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CHAPTER1

INTRODUCTION

Classification or supervised learning is the process in identifying the class
or group to which a data belongs, based on the basis of a training set of data
whose classes are given. For example, in the task where we want to identify the
type of creatures from their DNA sequence, each class is a possible type of crea-
tures while the information to be used for prediction is the DNA sequence. The
most logical way is to use our knowledgeabout the DNA sequence to deter-
mine to which kind of animals this DNA sequence belongs. However, the task
of machine learning ishot onlyzto apply the knowledge that we have learned,
but also to extract these khowledge from the data'as well. The algorithm for
classification will base its"decision upon the dataset of DNA sequences with
given classes of the creatures, interprei_;lthese information in some way and pro-

vide an output as a pro€ess of decision _rhaking called classifier.

The problem we are interested in is called customization, or in some re-
search work is called user-adaptation. A'simple description of customization is
that there will be additional information .'ébgut the problem in the form that we
will be given an existing machine learning model that has already been trained
to be suitable to the dataset in question up to some degree. For general us-
age, this model will be suitable to a dataset generated from a distribution with
high similarity to the distribution of the dataset we are interested in. The main
problem of customizationtis how.we shauld use.this model to boost or improve
the result in the task of machine learning, and.generally, theitask would be in-
versely\viewed as\using the customization data to improve the' model instead
of using the model to improve the result from just using the customization data
on the task. An obvious and practical real-world example of the problem in

customization is Handwriting Recognition.

The situation in handwriting recognition is that we want to predict char-
acters a person has written, with the information about how the writing tool

has been stroked. An obvious characteristic of this problem is that every per-



son has different handwriting and there might not be any classifier that can
correctly classify handwriting of everyone due to different writing habit. An
obvious example would be for the characters with high similarity such as letter
"O" and number "0" or letter "S" and number "5"; different people may write
them with the same kind of strokes and hence given a data about the strokes
used in writing a character, the result from classification of the character will
depend on the writer as well. As a result, we will have to use handwriting
data of each person to make a perfect handwriting classifier for himself. As
in other tasks of machine learning, the higher the number of data, the higher
probability that the resulted model willbe good. Since handwriting of each per-
son differs from each other; each ofithe input-data must be generated by that
specific person. Suppose_ that-we want to have 10 samples of each character
from a set of numbers 0-9 and alphabets A-Z. The total number of characters
that the person in question must write will be (104 26) * 10 = 360, and that
just might not be enetigh/to/create a éOO(_i classifier for characters with similar
writing pattern. The geason that hanchﬁting recognition is a perfect task for
customization is also because even thdug'h handwriting of everyone may be
different from each other, but the sameiéifqrnacter of each person must be based
on the same standard that it should be al;lé ‘for a man to read and recognize the
character using his,prior knowledge in thé language: By using the language
standard, we can create a classifier that fully employs additional information to

perform customization.

Another-advantage-of customization s time efficiency. As the model does
not have to be learnied-from scratch, performing-customization is more efficient
in time and it does not require the data previdusly used in fhaking the model.
One may view|customization,as ineremental draining whiegh is performed by
a new dataset at each time, where the model is adapted to the dataset while
retaining the previous information up to some degree. Hence, the approach
of customization will be suitable for the dataset of which characteristics can

change overtime.

There are many algorithms for customization, but most of them have a

common limitation that they usually make use of inner parameters of the model,



and thus they are model-specific (Fu et al., 2000; Lyu et al., 1995; Cao and Bal-
akrishnan, 2005). Knowing the parameters of the model serves as additional in-
formation which would likely lead to better performance of the algorithm, but
it also acts as additional constraint as well. If every algorithm for customization
is model-specific, it will be obvious that we will need to have a customization
algorithm for each type of models. This surely will be problematic when the
type of the model cannot be identified correctly or when there is no customiza-
tion algorithm for the model, which might likely be the case for any new kind
of model. Therefore, we see the benefits/of studying on how to perform cus-

tomization in the way that can be applied.t6_ many types of models.

Though the concept ©of customization can'be used on many tasks of ma-
chine learning, but hiS werlk will focus mainly on classification, due to the
obvious application mentioned above. Also, we will base our interest only on

the algorithm that canibe applied to m;ahy types of models.

1.1 Objectives

¥

1. To introduce the approach for perfé'r'ming customization which is not spe-

cific to the type of the model.

2. To give the guideline and some examples in how to perform customiza-

tion that is not’specific to the type of the model:

1.2 Scope

1. We will propose a framewerk and algorithms with the constraints that

can be applied'to many types of models.

2. We will focus on the task of classification and dimensionality reduction as

a preprocess of the classification.

3. We will perform numerical experiments to evaluate the performance of

the proposed method.



1.3 Procedure

1. Propose the framework for the task or subtask.
2. Propose an algorithm for the framework.

3. Conduct experiments using the proposed algorithm.

1.4 Contributions

1. We introduce the approach in performing customization which is not spe-
cific to the type of the model and also propose some frameworks and al-

gorithms that belongto this approach.

2. Our work could lead to'more development on the algorithms of the same
kind.

1.5 Organization of'the Thesis =

We will make the settings of the pi{i}:‘)l%m more precise by providing some
background knowledges in Chapter = Iﬁéﬂapter 3, we will introduce the con-
cept of task-based customization and Comf)are its advantages and drawbacks
to the result from imodel specific algorithms. Tn Chapter 4 and Chapter 5, we
will introduce some frameworks that are based on the concept of task-based
customization on classification and dimensionality reduction and also give ex-
amples of algerithms that/follows the approach, alofig with numerical results.

Conclusion and future work are given in Chapter 6.



CHAPTER 11

BACKGROUND

2.1 Conventions

We state here the definition that will commonly be used in the following
sections. We will use an uppercase character such as X to refer to a matrix,
while any lowercase character such as x will refer to a constant. The boldface
letter such as x will refer to a vector, and we will denote it as a matrix with one
column. Another commenly used conventionwill be I, which will refer to an
identity matrix with n rows: For a dataset X, each column of X represents each

data where each row zepresenis the value of each attribute.

2.2 Customization

Customization ox user—adaptatior-‘ir_i;an approach in modifying /improving
the model that is previously traified on a dataset to be better fit to a new dataset.
The most useful thing about this approér'c}h)is that it does not require having the
previous data and should be more efficiénf‘fin the time of operation. However,
one obvious drawback could be in the péfftﬁfmance of the model resulted from
performing customization with thenew dataset;comparing with the model that

is retrained using both the new dataset and the previous dataset from scratch.

In customization, there will be a.problem of how.to weight the importance
between the previously learned model aind'customization‘data appropriately in
the case that both of these datasets come fromzthe same distribution. However,
it could: be proved as a useful.approach if the distribution.migrates overtime.
Each time we perform customization on a model, it will act as trying to make
the model be better fit to the new dataset and at the same time slowly making
the model forget what it has learned from the previous dataset by a degree.
This is why it seems as a good approach to adapt a well learned model to an-
other distribution with some similarity, and it also can be viewed as training an

existing model so that it will yield better result with another dataset.



2.3 Classification

The task of classification is to predict the value of an attribute of a data,
based on the value of other attributes of data as input. There are two tasks
which fit this description, namely classification and regression, but the differ-
ence between them is in the possible value of the predicted attribute, i.e. the
value from classification is discrete and the value from regression is continu-

ous.
2.3.1 Weighted Nearest Neighbor

The original k-nearestneighbor algerthm (k-NN) (Mitchell, 1997; Hastie
etal., 2001; Michie et al., 1994; Han and Kamber, 2000) is considered the simplest
algorithm for classification un discussion. The algorithm is based on the idea of
voting for the resulted glass among k ©f the most similar training examples,
measured in the feaitire §pace. In order fo improve this algorithm for better
accuracy and also for smoother regresé_ién in the probability of the prediction,
each chosen candidate for voting will be given with its impact on the classifi-
cation result, based on how close they 'é'j'ré, to the target of the prediction. One
can also view k-nearest neighboras a sp(;%ciéj case of weighted nearest neighbor
with the weight function lim sk whéﬁ ¥ is the Euglidean distance measured
between the training data and input data, or o say the infinite norm (|| - ||) of

the measured distance.
2.3.2 Max Wins

Max Wins (Friedman, 1996),so called voting scheme, is,a well-known ap-
proachyto combine miany binary classifiers into one multiclass-classifier. This
method could be easily described as performing voting between all binary clas-
sifiers. The most voted class will be the result of the classification for the multi-

class classifier.
2.3.3 Adaptive Directed Acyclic Graph

Adaptive Directed Acyclic Graph (ADAG) (Kijsirikul et al., 2002) is an-

other approach to combine many binary classifiers into one multiclass classifier.



The method would generally be portrayed as traversing an inverse binary de-
cision tree with each of possible classes as its leaf, as shown in Figure 2.1. The
prerequisite requirement of this algorithm is to have existing binary classifiers
between each pair of possible classes. At each node, the binary classifier for the
pair of respective classes will be used on the data, and the unlikely class will
be eliminated from consideration while the more likely one will be passed on
along the tree and be used again in the comparison at the next node, until the
root is reached with the most likely class. Compared to Max Wins, the main
advantage of ADAG is that it requires/7— 1 times of classification by binary
classifiers to eliminate n — 1 unlikely answers instead of n(n — 1) /2 times of
classification by using Max-Wins. However; its-prediction result would still be
inferior to Max Wins. Anothercharacteristic of ADAG is that, given that there
is an improvement on each of subclassifiers, the expected improvement on the
classifier created by’ ADAG should yield greater improvement than Max Wins,
since the classification weuld improve'on each of the classifiers along the path

from the correct class gomparing to linear improvement from Max Wins.

Note that though there is an improved version of ADAG called Reorder-
ing Adaptive Directed Acyclic Graph (I{AﬁAG) (Phetkaew et al., 2003) which
could yield even better resultthan Max Winé, but its characteristic in relying on
error estimation for-each of the binary classifiers would make it be more com-
plicated to use on any classifiers other than suppoit vector machines (SVMs),
requiring k-fold cross validation to estimate the error itself, and hence it will

not be used in-this dissertation.
2.3.4 Optical Character Recognition

Optical Character Recognition (OCR) is a'kind of classification task where
we want to predict a character given an image of that character. The most usual
form of OCR input is the value in each pixel of the image with fixed size of
the character. The process of this task usually begins by scanning a paper for
the text. After scanning is done, the next step is to separate the whole image
into several individual images of characters before performing OCR on each of

them. After that, the results are then combined into words and processed back



I o

\<

"
BlvsB2 )

N

\

Output Class

Figure 2.1: Visualization for Adaptive Directed Acyclic Graph.

into predicted text of the page.
2.3.5 Handwriting Recognition

Handwriting Reécognition (HWR) is another Kind of task in classification
that we want to predict characters a person writes, with the information about
how the writing tool has been stroked. The most general form of input of this
task is the pén| stroke that designates the position and“traces how the pen is
drawn and lifti) Two-dimensional time series data is generated with the value
designatingithe current-position ofithe,peny However; in, many, cases, features

from this time series will be'extracted and be used asin normal-classification.
2.4 Dimensionality Reduction

Dimensionality reduction refers to a process in reducing the number of
attributes of data for further use. Namely, the algorithm for dimensionality
reduction will yield the output as a function or process y : R® — R™ when n is

the number of attributes as the input and m is the desired number of attributes.



Instead of using a dataset M for that task as usual, we will use the result from

the transformation, u (M), as dataset for the task instead.

There are many motivations to perform dimensionality reduction. The
most obvious is for the efficiency. Suppose that the task to be performed re-
quires a lot of resource so it cannot satisfy some constraint in time and mem-
ory. The choice will be either to change the algorithm or to reduce the load by
reducing the size of data. Instead of reducing the number of examples, dimen-
sionality reduction removes some information about each data. The matter to
be considered in dimensionality reduction‘ishow to do it in the fashion that the

resulted data will be as tiseful-as possible forthe task.

Another purpose of dimensionality reduction is not because of limitation,
but to improve the result. Usually,a dataset may contain many useless infor-
mation that could be consideréd asnoise. Performing dimensionality reduction
will act as attempting tofeliminate theimost useless information from the data,
namely eliminate themoise, and hence'it will be useful for the algorithm that is
noise sensitive. Another examplé 1S in _a-;ltéring the space of decision for the al-
gorithm. Dimensionality reduction may_ ’;Jl—ct,:‘as transformation of input space in
which the algorithm for the task.does no_’;. é_f_ﬁe_ctively perform, and thus alter the
possible decision which the algorithm caﬁ produce. As a result, the algorithm
will be able to handle more complicated task by using dimensionality reduc-
tion as preprocessing.' A good example is performing nonlinear dimensionality
reduction before applying, an algorithmuwhose decision is based on a limited
number of linear|planes. .In this way we could perform.better on the dataset

which requires'more complicated:space of decision.

