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Chapter I 

Introduction 
 

 Determining the optimal plan in constructing a telecommunication 

infrastructure or a transportation network could be regarded as a challenging task as it 

requires multi-dimensional management-competencies. This is known as the network 

design problem. The network design problem (NDP) is a problem of extracting the 

sub-network from a given network such that a budget constraint is satisfied and the 

total cost of the extracted sub-network is minimized comparing to other possible sub-

networks [1]. The variations of the NDP were intensively reviewed by Magnanti and 

Wong [2]. 

 The optimum communication spanning tree (OCST) problem is a particular 

case of the network design problem. It is one of the well-known combinatorial 

optimization problems widely studied by various optimization researchers across the 

globe. The problem was introduced by Hu [3] in 1974. The goal of the OCST problem 

is to find a spanning tree of the minimal total communication cost satisfying a given 

set of communication requirements. Since the last decade, the problem has 

increasingly gained more attention, as there is a broad range of applications in 

telecommunication, transportation, and computer network. The OCST problem is 

similar to the minimum spanning tree problem, but its constraint restriction made it   

more complex and its optimal solution cannot be obtained within polynomial time. In 

fact, it was proved to be NP-hard by Johnson et al. [4]. The application of the OCST 

problem was described in [5] as the constructing of the telecommunication line based 

on the tariffs of the German Telekom. In addition, identifying the OCST appears as a 

subroutine in one of the network hub location problems, called the Tree-of-Hubs 

Location Problem (THLP), which is a problem of locating a set of hubs and designing 

hub network such that the set of hubs are connected in the tree form [6]. The THLP 

can be applied in various areas such as the transshipment system, airline service and 

communication network. 
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 Since 1974, there are three main research directions for dealing with the 

problem [7]. The first one is the approximation approach, which was proposed for 

various types of the OCST, e.g., Peleg and Reshef [8], Wu et al. [9], and Sharma [10]. 

The second approach is to use the optimization technique to solve for the exact 

solution of a small-size problem, for example, in [1], [11]. The last approach and the 

most prominent one since the year 2000 is to apply the heuristic method which was 

appeared in [12], [13] and [14]. Although most exact algorithms were based on the 

branch-and-bound approaches and MIP formulation worked well on moderate size 

networks, the algorithms is unsatisfactory for the larger networks [11]. Therefore, the 

heuristic approach for the OCST problem is broadly discussed by many researchers, 

as it was successful in obtaining the quality solution in a reasonable computational 

time. 

 Similar to other combinatorial optimization problems, the genetic algorithm, 

one of the metaheuristic approaches, has been intellectually applied in searching for 

the optimal solution of the OCST problem. The genetic algorithm (GA) was first 

proposed by Holland [15] in 1975 and has been claimed that the algorithm yields 

considerably good result in various types of problems, especially of combinatorial 

optimization problems [12]. The motivation behind the genetic algorithm comes from 

the principle of evolution and natural selection. The most critical step in executing the 

GA is how a candidate solution be represented. A solution in GA is usually 

transformed to the chromosome-like structure, as referred to the encoding. For the 

problem whose solution is in a form of tree structure, a number of tree representations 

must be used as in [12]. However, Palmer [12] also introduced a new representation 

called the node and link biased encoding. He claimed that his encoding is the best 

among others as it could prevent the tree-cycle formation and it does cover the desired 

search space of the solutions. The encoded solutions will be evolved by manipulating 

the “reproduction operators”; which includes the selection, crossover, and mutation. 

His work guided us to use an efficient way to represent a tree-structure solution. 

 According to the innovative idea from Palmer’s work [12], Hoang et al. [16] 

proposed a novel approach for the OCST problem, which was based on the particle 

swarm optimization-based (PSO) technique with node biased encoding (NBE) 

scheme. Their experimental results outperform the previous two results produced by 



	
   3 

Palmer’s GA [12] and Li and Bouchebaba’s GA [17] by obtaining a comparative 

solution in a reasonable computational time. Improving their works to obtain the 

optimal solution or near optimal solution based on Hoang et al.’s approach would be 

aimed of this thesis.  

 In this work, we extend the concept of the particle swarm optimization-based 

algorithm of Hoang et al. [16] to the OCST problem by combining the concept of 

adaptive inertia weight strategy to velocity update step. In addition, our proposed 

algorithm is based on the fact that the best solution is biased toward a minimum 

spanning tree and initialized particles make a strong impact on the final solution [18]. 

We include a 0,1-vector to the initialized population whose components are filled by 

assigning 0 to an interior node and by assigning 1 to a leaf node. Executing our 

algorithm on a set of standard benchmark instances will exhibit the applicability of 

our approach to the OCST problem. 

 

1.1 Objective 
 We aim to obtain an improved solution quality from Hoang et al.’s novel 

particle swarm optimization-based algorithm [16] for the optimum communication 

spanning tree (OCST) problem by combining the new adaptive inertia weight strategy 

proposed by Nickabadi et al. [19]. 

 

1.2 Thesis overview 
 In Chapter 2, we will discuss the literature survey related to the network 

design problem, the OCST problem including the problem definition, and the particle 

swarm optimization. In Chapter 3, the main algorithm will be explained. In Chapter 4, 

the experimental results will be presented and discussed. In Chapter 5, the conclusion 

will be stated.  



Chapter II 

Literature review 
 

  This chapter provides discussions among various publications related to the 

OCST problem, the particle swarm optimization, and the adaptive inertia weight 

strategies. The particle swarm optimization is explained mainly in OCST-applicable 

viewpoint. Various methods of solution representation used for solving tree 

optimization problem are also discussed. 

 

2.1 Optimum communication spanning tree problem 
 The optimum communication spanning tree (OCST) problem definitions and 

details will be described as follows.  

 Let  G = (N , A)  be an undirected weighted network, where N is a set of n  

nodes and A is a set of m arcs. Let  
aq denotes the  q

th  arc of the network that can be 

written in the form   
[iq , jq ] , when    q ∈ 0,1,2,…,m−1{ } . Let

 
diq jq

denotes the length of 

 
aq , or the distance between nodes iq and jq ,  which is represented in the matrix 

formD = [diq jq ]n×n . We assume that the considering network is a complete graph; 

otherwise, the infinity value will be assigned to the arcs that do not exist in the 

network. Let rij  denotes a communication requirement between nodes i and j , which 

can be interpreted as the multiplicative path between a pair of nodes that are needed in 

the real communication network. A set of communication requirement is represented 

in the matrix form   
R = [rij ]n×n , where    i ∈ 0,1,2,…,n−1{ }  and    j ∈ 0,1,2,…,n−1{ } . 

