

นายฐกร ฉตัรชยัสถาพร

วทิยานิพนธ์น้ีเป็นส่วนหน่ึงของการศึกษาตามหลกัสูตรปริญญาวทิยาศาสตรมหาบณัฑิต
สาขาวชิาคณิตศาสตร์ประยกุตแ์ละวทิยาการคณนา ภาควิชาคณิตศาสตร์และวทิยาการคอมพิวเตอร์

คณะวทิยาศาสตร์ จุฬาลงกรณ์มหาวทิยาลยั
ปีการศึกษา 2555

ลิขสิทธ์ิของจุฬาลงกรณ์มหาวทิยาลยั บทคดัยอ่และแฟ้มข้อมลูฉบบัเตม็ของวิทยานิพนธ์ตัง้แตปี่การศกึษา 2554 ท่ีให้บริการในคลงัปัญญาจฬุาฯ (CUIR)

เป็นแฟ้มข้อมลูของนิสติเจ้าของวิทยานิพนธ์ท่ีสง่ผา่นทางบณัฑิตวิทยาลยั

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

ADAPTIVE INERTIA WEIGHT PARTICLE SWARM ALGORITHM

Mr. Thakorn Chatchaisathaporn

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Science Program in Applied Mathematics and Computational Science
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2012
Copyright of Chulalongkorn University

Thesis Title ADAPTIVE INERTIA WEIGHT PARTICLE SWARM
 ALGORITHM
By Mr. Thakorn Chatchaisathaporn
Field of Study Applied Mathematics and Computational Science
Thesis Advisor Assistant Professor Krung Sinapiromsaran, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of
the Requirements for the Master’s Degree

 Dean of the Faculty of Science
(Professor Supot Hannongbua, Dr. rer. nat.)

THESIS COMMITTEE

 Chairman
(Boonyarit Intiyot, Ph.D.)

 Thesis Advisor
(Assistant Professor Krung Sinapiromsaran, Ph.D.)

 Examiner
(Phantipa Thipwiwatpotjana, Ph.D.)

 External Examiner
(Associate Professor Peerayuth Charnsethikul, Ph.D.)

iv

ฐกร ฉตัรชยัสถาพร : .
(ADAPTIVE INERTIA WEIGHT PARTICLE SWARM ALGORITHM) อ.ท่ีปรึกษา
วทิยานิพนธ์หลกั : ผศ.ดร. กรุง สินอภิรมยส์ราญ, 47 หนา้.

 Hoang ณ

 ณ

ภาควชิา ณ ลายมือช่ือนิสิต
สาขาวชิา ณ ณ ลายมือช่ือ อ.ท่ีปรึกษาวทิยานิพนธ์หลกั
ปีการศึกษา 2555 g

v

5373805623 : MAJOR APPLIED MATHEMATICS AND COMPUTATIONAL SCIENCE
KEYWORDS : COMMUNICATION NETWORKS / NETWORK DESIGN AND
COMMUNICATION / PARTICLE SWARM OPTIMIZATION-BASED / ADAPTIVE INERTIA
WEIGHT / INITIAL POPULATION

THAKORN CHATCHAISATHAPORN : ADAPTIVE INERTIA WEIGHT PARTICLE
SWARM ALGORITHM. ADVISOR : ASST. PROF. KRUNG SINAPIROMSARAN,
Ph.D., 47 pp.

 An Optimum Communication Spanning Tree (OCST) problem is a problem of finding a
spanning tree of minimum total communication cost satisfying a given set of requirements of
communication. The popular technique for solving OCST problem is to use the heuristic
algorithm. The heuristic approach does successfully obtain good solutions in a reasonable
computational time. The particle swarm optimization-based (PSO) algorithm is one of the
heuristic algorithms for optimization problems. In this work, we extend the concept of the particle
swarm optimization-based (PSO) algorithm for the OCST problem proposed by Hoang et al. by
combining the concept of adaptive inertia weight strategy to the velocity update step. We
summarize the effect of the adaptive inertia weight over the proposed algorithm. In addition, we
also introduce a new pattern of population initialization. Our proposed algorithm yields a better
solution quality.

Department : Mathematics and Computer Science Student’s Signature
Field of Study : Applied Mathematics and Advisor’s Signature
 Computational Science s
Academic Year : 2012 g

vi

ACKNOWLEDGEMENTS

 I would like to express my gratitude to all those who gave me the possibility to complete this
thesis. I would like to thank the department of Mathematics and Computer Science of
Chulalongkorn University for giving me the opportunity to pursue and finally finish this master
education. I would like to express my deepest appreciation to my advisor, Asst. Prof. Dr. Krung
Sinapiromsaran, for his excellent supervision, constant support, and encouraging me in every way
and every step to complete my thesis.
 I am indebted to the thesis committee, Dr. Boonyarit Intiyot, Dr. Phantipa Thipwiwatpotjana, and
Assoc. Prof. Dr. Peerayuth Charnsethikul, for their contributions and invaluable advice. Special
thanks to Prof. Suchada Siripant, who had given me invaluable experiences of broadening my
vision in education and work, and Prof. Dr. Gerhard Reinelt, who introduced me to the OCST
problem and gave me helpful comments during my research period in the Discrete & Combinatorial
Optimization research group at University of Heidelberg. My thanks are extended to all members in
the research group especially to Stefan Wiesberg, Jens Fielenbach, and Stefan Lörwald for their
generous advice and guidance in programming implementation. Special thanks to Tuan Nam
Nguyen for helping me contact Vietnamese authors and forwarding me a collection of benchmark
instances. My master thesis could not be accomplished without them. I really appreciate them all.
 I would also like to thank Erasmus Mundus Mobility with Asia (EMMA) scholarship for giving
me an opportunity to do research in Germany for nine months. Another group of persons I cannot
fail to mention is the group of Thai students and EMMA beneficiaries in Heidelberg for their
hospitality, generosity, and support, especially to Nopporn Thamrongrat, Dr. Ratinan Boonklurb,
Dr. Apichat Suratanee. All of them made my stay in Heidelberg an unforgettable moment of my
life. I am very grateful to know them all.
 I would like to thank all my friends and colleagues in the AMCS program especially to
Wacharasak Siriseriwan, Wasakorn Laesanklang, Charoenchai Sirisomboonrat, Panote
Songwattanasiri, Suebkul Kanchanasuk, Aua-aree Boonperm, and the AMCS’53 group for their
useful advice, companionship, and encouragement.
 Last but not least, I would give a big thanks and love to my parents, Surachai and Jidapa
Chatchaisathaporn, for giving me unconditional love and continuous support.

CONTENTS

 Page
ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH v
ACKNOWLEDGEMENTS vi
CONTENTS vii
LIST OF TABLES viii
LIST OF FIGURES ix

CHAPTER I INTRODUCTION 1
 1.1 Objective 3
 1.2 Thesis overview 3

CHAPTER II LITERATURE REVIEW 4
 2.1 Optimum communication spanning tree problem 4
 2.2 Particle swarm optimization 10
 2.3 Particle swarm optimization with adaptive inertia weight 19

CHAPTER III ADAPTIVE INERTIA WEIGHT PARTICLE SWARM ALGORITHM

 FOR THE OCST PROBLEM 22
 3.1 Population initialization 22
 3.2 Velocity initialization 23
 3.3 The measure of dissimilarity between a pair of trees 23
 3.4 Adaptive inertia weight 25
 3.5 Flowchart 25

CHAPTER IV EXPERIMENTAL RESULTS 27

CHAPTER V CONCLUSION 39

REFERENCES 40
APPENDIX 43
BIOGRAPHY 47

viii

LIST OF TABLES

 Page

Table 1: The obtained solution (Total Communication Cost) for the OCST benchmark

 instances 29

Table 2: The percentage of gap between the obtained solution and the best known solution 29

ix

LIST OF FIGURES

 Page

Figure 2-1: Diagram represents the Palmer6 network 5

Figure 2-2: Diagram represents a spanning tree T extracted from the Palmer6 network 6

Figure 2-3: Diagram represents the Palmer6 network with weights 14

Figure 2-4: Diagram shows Step 1 of the decode phase for the Palmer6 network 14

Figure 2-5: Diagram shows Step 2 of the decode phase for the Palmer6 network 15

Figure 2-6: Flowchart shows the PSO algorithm 18

Figure 3-1:

T

k
1

, a tree extracted from the Palmer6 network 24

Figure 3-2:

T

k
2

, a tree extracted from the Palmer6 network 24

Figure 3-3: Flowchart shows our AIW-PSO algorithm for the OCST problem 26

Figure 4-1: The best obtained solutions using four algorithms for Palmer24 31

Figure 4-2: The best obtained solutions using four algorithms for Raidl50 31

Figure 4-3: The best obtained solutions using Li&Bouchebaba’s GA and our AIW-PSO for
Berry35u 32

Figure 4-4: Comparison graph shows obtained solutions of Palmer24 over iterations between

 O-PSO and AIW-PSO 33

Figure 4-5: Comparison graph shows obtained solutions of Raidl50 over iterations between

 O-PSO and AIW-PSO 33

Figure 4-6: Comparison graph shows obtained solutions of Raidl75 over iterations between

 O-PSO and AIW-PSO 34

Figure 4-7: The obtained solutions from various population size settings of Palmer24 35

Figure 4-8: The obtained solutions from various population size settings of Raidl75 35

x

Figure 4-9: The obtained solution of Palmer24 over iterations with reduced population size 36

Figure 4-10: The obtained solution of Raidl50 over iterations with reduced population size 36

Figure 4-11: The average value of obtained solutions of Palmer24 from PSO with Hoang’s

 initial pattern and with new initial pattern when population size is 50 37

Chapter I

Introduction

 Determining the optimal plan in constructing a telecommunication

infrastructure or a transportation network could be regarded as a challenging task as it

requires multi-dimensional management-competencies. This is known as the network

design problem. The network design problem (NDP) is a problem of extracting the

sub-network from a given network such that a budget constraint is satisfied and the

total cost of the extracted sub-network is minimized comparing to other possible sub-

networks [1]. The variations of the NDP were intensively reviewed by Magnanti and

Wong [2].

 The optimum communication spanning tree (OCST) problem is a particular

case of the network design problem. It is one of the well-known combinatorial

optimization problems widely studied by various optimization researchers across the

globe. The problem was introduced by Hu [3] in 1974. The goal of the OCST problem

is to find a spanning tree of the minimal total communication cost satisfying a given

set of communication requirements. Since the last decade, the problem has

increasingly gained more attention, as there is a broad range of applications in

telecommunication, transportation, and computer network. The OCST problem is

similar to the minimum spanning tree problem, but its constraint restriction made it

more complex and its optimal solution cannot be obtained within polynomial time. In

fact, it was proved to be NP-hard by Johnson et al. [4]. The application of the OCST

problem was described in [5] as the constructing of the telecommunication line based

on the tariffs of the German Telekom. In addition, identifying the OCST appears as a

subroutine in one of the network hub location problems, called the Tree-of-Hubs

Location Problem (THLP), which is a problem of locating a set of hubs and designing

hub network such that the set of hubs are connected in the tree form [6]. The THLP

can be applied in various areas such as the transshipment system, airline service and

communication network.

	
 2

 Since 1974, there are three main research directions for dealing with the

problem [7]. The first one is the approximation approach, which was proposed for

various types of the OCST, e.g., Peleg and Reshef [8], Wu et al. [9], and Sharma [10].

The second approach is to use the optimization technique to solve for the exact

solution of a small-size problem, for example, in [1], [11]. The last approach and the

most prominent one since the year 2000 is to apply the heuristic method which was

appeared in [12], [13] and [14]. Although most exact algorithms were based on the

branch-and-bound approaches and MIP formulation worked well on moderate size

networks, the algorithms is unsatisfactory for the larger networks [11]. Therefore, the

heuristic approach for the OCST problem is broadly discussed by many researchers,

as it was successful in obtaining the quality solution in a reasonable computational

time.

 Similar to other combinatorial optimization problems, the genetic algorithm,

one of the metaheuristic approaches, has been intellectually applied in searching for

the optimal solution of the OCST problem. The genetic algorithm (GA) was first

proposed by Holland [15] in 1975 and has been claimed that the algorithm yields

considerably good result in various types of problems, especially of combinatorial

optimization problems [12]. The motivation behind the genetic algorithm comes from

the principle of evolution and natural selection. The most critical step in executing the

GA is how a candidate solution be represented. A solution in GA is usually

transformed to the chromosome-like structure, as referred to the encoding. For the

problem whose solution is in a form of tree structure, a number of tree representations

must be used as in [12]. However, Palmer [12] also introduced a new representation

called the node and link biased encoding. He claimed that his encoding is the best

among others as it could prevent the tree-cycle formation and it does cover the desired

search space of the solutions. The encoded solutions will be evolved by manipulating

the “reproduction operators”; which includes the selection, crossover, and mutation.

His work guided us to use an efficient way to represent a tree-structure solution.

 According to the innovative idea from Palmer’s work [12], Hoang et al. [16]

proposed a novel approach for the OCST problem, which was based on the particle

swarm optimization-based (PSO) technique with node biased encoding (NBE)

scheme. Their experimental results outperform the previous two results produced by

	
 3

Palmer’s GA [12] and Li and Bouchebaba’s GA [17] by obtaining a comparative

solution in a reasonable computational time. Improving their works to obtain the

optimal solution or near optimal solution based on Hoang et al.’s approach would be

aimed of this thesis.

 In this work, we extend the concept of the particle swarm optimization-based

algorithm of Hoang et al. [16] to the OCST problem by combining the concept of

adaptive inertia weight strategy to velocity update step. In addition, our proposed

algorithm is based on the fact that the best solution is biased toward a minimum

spanning tree and initialized particles make a strong impact on the final solution [18].

We include a 0,1-vector to the initialized population whose components are filled by

assigning 0 to an interior node and by assigning 1 to a leaf node. Executing our

algorithm on a set of standard benchmark instances will exhibit the applicability of

our approach to the OCST problem.

1.1 Objective
 We aim to obtain an improved solution quality from Hoang et al.’s novel

particle swarm optimization-based algorithm [16] for the optimum communication

spanning tree (OCST) problem by combining the new adaptive inertia weight strategy

proposed by Nickabadi et al. [19].

1.2 Thesis overview
 In Chapter 2, we will discuss the literature survey related to the network

design problem, the OCST problem including the problem definition, and the particle

swarm optimization. In Chapter 3, the main algorithm will be explained. In Chapter 4,

the experimental results will be presented and discussed. In Chapter 5, the conclusion

will be stated.

Chapter II

Literature review

 This chapter provides discussions among various publications related to the

OCST problem, the particle swarm optimization, and the adaptive inertia weight

strategies. The particle swarm optimization is explained mainly in OCST-applicable

viewpoint. Various methods of solution representation used for solving tree

optimization problem are also discussed.

2.1 Optimum communication spanning tree problem
 The optimum communication spanning tree (OCST) problem definitions and

details will be described as follows.

 Let G = (N , A) be an undirected weighted network, where N is a set of n

nodes and A is a set of m arcs. Let
aq denotes the q

th arc of the network that can be

written in the form
[iq , jq] , when q ∈ 0,1,2,…,m−1{ } . Let

diq jq

denotes the length of

aq , or the distance between nodes iq and jq , which is represented in the matrix

formD = [diq jq]n×n . We assume that the considering network is a complete graph;

otherwise, the infinity value will be assigned to the arcs that do not exist in the

network. Let rij denotes a communication requirement between nodes i and j , which

can be interpreted as the multiplicative path between a pair of nodes that are needed in

the real communication network. A set of communication requirement is represented

in the matrix form
R = [rij]n×n , where i ∈ 0,1,2,…,n−1{ } and j ∈ 0,1,2,…,n−1{ } .

 The communication cost
cij (T) for a pair of nodes i and j over a spanning

tree T is calculated as the product of the communication requirement to the length

(shortest distance) of the unique path between two nodes in T :

cij (T) = rij ⋅ dpq

[p,q]∈Path(i, j)
∑

	
 5

where Path(i, j) ={[vz ,vz+1]∈T | v1 = i,vẑ+1 = j, and z = 1,2,…, ẑ} denotes the unique

path between the nodes i and j over the spanning tree T , and ẑ denotes the number

of arcs on the unique path between the nodes i and j .