The main'issues about dimensionality reduction can be described as fol-
lowing. The first is how to determine if the result from optimization should
perform well on the upcoming task. That is choosing the value to be optimized
with the expectation that the resulted dataset will be good for the algorithm
which performs the desired machine learning task. The next issue is how to
find the function or create the process (M) that provides good score on that

goal, namely the process of optimization. The last one is the constraint or limi-
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tation in the space of dimensionality reduction.
2.4.1 Linear Dimensionality Reduction

Linear dimensionality reduction is dimensionality reduction with the con-
straint that (M) must be linear transformation. This can be viewed as project-
ing the dataset on a linear subspace. Linear dimensionality reduction is impor-
tant because of the optimization method. Limiting the space of transformation
to be linear transformation results in better formulation of the problem and pro-
duces the form of semidefinite programming or quadratic programming which
could be optimized with a well-known efficient procedure. In such a case, the

method yields the optimal selution, not just.a good one.
2.4.1.1 Principal Compenent/Analysis

Principal componentanalysis (P;CA) (Han and Kamber, 2000) is an unsu-
pervised linear dimensionaligy reduction algorithm and is usually considered
as the simplest form of dimensionalitj}'._re.duction which is widely used. The
goal of PCA is to maximize the variance of a transformed dataset with a fixed

i

number of attributes.

Principal component analysis consists of two main steps. The first is to
calculate a covariance matrix of the dataset, i.e. the generalization of variances
in many dimensions. Each element of covariance matrix C in row i and column
j is according to the fofmula ¢;; = ) (x;&/ %) (x; — ¥;), or if X is a matrix of the
dataset with each row as€ach of the data that'is translated to have zero mean

then C = XXT.

The second step of principal component analysis is to perform eigenvalue
decomposition of the covariance matrix. Since the matrix XX is squared, sym-
metric and positive semidefinite, it follows that all the eigenvalues of the matrix
are nonnegative real values. We can find the set of orthonormal eigenvectors of
the matrix that span the entire space, and we can perform eigenvalue decom-
position of the matrix. This means that we can find an orthogonal matrix U that

C = UsUT where ¢ is the diagonal matrix of eigenvalues ordered by their sizes.
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Transformation by principal component analysis to reduce the number
of dimensions to m will be made by using the m eigenvectors with maximum
eigenvalues as the new axis, in which the resulted new attributes are projection
of the data on them. Let us consider this to have better understanding of prin-
cipal component analysis. If we transform dataset X with orthogonal matrix U
by projecting the data on its axis, then the new dataset will become UTX. We

can calculate the covariance of this new matrix as following:

urxWtx)t £ uTxxu,

L CH,

=ttt U,

= Ind Ly,

i 20

This means that the®alue of ¢ovariance matrix created from the transformed
dataset will only exisi'in the'diagonal "le_lements. In another aspect, if we want
a dimension that maximizes the Variahée-"-along that direction, then it will be
obvious that the first eigenvector will beithe first column of U. By repeating
this process of choosing the direction 1n_the linear space that is orthogonal to
all the already chosen directidhs, we will ge% the tesulfed axis of m-dimensional
space as the m eigenvectors with the maximum eigenvalues of the covariance

matrix.
2.4.1.2 Linear Discfiminiafit’Afalysis

Linear discriminant analysis (LDA) is among one of the simplest super-
vised linear dimensienality reduction. The goal of linear discrithinant analysis
is to find a linear transformation that maximizes the discrimination between

classes.
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2.4.2 KPCA Methods of Mahalanobis Distance Learning for Nearest Neigh-

bor

KPCA methods of Mahalanobis distance learning for nearest neighbor
(KMMLN) (Chatpatanasiri et al., 2010, 2008) is a group of algorithms for di-
mensionality reduction. The idea of this type of algorithms is that given a lin-
ear dimensionality reduction, the algorithms make a nonlinear dimensionality
reduction in the way that is similar to kernel trick of support vector machine
by using Kernel Principal Component Analysis (KPCA) (Scholkopf et al., 1998).
The algorithm consists of 3 steps, i.e. findingoptimal kernel, performing KPCA,

then using linear dimensionality reducticivalgorithms.
2.5 Halton Sequence

When there is'the sieed to/perform a well distributed sampling inside a
close boundary of n.dimensional space, the easiest way will be to sample with
uniform randomization. However, if tﬁ_e fesult from sampling is made in one or
two dimensional box and the result of é'ain'ipling is visualized by the scattering
of the result when viewing the close bG;}lhcflary then, in most cases, one could
easily feel that all the samplingrestilt coﬁi‘d.f;e better distributed if hand-picked
by man, as shownuin Figure 2.2. In ordef to evaluate the sampling quality,
there are two values called discrepancy and dispersion which serve as mea-

surements, and can be formulated as following (Choset et al., 2005).

D (P R) =supRR

u(R) . lPﬂR|‘
7109 N

0(P,p) = supxexmingepp(x, p)

where [ is discrepancy, ¢ is dispersion, P is a set of point samples on the space
X, N is the number of points in P, R is the set of possible spaces used in mea-
suring the value, u is a measure of space or size of the space and p is a metric
measuring the distance. Both equations can be interpreted as following: dis-
crepancy measures how the sampling is distributed, comparing the difference
between ratio of sampled data and sampling space, while dispersion measures

the size of the largest region in which none of the sampling could be found,
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Table 2.1: First few terms in Halton sequence for two dimensional space.

n ny ns @2(11)2 <I>3(n)3 <I>2(n) @3(11)
1 1 1 1 1 1/2 1/3
2 10 2 .01 2 1/4 2/3
3 11 10 11 .01 3/4 1/9
4 100 | 11 .001 11 1/8 4/9
5 101 | 12 .101 21 5/8 7/9
6 110 | 20 .011 .02 3/8 2/9
7 111 | 21 111 12 7/8 5/9
8 1000 | 22 1/16 8/9
9 1001 9/16 | 1/27
10 10/27

methods is Halton seqtie - () 196 ich could be formulated as fol-

lowing.

Where d is the numb;l of dimensions lﬂ‘le and a;; is the it" digit of

?}irr;l:;:;:h ﬁjﬁ i 5{] iﬂ W%éwguﬁtﬁ %ckward from behind
ﬂwwaﬂnimwﬁwmé’a

, ]lsthe]
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(b) Halton sequence (d1spe ion=0.0164)

mgurd 3l Sl ASNIUUBAIHNE B ae

measuréd with box space. The box shows the area which results in dispersion
value.



CHAPTER III

TASK-BASED CUSTOMIZATION

In this chapter, we will introduce the concept of task-based customization
and also provide some backup arguments for the benefit of algorithms that

follow this concept.
3.1 Concept of Task-Based Customization

As described in Chapter 2, customization'is an approach in machine learn-
ing to modify /improve a model in order for it to yield better result. The most
important requirement for customization is having the new dataset which we
want the model to be adapied to. Also, in order to estimate the improvement
from customization, it willirequite the' minimum knowledges about the goal,
which is the type oftheftask which the customization is made on. It is obvi-
ous that these knowledges are necessa!ry for customization and by some more
consideration ones can see that they ar_e-';s{l-fﬁcient to perform a customization.
However, with additional information, w_e _,3_hould be able to perform even bet-

ter.

Suppose that wedonotknowaboutanyadditional information other than
the necessary ones fof performing customization. Itis obvious that the inner de-
cision of the process will not be clarifiable and thus could only be estimated by
observing outputs 6f some inputswe ptovide tolthe process. In simpler words,
we must treatgthe process as a black box. Methods for using the information
from this black box can-be-separated into-two kinds., The fifst one is to keep
the black box for‘future use’by conducting some decision process on it and its
results instead of using them as the entire process. The other one is to extract
the available information from the black box, and then use the information to

create a new process that can be clearly identify, and thus discard the black box.

The most common additional information that is used in customization
will be the information about the model. Knowing the exact method for cal-

culation of the process will surely yield better understanding than trying to
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extract them by observing the results obtained from providing the model with
the input. Moreover, once the model is known, the algorithm can alter the inner

parameters in meaningful way which will sensibly yield better results.

The other bit of additional knowledge is the algorithm that is used to cre-
ate the model. Many algorithms may produce similar kind of models which
perform the same task. They usually have the same final goal, but the differ-
ence between them can be either how they strive to reach that goal or the def-
inition of how they interprete the final goal into the measurement used by the
algorithm. For the first case, there are two alternatives in trying to optimize a
goal. One method would vield bettes restilé-but require a lot of resources while
the other method may.be fasier but not guaranteed to provide the optimum
solution. For the second case,a good example is dimensionality reduction. The
common goal for dimensienality redl;_ction is that the resulted data yields good
result for the upcoming task,but each;,’;{lgorithm may interprete the subgoal to

achieve this result differently. -

3.2 Advantages and Drawbacks 7_‘

"
dor ir Ao

An obvious statement is that, int gerferdl, model-specific algorithms should
yield better result than task-based cusféﬁiﬁétion. However, there are many
cases in which task=based customization is necessary due to the lack of infor-
mation or available methods, e.g. models are in the forms that cannot be inter-
preted easily, the process is a black box by its nature, there is no algorithm for

customizationsfor the model.



CHAPTER IV

CUSTOMIZATION FOR CLASSIFICATION

In this chapter, we will propose our frameworks in performing customiza-
tion for classification. We will also propose some algorithms that behave ac-
cording to each framework and conduct numerical experiments to evaluate

their performances.
4.1 Customization for Classification by Transforming Input Space

Here we will present the first appioach. The intuition behind this ap-
proach is based on an expectation that the space described by the original clas-
sifier and the customization‘data/could be very similar to each other. By being
similar, we expect that the optimal decision boundary for customization data
can be transformed into the'decision space resulted from the original classifier
via the operation that'preserves its topology, namely both of these spaces are

homeomorphic to each other.
4.1.1 Generating sequence of transformation for probabilistic classifiers

4.1.1.1 Algorithm

The main objective of this approach’is to determine a mapping u : R" —
R" to be applied to input,data, in ordento make the data be better adapted to
the classifier.. The problem in performing task-based customization for classi-
fication is due to the nature of classification that yields discrete output. In the
task of.classificatien; there may be many classifiers which classify data correctly.
Supposé that there are some data which are not classified correctly and we want
to change or customize the classifier on them. Therefore, the issue is how much
of the change should be made. If the change is as small as possible, which
should be the ideal case when we want to preserve the result from the original
classifier, then the decision boundary will be depended mostly on those data
and will not have any effect on surrounding the data as much as they should

be. Because of the difficulty in determining the proper decision boundary, we
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decide to perform the task on probabilistic values of classification results, which

can be thought of as performing regression and will be easier for the task-based

constraint. Here, we present an algorithm for generating the mapping for a

probabilistic binary classifier in Algorithm 1.

10

11

12

13

14

15

16

17

input : an original classifier, customization data
output: transformation sequence

stepsize < initial_stepsize;

transform_sequence <+ @;

curdata < customization data;

cur_total_prob < )_ p(curdata,classiiier);

while stepsize > stepsize_limif do

center < getnext(halton. sequence);

direction < estimate_gradieht(center,classifier) ;
transformation < (Center,diréé';tion,stepsize) ;
mapdata < transform(curdagg,transformation) ;
map_total_pfrob & § p(mapd_é_ta,_g:lassiﬁer);

if map_total_prob > cur_total‘__f_agbb then
curdata < mapdata; 2l

cur_total_prob - map_totai _prob;

transform_sequence <

append(transform_sequence,transformation);
end

stepsize <— a X stepsize;

end

Algorithm 1: Generating transformation sequence.

The mapping is separatediinte many transformation sequences, for its

flexibility in order to achieve complicated nonlinear transformation. As shown

in Algorithm 1, it will pick the center of each transformation from Halton se-

quence, to guarantee coverage of the input space. Then according to the current

stepsize and estimated gradient, we will have a candidate for transformation

described by three factors, i.e. the center of transformation, direction and mag-

nitude. The transformation will be kept if it is likely to lead to better result.

The change on space around the center of transformation is calculated as being
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influenced by the attempt to move the space at center of transformation to a
new position. For simplicity of calculation, we let the change be in the same
direction to the change on the center, while the magnitude of the change is cal-
culated by a distribution, proportional to the size of the change on the center.

To achieve convergence, stepsize is gradually reduced in each loop.

In order to improve the algorithm, we further consider about the prob-
lem with imbalance on the number of training data, i.e. there are some classes
with overwhelmingly more or less number of training instances. A problem
may arise when using the proposed algotithim by summing up the probabilistic
values of predictions restilted from all customization data, which could cause
the algorithm to be over<biased on some classes with high number of training
instances, as shown.in Tigutre 4.1. In order to be better cope with this prob-
lem and to lessen the difference fror{nﬂgetting probabilistic outputs from dif-
ferent type of classifiefs, we introduC;é' the idea of using an output function.
The purpose is to assign more importé-néé to the data with higher probabilistic
values, which gives the effect that all -::Customization data will be more likely
to be correctly classified, and lesséns theieffect which will mislead the decision
boundary by other customization data. Tbéi-;éfore, instead of using probabilistic
values directly, in this paper, we propose ‘ﬁé‘ing the value from output function

s(x) = 1 — ((1 — p(xp)2)which its shape is as shownvii Figure 4.2.