 The communication cost   
cij (T )  for a pair of nodes  i  and j  over a spanning 

tree T is calculated as the product of the communication requirement to the length 

(shortest distance) of the unique path between two nodes in T : 

  
cij (T ) = rij ⋅ dpq

[ p,q]∈Path( i, j )
∑  
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where    Path(i, j) ={[vz ,vz+1]∈T | v1 = i,vẑ+1 = j,  and z = 1,2,…, ẑ}  denotes the unique 

path between the nodes  i  and j  over the spanning tree T , and   ẑ  denotes the number 

of arcs on the unique path between the nodes i  and j . 

 Consider the Palmer6 network instance, which is a network consisting of six 

nodes with a distance matrix 

  

  

D =

0 16661 18083 21561 21099 13461
16661 0 5658 9194 8797 10440
18083 5658 0 7230 6899 11340
21561 9194 7230 0 4300 13730
21099 8797 6899 4300 0 13130
13461 10440 11340 13730 13130 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

  

and a communication requirement matrix 

  

R =

0 1 1 1 1 2
1 0 10 3 4 3
1 10 0 5 6 2
1 3 5 0 31 2
1 4 6 31 0 2
2 3 2 2 2 0

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

. The 

network is shown in Figure 2-1 below. 

 

 
Figure 2-1: Diagram represents the Palmer6 network	
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 For example, the distance between node 0 and node 1 is 16661 and the 

distance between node 2 and node 4 is 6899. As it is treated as an undirected weighted 

graph, the matrix D is symmetric, and the matrix R is also symmetric. For instance, 

the communication requirement between node 0 and node 1 is 1, and the 

communication requirement between node 2 and node 4 is 6.  

 A spanning tree  T , for example, extracted from the Palmer6 network, is 

shown in Figure 2-2. The communication cost between node 1 and node 4 is 

  c14(T ) = r14 ⋅(d13 + d34 ) = 4 ⋅(9194+ 4300) = 53976 . 

 

 
Figure 2-2: Diagram represents a spanning tree  T  extracted from the Palmer6 

network	
  

 	
  

 Therefore, the total communication cost   C(T )  of a spanning tree  T  is 

obtained by summing the communication cost over all pairs of nodes: 

  

C(T ) = cij (T )
i< j

i, j∈Q

∑  

where Q  denotes the set of all pairs of nodes of the spanning tree   T . 

 The goal of the OCST problem is to construct a spanning tree connecting all 

nodes in  N such that the total communication cost of the spanning tree is minimum 

among all spanning trees of G.  

0 1 

2 

3 4 

5 
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 In 1974, Hu [3] introduced a new type of spanning tree problems, which was 

considered not only the distance dij between two nodes but also the requirement rij of 

communication between a pair of nodes. However, Hu inspected only two specific 

cases; when all distances were set to one unit, which was named as the “optimum 

requirement spanning tree”, and when all requirements were set to one unit, which 

was named as the “optimum distance spanning tree”. The concept of max-flow min-

cut theorem was employed in solving the first case while the motivation of 

constructing the star-tree was used for the latter case. 

 In 1987, the exact and heuristic algorithms for the OCST problem were 

proposed by Ahuja and Murty [1]. For the exact algorithm, the branch-and-bound 

method was used along with the new lower planes. To obtain the lower bound for the 

branch-and-bound algorithm, the algorithm needs all weights for the lower plane, 

which can be computed in   O(n4 ) time. Accordingly, the computation is unacceptable 

when dealing with a large network. For this reason, they also developed a heuristic 

algorithm, which consists of two phases: the tree-building phase and the tree-

improvement phase. The tree-building phase was based on the greedy approach, 

which the tree arcs were spanned through the least communication cost arcs, while the 

tree-improvement phase was based on a local search method from the one tree-arc 

exchange routine until all arcs were once examined. The two-phase heuristic 

algorithm required   O(n3) , so it would be more suitable for a large network. Besides, 

they also presented a new heuristic algorithm called the “global heuristic algorithm”, 

which was mainly based on the branch-and-bound algorithm with strategy for 

modifying the lower bound value. They concluded that the lower bounding strategy 

has a massive impact and the two-phase heuristic algorithm gives the excellent result. 

 In 2006, Sharma introduced a pseudo-polynomial algorithm by constructing a 

near optimum tree with the concept of cut-tree from Hu’s method [10]. The near 

optimum tree concept is to consider the neighborhood of a tree that differs from it in 

only one arc. The tree with minimum total communication cost among the 

neighborhood is recorded as the near optimum tree. The pseudo-polynomial algorithm 

is initialized by setting all arc distances to be equal to the smallest distance of the 

considering network and the starting tree can be constructed by Hu’s max-flow min-
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cut method for the “Optimum requirement spanning tree problem”. For an arc which 

is not in the current tree, the associated arc distance is undoubtedly increased to its 

actual distance value as it will not affect the total cost of the tree. For a tree arc with 

distance value which is less than the actual distance value, the current tree is updated 

by exchanging (adding and then deleting) one arc that yields the minimum cost and 

the associated arc distance is increased by computed delta. The algorithm would be 

repeated until all arc distances reach their actual distance values. Moreover, when the 

distances of the network satisfy the generalized triangular inequalities, another 

algorithm which called OCSTP II, was used in constructing the near optimum tree. 

The OCSTP II was similar to the first algorithm but, instead of   
dij ,  all  

rij were set to 

be the smallest  
rij  at the beginning and then increased one at a time until all arcs 

attain their actual  
rij values. Although this paper does not show the running result on 

the benchmark instances, the paper verifies that the pseudo-polynomial algorithm 

requires O(M ⋅n4 ) , where M  is the maximum arc distance of the network, and the 

OCSTP II algorithm needs O(n3 ⋅m) .  

 One of the first evolutionary algorithms for solving the OCST problem was 

performed by Palmer [12] in 1994. Palmer introduced the genetic algorithm (GA) to 

solve the OCST problem. He identified the appropriate encoding criteria in 

representing the tree which would give the best result for the GA. Although various 

tested encodings produced unimpressive results, the most encourage one, called node 

and link biased encoding, had been experimented by assigning a weight, which is 

called the bias value, to the node and/or the arc. Such encoding follows by the 

intuition that certain node could be an interior node or a leaf node. However, 

including the arc-biases in the encoding required the long schemata on a chromosome 

and the sense of being whether an interior or leaf node could be reflected from the 

node-bias value. So, Palmer ignored the effect of the arc-biases by setting the arc-bias 

control parameter to zero. In other words, by his comment, the most appropriate 

encoding for the GA was actually the node biased encoding. Their experiment with 

such encoding provided better results than those obtained by any standard heuristic. 
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 In 1999, Li and Bouchebaba [17] proposed the new genetic algorithm for the 

OCST problem. Their algorithm had two enhancements from the Palmer’s GA. First, 

Li and Bouchebaba’s algorithm did not deal with chromosome encoding-decoding on 

nodes and/or links like Palmer’s algorithm did. A tree structure was used as a 

chromosome of their GA to improve the searching ability. Second, the initial 

population were created randomly based on Prim’s algorithm. They claimed that 

doing so would result to the near-optimum initialized solution, which will definitely 

be easier to reach the optimal solution by employing the crossovers and mutations as 

shown in their computational results. However, their proposed idea produces 

considerably large gap between the obtained solution and the best known solution in 

most benchmark test instances. 

