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แนวคิดของการจองมากกว่าที่มีอย่างระมัดระวังในโครงข่ายซับสเตรต วิทยานิพนธ์นี้ได้สร้างข้อปัญหากําหนดการเชิงจํานวนเต็ม
ผสมเพื่อลดค่าใช้จ่ายของโครงข่ายเสมือน รายงานผลการคํานวณแสดงให้เห็นว่าวิธีการที่เสนอสามารถลดค่าใช้จ่ายในการดําเนินการ
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The two main directions for virtual network resource allocation in multi-tenant data center net-

work are static and dynamic approaches. The static approach finds the optimal resources of substrate

network for hosting each virtual network and keeps the resources unchanged for the whole lifetime of

the virtual network. The dynamic approach can adjust the resources periodically for the virtual net-

work to maximize the total network performance. However, the existing methods in both approaches

work ineffectively in the network virtualization for multi-tenant data center network situations. The

static allocation methods provide only exclusive service that allocates the full availability to each re-

quest. The dynamic allocation methods are not optimized for cloud resident data center, which is an

important part of multi-tenant data center network. This dissertation aims to use optimization tools to

solve the problem in both approaches as follows.

In the first approach, this dissertation has proposed the analysis of careful overbooking concept,

which uses the flexible level of availability in the service level agreement provided to users. Based

on this approach, virtual network subscribers are provided with a service that is most suitable with

their tolerability to utilize the soft-guaranteed bandwidth. This helps saving the cost of subscribers

and increasing the profitability of provider. Furthermore, to route the traffic resultant from the careful

overbooking concept through a substrate network, this thesis has formulated the mixed integer pro-

gramming problem to minimize the virtual network cost. The reported results demonstrate that the

proposed method can reduce the operating cost of virtual network while guaranteeing the required

quality of service.

In the second approach, the cloud resident data center network has been considered. The

dissertation emphasis is on the OpenFlow platform as the key element to provide the flexibilities to

virtual data center customers. In this situation, since the practical virtual networks are of small size,

this thesis has proposed to centralize the algorithm to control the amount of traffics on routes in each

virtual network. At the same time, due to the big size of substrate network, the distributed algorithm

is used to adjust bandwidth periodically for virtual network’s links. To evaluate the proposed method,

investigations carried out in this thesis include the theoretical analysis, computer simulation, and

small OpenFlow-based cloud resident data center testbed measurements. The obtainable results show

that the new algorithm has faster solution-convergence time, simpler calculation, and can make the

better use of feedback information from virtual networks than the previous algorithms.
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CHAPTER I

INTRODUCTION

Network virtualization has been recently introduced as a promising proposal for a

multi-tenant data center. It can provide additional flexibility and enhance the performance

isolation among tenants. However, the tradeoff for the flexibility is the additional complex-

ity of resource allocation algorithms which help to use data center resources efficiently. The

new network constraints and new network management model should be taken into account

when deriving the new resource allocation algorithms. This dissertation aims to use the op-

timization theory to derive the new resource allocation algorithms in network virtualization

for multi-tenant data center network.

1.1 Network virtualization for multi-tenant data center

A multi-tenant data center as shown in Figure 1.1 is a data center with the ability of

accommodating many tenants e.g. different enterprises, in a shared manner. Up to the degree

of performance isolation, a multi-tenant data center can provide server hosting service or IaaS

service. The server hosting service is used to serve big customers such as Google and Nasdaq

cloud to extend their data center to remote areas where their own physical data centers are

unreachable. The big customers need high performance isolation so they usually bring their

own physical servers to locate in the accommodated data center and rent the hosting space, air

conditioners, power and networks to operate their servers. The IaaS service is used to serve

the smaller customers e.g. Mendelay, Instagram, Newsweek, WashingtonPost, Photomedia.

These customers do not need high performance isolation, but need fast and convenient way

to create and expand their networks. Thanks for computer virtualization technologies [3],

many virtual machines can be created on a physical machine. The virtual machines can be

networked and provided as IaaS to these small customers.

Each tenant renting service in a multi-tenant data center has its own performance re-

quirements. For instance, Nasdaq tenant with its stock exchange service requires a low end-

to-end delay to synchronize the stock exchange index among its back-end servers; Google
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Figure 1.1: Multi-tenant data center

tenant with its searching service requires a high throughput to synchronize the searching

results among its back-end servers.

In the current state of art, traditional technologies, such as closed network boxes and

TCP/IP protocol [4] are still used to network the components in the multi-tenant data center.

The traditional technologies only provide a simple sharing environment for hosted services,

but hardly do they provide the service isolation. It is hard for a provider to guarantee QoS in

a sharing environment. For example, there are two services from two different tenants, one

requires throughput-sensitive traffic the other requires delay-sensitive traffic. Traffic from

both applications flows through the same physical link of a multi-tenant data center. To sup-

port the throughput-sensitive traffic, the queuing system in the physical link needs to create

a long queue. To support the delay-sensitive service, the queuing system in the physical link

needs to create a short queue. However, it is difficult for the queuing system in the physical

link to control the queue length for supporting both delay-sensitive and throughput-sensitive

service.

To facilitate the performance isolation and guarantee the quality of service in the tradi-

tional network, researchers have already introduced many integrated modules such as loca-



3

tion, classification, authentication, encryption, roaming, identification, reservation and dif-

ferentiation [4]. These integrated modules only act as the patches for the current weaknesses

of the traditional network with the price of making it heavy, complicated and expensive in

operating as well as maintaining. The other solution from patching many extra integrated

modules for the current network weaknesses is to build the new model of network virtual-

ization.

Network virtualization is a model of building many heterogeneous virtual networks

on a shared physical substrate network. This model promises to provide stronger perfor-

mance isolation and more flexibility to virtual networks than the ones of traditional network.

The virtual nodes are isolated from each other by computer virtualization technologies e.g.

Xen [3], KVM [5]. The virtual link bandwidth isolation can be developed from the existing

technologies such as Diffserve and Intserve [4]. The additional flexibility in network virtu-

alization let the tenants be able to implement their own network protocols which have been

customized to best support the tenants’ services without affecting performance of others. For

example the Google tenant can implement the long queue system to maximize its network

throughput. Mean while, the Nasdaq tenant can implement the short queue system in their

network to minimize its network delay.

There are many similarities between multi-tenant data center and network virtualiza-

tion model. The landlord, who owns as well as manages the data center and allocate services

to customers, is equivalent to Infrastructure Provider (InP), who owns as well as manages the

substrate network and allocate services to customers. The tenants who rent a part of multi-

tenant data center to implement their services are equivalent to Service Providers (SPs) who

rent virtual networks from the InP. The network part rented by a tenant is equivalent to a

virtual network. A physical data center is equivalent to a substrate network.

Network virtualization is proposed from many successes of previous virtualization

technologies. MPLS-VPN [6] virtualizes the routing tables in the ISP routers by giving each

VPN network a dedicated virtual routing table. VLAN [7] virtualizes the network’s link

layer to create many separated virtual networks on the same physical network. WDM [8]

virtualizes the physical network by using wavelength separation. An overlay network [8]

is a virtual network of physical nodes located in customer sites and virtual links hosting on

physical paths of carrier’s network.

However, there are three differences between network virtualization and previous vir-
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tualization technologies such as the overlay [9]. The first difference is in the controlling

ability of tenants in the provider’s network. The overlay networks rent the end-to-end virtual

links from the carrier’s network. The overlay customers do not know hence are unable to

control how their traffic flows in the carrier’s network. In other words, overlay customers see

the carrier’s network as a black box through which to push the traffic. On the contrary, SPs in

network virtualization architecture can see into their substrate’s portion, and can control how

the traffic is forwarded, dropped, filtered, routed in the InP’s network. The second difference

between the network virtualization and previous virtualization technologies is that overlay

network cannot rent the nodes in the substrate network. Instead, the network virtualization

architecture lets InP create many virtual nodes on one physical node, and lease it to SPs.

The final difference is that the isolation between virtual networks in network virtualization is

stronger than the isolation in the overlay network which hosts virtual links on the substrate

network paths in a shared manner.