Figure 4.1: Visualization of the problem in determining objective for mapping.
The class of data are shown by depicting each of them as square and circle.
The solid line is a likely decision boundary resulted from summing the objec-
tive value calculated from each data and the dashed line is the most suitable
decision boundary.
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Figure 4.2: Plotting of output funciion s(x) =1 — ((1 — p(x))?).

4.1.1.2 Numerical Results

To demonstrate the usefulness.of this algorithm, we generated experimen-
tal data in two dimensibns! The result for the original probabilistic classifier
was determined by ‘equation p; = 3;—_2? .The decision boundary was a straight
diagonal line separating half of the input space, given that the input data was
normalized into the range of [O, 1]2. The:;‘ﬁéc;babilistic value was directly propor-
tional to the distance measured from the degision boundary, with the minimum
and maximum values of 0 and 1, respe_c'ﬁf{f:_ly. On the other hand, customiza-
tion data was generated frofn different distribution,.determined by whether
values of both attribltes were less than 0.7. We applied Algorithm 1 with the
parameter initial_stepsize= 0.1, stepsize_limit= 0.001,« = 0.99 and with chang-
ing impact as exponentiakfunction: e~%# where § = 1. We conducted an ex-
periment using the mentioned probabilistic classifier, and a weighted nearest
neighbor classifier generated from randomly sampled data according to the de-
cision’boundary from the ‘equation, using 1/xf as weight function where k is
the number of attributes, considering only 10 nearest neighbors for each class.

These setting of parameters will be used as default value in the rest of this work.

The result is shown in Table 4.1 and can be visualized as in Figure 4.3.

In Table 4.1, the result from classifying mapped customization data us-
ing the original classifier yielded some improvement compared to the result

from classifying customization data. This means that the process transforms
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Table 4.1: Accuracy comparison between customization data, mapped cus-
tomization data and mapped customization data using the proposed output
function.

CUST DATA | MAPPED CUST DATA | OUTPUT FUNCTION
ORIGINAL CLASSIFIER 82.40 82.90 87.70
WNN 87.00 85.30 89.00

the space of customization data to be better fit with the space of the original
classifier. However, when we tried usingidata sampled from the original clas-
sifier to create a probabilistic classifier; whichowas weighted nearest neighbor
(WNN), the result fromeusing the weighted nearest neighbor for mapped cus-
tomization data became worse dite to misleading of the probabilistic value from
voting. By using the congeéptof output function, the problem was lessened and

the result was shown with obvious improvement.

4.1.2 Applying with gther classiﬁeré;. .

4.1.2.1 Algorithm 9 ,.

ol
b Ay

In order to apply the algbrithm f@r probabilistic classifiers to all non-
probabilistic classifiers, We propose an éfléa-fi’thm to ereate a probabilistic clas-
sifier from the former one, for the solé tise of generation of transformation se-
quence. To treat the original classifier as a black box, we have to perform sam-
pling and classify them.using the classifier, whose result will be used as data to
train the genérated probabilistic classifier. Moreover to Keep the influence from
the nature of the classifier model at minimum, we decide to use an instance-
based clagsifier, /This,results in the following,algorithm,to-create a weighted

nearest neighbor through sampling for a'binary classifier in"Algorithm 2.
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input : original classifier
output: weighted nearest neighbor classifier
1 NN_data < ©;
2 NN_weight < @;
3 while size(NN_data) < datasize do
1 | newdata < getnext(halton_sequence);
5 | predictweight < classify(newdata,NN_data,NN_weight);
6 if predictweight <0.5 then

7 NN_data < append(NN _data,curdata);

8 NN_weight <- append(NN.sweight,1-(2 x predictweight));
9 end

10 end

Algorithm 2: Generating a‘weighted nearest neighbor classifier from an ex-

isting classifier.

The main idea‘for this‘algorithm isithat the newly generated data will be
classified by the current classifier: [f tl{e classification result is wrong, then the
current classifier will be improvéd by_éd&ing the newly generated data as a
new instance. The weightof the instanc_é is_,_gietermined by the weight from the

classification result.

For the generated ¢classitier to be appropriately tiseful, there are two con-
ditions which should be satisfied. Firstly, the classifier should be able to provide
probabilistic prediction for each class, in a meaningful sense. Secondly, its de-
cision boundary ‘should‘be similar'to that!of the‘original classifier at least up
to some degree: The sampling approach used in the algorithm implies curse
of dimensienality~i.es the amount.of sampling required, to-satisfy the second
condition exponentially increases with the number of-attribuites:'In order to fix
this problem, we decide to use the method of combining the result from the

generated classifier with the original one.

Given that the weight for the original classifier is higher, the combined
classifier will obviously predict the same result as the original, and the gener-
ated classifier will act as an alteration on probabilistic values, as in the following

equation.
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Table 4.2: Accuracy from the generated classifier when using the algorithm that
is applicable to non-probabilistic classifier.

CUSTOMIZATION DATA 82.40
MAPPED CUSTOMIZATION DATA | 82.40
MAPPED WITH OUTPUT FUNCTION | 83.20

Prew = ((1+ “)poriginal + pgenemted)/(z +a).

Where « is a small positive real. The drawback of this method is that in order
to achieve the same classification result as the original classifier, we have to
trade that off with the'¢ontiatiity on the probabilistic value from the generated

classifier.

We performed am'experiment to ‘.‘é.valuate the generated classifier in the
previous subsection, using Algorithrﬁ, 2'with datasize equal to 2,000. We re-
placed the original classifienwith the generated one while all other parameters
were set in the same way as in the previgus experiment. The result is shown in

Table 4.2. A

Comparing results between Table 4.1 ahd Table 4.2, it is not surprising
that the result from ﬁsing the algorithm that is applicable to non-probabilistic
classifier was inferior due to the additional error resulted from having the ad-
ditional step in generating a probabilistic,classifier from non-probabilistic one.
However, the tesult in Table 4.2 still show slight improvement compared to the

result before mapping.
4.1.2.2 "Numerical Results

We conducted an experiment to demonstrate the improvement made by
the algorithm. In order to measure the performance we used the real-world
datasets obtained from the UCI machine learning repository (Asuncion and
Newman, 2007), pendigits, representing the tasks of classifying numeral digits
for handwriting recognition, to demonstrate the task in adapting the classifier

to another similar dataset. In the reality, the input data from handwriting recog-
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Table 4.3: Accuracy of each transformed subclassifier.

ORIGINAL | TRANSFORMED
WNN 99.39 £1.03 | 99.69 = 0.57
NEURAL NET | 98.86 = 1.42 99.40 £+ 0.98
SVMs 99.46 £ 0.68 | 99.59 £ 0.66

nition is sequence of pen strokes, which is sequence of time series. However, all
16 attributes in the pendigits dataset were extracted features from this sequence
of time series and we used these values fowclassification. The original training
data was used to train the classifier, whilethe original test data, being gener-
ated from different group of-users, was separated into two groups for the task
of customization and testing: The original training data and the other set of
data had 7,494 and 3,498 instaf¢es respectively which were almost equally dis-
tributed to 10 classes representing digité 0-9, and for each class, we assigned 50
instances as customization data, As a }:esult, we had roughly 750 training data,
50 customization data and 300 test da%a for each class. The setting of parame-
ters was the default valtie as stated in V;t].;l?'previous subsection and all of data

were normalized to be in‘the range of [0,'-1];,_'_.‘

In this experiment, we used three tyfaes of clagsifiers: weighted nearest
neighbor, neural networks (Mitchell, 1997; Hastie et al., 2001; Michie et al., 1994;
Han and Kamber, 2000) and support vector machines (Cristianini and Shawe-
Taylor, 2000), to create ,one-against-one classifiers between each pair of classes
to which theleustomization ' was applied. Then these subclassifiers were com-
bined by two fnethods of voting and decision trees. So, there were 45 subclas-
sifiersforteachitype whichcwere trainedywith roughly) 1,500 training data. We
performed customization on each subclassifier with 100 customization data and
the experimental result was taken from about 300 test data for the experiment
on subclassifiers and all 2,998 test data for the combined classifier. The results

are as shown in Table 4.3 and Table 4.4.

An important note is that in Table 4.3, the value of standard deviation was
not from cross validation but was the standard variation from the classifier of

each class. Thus, high value of standard deviation means that there were high
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Table 4.4: Accuracy of the combined classifier created from transformed sub-
classifiers.

COMBINING METHOD | ALGORITHM | ORIGINAL | TRANSFORMED
MaXx WINS WNN 97.80 98.13
NEURAL NET 95.43 96.90
SVMs 97.67 98.37
ADAG WNN 97.80 98.10
NEURAL NET 95.76 97.73
SVMs 97.67 98.37

Table 4.5: Accuracy of each transformed stibclassifier when using generated
subclassifiers to determine the transformations

ORIGINAL - | TRANSFORMED
NEURAT NEFWORK | 98.86 & 1.42 | 98.72 + 1.39
SVMs 99.46 = 0.68 | 98.71 - 1.61

differences in difficultiés in classifying éach pair of digits. This fact is obvious
since some digits like 1 and 7 are hardér.-to classify apart with writing strokes,
compared to classification between 0 and 4 which there are differences in the
numbers of pen strokes, curve of the pei} éﬁokes and direction of pen strokes.
For the experiment on the method tha’t"'i-'s;'éippliable to non-probabilistic clas-
sifiers, we used Algorithm-2-to-generate weighied nedarest neighbor classifiers

with 2,000 data. Theresults are shown in Table 4.5 and Table 4.6.

In Table 4.5 and Table4.6, we did not'conduct the experiment with weighted
nearest neighbor on this matter/singe it is maore.realistic to use the data used in
weighted nearest neighbor itselfdinstead of generating newgdata. The results
obviously imply/that the generated probabilisti¢c classifier obtained by trans-
formation is worse than the original classifier. However, there still exists the
problem about curse of dimensionality as previously stated. Since pendigits has
sixteen attributes then it will require at least 216 — 65,536 for the data to exist
in every orthants; each sector determines the positiveness of the value in each
axis. So it can be seen by how sparse the generated dataset with 2,000 instances

is in the sixteen dimensional space.
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Table 4.6: Accuracy of the combined classifier created from transformed sub-
classifiers when using generated subclassifiers to determine the transformation.

COMBINING METHOD ALGORITHM ORIGINAL | TRANSFORMED
MAX WINS NEURAL NETWORK 95.43 95.00
SVMs 97.67 94.96
ADAG NEURAL NETWORK 95.76 94.80
SVMs 97.67 94.70

Though the result was not good for data with many attributes, in the case
of a small number of attributes, this method was still able to yield satisfying
result. The other issue is that though the ¢lassifiers are already probabilistic
but each probabilistic-elassifier may return the value of probability in different
sense so it may be a good ideato alsouse this method to generate a probabilistic

classifier to guarantee theworst case in determining transformation sequence.

4.1.3 Overall Framework

Combining with the algorithm pre\"f;id-usly mentioned, we will get the frame-
work of customization forclassification _és_ shown in Figure 4.4. All diagrams in
our works follow this description. A blo@kr{l‘vith rectangular shape represents a
process and an ovalshaped block repreééﬁf—s_data. A solid arrow represents the
relation of being input to a process while a dashed arfow represents the relation
of a process generating its output. A dashed box covers parts of the diagram
that are kept as important result for continual usage. In this diagram, the box

also shows the process within a customized ¢lassifien

The framework starts.with the original'classifier which'we want to per-
form customization on. Next, we'génerate a'probabilistic classifier to be used in
the process from the customization data and the original classifier. Then we de-
termine the transformation sequence to make the customization data be better
fit to the generated classifiers (since the generated classifiers have the same de-
cision boundary to the original classifiers, the transformed customization data
will also be better fit to the original classifiers as well). The customized classifier

consists of the transformation sequence and the original classifier. Each time
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classification is performed, the input data will be mapped with the transforma-
tion sequence then the mapped data will be classified by the original classifier,

giving the prediction.
4.2 Customization for Classification by Patching

Here, we will present another alternative approach. The goal of this ap-
proach is to use customization data to classify if the result from the original
classifier is trustable in a region. Otherwise, we will classify it with the other
classifier created from the customization.data instead. In our case, we will com-
bine these processes into a classifier called patcher, which contains the same set
of classes as those of the original classifier with one more class representing that
the answer should be leftto the otiginal classifier. The reason that we name this
approach patching is because this method provides the intuition that the result
from the original classifier will be'corgected in untrustable region by patching it
with the result fromanother classifier, %l;vh-ile the result in trustable region which
needs no correction will be left as is. T}{us, this gives the intuition as the original

classifier is patched to fix the bad resulf.l,

421 Algorithms =",

We will present four algorithms which belong te this approach in this sub-

section.

input : original classifier, customization data
output:(patching classifier

1 NN_datal¢+ customization_data;

2 foreach dqta-in NNw datardo

3 if classify 1nn(data,NN_data) = data-class then

4 ‘ data.class < original_classifier;
5 end
6 end

Algorithm 3: Patching using 1-nearest neighbor.