 In 2007, Fischer and Merz introduced the new evolutionary algorithm (EA), 

which used the local search within the EA [14], called Memetic Algorithm (MA). 

However, the discussion of this work was mainly on the evaluation of various 

recombination operators. In addition, various concepts of constructing the initial 

population have been examined with both the Raidl-series instances and random 

instances. The results show the advantage of their approach over previous works. 

 In 2010, Hoang et al. [16] proposed a PSO-based algorithm for the OCST 

problem. They notified the four main components of the algorithm. First, the most 

important component was the spanning tree representation, which they employed the 

node-biased encoding. Another component was the population initialization. The 

algorithm started with a particle whose structure is a minimum spanning tree, other n  

particles which corresponds to the star-shaped tree having one of the nodes as an 

interior node, and other   psize− (n+1)  particles whose components were randomly 

generated from real number between 0 and 1, where psize is a population size in the 

algorithm. Another key component of PSO was the fitness function, which was 

calculated as the proportion of the total communication cost of a tree. The termination 

condition was required to stop the algorithm. By running on a number of OCST 

benchmark instances, the algorithm produced improved results on most tested 

instances. Nonetheless, the obtained solutions for instances with more than twenty 

nodes were not impressive, as there were large gaps between the obtained solutions 

and their corresponding best known solutions. 
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 In 2011, Rothlauf [18] inspected the bias of the OCST benchmark test 

instances. The study was based on the believe that if the elements of the heuristic 

algorithm, e.g., the solution representation, the fitness function, the initial solutions, 

and the search strategy, were designed by satisfying the specific characteristic of 

individual problem, such heuristic algorithm can produce the high quality solution 

and is titled as the biased modern heuristics. Rothlauf also reviewed various types of 

solution representation for the OCST problem. That publication showed that the best 

solution of the OCST problem was similar to MST and well-initiated solution could 

lead to a near optimal solution. This is a motivation of introducing a new initial 

particle generated by the minimum spanning tree to our proposed algorithm. 

 

2.2 Particle swarm optimization 
 Particle swarm optimization (PSO) algorithm is a population-based heuristic 

optimization technique, which was originally presented by Kennedy and Eberhart [20] 

in 1995. It is inspired by the concept of intelligent collective behavior of bird flocking 

and fish schooling. The algorithm shares many commonalities with other evolutionary 

algorithms such as Genetic Algorithm (GA). However, only the global version of the 

PSO, such that particles moved toward position of the “particle best” position and 

“global best” position in the hyperspace, had been introduced. Consequently, the 

same authors also developed the local version such that, in addition to the “particle 

best”, the position of the best solution among the nearest neighbor in the hyperspace, 

called the “local best”, was considered instead [21]. By comparing to other 

evolutionary-based optimizations, the PSO is easy to implement and has few 

parameters to adjust. The key factors of the PSO algorithm in OCST problem are 

explained below [16]. 

 

2.2.1 Spanning tree representation 
 As mentioned earlier, representation of a solution is one of the major factors 

that have a strong impact to the final result [12]. An effective encoding should possess 

the following properties 

 



	
   11 

1. Representing all possible spanning trees 

2. Unbiased 

3. Capable of representing only trees 

4. Easy to go back and forth between the encoded representation and the tree 

representation 

5. Employed with short, low order schemata 

6. Possess locality 

 

 There are various methods to represent the solution in the tree-structure, e.g., 

the characteristic vector encoding, the predecessor encoding, and the Prüfer number 

[22]. There are different advantages and disadvantages among different 

representations.  

 For the characteristic vector encoding, the vector of the same size as the 

number of arcs is used. The most expensive case occurs when the considering graph is 

a complete graph by utilizing the vector of size n ⋅ (n−1)
2

, where n  is the number of 

arcs in the graph. Each component is filled by 1 if the corresponding arc is included in 

the tree, otherwise, it is filled by 0. Since the desired solution is a spanning tree 

having only n−1arcs, this encoding could be easily produced non-tree solution when 

a number of 1s is more than n−1 , which guarantee that at least one cycle is formed. 

This encoding performs well only on the small network. 

 For the predecessor encoding, the predecessor of each node is recorded. The 

probability to form the tree by this encoding is higher than using the characteristic 

vector encoding. However, this encoding can still easily produces the non-tree 

solution both in the initial population and during the evolution process.  

 The Prüfer number,   P(T ) , uses string of size n− 2  to represent a spanning 

tree, starting with the empty string and with the original tree, by recognizing the 

predecessor of the lowest numbered leaf node of the current tree and then appending 

the predecessor node number to the right-most digit of the constructing  P(T ) . When 

the   P(T )  is updated, the lowest numbered leaf node and the arc connecting the node 

and its predecessor are removed from further consideration. The process is repeated 

until only two nodes remain for consideration, then the Prüfer number has been found. 
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The encoding was developed as a one-to-one mapping between a spanning tree 

solution and the Prüfer number. This encoding is produced only a tree and is 

unbiased. However, this encoding possess low locality, as the offspring formed by 

two good parents can be extremely different from the previous generation. 

 In 2011, Rothlauf [18] reviewed various types of solution representation for 

the OCST problem, including the category of direct representation which uses the 

non-encoding tree structure in implementation, e.g., the edge-set encoding and the 

NetDir encoding.  

