ± 3.26 93.82 ± 2.43
9 95.55 ± 1.70 95.60 ± 2.35 95.83 ± 1.91

pendigits 1 39.45 ± 2.11 38.88 ± 4.16 40.56 ± 3.33
3 81.22 ± 2.26 78.33 ± 1.74 80.99 ± 2.48
5 93.45 ± 1.41 91.54 ± 1.05 91.57 ± 1.10
7 97.54 ± 0.88 97.51 ± 0.93 97.05 ± 0.77
9 98.43 ± 1.14 98.69 ± 0.92 98.31 ± 0.61

sions yielded the better result due to having larger numbers of choice, while it

might be hard to determine a good projection for pendigits. Also note that the

ratio of the number of data used in calculating LDA(G) to the number of data

used in calculating LDA(S) was about twice for both optdigits and pendigits. The

other noteworthy issue is where the value of each attributes of optdigits and

pendigits came from. A value in each attributes of optdigits corresponds to the

grayscale color in each pixel of an 8x8 image, while the attributes of pendigits

has various meaning and many different interpretation. By the nature of lin-

ear dimensionality reduction, it is better fit to the task that each attribute has

similar meaning like optdigits since the underlying distribution of the data will

more likely be in linear subspace and yield the suitable result upon them. One

might argue with the previous statement about linear dimensionality reduction

being better on optdigits than pendigits using the accuracy when both of them

are reduced to the same number of dimensions as shown in Table 5.3 that the

value in pendigits is higher and both of them has the same numbers of classes

corresponding to the numbers 0-9. This was likely resulted from that the data

obtained directly from pixels of optdigits are distributed sparsely in high dimen-

sional linear space while data obtained from feature extraction of pendigits lie

densely in lower dimensions with more complicated distribution.

CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

We have introduced the idea of performing task-based customization. We

consider the task in performing customization for classification, sometimes called

adaptive classification, which is the field that research in customization is most

active on. We introduce three frameworks in performing customization for clas-

sification and provide some algorithms according to the frameworks. We then

conduct the experiments with real-world datasets, and show the numerical re-

sults.

In Chapter 5, we consider the task in performing customization for dimen-

sionality reduction, which could be the preprocess of classification. We propose

the framework of customization for dimensionality reduction which seems to

be the only sensible one due to the constraint of dimensionality reduction. We

further consider the special case of dimensionality reduction which is linear di-

mensionality reduction in the process of combining result from two dimension

reducer which is the only way to perform customization that can be applied to

nonlinear dimensionality reduction as well. We propose an algorithm, and pro-

vide some theoretical results. We state that the algorithm will yield the optimal

result in combining the result from two linear dimensionality reduction. We

further state that this optimal algorithm in customization for linear dimension-

ality reduction can be thought of as a special case of our proposed framework

for dimensionality reduction. After that we conduct the numerical results on

the algorithm for linear dimensionality reduction to show its performance as

the process of dimensionality reduction and as preprocess for classification.

6.2 Future Work

There are many other tasks in machine learning to which we can apply

the concept of task-based customization. Other than that there is also room for

many frameworks and variations of the algorithm to be created. As shown in

72

Chapter 5, the wide applicability of task-based customization could result in

the weakness for theoretical bit, but by applying additional constraints on the

model, it can provide theoretically satisfying result up to a degree. One might

argue that restricting the process with additional constraints conflicts to nam-

ing it as task-based customization and its mentioned advantage to the model-

specific ones, but the main point here is that if the range of the algorithm that

this approach can be applied to is wide enough then it still be useful enough in

this matter.

References

Asuncion, A., and Newman, D. UCI machine learning repository [Online].

2007. Available from : http://archive.ics.uci.edu/ml/ [2010, Novem-

ber 5].

Cao, X., and Balakrishnan, R. Evaluation of an on-line adaptive gesture in-

terface with command prediction. In Proceedings of Graphics Interface

2005, GI ’05, pp. 187–194. Canadian Human-Computer Communications

Society, School of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada.

Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P., and Kijsirikul, B.

On kernelization of supervised mahalanobis distance learners. CoRR

abs/0804.1441.

Chatpatanasiri, R., Korsrilabutr, T., Tangchanachaianan, P., and Kijsirikul, B.

A new kernelization framework for mahalanobis distance learning algo-

rithms. Neurocomputing 73(10-12) (2010): 1570–1579.

Choset, H., Lynch, K.M., Hutchinson, S., Kantor, G.A., Burgard, W., Kavraki,

L.E., and Thrun, S. Principles of Robot Motion: Theory, Algorithms, and

Implementations. MIT Press, Cambridge, MA. June 2005.