Algorithm 3 is the simplest among the four algorithms of this group which

will be presented within this section. The idea is to use 1-nearest neighbor and
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use the result from the original classifier if the data from 1-nearest neighbor is

classified by the original classifier correctly.

input : original classifier, customization data
output: patching classifier
1 data_queue < customization_data;
2 NN_data + @;
3 correctset <— &;
4 while notempty(data_queue)do
5 data <— dequeue(data_queue);
6 if classify_lnnpatcher(data NN-data,original_classifier)

= data.class then

7 ‘ correctset g=fappend(cotrectset,datn);

8 end '

9 else

10 if classify(data,original_cl%ssiﬁer) — data.class then
11 ‘ data.class/= original_ciégs%ﬁer;

12 end ) |

13 NN_data < append(NN_dafei,data);

14 foreach correctdata in correé,?s_e;t do

15 if

classify_lnnpatcher(correctdata,NN “data,original_classifier)

# data.class then

16 remowve(correctset,cofréctdata);

17 enqueue(data_queuecorregtdata);
18 end

19 end

20 end

21 end

Algorithm 4: Patching using 1-nearest neighbor with the reduced number of

instances.

Algorithm 4 is a slight modification version of Algorithm 3 in order to
reduce the number of data used in the 1-nearest neighbor patcher. The idea is

to add one data into the patching classifier at a time, and try not to add it if it
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is classified correctly. Different from Algorithm 3, the classifier resulted from
using Algorithm 4 will also depend on the order of data used in the algorithm.
The procedure which we try to reduce the number of training data for 1-nearest
neighbor will reduce the time used in classification and will also reduce the

complexity of decision boundary, which might yield better result as well.

AU INENTNYINS
ARIANTAUNININGIAE



input :

output:
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original classifier, customization data

patching classifier

1 data_queue <— customization_data;

2 patch_data < @,correctset <— @;

3

4

5

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

while notempty(data_queue) do

data

else

[¢]

<+ dequeue(data_queue);

if classify_patcher(data,patch_data,ori_classifier) = data.class then

correctset <— append(correctset,data);

if classify_patch(data,patch.data) = ori_classifier then

data.radius<— find_radius(data,patch_data,correctset);
patch_data+« append(patch_data,data);

Ise if classify(data,ori_classifier) 7 data.class then
data’radius < find radius(data patch_data,correctset);
foreach ball in patch_cfatﬁl do

baliadfud < &t radivd(bali, data);

end o .
patch_data < append(ff;ifthdata,data);

Ise : T
foreach ball -iﬁ-patch_del-’é'a-i-;c_f(; )

\ball.radius < reduce_radius(ball,data);

e

end |

nd

foreach correctdata in correctset do

if classify(correctdata,ori_classifier) # correctdata.class then
retnovie(corredtset,correctdata);

enqueue(data_queue,correctdata);

e

end

end

end

nd

Algorithm 5: Patching with a reduced number of hyperspheres.

Algorithm 5 will create open balls or hyperspheres without boundary
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with customization data as their centers. The result within the region of each
ball is classified as belonging to the same class as the customization data which
is the center of the ball. The result for undefined region is taken from the orig-
inal classifier. The algorithm will perform similarly to Algorithm 4 except that
the region of the hypersphere requires different handling. First of all, each hy-
persphere must not intersect with others, and that is why when there are some
changes in patch_data, the algorithm will require more complicated procedure.
Note that there are two functions that require more description in Algorithm 5.
For the first one, reduce_radius will shrinkidown an existing hypersphere if the
hypersphere is the cause of wrong classifieation or if the two arguments inter-
sect with each other. If theswrong classificationis caused by a new hypersphere
then it will make the two.hyperspheres become almost touched, and if it is
a new data in different elass'then it will make the radius of the hypersphere
half of the distance between the two instances. For the second one, find_radius
will be used when amewhypersphere or data is added. The function will try
to make the new hypersphere as large és possible with some constraints that
it must not intersect with other hyperép’h"eres and that its radius is not more
than half of the distance betweéi its ceritéi* and other instances not in any patch
region. Since this may not be very obvioﬁlg we will provide a proof that this

algorithm will terminate as in Propositi‘ori‘l".'
Proposition 1. Algefithm 5 will eventually terminate.

Proof. In each loop, the algorithm will dequeue and perform at least one of the
following actions; add; datasfrom)the quenejinto.correctset in the case that the
data is correctly classified by the“current classifier or add data from the queue
to patch_data then reduce radius of an existing*hypersphere in order to fix the
result of the current classifier.'Each time enqueue is'perforimed, the data must
be taken from correctset, which causes the total numbers of data in the queue,
correctset and patch_data to always be the same. In each loop when enqueue is
performed, it must also add another instance to patch_data or reduce the size
of a hypersphere. Adding an instance to patch_data will cause the total number
of instances in correctset and the queue to be lower as well and will eventually
make the queue empty. The size of the hypersphere can be reduced for a limited

number of times, bounded by the total number of instances. And if the radius
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is at the lowest possible, then there cannot be an intersection with any other
data, which causes the loop to perform other action instead. When both of
these actions are not performed any longer then the number of instances in the

queue cannot be increased. Hence, the loop will terminate. u

input : original classifier, customization data

output: patching classifier

[y

patch_data <— customization_data;

2 foreach data in patch_data do

w

s < patch_data which (.class #datn class);
4 data.radius < min,esd(data)x) /2;

5 end
Algorithm6: Patching with intersectable hypersphere.

Algorithm 6 is different fnom the rest in that it allows intersection of re-
gions, as long as they arg'both of the same class. The algorithm will make the
radius of each hypersphere half of the!,._distance between the center of the hy-

persphere and the closest instance in a different class.

i

4.2.2 Numerical Results =

In this section, we conducted experiments on' the pendigits dataset and
the classifiers in the previous section. Also, to better demonstrate the result,
we decided to also use other datasets from the UCI machine learning reposi-
tory called optdigits, représenting the task’of optical character recognition. The
dataset optdigits represents images of digits 0-9.in 8x8 pixels, resulted in 64 at-
tributes each of which is an integer in the range of 0-16 reflecting grayscale
value of the images’ The dataset was separated by the grotip of writers in the
same way as pendigits, consisting of 3,823 instances of original training data and
1,797 instances that were used for customization and testing. For each class, 50
instances were assigned as customization data, and thus we had roughly 380
training data, 50 customization data and 130 test data for each class. We used
principal component analysis to reduce the number of attributes to 16, the same
as in pendigits, and then normalized the value of these 16 attributes to be in the

range [0, 1] before preparing the data for the experiments in the same way. The



Table 4.7: Accuracy of patched subclassifiers from pendigits data.

ORIGINAL ALGO 3 ALGO 4 ALGO 5 ALGO 6
WNN | 99.39 +1.03 | 99.62 £ 0.83 | 99.62 £ 0.82 | 99.61 £ 0.85 | 99.72 + 0.74
NN 98.86 =1.42 | 99.41 £0.74 | 99.46 £ 0.71 | 99.26 = 0.93 | 99.51 + 0.84
SVMS | 99.46 £ 0.68 | 99.63 +0.45 | 99.65 +0.47 | 99.63 = 0.43 | 99.75 £+ 0.35

Table 4.8: Accuracy of patched subclassifiers from optdigits data.
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ORIGINAL ALGO 3 ALGO 4 ALGO 5 ALGO 6
WNN | 99.58 £20.90 | 99.53 £ 0.92 | 99.62 & 0.82 | 99.61 = 0.85 | 99.72 £+ 0.74
NN 98.22 +2.02 | 98.23 £ 2.03 | 99.46.4 0.71 | 99.26 =0.93 | 99.51 + 0.84
SVMS | 99.80 = 0.37 | 99.78 +0.39 | 99.65 0.47 | 99.63 & 0.43 | 99.75 + 0.35

experiments on combined«classifiersiare shown inTable 4.7, Table 4.8 and Ta-
ble 4.9. Since the algerithm can be applied to multiclass classifiers without any
modification, we alsgfcontluctéd an experiment on. combined classifiers, and

the result is shown in Table 4.10. )

The result from Table 4.7, Table 4.'?5 .Table 49 and Table 4.10, show that
the proposed algorithm improved the éIaESification result in most cases, Al-
gorithm 6 provided the best result amoﬁg the four proposed algorithms which
perform customization for classification by patching: An interesting issue is the
result from applying the algorithms with multiclass classifiers. In Table 4.9 and
Table 4.10, applying.the algorithms with multiclass classifiers brought worse
result in most cases, withisthe exception‘ef Algorithm 3. For Algorithm 4 and
Algorithm 5, theiniresults depended on the order of the data used in the al-
gorithms, and applying the algotrithms with.multiclass clagsifiers gave more
bias resulted from the order of the data. For Algorithm 6, as the radius of the
ball was calculated from the distance to the other data with different class, us-
ing the algorithm with multiclass classifiers provided smaller radius of the hy-
perspheres compared to using the algorithm on each subclassifier because the

number of data in different classes had increased.

Now we compare both frameworks of transforming input space and patch-

ing. Transforming input space seems like a good approach in performing con-



Table 4.9: Accuracy of combined classifier from patched subclassifier.

34

ALGORITHM | ORIGINAL | ALGO 3 | ALGO4 | ALGO5 | ALGO 6

PENDIGITS WNN 97.80 98.10 98.10 97.97 98.50
MAX WINS | NEURAL NET 95.43 96.83 97.36 96.46 97.67
SVMs 97.67 98.37 98.50 98.17 98.63

PENDIGITS WNN 97.80 98.20 98.10 98.03 98.50
ADAG NEURAL NET 95.76 97.30 97.40 97.03 97.73
SVMs 97.67 98.33 98.07 98.17 98.60

OPTDIGITS WNN 97.22 97.07 96.38 97.22 97.30
MAX WINS | NEURAL NET 93.60 93.99 94.06 93.83 94.37
SVMs 98.54 98.54 98.15 98.61 98.54

OPTDIGITS WNN 97.22 97.07 96.68 97.22 97.30
ADAG NEURAL NET 92.60 93106 92.37 92.75 93.29
SVMs 98.54 98.54 98.38 98.61 98.54

tinuous changes to creaté a more suitable classifier. However, an obvious draw-
back from transforminginptitspace is the high number of parameters of the al-
gorithm which is also due to applyingx’&he algorithm to the task of classification
which yields discrete fesult. In contrast, patchmg is much simpler and has few
parameters which causg'it to have much ],ess problem in overfitting. The idea of
patching is to use the result from each of ’éwzo classifiers, the original one and the
one created from customization data. We can give some estimation like lower
bound or expected performance of a c1a551f1er resulted from patching with both
classifiers. Suppose.that we determine whether we should believe the original
classifier by random then the expected accuracy of the new classifier should be
the average value of theaccuracy fromeboth classifiers. Moreover, by the fact
that our decision is based.on a plausible reasoning, the resulted classifier from
patching should obviously yield better result than the average accuracy of both
classifiers: Compating theresult from Table 4.4 and Table 4.9 which are the re-
sults from transforming input space using probabilistic value of pendigits and
patching, patching by Algorithm 6 yields better result. However, this is due to
difficulty in transforming input space. In summary, transforming input space is
an approach with high potential but is hard to achieve and patching is a simple
method but has limited potential in both upper bound and lower bound of the

result.



Table 4.10: Accuracy of patched combined classifier.
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ALGORITHM | ORIGINAL | ALGO 3 | ALGO4 | ALGO5 | ALGO 6

PENDIGITS WNN 97.80 98.40 97.97 98.17 98.27
MAX WINS | NEURAL NET 95.43 97.73 97.40 96.83 96.83
SVMs 97.67 98.27 97.30 98.10 98.30

PENDIGITS WNN 97.80 98.40 97.97 98.17 98.27
ADAG NEURAL NET 95.76 98.03 97.26 97.20 97.26
SVMs 97.67 98.27 97.30 98.10 98.30

OPTDIGITS WNN 97.22 97.07 95.07 97.22 97.30
MAX WINS | NEURAL NET 93.60 93.99 89.67 93.83 93.99
SVMs 98.54 98.46 96.92 98.61 98.69

OPTDIGITS WNN 97.22 97.07 95.07 97.22 97.30
ADAG NEURAL NET 92.60 93106 88.97 92.91 93.06
SVMs 98.54 98.46 96.92 98.61 98.69

4.3 Customization forClassification with Nonlinear Dimensionality Reduc-

tion

This framework i§ based on the iaé'a of transforming input space as well,
but with a different method in finding thé transformation. Instead of finding
sequence of small transformatitns, this framework will use dimensionality re-
duction to find the transformation between both input spaces. This framework

is shown in Figure 4.5 and the resulted classifieris shown in Figure 4.6.