 The edge-set encoding uses a set of arcs to represent a tree [23]. Due to the 

importance of population initialization in the heuristic algorithm, an algorithm for 

producing random spanning trees, which can be considered as a function of the 

recombination process among population, is required. Three different techniques, i.e., 

PrimRST, KruskalRST, and RandWalkRST, were tested. The PrimRST is based on 

Prim’s algorithm for MST, but, instead of appending new arc with criteria of the least 

cost arc, randomly choosing new appending arc which is adjacent to a node in the 

constructing tree. Although the PrimRST is an easy way of constructing random 

spanning trees, there is more chance to produce star trees. Moreover, the trees from 

PrimRST are biased to some tree structure and some path structure such that are not 

uniformly distributed. The KruskalRST is based on Kruskal’s algorithm for MST 

except that an appending arc is chosen in random order. The same disadvantage as in 

PrimRST occurs such that there is higher chance to produce some particular tree 

structures than others. To avoid the bias behavior in initialization, the new method 

based on random walk, called RandWalkRST, was brought to the process. By starting 

at an arbitrary node in the graph, the tree is appended by randomly choosing adjacent 

arc from the current node. When the new node is visited for the first time, such arc 

will be connected to the constructing tree. The appending process is repeated until all 

nodes of the considering network has been visited. The NetDir encoding is a method 

of representing trees by deploying the algorithm directly to the native graph. 

However, problem-specific operators are needed. 

 Although performance of utilizing the direct representation is satisfactory, 

discovering appropriate search operators that make the search space uniformly spread 

is intricate. 
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 For the OCST problem, Palmer [12] proposed the node and linked biased 

encoding scheme, one of the classes of weighted linear chromosome representation 

for spanning tree optimization problems. However, the node-only version of the 

encoding was employed because it requires the string of size as short as the number of 

nodes of the considered network, which is much less than the number of arcs, while 

retain the basic concept behind this encoding. The node-biased encoding was 

described as follows [16]. 

 Each spanning tree is represented by a vector of size  n , where n  is a number 

of nodes in the network. Each component of a vector, which has its own label 

correspond to one of  n  nodes of the networkG,  is a real number between 0 and 1. 

The details of encoding and decoding are given below. 

 Encode phase: Each spanning tree T of the network G = (N,A) is represented 

by n -component real vector b = (b0,b1,…,bn−1) , called weighted vector, where n  is 

the total number of nodes in G  and bi ∈ [0,1] . 

 Decode phase: Calculate a spanning tree corresponding to the weighted vector 

b  by the following steps 

  Step 1 Construct the associated network   ′G = (N , A) with modified distance 

matrix 
  
′D = [ ′diq jq

]n×n . It is computed from the following equation 

   
  
′diq jq

= diq jq
− p ⋅dmax ⋅(biq

+ bjq
)                            (2.1) 

where   dmax  is the maximum distance of any arcs of  G , and  p is the node biased 

parameter which controls influence of the biases to the constructed tree.  

  Step 2 Calculate a spanning tree  T as the minimum spanning tree of the 

associated network  ′G using Prim’s algorithm [24].  

 For example, we demonstrate the weighted vector   b = (1,0,1,0.78,1,0.69)  of 

the Palmer6 network. Each weight value is assigned to the associated node as in the 

Figure 2-3. The modified distances of the modified graph ′G are calculated following 

the equations (2.1) and this step is represented in Figure 2-4. Then, the Prim’s 

algorithm is used for extracting a minimum spanning tree from the  ′G .  
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Figure 2-3: Diagram represents the Palmer6 network with weights	
  

 

 

 
Figure 2-4: Diagram shows Step 1 of the decode phase for the Palmer6 network 	
  

 



	
   15 

 
Figure 2-5: Diagram shows Step 2 of the decode phase for the Palmer6 network 	
  

 

 To apply the PSO algorithm to the OCST problem, a set of candidate solutions 

has to be initiated, which will be explained in the next subsection. Each of a single 

solution is a “bird”, as in the PSO algorithm called “particle”. Each particle is treated 

as a point, represented by a vector “position”, in an n -dimensional space, where n  is 

the number of nodes in the network. A “swarm”, a set of particles in a current state 

which is also known as a “population”, flies through the n -dimensional space in 

which the position of each particle is improved according to its own experience and 

the experience of its neighbors. To move a particle from one position to another, the 

algorithm requires “velocity” to indicate how the particles should fly through the 

search space.  

 By following Palmer’s node-biased encoding described above, the position of 

the k th particle (in the  n -dimensional space) is represented as 
   
xk = (xk 0 ,xk1,…,xk (n−1) ) , 

where   xkd ∈[ld ,ud ],d ∈[0,n−1]  and  ld  and  ud are the lower and upper bounds of the 

particle in the n -dimensional space. The velocity of the kth  particle is represented as 

   
vk = (vk 0 ,vk1,…,vk (n−1) ) . Let   newx[k]  denotes the new position of the k th particle and 

  currentx[k] denotes the current position of the k th particle. Let   newv[k] denotes the 



	
   16 

new velocity of the  k th  particle and   currentv[k]  denotes the current velocity of 

the k th particle. 

 Each particle with any specific position posses a fitness value, which is 

evaluated by the fitness function. In each iteration, each particle is updated by two 

best values, i.e., pbest and lbest. The pbest value is the best value of the fitness 

function that has been achieved so far by any particle, while the lbest value is the best 

fitness value of all neighbor particles. The number of neighborhood is given by a user. 

After finding the two best values, the kth particle updates its velocity and position by 

the following equation	
   

  

newv[k]= currentv[k]+ c1 ⋅R1 ⋅( pbest[k]− currentx[k])
+ c2 ⋅R2 ⋅(lbest[k]− currentx[k])

                 (2.2) 

   newx[k]= currentx[k]+ newv[k]                                                         (2.3) 

where R1 and R2 are two distinct random numbers in [0,1],  and c1  and c2 are 

acceleration constants. 

 

2.2.2 Population initialization 
 In Hoang et al.’s work, they initialized the first particle with one zero-vector, 

which correspond to a MST according to non-modified distance matrix. Then, another 

 n  particles were motivated by the star-shaped tree having value 0 in only one 

component, otherwise having value 1. All other   psize− (n+1)  particles were vectors 

whose components were randomly generated real number from the interval [0,1] , 

where  psize is a population size in the algorithm. Therefore, to maintain the full 

concept of this initialization pattern, the population size should set larger than (n +1) . 

In other words,   psize− (n+1)  must greater than zero. 

 

2.2.3 Fitness function 

Let Ck  be the total communication cost of the kth particle. 

Let Fk  be the fitness value of the kth particle which was computed as 
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Fk =
1
Ck

. 