Network virtualization relieves the substrate network, and provides benefits to joined

parties. The extra feature modules of the network such as location, classification, authenti-

cation, encryption, roaming and identification are unloaded from the infrastructure network.

The infrastructure network becomes easier to manage, lighter, smoother and more scalable

than before implementing virtualization. The SPs can selectively as well as exclusively im-

plement these modules in SPs’ virtual networks to support their services [10]. The InPs gain

benefits from network by extending their class of customers from end users to SPs. The

SPs with the help of network virtualization do not need to build their own physical infras-

tructure but instead rent the network resources such as link bandwidths and node processes

from the InP. This mechanism makes service provision easy, and breaks down the barrier to

network service business. As well, users are promised to have the high quality and cheap

price services provided by the competing SPs.

The main barrier for achieving network virtualization in a multi-tenant data center is

the collocation of the data plane and the forwarding plane in the same network box e.g.

switch, router, access point [11]. This collocation dismisses the traffic control ability of ten-

ants in their rented portions, but gives all the traffic control power to data center’s landlord.

This unbalance of function design makes the multi-tenant data center network inflexible. Fur-

thermore, the collocation prevents network innovations from being tested in the sufficiently

realistic settings to gain enough confidence before the implementation within commercial
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networks. The lacking of innovations implemented in the multi-tenant data center network

make it “ossified".

OpenFlow [12] has been proposed to overcome the collocation problem by creating

a standard interface for data plane, defining a controller and a protocol to communicate

between controller and the data plane’s standard interface. OpenFlow defines a common in-

terface for forwarding tables. As OpenFlow, all kinds of switches has common fields in their

forwarding tables such as input port, output port, source MAC address, destination MAC

address, source IP, destination IP, source port and destination port. These common fields

can be exploited to build a common programming interface for OpenFlow switches. This

process is equivalent to computer operating system building abstraction layer for computing

hardware. The OpenFlow also defines a controller which provides Application Programming

Interface (API) and facilitates the implementation of control plane’s applications. OpenFlow

protocol is also defined for a controller (control plane) to remotely manipulates common

interfaces in the switch forwarding tables (data plane). This protocol can be easily imple-

mented in most of current switches without much changing in the switch hardware.

The OpenFlow protocol has many types of messages [13]. The Controller-to-Switch

messages are sent from a controller to control switches. Hand shake, switch configuration,

flow table configuration, modify state, queue configuration, read state, packet-out, barrier

messages are the messages of this type. Asynchronous messages are sent from one side,

OpenFlow controller or OpenFlow switch, to the other side without the necessary reply.

Packet-in, flow-remove, port-status and error are the messages of this type. Symmetric mes-

sages, such as hello, echo request, echo reply, and experimenter need the reply from the re-

ceiver. Besides supporting atomic actions such as add/delete/change entries in the switches,

OpenFlow defines the ways to combine those actions such as pipe-line processing, action set

and action list. The matching fields are very flexible with 10-tuple ranging from layer one to

layer four of TCP/IP model. The working process of OpenFlow system can be described by

Figure 1.2.

Solving collocation between control and data plane is very important but not enough

to build the network virtualization. To enable network virtualization, it is necessary to have

mechanisms to slice the substrate network resources, and to isolate them among virtual net-

works. FlowVisor [1], which acts as a transparent proxy between the OpenFlow switches

and the Controllers, is the tool for this mission. FlowVisor slices a substrate network by di-
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Figure 1.2: OpenFlow connection mechanism

Figure 1.3: Comparison of network virtualization and computer virtualization [1]
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viding its flow space into many flow subspaces for allocating to virtual networks. FlowVisor

inspects all OpenFlow messages between the controller and the switches to make sure the

controller can only send the message to its managed flow subspaces. Furthermore, FlowVi-

sor also isolates five types of resources among all virtual networks: bandwidth, topology,

traffic, cpu and forwarding tables. With the ability of dividing physical resources and iso-

lating among them, FlowVisor along with OpenFlow can build the new network architecture

for network virtualization. In the FlowVisor’s model, the SP’s controllers use OpenFlow

protocol to communicate with the infrastructure network via a secure channel. The network

operating system [14] installed on the controller is the same as the operating system installed

on computers. The developers write applications to control the infrastructure sub-flows the

same as the developers write applications on Windows R© or Ubuntu R©.

As shown in Figure 1.3, network virtualization architecture built from OpenFlow and

FlowVisor have the same principle as computer virtualization. The computer’s virtualization

layer sits between underlying hardware and software. Similarly, the virtualization layer,

FlowVisor, sits between the network physical resources and controllers. The computer’s

hardware abstraction layer can pool and slice hardware resources. This layer makes the

hardware plug easily into the standard interfaces while making the operating system believe

of having its own hardware. FlowVisor is a network abstraction layer for pooling and slicing

all the underlying hardware resources. Multiple virtual networks can run simultaneously on

top of this virtualization layer without interfering with each other. This abstraction layer has

been successful in computer virtualization, so will be in the network virtualization.

Resource allocation in network virtualization refers to mechanism of allocating virtual

nodes and links on physical nodes and paths, respectively. These mechanisms help not only

improve the resource utilization as well as avoiding the congestion in substrate but also

maximize the performance objectives of InP and SPs. For example, with VDO service,

the SP can implement the delay mechanism to minimize the network delay and with the

file transfer service, the SP can implement the throughput mechanism to maximize network

throughput. The InP can implement the mechanism to maximize performance of all virtual

networks. If network virtualization has a good resource allocation mechanism, the network

virtualization resources can be used effectively in the way of best supporting all the virtual

network demands. The next section will present about resource allocation approaches in

network virtualization.
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1.2 Resource allocation approaches in network virtualization

To maximize their profit, InPs have to use resource allocation to make most use of the

expensive infrastructures [2]. However, the resource allocation in the network virtualization

is more complicated than the resource allocation in the traditional network.

To optimize the allocation of bandwidth in a substrate network, InPs not only take

into account the traffic demands as in the traditional network, but also the commands from

guest controllers. These commands make the traffic’s direction change unexpectedly, and

add dynamic constraints to the optimal resource allocation problem [12]. Further, there are

more ways for the substrate to deal with the congestion in the network virtualization than

in the conventional networks. For example, the congestion in a virtual link does not always

mean that the sources have to decrease their transmission rates. In such a situation, the other

possibility is to increase virtual link’s capacity [15].

Resource allocation in network virtualization assigns not only the pipe bandwidth but

also the node resources. The problem of allocating virtual nodes to substrate nodes, without

violating bandwidth constraints, is NP-hard and similar to the multi-way separator prob-

lem [16]. To solve such problems, three approaches have been identified: brute-force back-

tracking algorithm, simulated annealing algorithm and approximation algorithm.

The resource allocation in the network virtualization environment refers to the static

or dynamic allocation of virtual nodes and links on physical nodes and paths accordingly.

In the static approach (initial network provisioning), the allocated resources do not change

during the virtual network life time. On the contrary, the dynamic approach (adaptive virtual

network provisioning) adjusts the allocated resources periodically [2].
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1.2.1 Problem description

Figure 1.4: Static and dynamic virtual network resource allocation [2]

A substrate network is modelled as a graph of nodes and links Gs(V s, Es, Cs
n, C

s
l )

where V s is the set of all substrate nodes each of which is identified by an index number n and

a capacity Cs
n; and Es is the set of all substrate links each of which is identified by an index

number l and a capacity Cs
l . Note that s here stands for substrate, and is not an index number.

The substrate network hosts many virtual networks, each of which is identified by the index

number k. The virtual network k is modelled by Gv(k) = {V v(k), Ev(k), R
v(k)
n , R

v(k)
l } where

V v(k) is the set of all virtual nodes in the virtual network k, Ev(k) is the set of all virtual links

in the virtual network k, R
v(k)
n is a resource requirement for the virtual node n in the virtual

network k, and R
v(k)
l is a resource requirement for the virtual link l in the virtual network k.