The framework begins with generating data that represents the original
classifier by randomiization for its attribute values and uses the class from pre-
diction of the.original, classifier, ,After-that, we will.embed the space of this
data and the custoiization data-into a higher-dimensional space. We then use
supervised linear dimensionality‘reduction algorithms, suchitas KMMLN, with
the expectation that it will align both data sets.on each other'without changing
their topology. After that we will perform regression such that the data in that
space should be mapped back into the space of the original classifier based on
the value of the generated data. The new classifier will work by transforming
the test data into the space that aligns it with the data belonging to the original
classifier. After that, the values of attributes of the data in the original space cor-
responding to the test data will be calculated by regression, and that attribute

values will be used by the original classifier for prediction.
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4.3.1 Numerical Results

We show the experimental result of the proposed framework. For visu-
alization, we used 2-dimensional data with no noise and with two possible
classes, to test how the framework performed on each kind of basic linear trans-
formation. We used the same customization data and test data while varying
the original classifier which is 1-nearest neighbor generated from the space that
can be mapped onto customization data perfectly by translation, scaling, and

rotation. All the data in this experimentis shown in Figure 4.7.

The reason for us to choose 1-nearesineighbor as the original classifier is
for easiness in the step of generating data that represents the original classifier.
In this case, we used the data in 1-nearest neighbor directly. The next issue
was how to embed both data into-the same space. An easy implementation
may be to use translatioh, or any kind of rigid transformation that makes both
datasets not overlap with each other:: and even easier, we may add another
dimension whose valtie fepresents the dataset where each data comes from.
The visualization of this'is as in Figure 48

7l

Note that, this framework relies n.?.raﬁ%ly on the expectation that the al-
gorithm for nonlinear dimensionality ré&ﬁéﬁbn, which is the algorithm in the
group of KMMLN 1 this case, will be able to align both datasets onto each
other. To achieve this result, we considered both the method of embedding
and the inner process of the KMMLN algorithm. In this experiment, we used
the algorithm:KDNE, KLMNN'and KNCA which are the kernelized versions
of linear dimefisionality reduction algorithms DNE (Zhang et al., 2007), LMNN
(Weinberger and-Saul,2009) and NCA(Goldberger etral.,2005) respectively,
and the algorithmis for them are already stated in the original paper of KMMLN
(Chatpatanasiri et al., 2010, 2008). The results are shown in Table 4.11 and Ta-
ble 4.12.

The results show the accuracy when using an original 1-nearest neighbor
classifier and the accuracy of 1-nearest neighbor with customization data. There
is clearly significant improvement compared to the original classifier, and some

improvement compared to 1-nearest neighbor on customization data. How-
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Table 4.11: Result from customization using linear dimensionality reduction
algorithm.

ORIGINAL | CusTOM DATA | DNE LMNN NCA

TRANSLATION 83.6 93.4 83.6 83.5 83.7
SCALING 86.0 93.4 86.0 86.1 86.3
ROTATION 88.6 93.4 88.6 88.6 88.6

Table 4.12: Result from customization using the KMMLN algorithm.

ORIGINAL | CusTtOM DAFA | KDNE KLMNN KNCA
TRANSLATION 83.6 93.4 87.0 93.8 97.9
SCALING 86.0 93.4 87.7 94.1 87.9
ROTATION 88.6 93.4 91.0 93.6 91.1

]
ever, two issues need to'be noted:. First is that all the three datasets in this
experiments are simple linear t}‘ansfoj:r’rr}ation from a dataset with really sim-
ple decision boundary; as shown in Figipfe 4.8. The second issue is that though
the numerical result looks finé but frorﬁ':'ifféualization the two datasets did not
align on each other when usmg KMMLN with the exception of performing
KNCA on the translation dataset wh1ch y1elded much more significant differ-
ence compared to other cases in the experlment. Thus, the algorithm may not
have much potentiaj in higher dimensional datasets w ith more complicated de-

cision boundary.

In conclusien; the framework;seemsito have-the, potential to yield satis-
fying result, butt we ‘could not bring experimental results as we expected yet.
So we only present this framework here as it'may be a_good idea for further

development in this line of work.
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Figure 4.7: Visualization of generated dataset.
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CHAPTER V

CUSTOMIZATION FOR DIMENSIONALITY
REDUCTION

In this chapter, we will propose a framework for performing customiza-
tion for the task of dimensionality reduction. We will also propose an algo-
rithm for dimensionality reduction with additional constraint that the dimen-
sionality reduction is performed with linear function; it is linear dimensionality
reduction. The additional constraint in tHis«¢ase reduces the generality for cus-
tomization to a subgroup of.dimensionality reduction. However, the group of
algorithms that performlinear dimensionality reduction is still large enough
to have considerable impaet. /With-this limitation, we can provide theoretical
result up to much more extent than péfforming it on the much larger set that

includes nonlinear dimensionality reduction.

5.1 Framework of Customization for Dimensionality Reduction

The goal of dimensionality reduct;iQI’i‘:"is tinding a mapping function y :
R" — R™ that will retain the most usefiilnéss of the data, where the definition
of usefulness can bedifferent foreachalgorithm by the objective and constraint
on u. In the most general case where there is no constraint on function y, this
problem can be solved by training another dimensionality reduction v : R" —
R™ based on theycustomizationsdatajand then;combining the result when the

set of customization data1s transformed by y and v.

There seem to*be no other feasible approaches-for customization on di-
mensionality reduction, due to its nature that is different from classification and
regression. The goal for dimensionality reduction is that the resulted data must
retain the most useful information, and by any definition of the usefulness, it
cannot be measured with just a sole data, k. This is because the usefulness
cannot be determined by just its own nonmapped quality such as class for clas-
sification or continuous value for regression that can be used to determine the

objective, but it must be measured by the information of values of many data
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in a dataset. This is completely different from classification and regression that
we want the result from the process to be as close as possible to another value

associated with the data.

Suppose that k is transformed by y and v to be y(k) and v(k) respectively,
and that the values of y(k) and v(k) are dependent on each other up to some
degree since they are both generated from k by the procedure. Let us define p
as a function which p(k) = [u(k)Tv(k)T]T. If we perform unsupervised dimen-
sionality reduction on the dataset thatiis mapped into p(k) then it will result in
the mapping onto a coordinate of a space that will try to align the value of u
and v on each other based on the dataset.-Ihtis we can find the most feasible
mapping using a datasetX'bysing all the dataused in generating the original
dimension reducer and customization data. However, since we might not have
the data used in generating the 0rigiﬁa__1 dimension reducer by the setting, we
would have to compromise with just géing the customization data to represent

the data distribution ingthespace.

The process of combining two res_lé,lt-s from dimensionality reduction can
be thought of as performing unsuper\_f’is—e@ dimensionality reduction on the
data resulted from both dimensionality}gc_’:l_uction. The data resulted from k
which will be usediin the unsupervisedn dimensionality reduction is written
as [u(k)Tv(k)T)T.“Following this procedure, we give the framework for cus-
tomization for dimensionality reduction as shown in Figure 5.1 and the resulted

new dimension reducer issas shown in Figure 5.2.
5.2 Combinihg Results from Linear Dimensionality Reduction
5.2.1 "Algorithm

For the most general formulation of linear dimensionality reduction with
n attributes, we can write the linear transformation (Wylie and Barrett, 1982;
Nicholson, 2001) as f(x) = Ax + b where A is an orthogonal matrix of size n
whose rows are sorted in the order of importance and b is a vector of size n.
Given a training procedure for linear dimensionality reduction f(x), one can

determine all the n% + n parameters of f(x) within A and b by observing the
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customization data dimensionality reduction algorithm

Figure 5.1: Framew o1 Customization ensionality reduction.

output given to a set o‘f n + 1) vectors. The 51mp1est of them is a normalized

vector in eac]ﬂ ﬁﬂﬁaﬁnw ﬁﬂ Ejmml ﬂgaﬁs in the following:
AR IR it &

A= f(I,) —b1,T
= (1) ~ £(Ou)1a".
The customization data will be used to train another linear dimension reducer

with the same objective as the original given procedure, resulting in another

transformation matrix. We will use MT and NT to denote the transformation
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Figure 5.2: The new dimension reducer as the result of using the framework.

matrix belonging to the original procedure and the transformation matrix cre-

ated from customization-datajrespectively:

If we want to perform dimensionality reduction of a dataset with n dimen-
sions t0,a space with,m|dimensions, the most idealistic way will be to combine
m most important linear spaces resulted from both procedure. The basis for
the most important linear space with m dimensions of a linear transformation
can be represented with the first m columns of M where each of the columns
is a basis vector. For combining two such spaces of the same dimension into
a new linear space with the same dimension, we propose considering covari-
ance from all the basis vectors of both spaces, fixing the mean to be at origin.

The later process will be to find the m most suitable basis vectors for a new
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m-dimensional linear space that gives the greatest variance. This process can
be easily described as using the m most important orthonormal basis vectors of
both transformation matrices as data to perform PCA, with the mean fixing to
be the zero vector. With this interpretation, the procedure will yield the same
result as using each normal basis vector along with the unit vector in the op-
posite direction which will have in the mean of the all the vectors to be zero,
and have a covariance matrix with twice the value of covariance matrix of basis

vectors with zero mean.

In the case that we want to give a céptain weight /a and /1 — a to M and
N respectively, we can perforin scaling on-the basis vectors from each matrix

with that weight.

Proposition 2. Performing PEA on thedata which are any orthonormal basis vectors
that span the same liniear space' ns M and N, with the mean fixed to be zero vector, will

always yield the same result.

Proof. PCA is dependention calculation of covariance matrix C, which follows
the formula C = DDT when D is the matrix with each column as a data that is
translated to have zero mean.' From the xii_eW of each element in the matrix, this

formula can alternatively be written as, .
Ci; = ). Diiins
k

when Cj; and Dj; are the yalues of the matrix in row i and column j respectively.

If we view it from.the perspective of each data, C could be written as follows,
Cl= YipyDy¢h)
k

where Dy is the k' row of D.

The last equation implies that covariance matrix of a dataset is the sum-
mation of covariance matrix for each data, using the same mean. In matrix

form, this can be written as:

C = [M|N][M|N]T = MMT + NNT.
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Any set of orthonormal basis vectors that represent the same m-dimensional
linear space as a set of orthonormal basis vectors D can be written as DO where
O is an orthogonal matrix with m rows. This can be visualized as O represents
all possible sets of orthonormal basis vectors in m dimensions, and D is the
transformation that aligns the sets of basis vectors to the linear subspace. As
shown in the equation, covariance matrix C of a matrix with the data as or-
thonormal basis of two linear subspaces weighted by /a and /1 — & can be

calculated as:

C = [VaMOu|V1 = aNON|[V/aliOy|v1 — aNOy]"
= (VaMO (/&M ) B+ (VE=aNOy) (V1 — aNOy)”
= a(MOw) (MO (1 < &) (NOn) (NON)"
= aMO MO A AT - t)NONOLNT
= aMI,MT& @ £ )N, NT
= aMMT + ([ £ NN {

Thus we will obtain the same covariance matrix from eigenvalue decomposi-

tion which will yield the same transformation matrix. u

An important note is that the resulted basis vectors from the linear trans-
formation will not'be ordered by the importance in each dimension for the data
according to the algorithm for linear dimensionality reduction, but with the
probability that the diménsion should be’selected as the result from combina-
tion of the two lineartransformations. Se if the(user want to sort the importance
of each axis in the new linear spagce as in the capability of the Jinear dimensional
reduction algorithmj he must/perform the algorithm-for linear dimensionality
reduction on the customization data after they are transformed by the new lin-

ear transformation.

Another note is that this process can also be viewed as combining the
unimportant linear space, as they will yield the same result. The importance of
this aspect is that since the time taken in calculation of PCA also depends on

the number of data, it will be faster to do this if the resulted dimension is more
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than half of the original, i.e. 2m > n.

Proposition 3. Inverse view of combining linear space with low importance will yield

the same result as combining linear space with high importance.

Proof. Let M = [M;|M;] and N = [Np|N;] be both orthonormal vectors which
fully span the space where M; and N; span an m-dimensional linear space.
We want to proof that the m-dimensional linear space resulted from PCA of
[v/aM1|+/1 — aN;| with zero mean is the same to the least important m-dimensional
linear space from PCA of [\/aM|y/1 = aN>].

Let C; and C; be covariance matricés of fy/@M:[/1 — aNi] and [/aM;|v/1 — aNo]

respectively.

Cy =¥/ eV Y1 —aNyJ[V/ M1/ — aNy]”
— VNI B (@ =) NONT
Cp = dMAME 4 (13NN,

Since M is an orthogonal matrix; f,

MMT = I, = [My[L][MyMs)” = MiM] + MoM],
MyMg=T,, — My M.