 

2.2.4 Termination condition 
The termination condition was defined as the maximum number of iterations. 

 

 The overview of the PSO algorithm is shown in Figure 2-6 below. 
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Figure 2-6: Flowchart shows the PSO algorithm 
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2.3 Particle swarm optimization with adaptive inertia weight 
 Although the process of the original PSO algorithm gives particles appropriate 

direction toward the optimal solution, it can be stuck on a local optimum in the case 

when the first term of the velocity update equation, i.e., the   currentv[k]  term in the 

equation (2.2), is near zero [25]. When the first term of the velocity update equation is 

omitted, the flying space will be contracted to the current best solution which will 

lead to the unpleasant result of a local optimum. The optimal solution can be reached 

only when the optimal solution is one of the initial solutions. So, the principal role of 

the   currentv[k]  term is to enhance the global search ability, which could lead to the 

global optimum, whereas the role of the second and the third terms are to determine 

the direction heading to the best position in history, which can be considered as a 

local search. 

 Shi and Eberhart [25] state “the balance between global and local search 

throughout the course of a run is critical to the success of an optimization algorithm.” 

Accordingly, they brought the inertia weight into the PSO algorithm in 1998 [25]. The 

inertia weight (ω ) is one of PSO’s parameters as global search and local search 

balancing mechanism and is included in the velocity update equation as follows. 

 Let kth be a particle, the velocity update equation is 

  

newv[k]=ω ⋅currentv[k]+ c1 ⋅R1 ⋅( pbest[k]− currentx[k])
+ c2 ⋅R2 ⋅(lbest[k]− currentx[k])

             (2.4) 

where R1 and R2 are two distinct random numbers in [0,1],  and c1  and c2 are 

acceleration constants and ω is an inertia weight. 

 In their experiment, they tested on the two dimensional Schaffer’s function 

with different inertia weight settings. The algorithm was run 30 times for each fixed 

inertia weight. The number of iterations required in obtaining the optimal solution and 

the number of runs that could not find the optimal solution within 4,000 iterations 

were recorded. They found that the best range of inertia weight for this experiment is 

in the range of  (0.8,1.2) . However, the best performance in the experiment was 

obtained by the time varying inertia weight, i.e., the linear decreasing function over 

iterations. This could produce the best known solution in every single run and average 
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number of iterations required until reaching the best known solution was lower than 

those from the fixed constant inertia weights. 

 Different strategies for determining the value of inertia weight during the 

course of run have been widely discussed by many researchers. Using an appropriate 

strategy of the inertia weight would improve algorithm performance in obtaining the 

accurate solution. In 2011, Nickabadi et al. [19] reviewed various published inertia 

weight strategies and proposed a new adaptive inertia weight strategy, which uses the 

success rate of the swarm as its feedback parameter to determine the state of the 

particles in the search space at each run. In terms of convergent speed and solution 

accuracy, their new inertia weight strategy performed better on some test functions 

than other previous works. In their review, the inertia weight strategies could be 

classified into three main classes. 

 1. Constant and random inertia weights 

 In this class of the inertia weight, the inertia weight is fixed or is randomly 

generated in a form of functions over all iterations. The advantage of the constant 

inertia weight strategy is that it is easy to include into the velocity update equations; 

however, this strategy is not suitable in a dynamic environment. The random inertia 

weight is used for improving the search in a dynamic environment. 

 2. Time varying inertia weights strategies 

 The time varying inertia weight strategy has been used in most PSO algorithm. 

The most notable one of this strategy is the linear decreasing inertia weight strategy. 

In this strategy, the value of inertia weight is derived by the linear decreasing function 

over iterations. The value of inertia weight is linearly decreasing from an initial value 

to a final value. 

 3. Adaptive inertia weights 

 In this strategy, the inertia weight is updated according to the feedback 

parameter on each iteration. Various feedback parameter has been proposed over the 

decades; however, Nickabadi et al. proposed the new adaptive inertia weight, which 

uses the percentage of the success of the swarm as feedback parameter. By running 

PSO algorithms with various inertia weight strategies on a number of benchmark 

functions, Nickabadi et al.’s new adaptive inertia weight produces improved solutions 
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comparing to previous inertia weight strategies in terms of both convergence speed 

and solution accuracy [19].  

 The success of the kth  particle at iteration t  is defined as    

  

S(k,t) =
1 if fitness( pbest[k]t ) > fitness( pbest[k]t−1)

0 if fitness( pbest[k]t ) ≤ fitness( pbest[k]t−1)

⎧
⎨
⎪

⎩⎪
 

 Therefore, the percentage of success of the swarm at iteration t  is defined as 

 PS (t) =
S(k, t)

k=0

psize−1

∑
psize

 

 The linear function is used for determining the inertia weight of iteration t  

  ω (t) = (ωmax −ωmin )PS (t)+ωmin . 

 As far as we know the OCST problem, the PSO algorithm, and the idea of the 

recently proposed adaptive inertia weight strategy, combining the new adaptive inertia 

weight into the velocity update equations would yield improved results. In the next 

chapter, the main algorithm of our proposed AIW-PSO algorithm for the OCST 

problem will be explained. 

 



Chapter III 

Adaptive inertia weight  

particle swarm algorithm  

for the OCST problem 
 

 Our proposed algorithm, which is called AIW-PSO algorithm, is based on 

Hoang et al.’s PSO algorithm as it was confirmed to be superior to two previous 

algorithms: Palmer’s GA and Li and Bouchebaba’s GA. Representation of the 

solution, calculation of fitness function, and termination condition is adopted from 

Hoang et al.’s work. The primary components, i.e., population initialization, velocity 

initialization, and measurement of dissimilarity between a pair of trees, of our 

algorithm will be explained below.  

 

3.1 Population initialization 
 We use similar population initialization patterns by Hoang et al., except only 

one random particle will be replaced with the new 0,1-vector. As summarized by 

Rothlauf [18] that the best solution for the OCST is biased toward minimum spanning 

tree (MST) and good initial particle is a MST which can steer toward the optimal 

solution. 

 We adopt one initial particle which have a crucial effect on the final solution 

accuracy. We substitute one random vector with the 0,1-vector derived from the 

solved MST from original distances. We extract the degree of each node on the MST. 

If degree of node v  is greater than 1, then the corresponding component will be set to 

0, otherwise it is set to 1. The motivation behind this 0,1-vector is, with the node-

biased encoding, the low weighted node has a tendency to be an interior node while 

the high weighted node tends to be a leaf node. 
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3.2 Velocity initialization 
 As far as we concern, the velocity at the initial iteration should not be random 

because the initial random velocity would destroy the randomness of the well-planned 

patterns of the initial particles, while starting with zero velocity will immediately steer 

the particles toward the best fitness particles at the first iteration. In addition, the 

study of velocity initialization by Engelbrecht [26] in 2012 concludes that “initial 

velocities should be set to zero, or small random values close to zero.” Accordingly, 

we set the initial velocity as zero vectors. 