 Consider the Palmer6 network instance, which is a network consisting of six

nodes with a distance matrix

D =

0 16661 18083 21561 21099 13461
16661 0 5658 9194 8797 10440
18083 5658 0 7230 6899 11340
21561 9194 7230 0 4300 13730
21099 8797 6899 4300 0 13130
13461 10440 11340 13730 13130 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

and a communication requirement matrix

R =

0 1 1 1 1 2
1 0 10 3 4 3
1 10 0 5 6 2
1 3 5 0 31 2
1 4 6 31 0 2
2 3 2 2 2 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. The

network is shown in Figure 2-1 below.

Figure 2-1: Diagram represents the Palmer6 network	

0 1

2

3 4

5

	
 6

 For example, the distance between node 0 and node 1 is 16661 and the

distance between node 2 and node 4 is 6899. As it is treated as an undirected weighted

graph, the matrix D is symmetric, and the matrix R is also symmetric. For instance,

the communication requirement between node 0 and node 1 is 1, and the

communication requirement between node 2 and node 4 is 6.

 A spanning tree T , for example, extracted from the Palmer6 network, is

shown in Figure 2-2. The communication cost between node 1 and node 4 is

 c14(T) = r14 ⋅(d13 + d34) = 4 ⋅(9194+ 4300) = 53976 .

Figure 2-2: Diagram represents a spanning tree T extracted from the Palmer6

network	

 	

 Therefore, the total communication cost C(T) of a spanning tree T is

obtained by summing the communication cost over all pairs of nodes:

C(T) = cij (T)
i< j

i, j∈Q

∑

where Q denotes the set of all pairs of nodes of the spanning tree T .

 The goal of the OCST problem is to construct a spanning tree connecting all

nodes in N such that the total communication cost of the spanning tree is minimum

among all spanning trees of G.

0 1

2

3 4

5

	
 7

 In 1974, Hu [3] introduced a new type of spanning tree problems, which was

considered not only the distance dij between two nodes but also the requirement rij of

communication between a pair of nodes. However, Hu inspected only two specific

cases; when all distances were set to one unit, which was named as the “optimum

requirement spanning tree”, and when all requirements were set to one unit, which

was named as the “optimum distance spanning tree”. The concept of max-flow min-

cut theorem was employed in solving the first case while the motivation of

constructing the star-tree was used for the latter case.

 In 1987, the exact and heuristic algorithms for the OCST problem were

proposed by Ahuja and Murty [1]. For the exact algorithm, the branch-and-bound

method was used along with the new lower planes. To obtain the lower bound for the

branch-and-bound algorithm, the algorithm needs all weights for the lower plane,

which can be computed in O(n4) time. Accordingly, the computation is unacceptable

when dealing with a large network. For this reason, they also developed a heuristic

algorithm, which consists of two phases: the tree-building phase and the tree-

improvement phase. The tree-building phase was based on the greedy approach,

which the tree arcs were spanned through the least communication cost arcs, while the

tree-improvement phase was based on a local search method from the one tree-arc

exchange routine until all arcs were once examined. The two-phase heuristic

algorithm required O(n3) , so it would be more suitable for a large network. Besides,

they also presented a new heuristic algorithm called the “global heuristic algorithm”,

which was mainly based on the branch-and-bound algorithm with strategy for

modifying the lower bound value. They concluded that the lower bounding strategy

has a massive impact and the two-phase heuristic algorithm gives the excellent result.

 In 2006, Sharma introduced a pseudo-polynomial algorithm by constructing a

near optimum tree with the concept of cut-tree from Hu’s method [10]. The near

optimum tree concept is to consider the neighborhood of a tree that differs from it in

only one arc. The tree with minimum total communication cost among the

neighborhood is recorded as the near optimum tree. The pseudo-polynomial algorithm

is initialized by setting all arc distances to be equal to the smallest distance of the

considering network and the starting tree can be constructed by Hu’s max-flow min-

	
 8

cut method for the “Optimum requirement spanning tree problem”. For an arc which

is not in the current tree, the associated arc distance is undoubtedly increased to its

actual distance value as it will not affect the total cost of the tree. For a tree arc with

distance value which is less than the actual distance value, the current tree is updated

by exchanging (adding and then deleting) one arc that yields the minimum cost and

the associated arc distance is increased by computed delta. The algorithm would be

repeated until all arc distances reach their actual distance values. Moreover, when the

distances of the network satisfy the generalized triangular inequalities, another

algorithm which called OCSTP II, was used in constructing the near optimum tree.

The OCSTP II was similar to the first algorithm but, instead of
dij , all

rij were set to

be the smallest
rij at the beginning and then increased one at a time until all arcs

attain their actual
rij values. Although this paper does not show the running result on

the benchmark instances, the paper verifies that the pseudo-polynomial algorithm

requires O(M ⋅n4) , where M is the maximum arc distance of the network, and the

OCSTP II algorithm needs O(n3 ⋅m) .

 One of the first evolutionary algorithms for solving the OCST problem was

performed by Palmer [12] in 1994. Palmer introduced the genetic algorithm (GA) to

solve the OCST problem. He identified the appropriate encoding criteria in

representing the tree which would give the best result for the GA. Although various

tested encodings produced unimpressive results, the most encourage one, called node

and link biased encoding, had been experimented by assigning a weight, which is

called the bias value, to the node and/or the arc. Such encoding follows by the

intuition that certain node could be an interior node or a leaf node. However,

including the arc-biases in the encoding required the long schemata on a chromosome

and the sense of being whether an interior or leaf node could be reflected from the

node-bias value. So, Palmer ignored the effect of the arc-biases by setting the arc-bias

control parameter to zero. In other words, by his comment, the most appropriate

encoding for the GA was actually the node biased encoding. Their experiment with

such encoding provided better results than those obtained by any standard heuristic.

	
 9

 In 1999, Li and Bouchebaba [17] proposed the new genetic algorithm for the

OCST problem. Their algorithm had two enhancements from the Palmer’s GA. First,

Li and Bouchebaba’s algorithm did not deal with chromosome encoding-decoding on

nodes and/or links like Palmer’s algorithm did. A tree structure was used as a

chromosome of their GA to improve the searching ability. Second, the initial

population were created randomly based on Prim’s algorithm. They claimed that

doing so would result to the near-optimum initialized solution, which will definitely

be easier to reach the optimal solution by employing the crossovers and mutations as

shown in their computational results. However, their proposed idea produces

considerably large gap between the obtained solution and the best known solution in

most benchmark test instances.

 In 2007, Fischer and Merz introduced the new evolutionary algorithm (EA),

which used the local search within the EA [14], called Memetic Algorithm (MA).

However, the discussion of this work was mainly on the evaluation of various

recombination operators. In addition, various concepts of constructing the initial

population have been examined with both the Raidl-series instances and random

instances. The results show the advantage of their approach over previous works.

 In 2010, Hoang et al. [16] proposed a PSO-based algorithm for the OCST

problem. They notified the four main components of the algorithm. First, the most

important component was the spanning tree representation, which they employed the

node-biased encoding. Another component was the population initialization. The

algorithm started with a particle whose structure is a minimum spanning tree, other n

particles which corresponds to the star-shaped tree having one of the nodes as an

interior node, and other psize− (n+1) particles whose components were randomly

generated from real number between 0 and 1, where psize is a population size in the

algorithm. Another key component of PSO was the fitness function, which was

calculated as the proportion of the total communication cost of a tree. The termination

condition was required to stop the algorithm. By running on a number of OCST

benchmark instances, the algorithm produced improved results on most tested

instances. Nonetheless, the obtained solutions for instances with more than twenty

nodes were not impressive, as there were large gaps between the obtained solutions

and their corresponding best known solutions.

	
 10

 In 2011, Rothlauf [18] inspected the bias of the OCST benchmark test

instances. The study was based on the believe that if the elements of the heuristic

algorithm, e.g., the solution representation, the fitness function, the initial solutions,

and the search strategy, were designed by satisfying the specific characteristic of

individual problem, such heuristic algorithm can produce the high quality solution

and is titled as the biased modern heuristics. Rothlauf also reviewed various types of

solution representation for the OCST problem. That publication showed that the best

solution of the OCST problem was similar to MST and well-initiated solution could

lead to a near optimal solution. This is a motivation of introducing a new initial

particle generated by the minimum spanning tree to our proposed algorithm.