Note that v here stands for virtual, and is not an index number. As shown in Figure 1.4, the

image of virtual network k, Gv(k), on the substrate network is Gs(k). Based on the dynamic

of Gs(k), the virtual network allocations are classified as static or dynamic.

In the static virtual network allocation, the substrate network finds out the resources

to host a virtual network from the initial requirements of the virtual network. When the

virtual network is hosted successfully onto the substrate network, the virtual network will
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not change its resource demands. In other words, the image of virtual network k, Gv(k),

on the substrate network, Gs(k), does not change with time t. Mathematically, the arrival

of a virtual network demand k will yield the substrate network to calculate the two map-

pings, which are node mapping f
(k)
n :{V v(k), R

v(k)
n } −→ {V s(k), C

s(k)
n } and link mapping

f
(k)
l :{Ev(k), R

v(k)
l } −→ {Es(k), C

s(k)
l }. Note that R

v(k)
n and R

v(k)
l here are constants for each

virtual network k, and are not a function of time t. The mission of static virtual network

allocation here is to define the two mappings f
(k)
n and f

(k)
l .

Different from the static approach, the dynamic virtual network allocation calculates

the substrate resources for virtual networks based on their actual resource usage. It period-

ically re-scales the capacity allocated to virtual nodes and links to match with their actual

usage. Mathematically, assume that the resource provided to virtual network k at time t is

Gs(k)(t) = {V s(k)(t), Es(k)(t), C
s(k)
n (t), C

s(k)
l (t)}. As these provided resources are different

from actual usage of virtual network k, the dynamic virtual network allocation re-adjusts

the resources for that virtual network after each period T by calculating the following map-

ping f (k)(t + T ):{Gs(k)(t + T ), Cs(k)(t + T )} −→ {G′s(k)(t + T ), C ′s(k)(t + T )} where

{Gs(k)(t + T ), Cs(k)(t + T )} is the prior substrate capacity allocated to virtual network k

and {G′s(k)(t + T ), C ′s(k)(t + T )} is the new re-adjusted capacity that substrate provides to

virtual network k. The mission of the dynamic virtual network allocation here is to define

the mapping f (k)(t+ T ).

1.2.2 Static virtual network allocation

As in Section 1.2.1, there are two approaches for virtual network resource allocation:

static and dynamic approach. The static approach implies the virtual network assignment

without reconfiguration [17]. In this paper, Zhu and Ammar have defined the notion of “stress

of a substrate object" as the number of virtual objects hosting on a substrate object. For

example, the stress of a substrate node is the number of virtual nodes hosting on the substrate

node, and the stress of a substrate link is the number of virtual links hosting on the substrate

link. By minimizing the highest stress on both substrate’s nodes and links, the authors’

optimization formulation can balance the substrate network’s stress. Two heuristic methods,

which find a set of optimal substrate nodes and links for each virtual network demand, are

proposed to solve this optimization problem. The basic method finds the substrate nodes

to add to the allocated node set. The first substrate node is chosen to add to the set if it
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has the lowest stress on both that node and the directly connected links. The following

substrate nodes are chosen with the lowest stress on both that node and the shortest paths

connecting that node to all the substrate nodes in the set. When the set has enough nodes

to host the virtual network, the algorithm uses the shortest path [18] to assign the substrate

link resources for virtual links. The second method exploits the simplicity of embedding a

star topology network to the substrate network. It breaks a complicated virtual network to

many simple star sub-networks, then maps them onto the substrate network. The simulations

show two important results. Firstly, the sub-dividing virtual network algorithm reduces the

computational time. Secondly, in case of sparse virtual network connectivity, this method

can reduce the highest link stress while keeping the highest node stress unchanged.

The next approach for the static virtual network allocation is presented in [19]. In

their paper, to mitigate the NP-hard problem, Lu and Tunner have reduced the searching

space by restricting the virtual network topology to the virtual backbone-star topology which

has virtual backbone nodes connecting to virtual access nodes. The algorithm is shown in

Figure 1.5, which have been taken from [2] with some adjustments. There are two advantages

of this algorithm. Firstly, the substrate network does not need time for finding resources on

which to map the virtual access nodes. Secondly, instead of having to search any virtual

network topologies and fit them to the substrate network, the algorithm only needs to search

some specific topologies of complete, ring or star from backbone network. These constraints

reduce searching space, and hence make the algorithm faster than others. The simulation

experiments of this algorithm show that the cost of constructing a virtual network is usually

no more than 1.5 times a computed lower bound on network cost.

The next static virtual network allocation method has been proposed in [20]. In this

approach, Yu et al. find the substrate nodes and links to host a virtual network demand based

on the objective of maximizing the total revenue. They use the greedy method to calculate

and map the virtual nodes onto substrate nodes, then find the paths to connect those substrate

nodes by k-shortest path algorithm [21]. The innovation in the method is mostly in the way

the authors play with the virtual link demands and the substrate paths to deal with the NP-

hard problem. The algorithm allows the substrate network to split the virtual link demands

over multiple substrate paths. The algorithm also employs a path migration to periodically

re-optimize the utilization of the substrate network. The experimental results show that with

the two new mechanisms, path splitting and path migration, the substrate network can get



12

Figure 1.5: Backbone-star based static virtual network resource allocation

higher revenue and lower bandwidth cost than the baseline approach.

The next static virtual network allocation method has been shown in [22]. In their

algorithm, Chowdhury et al. have proposed a method to map the virtual network onto the

substrate network in the coordinated way. They have built the augmented graph based on the

substrate graph and virtual network. Then they have proposed two methods - deterministic

rounding virtual network embedding (DViNE) and randomized rounding based virtual net-

work embedding (RViNE) - to search for the substrate nodes for hosting the virtual network

demands. The DViNE algorithm searches substrate nodes satisfying location constraints

with maximum availability to allocate to virtual network demands. RViNE also searches

the nodes satisfying both location constraints and availability constraints, but the probability

to allocate a substrate node to a virtual network demand is proportional with the substrate

nodes’ availability. After finding all substrate nodes to allocate for the virtual network de-

mand, the algorithm uses multi-commodity flow [23] to allocate the resource for virtual

links. The results show the advantages of these two algorithms in acceptance ratio, revenue

and provisioning code; comparing with the previous methods: Greedy node mapping with

shortest path based link mapping (G-SP), greedy node mapping with splittable link map-

ping using multi-commodity flow (G-MCF), deterministic node mapping with shortest path
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based link mapping ( D-ViNE-SP), deterministic node mapping with splittable link mapping

(DViNE-LB).

The other method for allocating resources to virtual network demands across multi-

domains is given in [24]. A distributed protocol name PolyViNE (policy-based virtual net-

work embedding) has been designed for SPs to communicate with InPs as well as InPs to

communicate with each other to provide resources to SPs in the way of upholding InP’s inter-

nal policy. Basically, the protocol works as follows. When a SP sends an EMBED message

to InPs to ask for embedding its virtual network demands, each InP checks whether it has

enough resources to host the demand. If yes, then it sends the SUCCESS message back to the

SP. If it can partly serve the virtual network demand, then it sends the message FORWARD

to other InP to ask for hosting the rest of the virtual network demand. If the InP cannot host

the virtual network demand at all, then it will send the message RELAY to the next InP for

asking the next InP to host that demand. The procedure continues until the last InP or SP can

receive the SUCCESS message.

Another method, trying to solve the problem of virtual network embedding across

multiple substrates, is presented in [25]. In their paper, Houidi et al. have formulated an

optimization problem for SPs to decide how they can best split their virtual network de-

mand through many substrate networks. The optimization problem is a quadratic integer

programming with the objective of minimizing the hosting cost. Unfortunately, this op-

timization problem is proven NP-hard, and the authors have proposed a heuristic method

using max-flow/min-cut to solve the problem. Simulation results show that this proposed

method exhibits reduced costs compared to existing ones.