 

3.3 The measure of dissimilarity between a pair of trees 
 Before we obtain the local best position of kth particle for updating the 

velocity, we need to know the distance between each pair of solutions, which is 

indeed a pair of trees, in the search space. As the definition of the measure of 

dissimilarity was not mentioned in Hoang et al.’s work and we cannot use ordinary 

arithmetic with the tree structure solutions, so we make a new, but intuitive, way of 

measuring such dissimilarities. Because the solution of the OCST problem is actually 

a spanning tree, each tree structure solution has remembered its own associated arcs, 

which consists of   n−1  arcs, when the number of nodes in the considered network is 

 n .  

 The dissimilarity between any two trees is defined as a positive difference of 

the sum of the distances of their associated arcs of the two trees. The definition 

means, when a tree arc exists on both trees, such arc will not affect to the dissimilarity 

measure and this arc distance will not be included in dissimilarity value, otherwise the 

arcs will be taken into the calculation. 

 Let 
  
Tk1

and 
  
Tk2

be the tree solutions of   k1
th particle and   k2

th particle, respectively. 

We all know that the 
  
Tk1

consists of   n−1 arcs, says 
   
ak10 ,ak11,…,ak1(n−2) , and the 

  
Tk2

consists of   n−1arcs, says 
   
ak2 0 ,ak21,…,ak2 (n−2) . The dissimilarity between 

  
Tk1

and 

  
Tk2

is 
  

dak1h
h=0

n−2

∑ − dak2h
h=0

n−2

∑ , where 
 
dakih

 is the original distance of associated arc of 
 
Tki

. 
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 For example, consider two trees, 
  
Tk1

and 
  
Tk2

, from Palmer6. They are 

graphically represented in Figure 3-1 and Figure 3-2, respectively. 

 

 
Figure 3-1: 

  
Tk1

,  a tree extracted from the Palmer6 network	
  

 

 
Figure 3-2: 

  
Tk2

,  a tree extracted from the Palmer6 network 

 

 Refer to the distance matrix D showed in Section 2.1, the dissimilarity between 

  
Tk1

and 
  
Tk2

is   (d05 + d12 + d13 + d15 + d34 )− (d01 + d05 + d12 + d14 + d34 ) . 
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3.4 Adaptive inertia weight 
 We include the new adaptive inertia weight proposed by Nickabadi et al. The 

new adaptive inertia weight strategy uses percentage of the success as feedback 

parameter to determine the state of the particles in the search space at each iteration. 

The percentage of the success of the swarm is already described in Section 2.3. 

 

3.5 Flowchart 
 To see the overview of the AIW-PSO algorithm for the OCST problem, we 

represent the algorithm as a flowchart in Figure 3-3.  
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Figure 3-3: Flowchart shows our AIW-PSO algorithm for the OCST problem



Chapter IV 

Experimental results 
 

 There are a number of OCST benchmark instances that had been used for 

evaluating the algorithm efficiency. We test our AIW-PSO algorithm on ten OCST 

benchmark instances. These are 6 nodes, 12 nodes, and 24 nodes networks from 

Palmer; 10 nodes, 20 nodes, 50 nodes and 75 nodes networks from Raidl; and 6 

nodes, 35 nodes (Berry35, Berry35u) networks from Berry. These instances can be 

found in Rothlauf [5]. 

 The Palmer’s instances were created based on the actual data of the U.S.’s 

inter-city transportation. The inter-city link cost was obtained from the tariff database, 

while the inter-city requirements were generated based on a number of information 

such as the population in each city and the distances between the cities. Another set of 

OCST benchmark instances is from Raidl. The Raidl’s distance costs and 

communication requirements were randomly generated with uniform distribution. The 

third set of OCST benchmark instances is from Berry et al. All link costs in the 

Berry35u were set to one, but the communication requirements were the same as the 

Berry35. A number of parameters are determined as follows. 

 

Designed parameters 
Population size  psize  = 1000. 

Maximum number of iteration   Nmax = 500. 

Node biased parameter p = 1. 

From the velocity update equation (2.2), cognitive and social parameters   c1 = 1 and 

  c2 = 1. 

Number of neighbors for local best (lbest) K = 3. 
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 Our AIW-PSO algorithm is coded in C++ and run on 1.86 GHz Intel Core 2 

Duo with 4GB RAM. Our initialization of the population size  psize consumes 

  O( psize ⋅n)  as each particle requires  n  random values, also the same complexity for 

the velocity update and position update. For the spanning tree decoding procedure, 

step 1 obviously requires   O(n2 )  as we have to compute the modified distances 

between every possible pairs of nodes. Step 2 of the decoding procedure consumes 

  O(n ⋅ log m)  as we implement Prim’s algorithm by using min heap structure. For the 

measure of dissimilarity between two trees, this part needs   O( psize2 ⋅n)  as we need to 

calculate such dissimilarities between every pairs of trees from the whole population, 

and, for a pair of trees, all   (n−1)  arcs for each tree is considered for the calculation. 

To determine the local best for a particle, those dissimilarity values for the particle are 

sorted by calling function qsort()  from the standard library which needs 

O(psize ⋅ log(psize))  for the average case. So, determining local best for the whole 

population requires O(psize2 ⋅ log(psize)) . Therefore, the total complexity of our 

algorithm with population size psize  and maximum number of iterations   Nmax is 

  O(Nmax ⋅ psize ⋅(n2 + n ⋅ log m+ psize2 ⋅n+ psize2 ⋅ log( psize)+ psize ⋅n))  =  

  O(max{psize ⋅n2 , psize3 ⋅n}) .  

 The algorithm is tested on each instance for five times. The most often 

occurred best solution of five runs was recorded as an “obtained solution” for each 

instance. However, some previous algorithms were not tested on all available OCST 

benchmark instances; for example, Hoang’s PSO was not tested on Berry35 and 

Berry35u. So, “n/a” will be reported. The numerical results are presented in Table 1. 