Let C{ = UAUT be the result from eigenvalue decomposition of the covariance

matrix.

Cy = aMoyM3 + (1 —a)NoNJ
=S4 (F-PV MDD (T 2) UHNN )
=1 —aMM] — (1 —a)NN{
=1 — (aMyM] + (1 —a)N;NY)

= e
=1 —-uAu’
= Uu(I—- AU

Since C, is summation of two positive semidefinite matrices, C; is a positive
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semidefinite matrix as well. The result is that eigenvalues of C, which are the
diagonal elements of (I — A) are nonnegative and are sorted in reverse order
to eigenvalues of C;. Since eigenvectors of both C; and C, are the same but in
reverse order, this proves that the resulted linear space spanned by the m most
importance eigenvectors of C; is the same to the linear space spanned by m least

importance eigenvector of C,. u

We will let both spaces be equally important by setting & = 0.5. This will
yield the same result as letting both weighting terms « and 1 — a be 1 which will
simplify the calculation. This setting will be used for all the following proofs in

this section.
5.2.2 Theoretical Results

Proposition 4. We can fullliydescriben finear space spanned by the set of orthonormal
basis vectors M with MM

Proof. First, we will prove that for any-orthogonal matrix O with m rows, the

space spanned by any MO whickis the 5&1’{1&; space will result in the same value.

MO(MO)T =Moo MT
= M M-
= MM,

For the inversg, Ginde MM7% is both symmetric lafidppsitive semidefinite, we
can perform eigenvalue decomposition on MMT. If the space spanned by M
is an m-dimensional linear-space then,rank of M.will be 1, and as the result
the rank of MMP will be ' as Well since it is'a product 'of twe- matrices with
rank m. Other than that, all of its eigenvalues will be 1 as well. Therefore, by
performing eigenvalue decomposition and eliminating all the elements with 0

in the eigenvalues, we will get the following,

MMT = NI,,NT,
= NNT,
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where [, is an identity matrix with m rows and N is another orthonormal basis
vectors with the equal number of rows and columns to M. Hence, from the

equation,

MMT = NNT,
I, = MTNNTM,
= MIN(MTN)T,

and thus MTN is an orthogonal mattix which transforms M into N and that

both M and N span the same linear space. L

From the result of Proposition 4, we will now refer to a linear space spanned

by a set of orthonormal basisvectors M with the matrix Mg = MMT.

Proposition 5. Let k baw unit/vector an‘dj;Xs be a linear space, Xsk is the projection

of k on the space X.

Proof. Let X be a set of grthonormal baéis"bf X that is Xg = XXT. Xk is the
projection of k onto each/of the orthoﬁbfmal basis of space Xs. X(XTk) can
be viewed as multiplying each of the orthéfiormal basis vectors of Xg with the

value that k is projected on them. Hence, Xs-k is the projection of k on the space

Xs. ' [

Definition 1. Let A,B,C and D be the sets of orthonormal basis vectors which span an
m-dimensional linear space=We say that the difference between the space spanned
by A and B is equal fo the difference between the space spanned by C and D if
and only if there exists an orthogonal matrix O which causes the space spanned by AO

and BObe equivalent ta the space spanned by C and D respectively.

Definition 1 arises from the property that the operation of an orthogonal
matrix will be equivalent to a sequence of rotation and reflection centered at the
origin, which will preserve the distance between any vectors in the space. We
will have another constraint for a function which measures difference between

two linear spaces.
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Definition 2. Let M and N be two sets of orthonormal basis vectors. A function
f(M, N) is a measure of difference between the spaces spanned by both M and
N if and only if,

i) f(M,N) = f(N,M),
i) f(M,N) = f(OM,ON),

iii) f(M,N) = f(MOy, NOy),

where O, O and Oy are anip orthogonal mattices.

In Definition 2, thefirsicondition is from that the function must be reflex-
ive since it is a measure®f différence. The second condition is from Definition 1.
The third condition is f#omthiat the function should yield the same output for

_—

any orthonormal basis vectors that spé}n the same space.

Proposition 6. Let M aud N be'two set-g}:--'oﬁ orthonormal basis vectors which span
an m-dimensional linear spdce withii an -"ri:i_:_:limensz’onal space. We can measure the
difference between them with the function f{M, N) = |det(MTN)|

e e

Proof. We will prove that the function satisfies every/condition in Definition 2.

For the first condition, by the property of determinant that determinant of
a matrix yields the same value to determinant of its transposed matrix, we can

conclude thatthe function is reflexive.
FAMN) = |det (MIN). = |det( (MIN)T = Jdet(NLMI = f(N, M).

For the second condition, we will prove that if the differences within two sets
of linear spaces are equivalent then the function will provide the same value.

Suppose that M and N be two sets of orthonormal basis vectors and O be an
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orthogonal matrix.

f(OM,ON) = |det((OM)TON)|
= |det(MTOTON)|
= |det(M'N)|
= f(M,N).

For the third condition, we will prove that any basis vectors which span the
same space will yield the same result. Let Op; and Oy be orthogonal matrices
with m rows. All the set of basis vectots whieh span the same space as M and

N can be written as MOyprand NON+

f(MOFE, NO) #/|det((MOy) JENON)|

| et(Of;M"NO)|

= |det(O1)det (M N)det (O )|
— (O ) et (M) et (On )|
|det(MIN)|

==f(M; NJ__-T ’Jl-"J

Tyl S

This results from the property of multiplicative distribution of determinant and
from the fact that theé determinant of an orthogonal matrix is -1 from its defini-
tion that an orthogonal matrix multiplying to its transposed matrix will result

in an identity matrix. u

To get a better understanding of the function in Proposition 6, we first
considér the casethat i = 1. The function |det (MT N )| will bécome the absolute
value of'dot product between two vectors. Its absolute value is the result from
that the spanned linear space is in both positive and negative directions of the

basis vectors.

Furthermore, we will consider min(eig(NTMsN)) where eig(X) is the
function that returns all of the eigenvalues of X. The minimum eigenvalue

will reflect the result of using k, a vector in Ng, which minimizes the function
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kT Mgk for all the vectors in Ns. The function can be interpreted as project-
ing k onto Mg and projecting it back onto Ns. Hence, the eigenvalue will be
cos?(a) when «a is the angle between k and Mg which also serves as the angular

difference between Ng and M.

Proposition 7. Let M and N be two sets of orthonormal basis vectors which span
an m-dimensional linear space. The function f(M,N) = |det(MTN)| will have its

maximum value if and only if M and N span the same linear space.

Proof. We will state a proof that both sets of orthonormal basis vectors will span
the same space if and only if the value ofthe function is 1. The sufficient condi-

tion uses the knowledge that has beenh previously applied.

FOMMON) = [det (M MO
= [det(M"M)}|deH(On)
T 4

For the necessary condition, let us considef the following equation:

s T
A

FIMARG= et PR |
— (det(MTN))2
= det(MTN)det(M*N)
= det(MTN)det(N"M)
= det(MNNTM)
= det(MTNNTM),

By the property ordeterminant, its value will be equivalént te the multiplication
of all sifigular values of the matrix. So if there is a pair of M and N that cause
the value of f(M, N) > 1 then there will be at least an eigenvalue of MT NNTM
that is higher than 1 since MT NNTM is a symmetric positive semidefinite ma-

trix. Suppose that k is the unit eigenvector with the maximum eigenvalue of



56

MTNNT M, it will follow that the eigenvalue of k will be equal to:

kTMTNNTMk = (Mk)'NNT(MK),
= (Mk)TNg(MK).

Since M is an orthonormal basis vector and k is a unit vector, Mk will be a unit
vector that lies in the space spanned by M and (Mk)T Ns(Mk) can be viewed as
dot product between the unit vector and the projection of that unit vector onto
the space N;. Since projection does not ingrease the size of vector, it is clear that

(Mk)TNs(Mk) < 1 and that 1 is the maXitadim value of f(M, N) |

From Proposition'7, the main contribution of the function |det(M, N)| is
that it can provide aft answex'if fwo sets of orthonormal basis vectors span the
same space, withoutfequiring any further interpretation. However, difference
between two linear spaces cannot-be fully described with one real value due to

its degree of freedom.

Now, let us consider space Mg :-MMT and Ng = NNT. If the space Ng
is exactly the same as Mg, then all orthojjo’fmal basis vectors of Ng must be in
M. Therefore, 7

NIMN =NIN=T_

where I, is an identity matrix with m rows.

The diagenal eleménts-of N MgN-will be,l;if-and only if each basis vector
of Ng in N is in Mg'since Mg canrbe'interpreted-as projection of the vector onto
that space. Moreover, if that is thé case, then Ngwill span thé'same space as Mg
and the projection ofieach different orthonormal basis vector in/N will still be
orthogonal to each other. So we can conclude that NTMgN = I,, if and only if
Mg = Ns.

From Definition 2 which defines the constraint for functions that measure
the difference between linear spaces from its orthonormal basis vectors. We can
derive the constraints for functions that measure the difference between linear

spaces using the matrix representing the spaces directly.
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Proposition 8. Let Mg and Ns be two m-dimensional linear spaces. A function

g(Ms, Ng) is a measure of difference between the spaces if and only if,

i) §(Ms, Ns) = g(Ns, Ms),

ii) g(Ms, Ns) = g(OMsOT,ONsOT),

where O is any orthogonal matrix with n rows.

Proof. From Definition 2, we ¢ that g(AAT, BBT) = ¢(CCT,DDT)

if and only if f(A,B) =

For the first con{ ]

on in Definition 2.

g _ OQNTOT)

Ms, Ns) = g(OMsO", ONsO™).

ﬂ’lJEJ’J‘VIEWﬁWEJ']ﬂi

Assuml ’i the third conditién in Definition 2.

Fiadn3 MU NYNas

f(M,N) = f(MO, NOy)
g(MMT",NNT) = g(MOp(MOw)", NOn(NON)T)
g(MMT,NNT) = ¢(MOpOL,MT, NONOLNT)
g(MMT,NNT) = g(MMT,NNT)
§(Ms, Ns) = g(Ms, Ns).
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Since the third condition from Definition 2 is always true by the definition of

the linear space, it needs no further consideration. [ |

Proposition 9. We can measure difference between two linear spaces Mg and Ng with

¢(Msg, Ng) = eig(Ms + Ng) where eig(X) is the sorted eigenvalues of matrix X.

Proof. We will prove that the function ¢(Mg, Ns) = eig(Ms + Ns) satisfies all

the conditions in Proposition 8.

ﬂuaqwams%QWﬂi

The last line Of the equation can, be cons1dered as extractu%, the eigenvalues

f“’mﬁﬁ“’lﬂ*?ﬁﬁmﬂm']’mmﬂﬂ

g(Msg, Ng) = eig(Ms + Ng),
= eig(VAVT),
= eig(A),
= ¢(OMsOT,ONsO7).
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Let us further analyse the function in Proposition 9. It is quite obvious
that the function is better as a measurement of difference between two linear
spaces than the function in Proposition 6, due to its output which has n degree
of freedom when 7 is the number of dimensions. For the case that both spaces

are the same:

eig(Ms + Mg) = eig(2Ms),
= 2eig(Ms),

which means that it will have m eigenvalties which are 2 and the rest of n — m

eigenvalues from calculation will be zero.

Proposition 10. Let Mg and N be two m-dimensional linear spaces. We can fully
describe the difference betaveen Mg and INg with the matrix Dyn = UTMSTU when

UT is the eigenvectors of Ns sorted by its eigenvalues.

Proof. Since the number of'dimensions of Mg and N; are equal, they will have
same set of eigenvalues. As/a result of eigenvalue decomposition, we have:

¥

Ms = VAV,
Ns = UNUE,

where V and U aré_orthogonal matrices. From Proposition 8 the difference
between Mg and Ns-will be equal to the difference between A and uTMsU.
Since A is also.the eigen¥alue part from'eigenvalue decomposition of U MsU.
It follows that thedifferefice between Mg and.Ns can'bé fully described with
the matrix Dy = UTMU.

Also, a function /(D) can completely measure the difference from the dif-
ference matrix D with h(D) = g(eig(D), D) . By Proposition 8, we will have the
following constraint: #(D) = h(ODOT) if and only if Oeig(D)OT = eig(D). W

From Proposition 10, the first note is that Dy;y = UTMgU and Dy =
VTNV are not necessarily the same matrix but they both fully describe the

differences which are equivalent to each other.
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The constraint in Proposition 10 gives us some guideline in performing
pairwise comparation of the difference. However, there is the following prob-
lems that given two symmetric positive semidefinite matrices A and B, how to
efficiently compute an orthogonal matrix O such that A = OBOT, and how to
compute h(D) that will yield the same output if and only if the difference are

equivalent.