In [26], an optimization problem is formulated to solve the mapping of virtual network

to the substrate network. The problem tries to minimize the mapping cost for each virtual

network request with the following constraints. Firstly, two virtual nodes from the same

virtual network demand cannot be assigned to the same substrate node. Secondly, each

virtual node cannot be assigned to more than one substrate node. Thirdly, a virtual node

can only be mapped to the substrate node with enough resources. Finally, a virtual access

node can be mapped to the substrate access node only. This integer programming problem

is also proven NP-hard. The authors have used the ant-colony heuristic method (VNE-AC)

to solve this optimization problem. The simulation results show that the proposed method

makes embedding more effective, and achieves better resource utilization than the previous
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methods such as VNE-Greedy, VNE-Cluster, VNE-Subdividing and VNE-Least.

In spite of many proposals for static virtual network allocation, they only concern how

to provide an exclusive service to virtual network demands. However, in the environment

of multi-tenant data center network, exclusive resource allocation for two tenants Google

and Nasdaq as in Figure 1.1 is inefficient and uninterest in an economic viewpoint. We pro-

posed an optimization framework using careful overbooking concept to provide additional

services to exclusive one. The detailed formulation and experiment results will be presented

in Chapter III.

1.2.3 Dynamic virtual network allocation

The dynamic virtual network allocation which periodically re-adjusts allocated vir-

tual link bandwidth is proposed by [17]. In their paper, Zhu and Ammar have developed a

selective virtual network reconfiguration scheme. They argue that the virtual network recon-

figuration is more expensive than the flow re-routing problem [27] in both reconfiguration

and service disruption cost. Furthermore, they show that the virtual network reconfigura-

tion order affects to the substrate network performance. Therefore, they have developed a

marking algorithm to mark the virtual networks’ priorities for reconfiguring. This algorithm

marks the high-stress nodes or links and reconfigures only the virtual networks hosting on

that nodes or links accordingly. The simulation results show that the virtual network allo-

cation with reconfiguration has lower maximum node and link stress. This method needs

extensive computing resources because it considers the marked virtual networks as the new

demands to be served.

Another method to deal with the dynamic virtual network allocation is Davinci [28]. In

this paper, He et al. have presented an architecture, in which each substrate link periodically

reassigns the bandwidth shares among its virtual links; while at a smaller time-scale, each

virtual network independently runs a distributed protocol to maximize its utility objective.

The resource allocation problems in both substrate network and virtual networks are derived

by optimization theory [29]. The problems in virtual networks are formulated as network

utility maximization [30] with the objective as throughput, delay, blocking probability and

the constraints as virtual link’s residual bandwidth. The main optimization problem in the

substrate network is derived from the convex optimization theory with the objective function

as the weighted sum of all virtual networks’ utilities and the constraints as the substrate link’s



15

bandwidth. Because of the computational complexity, a centralized algorithm for solving the

main optimization problem is impossible to implement in a large network model such as the

internet. The work has used primal decomposition [31] to decompose this main problem to

many sub-problems each of which can be solved at a local node with the local information.

The results of the individual sub-problems construct the solution for the main problem. The

experiments show that the bandwidth shares not only converge quickly for a range of constant

step size but also adapt swiftly to traffic shifts and link failures.

Zhou et al. [32] point out the weakness of [28]. If any of the virtual networks ex-

hibit malicious behaviours, then unfair allocation will happen. To fix this weakness, they

have used game theory to formulate a new virtual link bandwidth allocation problem. Their

proposed game problem uses the economic incentives to prevent the virtual networks from

exhibiting the malicious behaviours. In particular, they have added a new term, cost of

hosting on a congested link, to their problem’s pay-off function so that if a virtual network

stresses the clogged physical links, then it will be charged with the high cost. They have

proven that their game converges to Nash equilibrium, and proposed an algorithm to solve

the problem iteratively. The simulation results show that their algorithm can rapidly achieve

Nash equilibrium.

In [33], Wang et al. have modelled the virtual link allocation in network virtualization

as a Stackelberg game. At the upper level, the virtual networks play a non-cooperative band-

width allocation game. At the lower level, the substrate network intelligently sets a price for

driving virtual networks to maximize the total revenue. After formulating the game problem,

the authors have also proposed a distributed method of decomposing the global optimization

problem into local algorithms. These algorithms can run independently at different ingress

nodes of substrate network.

Davinci [28] does not allow a virtual link to traverse more than one physical link. It also

does not permit a virtual link to host on another virtual link. In [15], Drwal and Gasior have

reformulated the optimization problem to relax these above constraints. The solution for their

optimization problem is a distributed virtual bandwidth allocation algorithm which grants the

virtual links for the arbitrary traveling. Their algorithm’s convergence is theoretically proven.

However, the above dynamic virtual network allocations only pay attention to the inter-

net which is the large scale in both substrate network and virtual network. The only existing

commercial network virtualization model now is a cloud resident data center which has dif-
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ferent structure with the internet. The cloud resident data center has big size substrate, but

small size virtual network. We have re-derived the dynamic virtual network allocation algo-

rithm to work in cloud resident data center model by designing the centralized algorithm for

virtual network and distributed algorithm for substrate network.

1.3 Objective of dissertation

The objective of this dissertation is to propose the algorithms of optimally allocating

the data center resources to tenants in the context of network virtualization. As shown in

Figure 1.1, the traffic from tenants of server hosting services are quite static. This works used

static resource allocation approach and applied the careful overbooking concept to give more

flexibilities in allocating virtual link bandwidth than the conventional exclusive allocation.

However, the traffic in tenants with IaaS service is quite dynamic. This work adopts the

new model of cloud resident data center to provide IaaS to tenants. Based on this model,

this work has applied optimization theory to derive a new dynamic algorithm, which control

traffic flowing in each virtual data center centrally and control traffic flowing in substrate

network distributedly. The algorithm has been implemented in our small cloud resident data

center testbed to show the better performance than the previous algorithms, i.e. [28].

1.4 Scope of dissertation

The scope of this dissertation in controlling the allocation of substrate resources to

virtual networks is described as follows:

1. Study the dynamics of traffic in network virtualization

2. Apply a careful overbooking concept to derive the new static allocating method, which

uses substrate capacity efficiently.

3. Study the theory for integrating the derived method of resource allocation to the opti-

mization framework.

4. Write a simulation in MATLAB to quantify the results.

5. Study the practical network virtualization via cloud resident data center model
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6. Build a small-scale test-bed of cloud resident data center based on the OpenFlow [12]

framework.

7. Use optimization theory to derive the dynamic traffic control model on both virtual

networks and substrate network.

8. Test the algorithm on our small-scale test-bed

1.5 Organization of dissertation

After the introduction in this chapter, the theoretical backgrounds and cloud resident

data center testbed are presented in Chapter II. The purpose here is to provide the basic

information of primal decomposition method, gradient projection method, congestion price

and Karush-Kuhn-Tucker conditions; as well as to provide the practical settings of our small

test-bed to implement and test our derived traffic control algorithms. The static optimal vir-

tual network allocation with careful overbooking is explored in Chapter III to aggregate the

server hosting services in multi-tenant data center network. Here, the careful overbooking

concept is analyzed to calculate SLA parameters for guaranteeing the quality of service. A

Mixed integer programming is formed by using the above SLA parameters to search for the

best operational point of the overall network. In Chapter IV, an optimization problem is

formulated from the new structure of cloud resident data center for IaaS service. The primal

decomposition is used to decompose this optimization problem into a novel algorithm for

dynamically adaptive traffic control. This algorithm is theoretically proven of convergence

and implemented in simulation (MATLAB) as well as in testbed (OpenFlow system) to qual-

ify the performance. This dissertation concludes all the contributions in Chapter V, together

with possible future research directions. The Appendix gives detailed explanations to the

centralized virtual network allocation algorithm.



CHAPTER II

THEORETICAL BACKGROUND AND CLOUD

RESIDENT DATA CENTER TESTBED

This chapter describes the theoretical background and our small cloud resident data

center testbed. The backgrounds of using optimization theory to model and solve the network

virtualization problems are addressed in Section 2.1. Four issues are of particularly interest,

namely, primal decomposition method, gradient projection method, congestion price, and

Karush-Kuhn-Tucker (KKT) conditions. Section 2.2 then presents our small cloud resident

data center testbed which is the only commercial network virtualization model now a day.