 Table 1 shows that our algorithm is as good as Hoang’s algorithm as both 

algorithms produce best known solutions for Palmer6, Palmer12, Raidl10, Raidl20, 

and Berry6. In addition, our algorithm yields the obtained solutions which being 

closer to the best known solutions for Palmer24 and Raidl50 and produces best known 

solutions for the Berry35 and Berry35u, which was not mentioned in Hoang et al.’s 

paper. 
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Table 1: The obtained solution (Total Communication Cost)  
for the OCST benchmark instances 

Instances Best known 
solution 

Palmer’s 
GA 

Li & 
Bouchebaba’s 

GA 

Hoang’s 
PSO AIW-PSO 

Palmer6 693,180 709,770 708,090 693,180 693,180* 

Palmer12 3,428,509 3,876,488 3,457,952 3,428,509 3,428,509* 

Palmer24 1,086,656 1,959,790 1,086,656 1,138,360 1,088,154 

Raidl10 53,674 58,352 53,674 53,674 53,674* 

Raidl20 157,570 165,788 157,570 157,570 157,570* 

Raidl50 806,864 911,987 964,140 826,499 809,311 

Raidl75 1,717,491 n/a n/a n/a 1,730,153 

Berry6 534 534 534 534 534* 

Berry35 16,915 n/a 16,915 n/a 16,915* 

Berry35u 16,273 n/a 16,420 n/a 16,273* 
    (* denotes the best known solution for each instance) 
 

Table 2: The percentage of gap between the obtained solution  
and the best known solution 

Instances Palmer’s 
GA 

Li & 
Bouchebaba’s 

GA 

Hoang’s 
PSO AIW-PSO 

Palmer6 2.3933% 2.1510% 0.0000% 0.0000% 

Palmer12 13.0663% 0.8588% 0.0000% 0.0000% 

Palmer24 80.3505% 0.0000% 4.7581% 0.1379% 

Raidl10 8.7156% 0.0000% 0.0000% 0.0000% 

Raidl20 5.2155% 0.0000% 0.0000% 0.0000% 

Raidl50 13.0286% 19.4923% 2.4335% 0.3033% 

Raidl75  n/a  n/a  n/a 0.7372% 

Berry6 0.0000% 0.0000% 0.0000% 0.0000% 

Berry35 n/a  0.0000% n/a  0.0000% 

Berry35u  n/a 0.9033% n/a  0.0000% 
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 To assure the effectiveness of our algorithm, we present our results by the 

percent improvement. The percent improvement of an algorithm on an instance is 

measured by the percentage of the gap between the obtained solution and the best 

known solution of an instance. The best known solutions can be found in [18]. Such 

measurement means that the less of the percentage of gap is, the more effectiveness of 

the algorithm posses. The percentage of gap of each instance is presented in Table 2. 

 It can be easily seen that our AIW-PSO algorithm for the OCST problem 

produces the most encouraging results for the tested benchmark instances. In Palmer 

series, the best known solutions are achieved from Hoang’s and ours in Palmer6 and 

Palmer12, whereas, in Palmer’s GA and Li&Bouchebaba’s GA, the gaps of 2.3933% 

and 2.1510% are resulted for Palmer6, and the gaps of 13.0663% and 0.8588% are 

recorded for Palmer12. The best algorithm for the Palmer24 is the Li&Bouchebaba’s 

GA. Although our algorithm is not the best for the Palmer24, our obtained result gets 

much closer to the best known solution with the gap of only 0.1379%. The 

comparison on the Palmer instances is graphically represented in Figure 4-1. In Raidl 

series, our algorithm produces the favorable results, especially in the Raidl50 and 

Raidl75, as can be seen in Figure 4-2. Our AIW-PSO algorithm produces the same 

best known solutions for Raidl10 and Raidl20, and the gaps of less than 1% for 

Raidl50 and Raidl75. In Berry series, the solutions obtained by our algorithm are the 

same as the best known solutions, while the Li&Bouchebaba’s GA creates the gap of 

0.9033% for Berry35u. According to the absence of the Palmer’s GA and Hoang’s 

PSO results on Berry35 and Berry35u, the comparison graph of the Berry series is 

drawn from only Li&Bouchebaba’s GA and our AIW-PSO algorithm and is shown in 

Figure 4-3. 



	
   31 

 
Figure 4-1: The best obtained solutions using four algorithms for Palmer24 

 
 

 
Figure 4-2: The best obtained solutions using four algorithms for Raidl50 
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Figure 4-3: The best obtained solutions using Li&Bouchebaba’s GA and our AIW-

PSO for Berry35u 
 

 To see effect of the adaptive inertia weight on the PSO algorithm for the 

OCST problem, we show the comparison graph of the obtained solution over 

iterations from our standard PSO (with no adaptive inertia weight) and from the PSO 

with adaptive inertia weight (AIW-PSO). However, the standard PSO we 

implemented is not truly Hoang’s PSO as some components of the algorithm are 

defined in our way because Hoang at al. had not given us such details. So, in this part 

of experiment, the comparison between our standard PSO with no adaptive inertia 

weight, which is called the O-PSO, and our proposed PSO with adaptive inertia 

weight (AIW-PSO) will be discussed. 

 Although we executed our algorithms on all ten OCST benchmark instances, 

some instances will be omitted when we do the comparison because its best known 

solution can be found in iteration 0 or iteration 1 as the convergence movement could 

not be represented from the run. Therefore, we show the comparison graph of 

Palmer24, Raidl50, and Raidl75 as in Figure 4-4, Figure 4-5, and Figure 4-6, 

respectively.  
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Figure 4-4: Comparison graph shows obtained solutions of Palmer24 over iterations 

between O-PSO and AIW-PSO  

 

	
  
Figure 4-5: Comparison graph shows obtained solutions of Raidl50 over iterations 

between O-PSO and AIW-PSO 
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Figure 4-6: Comparison graph shows obtained solutions of Raidl75 over iterations 

between O-PSO and AIW-PSO	
  

 

 There is no major difference over iterations between O-PSO and AIW-PSO 

for the OCST problem. The graphs indicate that the adaptive inertia weights do not 

affect to the searching process with our designed parameter with population size of 

1,000.  

 To avoid the population size effect, we conduct further experiments by 

reducing the population size to various values, i.e., 500, 100, 50 for the Palmer24, and 

500, 100 for the Raidl75. We do not employ the population size of 50 to the Raidl75 

as the population size must be greater than  (n+1) . Results from this experiment are 

displayed in Figure 4-7 and Figure 4-8. 

 For the Palmer24 network, when population size is greater than 100, there is 

no significant difference in the obtained solutions among different population size 

setting. While the population size is reduced to only 50, the obtained solution is 

considerably far from the best know solution as can be seen in Figure 4-7. For the 

Raidl75 network, there is no critical variation when population size is greater than 

500. When population size is reduced to 100, performance of the PSO algorithm is 

greatly dropped. Therefore, population size is extremely important to the final 

solution in PSO algorithm.  
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Figure 4-7: The obtained solutions from various population size settings of Palmer24 

 

	
  
Figure 4-8: The obtained solutions from various population size settings of Raidl75 

 

 Accordingly, we reduce the population size of our AIW-PSO algorithm for the 

Palmer24 to only 50 and present the comparison graph in Figure 4-9. 
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Figure 4-9: The obtained solution of Palmer24 over iterations with reduced 

population size	
  

 

 For Palmer24, O-PSO performs better than AIW-PSO until iteration 284 

where AIW-PSO explores to the new global best region. Finally, the AIW-PSO 

produces better obtained solution. 