2.2 Particle swarm optimization
 Particle swarm optimization (PSO) algorithm is a population-based heuristic

optimization technique, which was originally presented by Kennedy and Eberhart [20]

in 1995. It is inspired by the concept of intelligent collective behavior of bird flocking

and fish schooling. The algorithm shares many commonalities with other evolutionary

algorithms such as Genetic Algorithm (GA). However, only the global version of the

PSO, such that particles moved toward position of the “particle best” position and

“global best” position in the hyperspace, had been introduced. Consequently, the

same authors also developed the local version such that, in addition to the “particle

best”, the position of the best solution among the nearest neighbor in the hyperspace,

called the “local best”, was considered instead [21]. By comparing to other

evolutionary-based optimizations, the PSO is easy to implement and has few

parameters to adjust. The key factors of the PSO algorithm in OCST problem are

explained below [16].

2.2.1 Spanning tree representation
 As mentioned earlier, representation of a solution is one of the major factors

that have a strong impact to the final result [12]. An effective encoding should possess

the following properties

	
 11

1. Representing all possible spanning trees

2. Unbiased

3. Capable of representing only trees

4. Easy to go back and forth between the encoded representation and the tree

representation

5. Employed with short, low order schemata

6. Possess locality

 There are various methods to represent the solution in the tree-structure, e.g.,

the characteristic vector encoding, the predecessor encoding, and the Prüfer number

[22]. There are different advantages and disadvantages among different

representations.

 For the characteristic vector encoding, the vector of the same size as the

number of arcs is used. The most expensive case occurs when the considering graph is

a complete graph by utilizing the vector of size n ⋅ (n−1)
2

, where n is the number of

arcs in the graph. Each component is filled by 1 if the corresponding arc is included in

the tree, otherwise, it is filled by 0. Since the desired solution is a spanning tree

having only n−1arcs, this encoding could be easily produced non-tree solution when

a number of 1s is more than n−1 , which guarantee that at least one cycle is formed.

This encoding performs well only on the small network.

 For the predecessor encoding, the predecessor of each node is recorded. The

probability to form the tree by this encoding is higher than using the characteristic

vector encoding. However, this encoding can still easily produces the non-tree

solution both in the initial population and during the evolution process.

 The Prüfer number, P(T) , uses string of size n− 2 to represent a spanning

tree, starting with the empty string and with the original tree, by recognizing the

predecessor of the lowest numbered leaf node of the current tree and then appending

the predecessor node number to the right-most digit of the constructing P(T) . When

the P(T) is updated, the lowest numbered leaf node and the arc connecting the node

and its predecessor are removed from further consideration. The process is repeated

until only two nodes remain for consideration, then the Prüfer number has been found.

	
 12

The encoding was developed as a one-to-one mapping between a spanning tree

solution and the Prüfer number. This encoding is produced only a tree and is

unbiased. However, this encoding possess low locality, as the offspring formed by

two good parents can be extremely different from the previous generation.

 In 2011, Rothlauf [18] reviewed various types of solution representation for

the OCST problem, including the category of direct representation which uses the

non-encoding tree structure in implementation, e.g., the edge-set encoding and the

NetDir encoding.

 The edge-set encoding uses a set of arcs to represent a tree [23]. Due to the

importance of population initialization in the heuristic algorithm, an algorithm for

producing random spanning trees, which can be considered as a function of the

recombination process among population, is required. Three different techniques, i.e.,

PrimRST, KruskalRST, and RandWalkRST, were tested. The PrimRST is based on

Prim’s algorithm for MST, but, instead of appending new arc with criteria of the least

cost arc, randomly choosing new appending arc which is adjacent to a node in the

constructing tree. Although the PrimRST is an easy way of constructing random

spanning trees, there is more chance to produce star trees. Moreover, the trees from

PrimRST are biased to some tree structure and some path structure such that are not

uniformly distributed. The KruskalRST is based on Kruskal’s algorithm for MST

except that an appending arc is chosen in random order. The same disadvantage as in

PrimRST occurs such that there is higher chance to produce some particular tree

structures than others. To avoid the bias behavior in initialization, the new method

based on random walk, called RandWalkRST, was brought to the process. By starting

at an arbitrary node in the graph, the tree is appended by randomly choosing adjacent

arc from the current node. When the new node is visited for the first time, such arc

will be connected to the constructing tree. The appending process is repeated until all

nodes of the considering network has been visited. The NetDir encoding is a method

of representing trees by deploying the algorithm directly to the native graph.

However, problem-specific operators are needed.

 Although performance of utilizing the direct representation is satisfactory,

discovering appropriate search operators that make the search space uniformly spread

is intricate.

	
 13

 For the OCST problem, Palmer [12] proposed the node and linked biased

encoding scheme, one of the classes of weighted linear chromosome representation

for spanning tree optimization problems. However, the node-only version of the

encoding was employed because it requires the string of size as short as the number of

nodes of the considered network, which is much less than the number of arcs, while

retain the basic concept behind this encoding. The node-biased encoding was

described as follows [16].

 Each spanning tree is represented by a vector of size n , where n is a number

of nodes in the network. Each component of a vector, which has its own label

correspond to one of n nodes of the networkG, is a real number between 0 and 1.

The details of encoding and decoding are given below.

 Encode phase: Each spanning tree T of the network G = (N,A) is represented

by n -component real vector b = (b0,b1,…,bn−1) , called weighted vector, where n is

the total number of nodes in G and bi ∈ [0,1] .

 Decode phase: Calculate a spanning tree corresponding to the weighted vector

b by the following steps

 Step 1 Construct the associated network ′G = (N , A) with modified distance

matrix

′D = [′diq jq

]n×n . It is computed from the following equation

′diq jq

= diq jq
− p ⋅dmax ⋅(biq

+ bjq
) (2.1)

where dmax is the maximum distance of any arcs of G , and p is the node biased

parameter which controls influence of the biases to the constructed tree.

 Step 2 Calculate a spanning tree T as the minimum spanning tree of the

associated network ′G using Prim’s algorithm [24].

 For example, we demonstrate the weighted vector b = (1,0,1,0.78,1,0.69) of

the Palmer6 network. Each weight value is assigned to the associated node as in the

Figure 2-3. The modified distances of the modified graph ′G are calculated following

the equations (2.1) and this step is represented in Figure 2-4. Then, the Prim’s

algorithm is used for extracting a minimum spanning tree from the ′G .

	
 14

Figure 2-3: Diagram represents the Palmer6 network with weights	

Figure 2-4: Diagram shows Step 1 of the decode phase for the Palmer6 network 	

	
 15

Figure 2-5: Diagram shows Step 2 of the decode phase for the Palmer6 network 	

 To apply the PSO algorithm to the OCST problem, a set of candidate solutions

has to be initiated, which will be explained in the next subsection. Each of a single

solution is a “bird”, as in the PSO algorithm called “particle”. Each particle is treated

as a point, represented by a vector “position”, in an n -dimensional space, where n is

the number of nodes in the network. A “swarm”, a set of particles in a current state

which is also known as a “population”, flies through the n -dimensional space in

which the position of each particle is improved according to its own experience and

the experience of its neighbors. To move a particle from one position to another, the

algorithm requires “velocity” to indicate how the particles should fly through the

search space.

 By following Palmer’s node-biased encoding described above, the position of

the k th particle (in the n -dimensional space) is represented as

xk = (xk 0 ,xk1,…,xk (n−1)) ,

where xkd ∈[ld ,ud],d ∈[0,n−1] and ld and ud are the lower and upper bounds of the

particle in the n -dimensional space. The velocity of the kth particle is represented as

vk = (vk 0 ,vk1,…,vk (n−1)) . Let newx[k] denotes the new position of the k th particle and

 currentx[k] denotes the current position of the k th particle. Let newv[k] denotes the

	
 16

new velocity of the k th particle and currentv[k] denotes the current velocity of

the k th particle.

 Each particle with any specific position posses a fitness value, which is

evaluated by the fitness function. In each iteration, each particle is updated by two

best values, i.e., pbest and lbest. The pbest value is the best value of the fitness

function that has been achieved so far by any particle, while the lbest value is the best

fitness value of all neighbor particles. The number of neighborhood is given by a user.