The purpose here is to introduce our system model and the scheme to control traffic rate in

each virtual network as well as the methods to control the traffic in the substrate network.

The concluding remarks, which locate the applications of this chapter’s basic knowledge in

this dissertation, are presented in Section 2.3.

2.1 Theoretical background

2.1.1 Primal decomposition

In such a large Amazon cloud network [34], which connects many data centers through-

out USA, EUROPE and ASIA; no single server is strong enough to solve the centralized

algorithm for optimal rates of all network’s nodes. Hence, the centralized optimization al-

gorithm should be replaced by the distributed one. The distributed optimization algorithm

decomposes the centralized optimization problem to be many sub-problems each of which

can be solved independently in the equivalent network’s node. A simple example of a de-

composable optimization problem is:
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maximize
{x1,x2}

x1 + x2

subject to x1 ≤ 1

x2 ≤ 1 (2.1)

0 0.5 1 1.5 2
0

0.5

1

1.5

2

x
1

x 2

Figure 2.1: Decomposable problem

where x1, x2 are the variables that we need to find in the constraint set x1 ≤ 1; x2 ≤ 1

to maximize the objective function of x1 + x2. This problem can be decomposed into two

sub-problems each of which varies with either x1 or x2:

maximize
{x1}

x1

subject to x1 ≤ 1 (2.2)

maximize
{x2}

x2

subject to x2 ≤ 1 (2.3)

As in Figure 2.1, the combination of the sub-problem’s results, (x∗
1, x

∗
2), is the optimal point

for the original optimization problem.

However, not all the optimization problems are decomposable. For instance, let exam-

ine the following simple optimization problem:

maximize
y,{x1,x2}

x1 + x2

subject to x2
1 + (1− y)2 ≤ 1

x2
2 + y2 ≤ 1 (2.4)
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Figure 2.2: The two optimal values of y

If we decompose this optimization problem into two sub-problems as follows:
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maximize
{y,x1}

x1

subject to x2
1 + (1− y)2 ≤ 1 (2.5)

maximize
{y,x2}

x2

subject to x2
2 + y2 ≤ 1 (2.6)

The optimal point of problem (2.5) is x∗
1 = 1 when y∗1 = 1, and the optimal point of prob-

lem (2.6) is x∗
2 = 1 when y∗2 = 0. Because y∗1 in (2.5) is different from y∗2 in (2.6), we

cannot combine the optimal points from the sub-problems into the optimal point of the orig-

inal problem. The coupling variable y makes this problem undecomposable. To convert

an undecomposable optimization problem into decomposable one, the work in [31] has sur-

veyed many methods such as dual decomposition for coupling constraint problem, primal

decomposition for coupling variable problem, and the combination of the two decomposi-

tion methods: partial-dual, primal-dual, dual-primal.

The centralized optimization proposed in Chapter IV has coupling constraints, hence

we apply the primal decomposition method to decompose the problem. In general, the pri-

mal decomposition method can be explained for the coupling-constraint convex optimization

problem follows.

maximize
y,{xi}

∑

i

fi(xi)

subject to xi ∈ Xi ∀i

Aixi ≤ y ∀i

y ∈ Y (2.7)

where fi(xi) is convex function with xi, and does not vary with xj if i 6= j. The notation

{xi} presents the set of all xi. This problem is undecomposable because of the coupling

variable y in the constraint Aixi ≤ y. The primal decomposition method makes this problem

decomposable by first fixing y as any point in the feasible set y ∈ Y to find x∗
i ∀i.

maximize
{xi}

∑

i

fi(xi)

subject to xi ∈ Xi ∀i

Aixi ≤ y ∀i (2.8)

After fixing y, the original problem (2.7) only has variables of {xi} as in (2.8), and can be

decomposed into many sub-problems each of which with an index number i is presented as
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follows:

maximize
xi

fi(xi)

subject to xi ∈ Xi

Aixi ≤ y

(2.9)

Each sub-problem with index number i can be solved locally in local contraint set Xi and

Aixi ≤ y to find the optimal point x∗
i . After getting x∗

i with ∀i, we find the new optimal

y ∈ Y by forming the following master problem:

maximize
y

∑

i

f ∗
i (y)

subject to y ∈ Y

where f ∗
i (y) = fi(x

∗
i , y) is the function of variable y when replacing xi by the optimal point

x∗
i from the sub-problems

For example, we can apply primal decomposition method to decompose the problem

(2.4) by first fixing the coupling variable y. The sequel problem is as follows.

maximize
{x1,x2}

x1 + x2

subject to x2
1 + (1− y)2 ≤ 1

x2
2 + y2 ≤ 1 (2.10)

This problem is decomposable into the two following sub-problems:

maximize
{x1}

x1

subject to x2
1 + (1− y)2 ≤ 1 (2.11)

maximize
{x2}

x2

subject to x2
2 + y2 ≤ 1 (2.12)

The optimal point for (2.11) is x∗
1 =

√

1− (1− y)2, and the optimal point for (2.12) is

x∗
2 =

√

1− y2. Replace these optimal points back to the original optimization problem to

have the new optimization problem with only variable y.

maximize
y

√

1− (1− y)2 +
√

1− y2

And the optimal solution is 0.37 when y∗ = 2.1140
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2.1.2 Gradient projection method

The analysis in Chapter IV for the master problem (4.3) needs to solve a relaxed

optimization problem with simple non-negative orthant constraints as follows.

minimize
x

f(x)

subject to x ≥ 0 (2.13)

In the optimization problem, f(x) is the objective function, x ∈ Rn is the independent

variable vector and x ≥ 0 is the non-negative orthant constraint.

An iterative method is a general solution for the simple-constrained optimization prob-

lem (2.13). In each iteration, the method relaxes the non-negative orthant constraint to solve

the sequel unconstrained problem minimize
x

f(x), then projects the intermediate results back

to the non-negative orthant constraint set x ≥ 0 to make them feasible. For solving the

relaxed unconstrained problem, two main methods, namely, gradient ascent method and

Newton’s method, have been presented in [35]. Because the Newton’s method needs to

calculate the second-order derivative of the optimization’s objective function, it increases

the computational complexity significantly. This dissertation decides to use the second one,

gradient ascent method, which requires only first-order derivative of the optimization’s ob-

jective function f(x). Furthermore, this first-order derivative is exactly the congestion price

vector which can be taken from previous dual solutions of optimization sub-problems (4.1).

A combination of the gradient ascent method and projection method is used in this

dissertation under the name of gradient projection method. In each iteration of the gradient

projection method, the gradient ascent algorithm is used to solve the relaxed unconstrained

problem. The projection method is used next for projecting the intermediate results to the

feasible set.

The searching vector s(x) ∈ Rn of the gradient ascent method is set to be the gradient

of the objective function f(x).

s(x) = ∇f(x)

It can be observed that in the unit norm constraint, the searching vector s(x) points to the

highest-increased direction of the objective function f(x). The observation can be proven by

using the first-order Taylor approximation to approximate the objective function f(x) at the
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point x+ s(x).

f(x+ s(x)) ≈ f(x) +∇Tf(x)s(x) (2.14)

From (2.14), the unit-norm searching vector s(x) to maximize f(x + s(x)) is equal to the

unit-norm searching vector s(x) to maximize ∇Tf(x)s(x). Applying the Cauchy-Schwarz

inequality:

∇Tf(x)s(x) ≤ ||∇f(x)||2||s(x)||2

= ||∇f(x)||2

= ∇Tf(x)∇f(x)

(2.15)

Hence, the unit-norm s(x) = ∇f(x) will maximize f(x+ s(x)) with regard to ||s(x)|| = 1.

That is, at every iteration, the searching vector in gradient ascent method points to the

highest-increased direction of the objective function.