 

 
Figure 4-10: The obtained solution of Raidl50 over iterations with reduced 

population size	
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 For Raidl50, the O-PSO obtained better solution after iteration 55 until 

iteration 304. Afterwards, the solution from the AIW-PSO is better. Accordingly, we 

can comprehend that when population size is large enough, adaptive inertia weights 

cannot show their effect in the optimal search. But when population size is reduced, 

the effect of the adaptive inertia weight is shown. Therefore, the beneficial of adaptive 

inertia weight depends on population size in the AIW-PSO algorithm. 

 In addition, we implement both O-PSO algorithm and AIW-PSO algorithm 

with Palmer24 network and compare the results with Hoang’s initial pattern and with 

the new initial pattern with population size of 50. The average values of the obtained 

solutions are recorded and are used in comparison. Figure 4-11 shows that both PSO 

algorithms with new initial pattern produce better results than those with Hoang’s 

initial pattern. Therefore, this shows advantage of the new initial pattern when 

population size is small. 

 

 
Figure 4-11: The average value of obtained solutions of Palmer24 from PSO with 

Hoang’s initial pattern and with new initial pattern when population size is 50	
  

 

 

 



	
   38 

 In summary, both adaptive inertia weight and population initialization pattern 

for PSO algorithm have a significant impact to PSO algorithm only when number of 

population is small enough, otherwise, the effect of the population size dominates the 

search process. 

 

 

 

 



Chapter V 

Conclusion 
 

 We propose the improved version of the novel Particle Swarm Optimization-

based algorithm for the OCST problem. The process of our main algorithm is based 

on Hoang et al.’s algorithm with the measure of dissimilarity between a pair of trees 

defined as in this paper. We include the adaptive inertia weight strategy and revise the 

particle initialization pattern, which affect the final solution of the particle search. 

 Our AIW-PSO algorithm for the OCST problem yields better results and our 

results assure our knowledge that initial population in heuristics-based algorithm have 

obvious impact to the obtained solution at final run. Furthermore, if we look further 

into the effect of our modifications, the adaptive inertia weight and the new 

initialization pattern affirm their benefit over the PSO algorithm when population size 

is small. Therefore, number of population in the PSO algorithm has a significant 

impact to the particle search. 

 The next step of our work is to test with more real world problems which fall 

into the OCST problem area. 
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Appendix 
Pseudocode of AIW-PSO 

 

/* Read input data */ 

Read n; // number of nodes in the original network 

Read matrixD[i][j]; // distance matrix element 

Read matrixR[i][j]; // requirement matrix element 

/* Determine maximum distance in the distance matrix */ 

max_edge; 

/* Determine degree of each node from minimum spanning tree (MST) from original distance */ 

PrimMST(matrixD) // find the MST using Prim’s algorithm 

/* Designed parameter */ 

population_size = 1,000; 

knearest = 3; // for determining local best 

maxIter = 500 // maximum number of iteration 

/* Algorithm */ 

Initialize gbestValue = (max_edge)5; // global best value 

Initialize iter = 0;  

Initialize w = 1; // inertia weight for the iter=0 

For (k=1 to population_size) // Initialization step 

 Initialize currentposition[k]; // vector size n 

 Initialize currentvelocity[k] = 0; // vector size n 

 Initialize particle[k] = currentposition[k]; 

 Initialize pbest[k] = particle[k]; 

EndFor 

While (iter < maxIter) 

 success_count = 0; // count of  success(for computing inertia weight) 

 para2 = 1; // the node-biased parameter for the modified matrix 

 k = 0; 

 While (k < population_size) 

  /*Calculate fitness value of the particle ‘k’ */ 

  for i=1 to n  

   for j=1 to n 

   modifiedD[i][j] =  matrixD[i][j] + (para2*(currentposition[k][i] + 

currentposition[k][j])*max_edge); 

   EndFor 
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  EndFor 

  PrimMST(k, modifiedD); // find the MST using Prim’s algorithm 

  Print TCC[k]; // Total communication cost of the MST 

  fitness[k] = 1/TCC[k]; 

  /* If the fitness value is better than the best fitness value in history, then set the 

current value as the new pBest */ 

  if (iter > 0) 

   if (fitness[k] > pbestValueCurrent[k]) 

   success_count = success_count + 1; 

   pbestValueNew[k] = fitness[k]; 

    For y=1 to n 

     pbest[k][y] = currentPosition[k][y]; 

    EndFor 

    If (TCC[k] < gbestValue)  // update global best value 

     gbestValue = TCC[k]; 

     gbestIndex = k; 

     gbestIter = iter; 

     For y=1 to n // update global best position 

      gbest[y] = currentPosition[gbestIndex][y]; 

     EndFor 

    EndIf 

   else pbestValueNew[k] = pbestValueCurrent[k]; 

  else {  

   pbestValueNew[k] = fitness[k]; 

   If (TCC[k] < gbestValue)  // update global best value 

    gbestValue = TCC[k]; 

    gbestIndex = k; 

    gbestIter = iter; 

    For y=1 to n // update global best position 

     gbest[y] = currentPosition[gbestIndex][y]; 

    EndFor 

   EndIf 

   pbestValueCurrent[k] = pbestValueNew[k]; 

   } 

  EndIf 

    k = k + 1; 

 EndWhile 
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 /* Find percentage of success*/ 

 percentage_success = success_count/ population_size; 

 w_min = 0; 

 w_max = 1; 

 w = ((w_max – w_min)*percentage_success) + w_min; 

 /* Choose the particle with the best fitness value of all the neighbor particles as the lbest */ 

 For a=1 to population_size 

  For b=1 to population_size 

   Compute farness[a][b]; // as described in subsection 3.3 

  EndFor 

 EndFor 

 For a=1 to population_size 

  findlocalbest(a, knearest, farness); 

 EndFor 

 /* Update particles */ 

 iter = iter + 1; 

 For a=1 to population_size 

  /* Calculate particle velocity */ 

  For r=1 to n 

   newvelocity[a][r] = w*currentvelocity[a][r] + (1*rand01*(pbest[a][r] - 

currentposition[a][r])) + (1*rand02*(lbest[a][r] - currentposition[a][r])); 

  EndFor 

  /* Update particle position */ 

  For j=1 to n 

   newposition[a][j] = currentposition[a][j] + newvelocity[a][j]; 

  EndFor 

 EndFor 

EndWhile  
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