After finding the two best values, the kth particle updates its velocity and position by

the following equation	

newv[k]= currentv[k]+ c1 ⋅R1 ⋅(pbest[k]− currentx[k])
+ c2 ⋅R2 ⋅(lbest[k]− currentx[k])

 (2.2)

 newx[k]= currentx[k]+ newv[k] (2.3)

where R1 and R2 are two distinct random numbers in [0,1], and c1 and c2 are

acceleration constants.

2.2.2 Population initialization
 In Hoang et al.’s work, they initialized the first particle with one zero-vector,

which correspond to a MST according to non-modified distance matrix. Then, another

 n particles were motivated by the star-shaped tree having value 0 in only one

component, otherwise having value 1. All other psize− (n+1) particles were vectors

whose components were randomly generated real number from the interval [0,1] ,

where psize is a population size in the algorithm. Therefore, to maintain the full

concept of this initialization pattern, the population size should set larger than (n +1) .

In other words, psize− (n+1) must greater than zero.

2.2.3 Fitness function

Let Ck be the total communication cost of the kth particle.

Let Fk be the fitness value of the kth particle which was computed as

	
 17

Fk =
1
Ck

.

2.2.4 Termination condition
The termination condition was defined as the maximum number of iterations.

 The overview of the PSO algorithm is shown in Figure 2-6 below.

	
 18

Figure 2-6: Flowchart shows the PSO algorithm

	
 19

2.3 Particle swarm optimization with adaptive inertia weight
 Although the process of the original PSO algorithm gives particles appropriate

direction toward the optimal solution, it can be stuck on a local optimum in the case

when the first term of the velocity update equation, i.e., the currentv[k] term in the

equation (2.2), is near zero [25]. When the first term of the velocity update equation is

omitted, the flying space will be contracted to the current best solution which will

lead to the unpleasant result of a local optimum. The optimal solution can be reached

only when the optimal solution is one of the initial solutions. So, the principal role of

the currentv[k] term is to enhance the global search ability, which could lead to the

global optimum, whereas the role of the second and the third terms are to determine

the direction heading to the best position in history, which can be considered as a

local search.

 Shi and Eberhart [25] state “the balance between global and local search

throughout the course of a run is critical to the success of an optimization algorithm.”

Accordingly, they brought the inertia weight into the PSO algorithm in 1998 [25]. The

inertia weight (ω) is one of PSO’s parameters as global search and local search

balancing mechanism and is included in the velocity update equation as follows.

 Let kth be a particle, the velocity update equation is

newv[k]=ω ⋅currentv[k]+ c1 ⋅R1 ⋅(pbest[k]− currentx[k])
+ c2 ⋅R2 ⋅(lbest[k]− currentx[k])

 (2.4)

where R1 and R2 are two distinct random numbers in [0,1], and c1 and c2 are

acceleration constants and ω is an inertia weight.

 In their experiment, they tested on the two dimensional Schaffer’s function

with different inertia weight settings. The algorithm was run 30 times for each fixed

inertia weight. The number of iterations required in obtaining the optimal solution and

the number of runs that could not find the optimal solution within 4,000 iterations

were recorded. They found that the best range of inertia weight for this experiment is

in the range of (0.8,1.2) . However, the best performance in the experiment was

obtained by the time varying inertia weight, i.e., the linear decreasing function over

iterations. This could produce the best known solution in every single run and average

	
 20

number of iterations required until reaching the best known solution was lower than

those from the fixed constant inertia weights.

 Different strategies for determining the value of inertia weight during the

course of run have been widely discussed by many researchers. Using an appropriate

strategy of the inertia weight would improve algorithm performance in obtaining the

accurate solution. In 2011, Nickabadi et al. [19] reviewed various published inertia

weight strategies and proposed a new adaptive inertia weight strategy, which uses the

success rate of the swarm as its feedback parameter to determine the state of the

particles in the search space at each run. In terms of convergent speed and solution

accuracy, their new inertia weight strategy performed better on some test functions

than other previous works. In their review, the inertia weight strategies could be

classified into three main classes.

 1. Constant and random inertia weights

 In this class of the inertia weight, the inertia weight is fixed or is randomly

generated in a form of functions over all iterations. The advantage of the constant

inertia weight strategy is that it is easy to include into the velocity update equations;

however, this strategy is not suitable in a dynamic environment. The random inertia

weight is used for improving the search in a dynamic environment.

 2. Time varying inertia weights strategies

 The time varying inertia weight strategy has been used in most PSO algorithm.

The most notable one of this strategy is the linear decreasing inertia weight strategy.

In this strategy, the value of inertia weight is derived by the linear decreasing function

over iterations. The value of inertia weight is linearly decreasing from an initial value

to a final value.

 3. Adaptive inertia weights

 In this strategy, the inertia weight is updated according to the feedback

parameter on each iteration. Various feedback parameter has been proposed over the

decades; however, Nickabadi et al. proposed the new adaptive inertia weight, which

uses the percentage of the success of the swarm as feedback parameter. By running

PSO algorithms with various inertia weight strategies on a number of benchmark

functions, Nickabadi et al.’s new adaptive inertia weight produces improved solutions

	
 21

comparing to previous inertia weight strategies in terms of both convergence speed

and solution accuracy [19].

 The success of the kth particle at iteration t is defined as

S(k,t) =
1 if fitness(pbest[k]t) > fitness(pbest[k]t−1)

0 if fitness(pbest[k]t) ≤ fitness(pbest[k]t−1)

⎧
⎨
⎪

⎩⎪

 Therefore, the percentage of success of the swarm at iteration t is defined as

 PS (t) =
S(k, t)

k=0

psize−1

∑
psize

 The linear function is used for determining the inertia weight of iteration t

 ω (t) = (ωmax −ωmin)PS (t)+ωmin .

 As far as we know the OCST problem, the PSO algorithm, and the idea of the

recently proposed adaptive inertia weight strategy, combining the new adaptive inertia

weight into the velocity update equations would yield improved results. In the next

chapter, the main algorithm of our proposed AIW-PSO algorithm for the OCST

problem will be explained.

Chapter III

Adaptive inertia weight

particle swarm algorithm

for the OCST problem

 Our proposed algorithm, which is called AIW-PSO algorithm, is based on

Hoang et al.’s PSO algorithm as it was confirmed to be superior to two previous

algorithms: Palmer’s GA and Li and Bouchebaba’s GA. Representation of the

solution, calculation of fitness function, and termination condition is adopted from

Hoang et al.’s work. The primary components, i.e., population initialization, velocity

initialization, and measurement of dissimilarity between a pair of trees, of our

algorithm will be explained below.

3.1 Population initialization
 We use similar population initialization patterns by Hoang et al., except only

one random particle will be replaced with the new 0,1-vector. As summarized by

Rothlauf [18] that the best solution for the OCST is biased toward minimum spanning

tree (MST) and good initial particle is a MST which can steer toward the optimal

solution.

 We adopt one initial particle which have a crucial effect on the final solution

accuracy. We substitute one random vector with the 0,1-vector derived from the

solved MST from original distances. We extract the degree of each node on the MST.

If degree of node v is greater than 1, then the corresponding component will be set to

0, otherwise it is set to 1. The motivation behind this 0,1-vector is, with the node-

biased encoding, the low weighted node has a tendency to be an interior node while

the high weighted node tends to be a leaf node.

	
 23

3.2 Velocity initialization
 As far as we concern, the velocity at the initial iteration should not be random

because the initial random velocity would destroy the randomness of the well-planned

patterns of the initial particles, while starting with zero velocity will immediately steer

the particles toward the best fitness particles at the first iteration. In addition, the

study of velocity initialization by Engelbrecht [26] in 2012 concludes that “initial

velocities should be set to zero, or small random values close to zero.” Accordingly,

we set the initial velocity as zero vectors.

3.3 The measure of dissimilarity between a pair of trees
 Before we obtain the local best position of kth particle for updating the

velocity, we need to know the distance between each pair of solutions, which is

indeed a pair of trees, in the search space. As the definition of the measure of

dissimilarity was not mentioned in Hoang et al.’s work and we cannot use ordinary

arithmetic with the tree structure solutions, so we make a new, but intuitive, way of

measuring such dissimilarities. Because the solution of the OCST problem is actually

a spanning tree, each tree structure solution has remembered its own associated arcs,

which consists of n−1 arcs, when the number of nodes in the considered network is

 n .