The justification for the projection method, which is used in each iteration of gradient

ascent method, to find the feasible optimal solution of (2.13) is presented in Figure 2.3. The

figure only explains the one-dimensional optimization problems, but it is always possible to

extend the explanation for higher-dimensional optimization problems. Figure 2.3 shows the

objective function f(x) which has an infeasible maximum (A) at the equivalent infeasible

optimal point (C). Because of the concavity of the objective function f(x), it is always

possible to project the infeasible optimal point (C) to the feasible set, which in here is the

non-negative quadrant, to get the feasible optimal point (O). The solution is (B), which is the

maximum of the objective function f(x) in the feasible set of non-negative quadrant.

The gradient projection algorithm which applies the gradient ascent and projection

method to find the feasible optimal solution for simple-constrained optimization problem is

presented as follows.
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Figure 2.3: Projection method

Algorithm II.1 Gradient ascent method

Suppose that a function f : Rn → R and a starting point x0 ∈ R
n are given. Let k = 0.

1: while Termination criterion is not satisfied do

2: Set k = k + 1

3: Set sk = ∇f(xk)

4: Find βk to minimize f(xk + βksk) with respect to βk

5: Set xk+1 = [xk + βksk]p

6: end while

where [•]p is the projection to feasible constraints; k is an iteration index number; β is step

size, which can be found by back tracking line search [29].

2.1.3 Congestion price

The argument that the congestion price is the partial derivative of the primal objective

function with right hand side of inequality constraint is used in (4.6). This section proves the

above argument in a convex optimization problem with affine inequality constraints [29].

maximize
x

f(x)

subject to Ax ≤ b (2.16)
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where x ∈ Rn, A ∈ Rm×n and b ∈ Rm. The perturbed problem is derived from the primal

one (2.16) by relaxing the inequality constraints by u units.

maximize
x

f(x)

subject to Ax ≤ b+ u (2.17)

If the primal problem (2.16) has the optimal solution p∗(0), then the perturbed problem has

the optimal solution p∗(u). The dual of the perturbed problem (2.17) is derived by first

calculating its Lagrange function.

L(x, λ) = f(x) + λT (b+ u− Ax)

∇xL(x, λ) = ∇xf(x)− ATλ

(2.18)

where λ ∈ Rm is Lagrange multiplier vector. Then, the Lagrange function L(x, λ) is maxi-

mized with the primal variable x by setting ∇xL(x, λ) = 0. Hence, the dual of the perturbed

problem (2.17) is found by minimizing the resulted Lagrange function max
x

L(x, λ) with dual

variable λ.

minimize
λ

f(x) + λT (b+ u− Ax)

subject to ∇xf(x)−ATλ = 0

Because the strong duality holds for the perturbed problem, the primal solution p∗(u) is equal

to the dual solution d∗(u).

p∗(u) = d∗(u) (2.19)

∂

∂ui

p∗(u) =
∂

∂ui

d∗(u)

=
∂

∂ui

(

f(x) + λ∗T (b+ u− Ax)
)

= λ∗
i (2.20)

The result in (2.20) proves that the congestion price λ∗
i is the partial derivative of primal

objective function of (2.16) with the right hand side in equality contraint ui.
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2.1.4 Karush Kuhn Tucker conditions

This section describes Karush Kuhn Tucker (KKT) conditions to prove the optimality

of a general convex optimization problem.

minimize
x

f(x)

subject to fi(x) ≤ 0, i = 1, .., m

hj(x) = 0, j = 1, .., p (2.21)

where f(x) is convex objective function; fi(x) is affine ∀i, and hj(x) is affine ∀j. Let x̃ be

the feasible points of (2.21); and λ̃, ν̃ be the feasible points of the dual problem of (2.21).

If x̃, λ̃, ν̃ are satisfied by KKT conditions, then x̃ will be primal optimal point, and λ̃, ν̃ are

dual optimal points of the convex optimization problem (2.21) [29].

1. Primal constraints: fi(x) ≤ 0, i = 1, .., m and hj(x) = 0, j = 1, .., p

2. Dual constraints: λ ≥ 0

3. Complementary slackness: λifi(x) = 0 , i = 1, .., m

4. Gradient of Lagrange with respect to x vanishes:

∇f(x) +
m
∑

i=1

λi∇fi(x) +

p
∑

i=1

νi∇hi(x) = 0 (2.22)
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2.2 Cloud resident data center testbed

Figure 2.4: Physical model Figure 2.5: Logical model

A theoretically derived algorithm is not convinced enough if it has not been evaluated

and continuously improved in a realistic environment which is a global cloud network in our

research. In spite of the importance, the integration of our theoretically derived algorithm

into such a large network is extremely challenging. To cope with this challenge, we decide

to build a small PC based testbed for implementing our algorithm as first step to realize

the practical problems of implementation. Our OpenFlow based cloud resident data center

testbed is presented in Figure 2.4 with 7 PCs. PC1-3 are installed with OpenVswitch; PC4 is

installed with NOX; PC5 is installed with host manager; PC6-7 are end hosts. The software

modules in each PC such as OpenVswitch, NOX are the control modules used in the current

cloud network.

Our logical model of the testbed is shown in Figure. 2.5. The two NOX controllers,

ENG and SCI, are installed as computer processes in PC4 with the communicating port

7000 for ENG-NOX and 9000 for SCI-NOX. The two host managers, ENG and SCI, are

also installed as computer processes in PC5 with the communicating port 1890 and 1990
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accordingly. The control network 172 is used for NOX to control the OpenVswitches. The

managed network 192 is used to remotely access to all the devices in the network and for the

host managers to communicate with end hosts. The data network is used for the switches to

transmit the traffic from one end host to others.

In the following, we explain our mechanisms to control the traffic Controller, in each

virtual network as well as in the substrate network.

2.2.1 Traffic control in each virtual network

Figure 2.6: Virtual network control

The traffic control in each virtual network is the basic step for the whole cloud network

traffic control. The purpose of virtual-network traffic control is to build the mechanisms and

protocols for the host manager to communicate and control the sending traffic of the all

virtual network’s end hosts. From Figure 2.6, to practicalize the purpose, we need to deal

with the problems in controller, host manager as well as in end hosts. The problems from

controller are to differentiate the virtual-network’s source-destination paths, and forward the

packet streams through those paths. The problems from host manager are to synchronizingly

communicate with all end hosts to get the traffic request as well as update the new optimal

traffic rate, and to calculate the optimal rate for each end host. The problems from end hosts

are to build the packets, and to send the packet out each path with the allocated rate from host

manager, and to communicate with the host manager for the requested rate. The solutions for

problems in controller will be presented in the controller implementation. The solution for

problems in host manager will be presented in host manager implementation. The solution
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for the problems in end host will be presented in end host implementation. Inspired from the

general idea of [36], we have scratched the overall process to synthesize all the mechanisms

in controller, in host manager and in end host to control the traffic flowing in each virtual

network.

1. When receiving the requests from host manager, all the end hosts will immediately

send their desired sending rate request (1).

2. Host manager calculates the optimal traffic rates based on all end hosts’ desired send-

ing rates and the network state at that time (2).

3. Host manager sends back the optimal rate in the form of (VLAN, Mbps) to each end

host (3).

4. Each end host sends the traffic to the paths based on the allocated path rate (4).

NOX controller implementation

In a virtual network, for an end host to send traffic via multipath, NOX controller needs

to teach OpenVswitches to differentiate the virtual-network source-destination paths, and to

forward the packet stream through these paths. We use VLAN for NOX to differentiate the

paths in our small system. For example, there are two paths from end host TA to end host TB.

The upper path is tagged with VLAN ID = 2, and the lower path is tagged with VLAN ID =

3. In case of the big system with so many paths that VLAN does not have enough address to

tag, we can use MPLS to tag the paths instead. The forwarding entries in the OpenVswitches

of our system can be simplified to show in Figure 2.7.

Figure 2.7: OpenVswitch forwarding entries

where inport is physical port number of OpenVswitch, actions has the output port to which

the switch should forward the packet. inport and vlan of incoming packet are the conditions
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for the switch to do the actions. From the figure, packets with VLAN ID = 2 will be for-

warded to the upper path, and packets with VLAN ID = 3 will be forwarded to the lower

path.