Theorem 1. Let Mg and Ng be two m-dimensional linear spaces, the m-dimensional
linear space Xg which is spanned by theieigenvectors with m highest eigenvalues of
Mg + Ng is the optimal mean of Mg and Neiruthe sense that it will minimize the value
MAXYT Ao k=1 or kTNSkzlkTYSk when Ys is amyf li.dimensional linear space, meaning
that it will minimize the augular diﬁ”ere;zce between any vectors in Mg or Ng and the

new linear space.

Proof. From Proposition 3, itisenough to prove the result when m is not greater
than 7/2, since performing the process on the none important space will yield
the same result. From this, we will be able fo use the assumption that Mg and

N;s do not intersect eachiotherat any place other than the origin.

¢

Let X5 be an m-dimensional lineai '-siﬁ'ace that serves as a mirror plane
which transforms the space of Ms into Ng-rback and forth; i.e. for a unit vector
k in Ms or N, there will be another unit vector j in the other linear space such
that the result from both of their projection on X5 will be exactly the same but
has the exactly opposite direction of projection. This can be visualized that the
linear space Xgwill act as.a mirror between Mg and Ng. If k and j are both unit
vectors that yield‘the-value 'of angular 'difference between Mg and Ng then it
can be seen that the angular différence between Xg and k will'be equivalent to
the angular'difference between Xs and j since the projection from both of them
on X will be at the same place. It becomes obvious that the angular difference
between other pair of unit vectors in Mg and Ns will be lower than this value
and thus this Xg is an optimal mean space calculated from Mg and Ng in the

sense of angular difference.

Let X5, Mg and Ng be created from their orthonormal bases X, M and N.

From the previous definition of X5, Ms and Ng as in the previous paragraph,
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and let k be a vector in Mg, we can calculate j, a vector in N corresponding to

k, which will result in the following equation:

k = Xsk + (k — Xsk),
j = Xsk — (k — Xsk),
—2Xck — K,
— (2Xs — I,)k.

This relies on the fact that Mg, N ve the same number of dimensions

and do not intersect each other. Tha a vector in Mg, there should be

Now let us consid e \th

Ms + Nsﬁl
4X5M5X —2XsMg — 2MgXs + Ms)

AU EJ\@ MWW RSk 2
] Wﬁ“ﬁ\tﬂ P QI T e
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k into its elements that are in X5 and that are not.

kK = Xok+ (I — Xs)k
(Ms 4+ Ng)k = (4XsMsXs — 2XsMg — 2MsXs + 2Ms)(Xsk + (I — Xs)K)
—  ((4XsMsXs — 2XsMs — 2MsXs + 2Ms) Xsk)
+((4XsMsXs — 2XsMs — 2MsXs + 2Ms) (I, — Xs)k)
—  ((4XsMs — 2XsMs — 2Ms + 2Ms) Xsk)
+((—2XsMs + 2Ms (I, — Xs5)k)
= 2XsMgXsk +2(I + X&) M5 (I — Xs)k).

Suppose that k has elements in bot-‘h Xg and.in _the space orthogonal to Xg,
which is the (n — m)-dimensional linear space that does not intersect with Xs
except at the origin, dénoted/by Xg Ll = I, — Xg. If there is only one optimal
Xs by the definition theén the angulaf éifference between Mg and Ng must be
less than 7t/2 which causes the angul%r difference between any vectors in Mg
and X to be less than 7¢/4 while also causes the angular difference between
any vectors in Mg and X to be highéﬁf_ ’Eﬂan 7t /4. For k to be an eigenvector
of Mg + Ng, XsMgsXsk must bein the saih?e_f.direction as Xsk and Xg| MsXs k
must be in the same direction as X | k. Ifiwqé_let the angular difference between
M;s and Xsk and between Ms and Xs k be a and f respectively then we will

get the following equations:

(Mg + Ng)k =2XsMsXsk 2(I, — Xs)Ms(I, — X5)k)
= 2Xs Mg Xsk + ZXSJ_Msxsj_k)
= 2c0s” () Xsk 4 2cos?(B) X5 k)

Since 0 < a« < B < 7/2, it follows that either Xsk or X5, k must be the zero
vector. This means that eigenvectors of Mg + Ns must lie in either Xg or X
and since X is m-dimensional then there will be m eigenvectors in Xg and

(n — m) eigenvectors in Xg | .

In the same way as Mg, angular difference between any vectors in Xg and

Ns must be less than 71/4 and angular difference between any vectors in Xg
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and Ng | must be higher than 77/4. As a result, for any vector k in Xg:

kT (Mg + Ng)k = kT Mgk + kT Ngk,
> 2c0s%(1r/4),
=1,
> p'(Ms+ Ns)p,

where p is a vector in Xg . This means that the m eigenvectors with highest

honormal basis vectors. Thus, the

linear space resulted from the proce: al linear space that minimizes

space.

In the case tha 5 ‘and Ns in a meaningful

\.

rectly The algorithm for the

way, it seems that at using the algorithm to

find the mean of two e satisfying precision, in-

weighted version of bot / Algorithm 7.

ﬂ‘UEJ’J‘VlEWﬁWEJ’]ﬂi
QW’]ﬂ\ﬂﬂ‘iﬂJ UA1AINYAY
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input : M, N, m, «

output: X
1A M,B< N, X+ A,a+0,b+1,x<+0;
2 while |« — x| > B do

3 | X< PCA(AAT + BBT,m);
4 x< (a+b)/2;

5 if « > x then

6 a< x;

7 A<+ X;

8 else

9 b <« x;

10 B +— X;

11 end

12 end

Algorithm 7: Finding fhe optimali mean between two linear spaces with

weight.

In Algorithm 7, P€A (X, m) is the _résﬁlt of using PCA to choose m dimen-
sions from covariance matrix Ag, « is a real walue in the range [0, 1] which is the
weight for Ng while the weight Mg will bel — «, B is the constraint for precision

in calculation for the result, and m is the dimension for both M and N.

Note that in the case that Mg and Ng are obtained by the linear dimension-
ality reduction of the same dataset, but with a different algorithm, the process
of combining them will act as finding thelinear space that is good in both ob-

jectives.

Theorem 2. Using\the proposed framework of customization for dimensionality reduc-
tion in Figure 5.1 on linear dimensionality reduction will yield the optimal result if we

can estimate the distribution of data perfectly.

Proof. Let Mg and Ng be both spaces to be combined which have M and N as
sets of their orthonormal basis vectors. According to the framework, to com-
bine two nonlinear spaces we will have to use the results from mapping cus-
tomization data on both of them in order to estimate the shape of the nonlinear

spaces. However, in the case of linear space, the shape of the space can be fully
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described with the matrix and we could estimate the distribution from all the
data which are used to generate both spaces by the set of all available data in the
spaces. Since the mapping is linear, we can represent the result from mapping
the data of all input spaces with identity matrix and its negative. Thus, we get
the dataset as [M|N]"[I,| — I,]. The mean of this dataset is clearly zero due to
that the vectors resulted from [M|N]T[I,] will come with their negative vectors
[M|N]T[—1,]. The next step is to perform PCA using this dataset to obtain the

following covariance matrix.

[M|N]T[L| — L]([MINV [Tu| = L)) " ZAMIN] T [ 1] — 1] (1| — 1] [M|N]
= {MINJ Iy + (—1n) (—1n)T) [M|N]
= [MIN}'(21,I)[M|N]

| = 2[M|NJT[M|N].

Since scaling of a matrix will not affect'its eigenvectors, we will instead use the
matrix [M|N]T[M|N] #hiéh €an also be calculated as covariance matrix of the

dataset [M|N]T with its mean fix to zero. By further analysis of the matrix:
s J

[ar"
[MINIE [M|N] et M N,
= MM MIN
NTM  NIN
Iy M'N
NIME | Iy

Now, let us:considera vectord, whichuig an eigenvector-of thermatrix MM +

NNT with eigenvalue A.
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I, MIN| |MT " MT + MTNNT
NTM I, NT NTMMT + NT
_ |MTk+ MTNNTk
NTk + NTMMTKk

MTk 4+ MT(Ak — MMTKk)
NTk + NT(Ak — NNTK)

Mk + AMTk — MTMMTk
NIk ANTk — NTNNTk

MIR+=AM k — I, MTk
NTk+ NIk — I,,NTk

Mk AMTK — MTk
4 NTK FANTK — NTk

I MK

ANTK

L

- -
= A{M-} k.
-

From the above equation; if a vector k is an eigenvector of MMT + NNT with
eigenvalue A then [M|N]"k will be an eigenvector of [M|N]T[M|N] with eigen-
value A. Since the matrix [M|N]T[M]|N] is multiplication between [M|N] and
its transposej«the rank ofl [M|N]T [V|N] Will‘be ‘eqlial to the rank of [M|N],

and thus its Maximum value will be the lesser between its number of rows
and columns/whish aren.and2murespectively. g The result-is that in the case
that the:ntimber of rows of {M|N]*[M|N] is higher than 7 the cther eigenvec-
tors which are not corresponding to any [M|N]Tk when k is an eigenvector of
MMT + NNT will have zero eigenvalue. One may say that the matrix will have
no other eigenvector. So a vector k will be the eigenvector of MMT + NNT
with the i-th maximum eigenvalue if and only if [M|N]Tk is the eigenvec-
tor of [M|N]T[M|N] with the i-th maximum eigenvalue. Hence, the space re-

sulted from performing PCA on MMT + NNT will be the same as the space
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resulted from performing PCA on [M|N]T[M|N] after the vector is mapped
onto [M|N]7, that is the result from applying the framework for dimensional-
ity reduction on linear dimensionality reduction. Thus, we can say that using
our proposed framework for dimensionality reduction on linear dimensionality

reduction will yield the optimum result. u

5.3 Numerical Results

We demonstrate the performance of our proposed algorithm with some
datasets from the UCI Machine LearningRepository, whose details are shown
in Table 5.1. In the same way to all of our prévious experiments, the data were
normalized into the range o0i{0,1]. After that, we separated the data into 4
groups of equal size:and periormed cross-validation among them. Two of the
groups were used as®riginal training data to train the given linear dimension-
ality reduction process, whilg the otheifc‘wo of them were used as customization
data and test data, resulted in —2,—‘11% — 12 combinations in total. The result was
compared with the result from originalil'inear dimensionality reduction and the

one trained from customization'data. s

i

Table 5.1: Detail of all datasets used in the experiments of combining results
from linear dimensionality reduction. The numbers of attributes shown are the
numbers of attributesused.in dimensionality reduction, omitting some useless
attributes like index‘or specific name.

No. of attributes | No. of instances

concrete compress 8 1,030
concrete 'slump 7 103
cpu 6 209
forest 12 517
housing 13 506

parkinsons 19 5,875
servo 4 167

For the linear dimensionality reduction used in the experiments, if one
want to use some algorithms with clearly defined objective as the value in opti-
mization then the score can be easily measured from the transformed test data
in the same way. However, in our experiments, we used PCA. Since PCA sorts

basis vectors for linear space by variance of the data in each axis, the objective
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is not well-ordered. So as in many research works, we decide to use the value

of determinant and trace of covariance matrix which are the values of products

and summation of eigenvalues of the matrix respectively. The perfect result of

PCA then will align the axis so that all non-diagonal elements of the covari-

ance matrix will be zero. Since we calculate the mean of the value from cross

validation, we will use the natural logarithmic value of determinant instead of

using them directly to retain the sense of arithmetic mean. The result is shown

in Table 5.2.