Cristianini, N., and Shawe-Taylor, J. An Introduction to Support Vector

Machines and Other Kernel-based Learning Methods. Cambridge Uni-

versity Press, 1 edition. 2000.

Friedman, J.H. Another approach to polychotomous classification. Technical

report, Department of Statistics, Stanford University. 1996.

Fu, H.C., Chang, H.Y., Xu, Y.Y., and Pao, H.T. User adaptive handwriting

recognition by self-growing probabilistic decision-based neural networks.

Neural Networks, IEEE Transactions on 11(6) (November 2000): 1373–

1384.

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. Neighbour-

hood components analysis. Advances in Neural Information Processing

Systems 17 (2005): 513–520.

74

Halton, J.H. On the efficiency of certain quasi-random sequences of points

in evaluating multi-dimensional integrals. Numerische Mathematik 2

(1960): 84–90.

Han, J., and Kamber, M. Data Mining: Concepts and Techniques (The Morgan

Kaufmann Series in Data Management Systems). Morgan Kaufmann, 1st

edition. September 2000.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning.

Springer Series in Statistics. Springer New York Inc., New York, NY, USA.

2001.

Kijsirikul, B., Ussivakul, N., and Meknavin, S. Adaptive directed acyclic

graphs for multiclass classification. In PRICAI ’02: Proceedings of the 7th

Pacific Rim International Conference on Artificial Intelligence, pp. 158–

168. Springer-Verlag, London, UK.

Lyu, R.Y., Chien, L.F., Hwang, S.H., Hsieh, H.Y., Yang, R.C., Bai, B.R., Weng, J.C.,

Yang, Y.J., Lin, S.W., Chen, K.J., Tseng, C.Y., and Lee, L.S. Golden man-

darin (iii)-a user-adaptive prosodic-segment-based mandarin dictation

machine for chinese language with very large vocabulary. In Acoustics,

Speech, and Signal Processing, 1995. ICASSP-95., 1995 International

Conference on, volume 1, pp. 57–60.

Michie, D., Spiegelhalter, D.J., Taylor, C.C., and Campbell, J., editors. Machine

learning, neural and statistical classification. Ellis Horwood, Upper Sad-

dle River, NJ, USA. 1994.

Mitchell, T.M. Machine Learning. McGraw-Hill, New York. 1997.

Nicholson, W.K. Elementary Linear Algebra. McGraw-Hill, New York, USA,

1st international edition edition. 2001.

Phetkaew, T., Rivepiboon, W., and Kijsirikul, B. Reordering adaptive directed

acyclic graphs for multiclass support vector machines. JACIII 7(3) (2003):

315–321.

Schölkopf, B., Smola, A., and Müller, K.R. Nonlinear Component Analysis as a

Kernel Eigenvalue Problem. Neural Computation 10(5) (July 1998): 1299–

1319.

75

Weinberger, K.Q., and Saul, L.K. Distance Metric Learning for Large Margin

Nearest Neighbor Classification. J. Mach. Learn. Res. 10 (2009): 207–244.

Wylie, C.R., and Barrett, L.C. Advanced Engineering Mathematics. McGraw-

Hill, New York, USA, 5th edition. 1982.

Zhang, W., Xue, X., Sun, Z., Guo, Y.F., and Lu, H. Optimal dimensionality

of metric space for classification. In ICML ’07: Proceedings of the 24th

international conference on Machine learning, pp. 1135–1142. ACM Press,

New York, NY, USA.

76

Biography

Pasakorn Tangchanachaianan was born in Chonburi, Thailand, on 2 De-

cember 1982. He received Bachelor Degree of Engineering and Master Degree

of Engineering both in the field of computer engineering from Chulalongkorn

University.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgments
	Contents
	Chapter I Introduction
	1.1 Objectives
	1.2 Scope
	1.3 Procedure
	1.4 Contributions
	1.5 Organization of the Thesis

	Chapter II Background
	2.1 Conventions
	2.2 Customization
	2.3 ClassificationThe task of classification is to predict the value of an attribute of a
	2.4 Dimensionality Reduction
	2.5 Halton Sequence

	Chapter III Task-Based Customization
	3.1 Concept of Task-Based Customization
	3.2 Advantages and Drawbacks

	Chapter IV Customization for Classification
	4.1 Customization for Classification by Transforming Input Space
	4.2 Customization for Classification by Patching
	4.3 Customization for Classification with Nonlinear Dimensionality Reduction

	Chapter V Customization for Dimensionality Reduction
	5.1 Framework of Customization for Dimensionality Reduction
	5.2 Combining Results from Linear Dimensionality Reduction
	5.3 Numerical Results

	Chapter VI Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References
	Vita