We have written a python script for NOX controller to teach OpenVswitch to forward

the packet stream based on VLAN information as follows:

Algorithm II.2 Traffic control script in NOX controller

1: def datapath_join_callback()

2: def handle_port_status()

3: install(self):

4: self.register_for_datapath_join()

5: self.register_for_port_status()

When NOX start, it will run this script which does the followings. The script registers with

NOX controller that it will process the datapath join event which is generated if a new switch

connects to the NOX controller (line 4). This event is processed by the actions which are

defined in the function of line 1. In our system, we control NOX to add the forwarding

entries to OpenVswitches whenever a datapath join event comes to the NOX. The function

in line 5 is used to register with NOX controller that this script will process the event of port

status. And we define our actions in the equivalent function in line 2. This is used to test the

case of failure recovery in Chapter IV.

Host manager implementation

A virtual-network’s host manager is the center to calculate the traffic rate for all end

hosts in the virtual network. The host manager can be integrated in the virtual network’s

controller or be an independent module. The host manager connects to all end hosts of a

virtual network via a socket. For example, the socket of host manager for virtual network

ENG is (’192.168.0.5’,1890), and for virtual network SCI is (’192.168.0.5’, 1990). The

host manager synchronizes the traffic rate of all virtual-network’s end hosts by periodically

sending the requests and updating the new rate for end hosts. After getting the traffic requests

from all end hosts, the host manager calculates the optimal rate for all end hosts by solving

the optimization in Chapter IV using CVXOPT package [37].

We have written a socket program in Python for the host manager to connect with all
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end hosts in the virtual network as follows:

Algorithm II.3 Class Vncal: Traffic control in a virtual network

1: INIT: T = 5 seconds

2: class Vncal(Thread):

3: connect_to_endhosts

4: while True do

5: for all endhosts do

6: r
(k)
i = get_max_rate(end-host_id)

7: end for

8: ~z(k), ~λ(k) = nw_opt_rate(max_rate_list)

9: for all end-hosts do

10: sendrate(~zi(k), end-host_id)

11: update2hm(~λ(k))

12: end for

13: end while

where the function in line 3 creates a socket (’IP’, PORT) to connect with all the virtual-

network’s end hosts. For example, in virtual network ENG, the socket for host manager

to connect to end host TA is (’192.168.0.14’, 35619), to end host TB is (’192.168.0.15’,

58468). The function in line 6 asks the end host with its end_host_id for the request rate

and put them to a list max_rate_list. The function in line 8 solves the network optimization

which is presented in Chapter IV for the optimal rate using the Netcal class which will be

presented next. The returned values of function in line 8 are the optimal rate zi(k), which

will be used in function in line 10 to update back to the end host, and congestion price ~λ(k),

which will be used in the function in line 11 to update the new optimal rate back to the end

host.

We also have written a program for the host manager to calculate the optimal rate of all

virtual-network’s end hosts using CVXOPT [37]. Because the optimization in each virtual

network is a convex problem, the primal-dual interior point algorithm has been chosen to

solve the problem centrally. The algorithm is encoded in the Vncal class which is outlined

as follows:
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Algorithm II.4 Class Netcal: calculate the optimal rate and price, file: grad.py

1: INIT: q, I, J, IJ = I ∗ J, y(k)

2: class Netcal(object)

3: rhs2st = matrix(numpy.zeros(self.IJ))

4: for l in L do

5: for i in I do

6: for j in J do

7: GH1[l][i ∗ J + j] = H[i][l][j]

8: end for

9: end for

10: end for

11: GH = matrix(GH1)

12: DI = -numpy.identity(IJ)

13: G = matrix(numpy.vstack((GH, DI)))

14: ~h = matrix(numpy.vstack((y(k), ~rhs2st)))

15: sol = solvers.cp(F, G, ~h)

where I is the number of traffic demands for each end hosts, J is the number of paths for

each demand, L is the number of links in the network. Basically, the program calculates the

parameters F,G,~h for the optimization solver function in line 16. The function F(x,z) return

value from its input parameters x, z for the function in line 16 to solve the optimization

problem numerically. Matrix G is the gradient matrix of the objective function and ~h is the

right-hand side of the constraint set.

End host implementation

End host in our testbed is a virtual machine hosting on a physical machine. Every end host

has to communicate the optimal rate with host manager, and build packets as well as send

these packets to destination through multipath with pre-determined optimal rate.

For the first mission, the end hosts need to figure out the wanted rate to send to each

destination at the beginning of each period T . The end hosts in our system figure out the

wanted rate by periodically monitoring the number of buffered packets in the output port.

Based on this information, the end host predicts its desired sending rate of next period. This
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Listing II.1: Packet header

Frame 374899: 1500 bytes on wire (12000 bits), 1500 bytes captured (bits);

Ethernet II (VLAN tagged), Src: 08:00:27:d8:ce:37,Dst: 08:00:27:c1:c5:8a;

Internet Protocol Version 4, Src: 127.0.0.1 (127.0.0.1),Dst:127.0.0.1(127.0.0.1);

Transmission Control Protocol, Src Port: 23335 (23335), Dst Port: 12336 (12336), Seq: 1

Frame 374899: 1500 bytes on wire (12000 bits), 1500 bytes captured (12000 bits);

Ethernet II (VLAN tagged), Src: 08:00:27:d8:ce:37,Dst: 08:00:27:c1:c5:8a;

Internet Protocol Version 4, Src: 127.0.0.1 (127.0.0.1),Dst: 127.0.0.1 (127.0.0.1);

User Datagram Protocol, Src Port: 23335 (23335), Dst Port: 12336 (12336), Seq: 1

desired sending rate then is sent as a request to host manager.

The second mission of the end host includes building packets and sending them to

the destination via multipath with the pre-determined rate. We used Scapy [38] to build the

wanted packet. For example, in our system, we need four kinds of packets:

• Packets for the switch of ENG slice to be forwarded via VLAN 3.

• Packets for the switch of ENG slice to be forwarded via VLAN 2.

• Packets for the switch from SCI slice to be forwarded via VLAN 3.

• Packets for the switch from SCI slice to be forwarded via VLAN 2.

All kinds of packets have the same size of 1500 bytes per packet. The four kinds of packets

have the header as List II.1

We exploited tcpreplay [39] to send the traffic out from the end host. Tcpreplay can

stimulate the real traffic by capturing the traffic to a .pcap file then use that .pcap file to send

the traffic out. In our system, we build the desired packets using scapy [38] and send it to

the destination. Tcpdump [40] is used to record the packet which can then be replayed with

desired sending rate by tcpreplay. Each tcpreplay session is called in a process which kills

itself after sending all the pre-determined amount of packets. To avoid the problem of the

process built up in the system, we have written the program to send the desired amount of

packets for each period T out as fast as possible. This kind of control is similar to TCP
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control in the way of sending packet in a period of time, but different in the way of getting

the rate information. In TCP, the end host figures out the amount of traffic to send from some

indicators such as: blocking probability and delay. However, in our system, the end host

receives the rate from the host manager. The algorithm in the end host is as follows:

Algorithm II.5 Virtual network ENG’s end-host traffic control script in TA

1: INIT: MGR_IP_ADDRESS = 192.168.0.5, MGR_PORT = 1890, T = 5s

2: p = packet_builder()

3: s = connect_to_hm()

4: while True do

5: wait_for_request_from_mgr()

6: send_max_rates()

7: wait_for_optimal_rates()

8: n
(1)
1 =

z
(1)
1 ∗T∗102400

12000

9: n
(1)
2 =

z
(1)
2 ∗T_s∗102400

12000

10: t2 = Thread(target=path_traff_send, args=(2,vlan2_npackets,))

11: t2.start()

12: t3 = Thread(target=path_traff_send, args=(3,vlan3_npackets,))

13: t3.start()

14: end while

15: Function path_traff_send(vlan,npackets)

16: sendpfast(vlan=vlan,slice="eng",limit=npackets,iface="eth1")

17: EndFunction

where the function in line 2 uses Scapy [38] to build packets with the header of VLAN ID = 2

as well as VLAN ID = 3 to send through the two paths of our system; MGR_IP_ADDRESS is

the ip address of host manager; MGR_PORT = 1890 is the TCP port number for the end-host

to connect to host manager. The function in line 3 helps the end-host to initialize connection

to host manager using the socket (MGR_IP_ADDRESS, MGR_PORT). The function in line

5 prepares end-host for receiving the request from host manager to send the traffic request

by the function in line 6. The function in line 7 prepares end-host to wait for the optimal rate

sent back from host manager. From the received optimal rate z
(1)
1 , z

(1)
2 (100 Kbps), end-host

calculates the number of packets with the size 1500 bytes to send out the path VLAN 2 (n
(1)
1 )

and VLAN 3 (n
(1)
2 ). The end-host sending the traffic creates two threads. The thread in line
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10-11 sends the VLAN 2 packets to the output port eth1 and the thread in line 12-13 sends

VLAN 3 packets to the output port eth1.