 The dissimilarity between any two trees is defined as a positive difference of

the sum of the distances of their associated arcs of the two trees. The definition

means, when a tree arc exists on both trees, such arc will not affect to the dissimilarity

measure and this arc distance will not be included in dissimilarity value, otherwise the

arcs will be taken into the calculation.

 Let

Tk1

and

Tk2

be the tree solutions of k1
th particle and k2

th particle, respectively.

We all know that the

Tk1

consists of n−1 arcs, says

ak10 ,ak11,…,ak1(n−2) , and the

Tk2

consists of n−1arcs, says

ak2 0 ,ak21,…,ak2 (n−2) . The dissimilarity between

Tk1

and

Tk2

is

dak1h
h=0

n−2

∑ − dak2h
h=0

n−2

∑ , where

dakih

 is the original distance of associated arc of

Tki

.

	
 24

 For example, consider two trees,

Tk1

and

Tk2

, from Palmer6. They are

graphically represented in Figure 3-1 and Figure 3-2, respectively.

Figure 3-1:

Tk1

, a tree extracted from the Palmer6 network	

Figure 3-2:

Tk2

, a tree extracted from the Palmer6 network

 Refer to the distance matrix D showed in Section 2.1, the dissimilarity between

Tk1

and

Tk2

is (d05 + d12 + d13 + d15 + d34)− (d01 + d05 + d12 + d14 + d34) .

0 1

2

3 4

5

0 1

2

3 4

5

	
 25

3.4 Adaptive inertia weight
 We include the new adaptive inertia weight proposed by Nickabadi et al. The

new adaptive inertia weight strategy uses percentage of the success as feedback

parameter to determine the state of the particles in the search space at each iteration.

The percentage of the success of the swarm is already described in Section 2.3.

3.5 Flowchart
 To see the overview of the AIW-PSO algorithm for the OCST problem, we

represent the algorithm as a flowchart in Figure 3-3.

	
 26

Figure 3-3: Flowchart shows our AIW-PSO algorithm for the OCST problem

Chapter IV

Experimental results

 There are a number of OCST benchmark instances that had been used for

evaluating the algorithm efficiency. We test our AIW-PSO algorithm on ten OCST

benchmark instances. These are 6 nodes, 12 nodes, and 24 nodes networks from

Palmer; 10 nodes, 20 nodes, 50 nodes and 75 nodes networks from Raidl; and 6

nodes, 35 nodes (Berry35, Berry35u) networks from Berry. These instances can be

found in Rothlauf [5].

 The Palmer’s instances were created based on the actual data of the U.S.’s

inter-city transportation. The inter-city link cost was obtained from the tariff database,

while the inter-city requirements were generated based on a number of information

such as the population in each city and the distances between the cities. Another set of

OCST benchmark instances is from Raidl. The Raidl’s distance costs and

communication requirements were randomly generated with uniform distribution. The

third set of OCST benchmark instances is from Berry et al. All link costs in the

Berry35u were set to one, but the communication requirements were the same as the

Berry35. A number of parameters are determined as follows.

Designed parameters
Population size psize = 1000.

Maximum number of iteration Nmax = 500.

Node biased parameter p = 1.

From the velocity update equation (2.2), cognitive and social parameters c1 = 1 and

 c2 = 1.

Number of neighbors for local best (lbest) K = 3.

	
 28

 Our AIW-PSO algorithm is coded in C++ and run on 1.86 GHz Intel Core 2

Duo with 4GB RAM. Our initialization of the population size psize consumes

 O(psize ⋅n) as each particle requires n random values, also the same complexity for

the velocity update and position update. For the spanning tree decoding procedure,

step 1 obviously requires O(n2) as we have to compute the modified distances

between every possible pairs of nodes. Step 2 of the decoding procedure consumes

 O(n ⋅ log m) as we implement Prim’s algorithm by using min heap structure. For the

measure of dissimilarity between two trees, this part needs O(psize2 ⋅n) as we need to

calculate such dissimilarities between every pairs of trees from the whole population,

and, for a pair of trees, all (n−1) arcs for each tree is considered for the calculation.

To determine the local best for a particle, those dissimilarity values for the particle are

sorted by calling function qsort() from the standard library which needs

O(psize ⋅ log(psize)) for the average case. So, determining local best for the whole

population requires O(psize2 ⋅ log(psize)) . Therefore, the total complexity of our

algorithm with population size psize and maximum number of iterations Nmax is

 O(Nmax ⋅ psize ⋅(n2 + n ⋅ log m+ psize2 ⋅n+ psize2 ⋅ log(psize)+ psize ⋅n)) =

 O(max{psize ⋅n2 , psize3 ⋅n}) .

 The algorithm is tested on each instance for five times. The most often

occurred best solution of five runs was recorded as an “obtained solution” for each

instance. However, some previous algorithms were not tested on all available OCST

benchmark instances; for example, Hoang’s PSO was not tested on Berry35 and

Berry35u. So, “n/a” will be reported. The numerical results are presented in Table 1.

 Table 1 shows that our algorithm is as good as Hoang’s algorithm as both

algorithms produce best known solutions for Palmer6, Palmer12, Raidl10, Raidl20,

and Berry6. In addition, our algorithm yields the obtained solutions which being

closer to the best known solutions for Palmer24 and Raidl50 and produces best known

solutions for the Berry35 and Berry35u, which was not mentioned in Hoang et al.’s

paper.

	
 29

Table 1: The obtained solution (Total Communication Cost)
for the OCST benchmark instances

Instances Best known
solution

Palmer’s
GA

Li &
Bouchebaba’s

GA

Hoang’s
PSO AIW-PSO

Palmer6 693,180 709,770 708,090 693,180 693,180*

Palmer12 3,428,509 3,876,488 3,457,952 3,428,509 3,428,509*

Palmer24 1,086,656 1,959,790 1,086,656 1,138,360 1,088,154

Raidl10 53,674 58,352 53,674 53,674 53,674*

Raidl20 157,570 165,788 157,570 157,570 157,570*

Raidl50 806,864 911,987 964,140 826,499 809,311

Raidl75 1,717,491 n/a n/a n/a 1,730,153

Berry6 534 534 534 534 534*

Berry35 16,915 n/a 16,915 n/a 16,915*

Berry35u 16,273 n/a 16,420 n/a 16,273*
 (* denotes the best known solution for each instance)

Table 2: The percentage of gap between the obtained solution
and the best known solution

Instances Palmer’s
GA

Li &
Bouchebaba’s

GA

Hoang’s
PSO AIW-PSO

Palmer6 2.3933% 2.1510% 0.0000% 0.0000%

Palmer12 13.0663% 0.8588% 0.0000% 0.0000%

Palmer24 80.3505% 0.0000% 4.7581% 0.1379%

Raidl10 8.7156% 0.0000% 0.0000% 0.0000%

Raidl20 5.2155% 0.0000% 0.0000% 0.0000%

Raidl50 13.0286% 19.4923% 2.4335% 0.3033%

Raidl75 n/a n/a n/a 0.7372%

Berry6 0.0000% 0.0000% 0.0000% 0.0000%

Berry35 n/a 0.0000% n/a 0.0000%

Berry35u n/a 0.9033% n/a 0.0000%

	
 30

 To assure the effectiveness of our algorithm, we present our results by the

percent improvement. The percent improvement of an algorithm on an instance is

measured by the percentage of the gap between the obtained solution and the best

known solution of an instance. The best known solutions can be found in [18]. Such

measurement means that the less of the percentage of gap is, the more effectiveness of

the algorithm posses. The percentage of gap of each instance is presented in Table 2.