Table 5.2: Result from using the proposed‘frameworks with linear dimension-
ality reduction. Numbers whose values atesminimal in their rows are typeset
bold. The second columan.shows the reduced dimension. All of the equal values
are different in higher precision.

dataset | m | logdet(@) ~logdet(S) logdet(N) | trace(G) trace(S) trace(N)
concrete | 1 | 3.325 3.182 3.346 28.344  25.128  28.996
compress | 3 | 7.957 g9 1 = M \8¥190 56.180  57.380  57.707
5 | 11452 12.434-+ 12257 78.178  81.335  80.777
7 | 12.952 12.889° % 412.944 86.828  86.567  86.810
concrete | 1 | 1.022 1.080--“4 1.093 2.856 2.888 3.024
slump | 3 | 1.969 BT SR 340 7.322 7.647 7.757
5 10.909 1914 /.1.636 9.703 10.269  10.035
cpu |1 | 1.279 1.241 - 1.294 3.782 3.660 3.843
3 | 0.559 0555 10.566 5.623 5.607 5.663
5 | -1.609 ~21679, 4<:%.575 6.968 6.965 6.989
forest | 1 | 3.007 3.000 3.012 20.251  20.114  20.352
3 |18279 8.253 8.282 48.808  48.411  48.855
5 | 11:588 11.519 11.600 59.888  59.526  59.938
7 | 13.757 13.720 13.772 66.417 66.256  66.474
9 | 13.357 12.794 13.328 68.430  68.262  68.442
housing (.1 1| 3.947 3.943 3.948 51814  51.602 51.872
3 118.512 8.475 8.516 72337 71.891  72.386
5 | 11.754 11.638 11.769 82914, = 82.307  83.033
7 144132 141059 14.152 90:018y n 89.703  90.115
9 15172 14,859 15.070 94.082" | 93572 93.974
parkinsons | 1 | 5.775 5.774 5.775 322.042 321963 322.063
3 | 15.148 15.145 15.148 545.028 544.694 545.090
5 | 22.983 22981 22.983 647.335 647.225 647.361
7 | 28.320 28.315 28.321 676.847 676.749 676.868
9 | 31.271 31.267 31.272 686.197 686.153 686.208
servo | 1 | 2.065 2.040 2.085 7.993 7.829 8.180
3 | 5.349 5.346 5.351 19.025 19.005  19.032

It is clearly shown in Table 5.2 that the result from combining both linear



69

spaces is better than that from the covariance matrix of mapped data, measured
by the value of logarithm of determinant and trace which both reflect the eigen-
values of the covariance matrix. Ones might think that combining two models
is similar to the idea of customization for classification by patching, but there
are some significant differences. The first thing is that combining two linear
spaces with this algorithm performs with both of them on equal ground, while
the patching approach in customization for classification treats them differently.
The second issue is that, customization for classification by patching predicts
the result using one of the two models, and with plausible bias, the result is ex-
pected to be an improvement. However, combining linear spaces based on the
hypothesis that both of.these spaces should be-the same but is differed due to
variation or error in both datasets. Thus, the most likely best linear space is the
linear space taken as a mean.ofthem and the improvement in the experimental
result is based on different reason which is less obvious than customization for

classification by patching 4

In order to demonstrate that this é’l_go-rithm is applicable for dimensional-
ity reduction that will be later used in classification, we conducted other exper-
iments by performing customization onid’iﬁlensionality reduction before clas-
sification. The experiments were conducted on datasets optdigits and pendigits
whose data were normalized into the range of [0, 11as'in all of our previous ex-
periments. However, the dataset optdigits used in this experiment did not have
dimensionality reduced by PCA since this experiment was about dimensional-
ity reduction as well,.and-thus,dataset optdigits had-64.-attributes. We performed
10-fold cross validation between-data'used for'etstomization and test data. We
used linear discriminant analysis as dimensionality reductioh algorithm and

1-nearest neighbor for classification~The result is shown in Table 5.3.

In Table 5.3, for dataset optdigits, we can be quite certain that the proposed
algorithm yielded better result, but for pendigits, it was only the case that the
data was reduced to one dimension that was an improvement from both linear
spaces. The main difference between both of these datasets is the numbers of
attributes; optdigits has 64 attributes, pendigits has 16 attributes. Therefore, per-

forming dimensionality reduction on optdigits with the same number of dimen-
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Table 5.3: Classification accuracy after performing customization upon dimen-
sionality reduction. (G) and (S) are the results from original data and cus-
tomization data respectively, and (N) is the one created from both models with

our algorithm.

dataset | m | LDA(G) LDA(S) LDA(N)
optdigits | 1 | 33.28 £4.03 33.61 £ 6.01 32.23 £+ 5.09
3 |77.69+£298 7819 +3.63 78.58 + 3.19
5 | 87.65+3.01 88.70+4.74 89.15 + 3.01
7 193324212 92.65+3.26 93.82 +2.43
9 |9555+1.70 95.60+2.35 95.83 +£1.91
pendigits | 1 | 39.45 £2.11° 38.88 £4.16 40.56 + 3.33
3 | 81.22 £ 226/ 7883+ 1.74 80.99 + 2.48
5 193.45 + 1.41 " 954 1.05 91.57 £1.10
7 19754+ 0.88 9751+ 093 97.05+0.77
9 9843+ 1.14 98:69<0.92 98.31 + 0.61

sions yielded the bettensesult.cie tohaving larger numbers of choice, while it
might be hard to determing a'good projection for pendigits. Also note that the
ratio of the number©f dataused in ce{fculating LDA(G) to the number of data
used in calculating LIDA(S) was about éwice for both optdigits and pendigits. The
other noteworthy issue'is Where, the Value of each attributes of optdigits and
pendigits came from. A value in each a&ﬁhytes of optdigits corresponds to the
grayscale color in each pixel of an 8x8 _i;?}g;cg_e, while the attributes of pendigits
has various meaning and méﬁy different i-;itérpretation. By the nature of lin-
ear dimensionality: reduction, it is better fit to the task that each attribute has
similar meaning like optdigits since the underlying distribution of the data will
more likely be in linear'subspace and yield the suitable result upon them. One
might argue with/the previous statement aboutlinear dimensionality reduction
being better on optdigits than pendigits using the accuracy when both of them
are reduced to the same ntmber of dimensions ‘as shown inl Table 5.3 that the
value in\pendigits is higher and both of them has the same numbers of classes
corresponding to the numbers 0-9. This was likely resulted from that the data
obtained directly from pixels of optdigits are distributed sparsely in high dimen-
sional linear space while data obtained from feature extraction of pendigits lie

densely in lower dimensions with more complicated distribution.



CHAPTER VI

CONCLUSION AND FUTURE WORK

6.1 Conclusion

We have introduced the idea of performing task-based customization. We
consider the task in performing customization for classification, sometimes called
adaptive classification, which is the field that research in customization is most
active on. We introduce three frameworks in performing customization for clas-
sification and provide some algorithms according to the frameworks. We then
conduct the experiments.with real-world datasets, and show the numerical re-

sults.

In Chapter 5, we consider the taskin performing customization for dimen-
sionality reduction, whigh could be the preprocess of classification. We propose
the framework of customization for dimensionality reduction which seems to
be the only sensible ong'due to the conSfréint of dimensionality reduction. We
further consider the special case of dime_lr_-l_signality reduction which is linear di-
mensionality reduction in the process o_fjc"_qr-_r}bining result from two dimension
reducer which is the only way to perforrﬁ éilsfomization that can be applied to
nonlinear dimensionality reduction as well. We propose an algorithm, and pro-
vide some theoretical results. We state that the algorithm will yield the optimal
result in combining the result from twg linear dimensionality reduction. We
further state that this optimal algorithm in customization for linear dimension-
ality reduction‘can be thought of as a special case of our proposed framework
for dimensionality| redtction. - After that we‘conduct the| rfumerical results on
the algorithm for linear dimensionality reduction to show its performance as

the process of dimensionality reduction and as preprocess for classification.
6.2 Future Work

There are many other tasks in machine learning to which we can apply
the concept of task-based customization. Other than that there is also room for

many frameworks and variations of the algorithm to be created. As shown in
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Chapter 5, the wide applicability of task-based customization could result in
the weakness for theoretical bit, but by applying additional constraints on the
model, it can provide theoretically satisfying result up to a degree. One might
argue that restricting the process with additional constraints conflicts to nam-
ing it as task-based customization and its mentioned advantage to the model-
specific ones, but the main point here is that if the range of the algorithm that
this approach can be applied to is wide enough then it still be useful enough in

this matter.

AU INENTNYINS
RINNIUUNIININY



References

Asuncion, A., and Newman, D. UCI machine learning repository [Online].

2007. Available from : http://archive.ics.uci.edu/ml/ [2010, Novem-
ber 5].

Cao, X., and Balakrishnan, R. Evaluation of an on-line adaptive gesture in-

terface with command prediction. In Proceedings of Graphics Interface

2005, GI ‘05, pp. 187-194. Canadian Human-Computer Communications
Society, School of Computer Science, University of Waterloo, Waterloo,

Ontario, Canada.

Chatpatanasiri, R., Kerstilabute T., Tangchanachaianan, P., and Kijjsirikul, B.
On kernelization ofsSupervised mahalanobis distance learners. CoRR

abs/0804.1441.

Chatpatanasiri, R., Korsgilabutr, T., Tangchanachaianan, P., and Kijsirikul, B.
A new kernelization/framework for mahalanebis distance learning algo-

rithms. Neurocomputing 73(10-12)'(2010): 1570-1579.

Choset, H., Lynch, K.M.,/Hutchinson, é_:,— Kantor, G.A., Burgard, W., Kavraki,

L.E., and Thrun, S. Principles of Rabo_’g Motion: Theory, Algorithms, and
Implementations. MIT Press, Cambridge, MA. June 2005.

Cristianini, N., and Shawe-Taylor, J]. An Introduction to Support Vector

Machines and -Other Kernel-based Learning Methods. Cambridge Uni-

versity Press, 1 edition. 2000.

Friedman, ].H. Another approach to polychotomous classification. Technical

report, Department of Statistics, Stanford*University. 1996.

Fu, H.C, Chang, H.Y., Xu, Y.Y.,, and Pao, H.T." User adaptive handwriting
recognition by self-growing probabilistic decision-based neural networks.
Neural Networks, IEEE Transactions on 11(6) (November 2000): 1373—
1384.

Goldberger, J., Roweis, S., Hinton, G., and Salakhutdinov, R. Neighbour-
hood components analysis. Advances in Neural Information Processing

Systems 17 (2005): 513-520.




74

Halton, J.H. On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals. Numerische Mathematik 2

(1960): 84-90.

Han, J., and Kamber, M. Data Mining: Concepts and Techniques (The Morgan

Kaufmann Series in Data Management Systems). Morgan Kaufmann, 1st

edition. September 2000.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements of Statistical Learning.

Springer Series in Statistics. Springer New York Inc., New York, NY, USA.
2001.

Kijsirikul, B., Ussivakul, N.,-and Meknavin,"S. Adaptive directed acyclic
graphs for multielass classification. In PRICAI '02: Proceedings of the 7th

Pacific Rim International Conference on Artificial Intelligence, pp. 158-

168. Springer-VerlagyToncon, UK.

Lyu, R.Y,, Chien, L.E Hwang, 5.H Hs-_—ieh, H.Y., Yang, R.C., Bai, B.R., Weng, ].C.,
Yang, YJ., Lin, SSW. Chen, K.J., Ts;ng, C.Y., and Lee, L.S. Golden man-
darin (iii)-a user—adaptive‘prosodiciSegment-based mandarin dictation
machine for chinese langtiage wiffij\_zery large vocabulary. In Acoustics,

Speech, and Signal Processing, }995 ICASSP-95., 1995 International

Conference on, volume 1, pp. 57—6'(‘J)‘."_"i_ '

Michie, D., Spiegelhailter, D.J., Taylor, C.C., and Campbell, J., editors. Machine
learning, neural and statistical classification. Ellis Horwood, Upper Sad-

dle River, NJ, USA..1994.

Mitchell, T.M. Magchine Learning. McGraw-Hill, New York. 1997.

Nicholson, W.K. Elementary Linear AlgebracsMcGraw-Hill,,New York, USA,

Tst international editien edition. 2001.

Phetkaew, T., Rivepiboon, W., and Kijsirikul, B. Reordering adaptive directed
acyclic graphs for multiclass support vector machines. JACIII 7(3) (2003):
315-321.

Scholkopf, B., Smola, A., and Miiller, K.R. Nonlinear Component Analysis as a
Kernel Eigenvalue Problem. Neural Computation 10(5) (July 1998): 1299—
1319.




75

Weinberger, K.Q., and Saul, L.K. Distance Metric Learning for Large Margin
Nearest Neighbor Classification. J. Mach. Learn. Res. 10 (2009): 207-244.

Wylie, C.R., and Barrett, L.C. Advanced Engineering Mathematics. McGraw-
Hill, New York, USA, 5th edition. 1982.

Zhang, W., Xue, X., Sun, Z., Guo, Y.F, and Lu, H. Optimal dimensionality
of metric space for classification. In ICML '07: Proceedings of the 24th

international conference on Machine learning, pp. 1135-1142. ACM Press,
New York, NY, USA.

U

AU INENTNYINS
RINNIUUNIININY



76
Biography

Pasakorn Tangchanachaianan was born in Chonburi, Thailand, on 2 De-
cember 1982. He received Bachelor Degree of Engineering and Master Degree
of Engineering both in the field of computer engineering from Chulalongkorn

University.

] .,
AULINENINYINg
PRIAATUAMINYAE



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgments
	Contents
	Chapter I Introduction
	1.1 Objectives
	1.2 Scope
	1.3 Procedure
	1.4 Contributions
	1.5 Organization of the Thesis

	Chapter II Background
	2.1 Conventions
	2.2 Customization
	2.3 ClassificationThe task of classification is to predict the value of an attribute of a
	2.4 Dimensionality Reduction
	2.5 Halton Sequence

	Chapter III Task-Based Customization
	3.1 Concept of Task-Based Customization
	3.2 Advantages and Drawbacks

	Chapter IV Customization for Classification
	4.1 Customization for Classification by Transforming Input Space
	4.2 Customization for Classification by Patching
	4.3 Customization for Classification with Nonlinear Dimensionality Reduction

	Chapter V Customization for Dimensionality Reduction
	5.1 Framework of Customization for Dimensionality Reduction
	5.2 Combining Results from Linear Dimensionality Reduction
	5.3 Numerical Results

	Chapter VI Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	References
	Vita