 It can be easily seen that our AIW-PSO algorithm for the OCST problem

produces the most encouraging results for the tested benchmark instances. In Palmer

series, the best known solutions are achieved from Hoang’s and ours in Palmer6 and

Palmer12, whereas, in Palmer’s GA and Li&Bouchebaba’s GA, the gaps of 2.3933%

and 2.1510% are resulted for Palmer6, and the gaps of 13.0663% and 0.8588% are

recorded for Palmer12. The best algorithm for the Palmer24 is the Li&Bouchebaba’s

GA. Although our algorithm is not the best for the Palmer24, our obtained result gets

much closer to the best known solution with the gap of only 0.1379%. The

comparison on the Palmer instances is graphically represented in Figure 4-1. In Raidl

series, our algorithm produces the favorable results, especially in the Raidl50 and

Raidl75, as can be seen in Figure 4-2. Our AIW-PSO algorithm produces the same

best known solutions for Raidl10 and Raidl20, and the gaps of less than 1% for

Raidl50 and Raidl75. In Berry series, the solutions obtained by our algorithm are the

same as the best known solutions, while the Li&Bouchebaba’s GA creates the gap of

0.9033% for Berry35u. According to the absence of the Palmer’s GA and Hoang’s

PSO results on Berry35 and Berry35u, the comparison graph of the Berry series is

drawn from only Li&Bouchebaba’s GA and our AIW-PSO algorithm and is shown in

Figure 4-3.

	
 31

Figure 4-1: The best obtained solutions using four algorithms for Palmer24

Figure 4-2: The best obtained solutions using four algorithms for Raidl50

	
 32

Figure 4-3: The best obtained solutions using Li&Bouchebaba’s GA and our AIW-

PSO for Berry35u

 To see effect of the adaptive inertia weight on the PSO algorithm for the

OCST problem, we show the comparison graph of the obtained solution over

iterations from our standard PSO (with no adaptive inertia weight) and from the PSO

with adaptive inertia weight (AIW-PSO). However, the standard PSO we

implemented is not truly Hoang’s PSO as some components of the algorithm are

defined in our way because Hoang at al. had not given us such details. So, in this part

of experiment, the comparison between our standard PSO with no adaptive inertia

weight, which is called the O-PSO, and our proposed PSO with adaptive inertia

weight (AIW-PSO) will be discussed.

 Although we executed our algorithms on all ten OCST benchmark instances,

some instances will be omitted when we do the comparison because its best known

solution can be found in iteration 0 or iteration 1 as the convergence movement could

not be represented from the run. Therefore, we show the comparison graph of

Palmer24, Raidl50, and Raidl75 as in Figure 4-4, Figure 4-5, and Figure 4-6,

respectively.

	
 33

Figure 4-4: Comparison graph shows obtained solutions of Palmer24 over iterations

between O-PSO and AIW-PSO

	

Figure 4-5: Comparison graph shows obtained solutions of Raidl50 over iterations

between O-PSO and AIW-PSO

	

	

	

	

	
 34

	

Figure 4-6: Comparison graph shows obtained solutions of Raidl75 over iterations

between O-PSO and AIW-PSO	

 There is no major difference over iterations between O-PSO and AIW-PSO

for the OCST problem. The graphs indicate that the adaptive inertia weights do not

affect to the searching process with our designed parameter with population size of

1,000.

 To avoid the population size effect, we conduct further experiments by

reducing the population size to various values, i.e., 500, 100, 50 for the Palmer24, and

500, 100 for the Raidl75. We do not employ the population size of 50 to the Raidl75

as the population size must be greater than (n+1) . Results from this experiment are

displayed in Figure 4-7 and Figure 4-8.

 For the Palmer24 network, when population size is greater than 100, there is

no significant difference in the obtained solutions among different population size

setting. While the population size is reduced to only 50, the obtained solution is

considerably far from the best know solution as can be seen in Figure 4-7. For the

Raidl75 network, there is no critical variation when population size is greater than

500. When population size is reduced to 100, performance of the PSO algorithm is

greatly dropped. Therefore, population size is extremely important to the final

solution in PSO algorithm.

	
 35

Figure 4-7: The obtained solutions from various population size settings of Palmer24

	

Figure 4-8: The obtained solutions from various population size settings of Raidl75

 Accordingly, we reduce the population size of our AIW-PSO algorithm for the

Palmer24 to only 50 and present the comparison graph in Figure 4-9.

	
 36

Figure 4-9: The obtained solution of Palmer24 over iterations with reduced

population size	

 For Palmer24, O-PSO performs better than AIW-PSO until iteration 284

where AIW-PSO explores to the new global best region. Finally, the AIW-PSO

produces better obtained solution.

Figure 4-10: The obtained solution of Raidl50 over iterations with reduced

population size	

	
 37

 For Raidl50, the O-PSO obtained better solution after iteration 55 until

iteration 304. Afterwards, the solution from the AIW-PSO is better. Accordingly, we

can comprehend that when population size is large enough, adaptive inertia weights

cannot show their effect in the optimal search. But when population size is reduced,

the effect of the adaptive inertia weight is shown. Therefore, the beneficial of adaptive

inertia weight depends on population size in the AIW-PSO algorithm.

 In addition, we implement both O-PSO algorithm and AIW-PSO algorithm

with Palmer24 network and compare the results with Hoang’s initial pattern and with

the new initial pattern with population size of 50. The average values of the obtained

solutions are recorded and are used in comparison. Figure 4-11 shows that both PSO

algorithms with new initial pattern produce better results than those with Hoang’s

initial pattern. Therefore, this shows advantage of the new initial pattern when

population size is small.

Figure 4-11: The average value of obtained solutions of Palmer24 from PSO with

Hoang’s initial pattern and with new initial pattern when population size is 50	

	
 38

 In summary, both adaptive inertia weight and population initialization pattern

for PSO algorithm have a significant impact to PSO algorithm only when number of

population is small enough, otherwise, the effect of the population size dominates the

search process.

Chapter V

Conclusion

 We propose the improved version of the novel Particle Swarm Optimization-

based algorithm for the OCST problem. The process of our main algorithm is based

on Hoang et al.’s algorithm with the measure of dissimilarity between a pair of trees

defined as in this paper. We include the adaptive inertia weight strategy and revise the

particle initialization pattern, which affect the final solution of the particle search.

 Our AIW-PSO algorithm for the OCST problem yields better results and our

results assure our knowledge that initial population in heuristics-based algorithm have

obvious impact to the obtained solution at final run. Furthermore, if we look further

into the effect of our modifications, the adaptive inertia weight and the new

initialization pattern affirm their benefit over the PSO algorithm when population size

is small. Therefore, number of population in the PSO algorithm has a significant

impact to the particle search.

 The next step of our work is to test with more real world problems which fall

into the OCST problem area.

References

[1] Ahuja, R. K., Murty, V. V. S. Exact and Heuristic Algorithms for the Optimum

Communication Spanning Tree problem. Transportation Science, Vol.21, No.3,

August 1987. (1987). pp. 163-170.

[2] Magnanti, T. L. and Wong, R. T. Network Design and Transportation Planning:

Models and Algorithms. Transportation Science, Vol.18. (1984). pp. 1-55.

[3] Hu, T. C. Optimum Communication Spanning Trees. SIAM Journal on Computing

3(3). (1974). pp. 188-195.

[4] Johnson, D. S., Lenstra, J. K. and Kan, A. H. G. Rinnooy. The Complexity of the

Network Design Problem, Networks, 8. (1978). pp. 279-285.

[5] Rothlauf, F. Representations for genetic and evolutionary algorithms (2nd

edition). Springer. (2006).

[6] Contreras I, Fernández E, and Marín A. The tree of hubs location problem.

European Journal of Operational Research, Volume 202, Issue 2, 16 April 2010.

(2010). pp. 390–400.

[7] Contreras, I., Fernández, E., and Marín, A. Lagrangean bounds for the Optimum

Communication Spanning Tree Problem. An Official Journal of the Spanish

Society of Statistics and Operations Research (TOP), 18. (2010). pp. 140-157.

[8] Peleg, D. and Reshef, E. Deterministic polylog approximation for minimum

communication spanning trees. Lecture notes in computer science, vol. 1443.

Springer, Berlin. (1998). pp. 670–686.

[9] Wu, B. Y., Chao, K. M. and Tang, C. Y. Approximation Algorithms for Some

Optimum Communication Spanning Tree Problems. Discrete Applied

Mathematics, 102. (2000). pp. 245-266.

[10] Sharma, P. Algorithms for the optimum communication spanning tree problem.

Annals of Operations Research, March 2006, Volume 143, Issue 1. (2006). pp.

203-209.

[11] Dionne, R. and Florian, M. Exact and approximate algorithms for optimal

network design. Networks. Vol. 9. (1979). pp. 37-59.

	
 41

[12] Palmer, C. C. An approach to a problem in network design using genetic

algorithms. PhD Thesis. Polytechnic University, Computer Science Department,

Brooklyn, New York. 1994.

[13] Soak, S. M., A New Evolutionary Approach for the Optimal Communication

Spanning Tree Problem. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Science, Volume E89-A Issue 10, October 2006,

(2006). pp. 2882-2893.

[14] Fischer, T. and Merz, P. A Memetic Algorithm for the Optimum Communication

Spanning Tree Problem. Lecture Notes in Computer Science, Volume

4771/2007. (2007). pp. 170-184.

[15] Holland, J. H., Adaptation in Natural and Artificial Systems, Cambridge, MA:

MIT Press. Second edition (1992), (First edition, University of Michigan Press,

1975). 1975/ 1992.

[16] Hoang, A. T., Le, V. T., and Nguyen, N. G. A Novel Particle Swarm

Optimization – based Algorithm for the Optimal Communication Spanning Tree

problem. 2010 Second international Conference on Communication Software and

Networks. (2010). pp. 232-236.

[17] Li, Y. and Bouchebaba, Y. A new genetic algorithm for the optimal

communication spanning tree problem. Proceedings of Artificial Evolution: Fifth

European Conference. Berlin, Springer. (1999). pp. 162–173.

[18] Rothlauf, F. Design of Modern Heuristics. Natural Computing Series. (2010). pp.

185-220.

[19] Nickabadi, A., Ebadzadeh, M.M., and Safabakhsh, R. A novel particle swarm

optimization algorithm with adaptive inertia weight. Applied Soft Computing,

Volume 11, Issue 4, June 2011. (2011). pp. 3658–3670.

[20] Kennedy, J. and Eberhart, R. Particle swarm optimization. Proceedings of the

IEEE International Conference on Neural Networks, Perth, Australia, Vol. 4.

(1995). pp. 1942-1948.

[21] Eberhart, R. and Kennedy, J. A new optimizer using particle swarm theory.

Proceedings of the Sixth International Symposium on Micro Machine and Human

Science, Nagoya, Japan. (1995). pp. 39-43.

	
 42

[22] Palmer, C. C. and Kershenbaum, A. Representing trees in genetic algorithms. In

Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE

World Congress on Computational Intelligence, Date of Conference: 27-29 Jun

1994, vol.1. (1994). pp. 379-384.

[23] Raidl, G. R. and Julstrom, B. A. Edge-Sets: An Effective Evolutionary Coding of

Spanning Trees. Evolutionary Computation, IEEE Transactions on, Date of

Publication: June 2003, Volume 7, Issue 3. (2003). pp. 225- 239.

[24] Prim, R. C. Shortest connection networks and some generalizations. Bell System

Technical Journal, 36. (1957). pp. 1389–1401.

[25] Shi, Y. and Eberhart, R., A modified particle swarm optimizer. Proceedings of

IEEE International Conference on Evolutionary Computation, Anchorage,

Alaska, (1998). pp. 69-73.

[26] Engelbrecht, A. Particle Swarm Optimization: Velocity Initialization. 2012 IEEE

Congress on Evolutionary Computation (CEC). Date of Conference: 10-15 June

2012. (2012). pp. 1- 8.

Appendix

	
 44

Appendix
Pseudocode of AIW-PSO

/* Read input data */

Read n; // number of nodes in the original network

Read matrixD[i][j]; // distance matrix element

Read matrixR[i][j]; // requirement matrix element

/* Determine maximum distance in the distance matrix */

max_edge;

/* Determine degree of each node from minimum spanning tree (MST) from original distance */

PrimMST(matrixD) // find the MST using Prim’s algorithm

/* Designed parameter */

population_size = 1,000;

knearest = 3; // for determining local best

maxIter = 500 // maximum number of iteration

/* Algorithm */

Initialize gbestValue = (max_edge)5; // global best value

Initialize iter = 0;

Initialize w = 1; // inertia weight for the iter=0

For (k=1 to population_size) // Initialization step

 Initialize currentposition[k]; // vector size n

 Initialize currentvelocity[k] = 0; // vector size n

 Initialize particle[k] = currentposition[k];

 Initialize pbest[k] = particle[k];

EndFor

While (iter < maxIter)

 success_count = 0; // count of success(for computing inertia weight)

 para2 = 1; // the node-biased parameter for the modified matrix

 k = 0;

 While (k < population_size)

 /*Calculate fitness value of the particle ‘k’ */

 for i=1 to n

 for j=1 to n

 modifiedD[i][j] = matrixD[i][j] + (para2*(currentposition[k][i] +

currentposition[k][j])*max_edge);

 EndFor

	
 45

 EndFor

 PrimMST(k, modifiedD); // find the MST using Prim’s algorithm

 Print TCC[k]; // Total communication cost of the MST

 fitness[k] = 1/TCC[k];

 /* If the fitness value is better than the best fitness value in history, then set the

current value as the new pBest */

 if (iter > 0)

 if (fitness[k] > pbestValueCurrent[k])

 success_count = success_count + 1;

 pbestValueNew[k] = fitness[k];

 For y=1 to n

 pbest[k][y] = currentPosition[k][y];

 EndFor

 If (TCC[k] < gbestValue) // update global best value

 gbestValue = TCC[k];

 gbestIndex = k;

 gbestIter = iter;

 For y=1 to n // update global best position

 gbest[y] = currentPosition[gbestIndex][y];

 EndFor

 EndIf

 else pbestValueNew[k] = pbestValueCurrent[k];

 else {

 pbestValueNew[k] = fitness[k];

 If (TCC[k] < gbestValue) // update global best value

 gbestValue = TCC[k];

 gbestIndex = k;

 gbestIter = iter;

 For y=1 to n // update global best position

 gbest[y] = currentPosition[gbestIndex][y];

 EndFor

 EndIf

 pbestValueCurrent[k] = pbestValueNew[k];

 }

 EndIf

 k = k + 1;

 EndWhile

	
 46

 /* Find percentage of success*/

 percentage_success = success_count/ population_size;

 w_min = 0;

 w_max = 1;

 w = ((w_max – w_min)*percentage_success) + w_min;

 /* Choose the particle with the best fitness value of all the neighbor particles as the lbest */

 For a=1 to population_size

 For b=1 to population_size

 Compute farness[a][b]; // as described in subsection 3.3

 EndFor

 EndFor

 For a=1 to population_size

 findlocalbest(a, knearest, farness);

 EndFor

 /* Update particles */

 iter = iter + 1;

 For a=1 to population_size

 /* Calculate particle velocity */

 For r=1 to n

 newvelocity[a][r] = w*currentvelocity[a][r] + (1*rand01*(pbest[a][r] -

currentposition[a][r])) + (1*rand02*(lbest[a][r] - currentposition[a][r]));

 EndFor

 /* Update particle position */

 For j=1 to n

 newposition[a][j] = currentposition[a][j] + newvelocity[a][j];

 EndFor

 EndFor

EndWhile

	
 47

Biography

Name: Thakorn Chatchaisathaporn

Date of birth: 26 September 1982

Place of birth: Bangkok, Thailand

Education degree:
 - Year 2005: Bachelor of Science in Mathematics, Chulalongkorn University,
Thailand

Publication:
 - 14-16 Mar 2013: 18th Annual Meeting in Mathematics, IMPROVED PARTICLE
SWARM ALGORITHM BY MINIMUM SPANNING TREE FOR THE OPTIMAL
COMMUNICATION SPANNING TREE PROBLEM

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	CHAPTER I INTRODUCTION
	1.1 Objective
	1.2 Thesis overview

	CHAPTER II LITERATURE REVIEW
	2.1 Optimum communication spanning tree problem
	2.2 Particle swarm optimization
	2.3 Particle swarm optimization with adaptive inertia weight

	CHAPTER III ADAPTIVE INERTIA WEIGHT PARTICLE SWARM ALGORITHMFOR THE OCST PROBLEM
	3.1 Population initialization
	3.2 Velocity initialization
	3.3 The measure of dissimilarity between a pair of trees
	3.4 Adaptive inertia weight
	3.5 Flowchart

	CHAPTER IV EXPERIMENTAL RESULTS
	CHAPTER V CONCLUSION
	References
	Appendix
	Vita