2.2.2 Traffic control in the substrate network

The virtual network’s host manager can automatically update it virtual link bandwidth

by implementing our substrate-network distributed algorithm. In each host manager, we have

created three threads, which are ENG thread, SCI thread and substrate thread. In the ENG

and SCI threads, we have implemented our virtual-network centralized algorithm, which is

explained in Chapter IV for the host manager to control the traffic flowing inside its virtual

network. In substrate thread, we have implemented substrate-network distributed algorithm

to take the congestion prices from the previous thread, and calculate the new virtual link

bandwidth for the virtual network, and update the new virtual link bandwidth back to the

ENG and SCI thread. The algorithm in the substrate thread is sketched as follows:
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Algorithm II.6 Calculate and update the virtual link bandwidth file:hm.py

1: NOTE: After each T , virtual link bandwidth is updated and the centralized optimization

solver is run once

2: INIT: T, cl(0), y
(1)
l (0), y

(2)
l (0)

3: eng = Vncal(’eng’, eng_Q, eng_cv, y(1)(t), T )

4: sci = Vncal(’sci’, sci_Q, sci_cv, y(2)(t), T )

5: while True do

6: µ(1)(t) = get_cp(eng_cv,eng_Q)

7: µ(2)(t) = get_cp(sci_cv,sci_Q)

8: for l in L do

9: ỹ
(1)
l (t+ T ) = y

(1)
l (t) +

y
(2)
l

(t)
(

λ
(1)
l

(t)−λ
(2)
l

(t)
)

y
(1)
l

(t)+y
(2)
l

(t)

10: ỹ
(2)
l (t+ T ) = y

(2)
l (t) +

y
(1)
l

(t)
(

λ
(2)
l

(t)−λ
(1)
l

(t)
)

y
(1)
l

(t)+y
(2)
l

(t)

11: // renormalize ỹ
(k)
l

12: y
(1)
l (t+ T ) =

ỹ
(1)
l (t+ T )

ỹ
(1)
l (t+ T ) + ỹ

(2)
l (t+ T )

cl

13: y
(2)
l (t+ T ) =

ỹ
(2)
l (t+ T )

ỹ
(1)
l (t+ T ) + ỹ

(2)
l (t+ T )

cl

14: end for

15: eng.update(y
(1)
l (t + T ))

16: sci.update(y
(2)
l (t+ T ))

17: end while

where ENG and SCI are the two virtual network threads. The function in line 7 gets the

congestion price from ENG thread to the substrate thread. The function in line 8 gets the

congestion price from SCI thread to the substrate thread. The function in line 16 updates the

new virtual link bandwidth to ENG thread. The function in line 17 updates the new virtual

link bandwidth to SCI thread.

2.3 Concluding remarks

In this chapter, the basic ideas of formulating and solving our optimization framework,

and our small cloud resident data center testbed have been detailed. In particular, in Sec-

tion 2.1, the primal decomposition method is used in Section 4.3.3 to decompose our cloud

resident data center optimization problem; the gradient projection method is used in (4.5) to
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iteratively find the solution for (4.4); congestion price is used in (4.6); KKT conditions are

used in Section 4.3.4 to prove the convergence of our derived substrate-network distributed

algorithm. The cloud resident data center testbed, which is presented in Section 2.2, is used

in Section 4.4 to test our derived substrate-network distributed algorithm.

In the next chapter, the careful overbooking concept will be analyzed for providing

SLA guarantee to network virtualization customers. We then formulate a Mixed Integer Pro-

gramming problem using the analysis’s results to control the traffic flowing in the network.

The simulation results will be reported accordingly.



CHAPTER III

OPTIMAL STATIC VIRTUAL NETWORK

ALLOCATION WITH CAREFUL OVERBOOKING

When deriving the virtual network embedding (VNE) algorithms, previous researches

assume that an InP only provides the exclusive or best-effort services to embed virtual net-

work demands in the InP’s network [2]. In the exclusive service, a VNE algorithm either

allocates 100% of what virtual networks require or blocks the virtual networks demanding

more resources than what the substrate network can allocate [22, 41]. This “all or nothing"

policy makes the InPs’ resource allocation simple, but inflexible. In reality, existing vir-

tual networks designed such as for email and ftp do not need the exclusive service. Virtual

network managers are unhappy if being charged with the exclusive service without the neces-

sity for such a high quality. In the best-effort service, a VNE algorithm does not take virtual

network demands into account. It only tries to allocate network resources fairly among all

VNs [17, 19]. But many virtual networks such as for voice, vdo, smartTV and IPTV need

QoS guarantees. Even getting cheap price, virtual network managers are unhappy if the

allocated quality is not good enough for them to operate their services.

As shown in Figure 3.1, to cope with the service providing problem, this chapter has

adopted a careful overbooking method which let provider accept more reservations than the

resources it actually has, but still can guarantee a level of quality (SLA) offered to virtual

network subscribers. The virtual networks which do not need to have the exclusive service

can be offered some other kinds of services whose quality can be specified by three parame-

ters: probability of getting full availability: 1− δ, probability of getting limited availability:

1 − ǫ, and reduction factor: γ. With these types of services, our system can figure out the

actual resources for customers to guaranteeing the quality of service even when the system

is in the most congested time. Furthermore, an optimization model [10] has been formulated

in this chapter to route the traffic bandwidths that have been figured out from the previ-

ous step through the network. To provide flexible services, the aggregated demands which

consist of many user requests have to be used. These kinds of demands are not suitable to
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Figure 3.1: Virtual network aggregating in substrate network

work with current multipath routing and dimensioning algorithms because it is possible for

these algorithms to split and route child demands through multipath. This chapter therefore

proposes necessary adjustments in current network routing and dimensioning algorithms for

constraining the actual aggregated demands to be routed through only one path as long as the

substrate network still has enough resource and control the upper bound of all virtual link

capacities to let the system guarantee QoS to customers.

The rest of this chapter is organized as follows, Section 3.1 describes the system. Sec-

tion 3.2 discusses a single user on-off model. Section 3.3 calculates the actual resources

for users’ demands. Section 3.4 proposes a mathematical formulation of Mixed Integer Pro-

gramming to route traffics through a substrate network. Numerical experiments are presented

in Section 3.5. Finally, Section 3.6 concludes and discusses future work.

3.1 System description

With the assumption that virtual networks let the substrate network know the number

of users connected to each link, the substrate network can multiplex many parts of virtual

network demands with the same source destination address into an aggregated demand. And

we can modularize the system as follows.

r SLA MIP r

(δ, α, γ, ǫ, a, N) max(rfull, rlim) allocation

Figure 3.2: System functional description
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Figure 3.2 shows the aggregated demand coming to a substrate network with the QoS

parameters 1−δ = probability of getting full availability, 1−ǫ = probability of getting limited

availability, γ = reduction factor which is the ratio of capacity provided to limited availability

user comparing with full availability’s. These parameters can be explained by the availability

model as in Figure 3.3. where full availability is defined as the state in which the allocated

Non Availability Limited Availability Full Availability

γ 100%
allocated capacity

cap. requirement
→

Figure 3.3: Availability model

bandwidth is at least equal to the requested bandwidth. Limited availability is defined as

the state in which allocated bandwidth is smaller than or equal requested bandwidth but still

greater than or equal γ times the requested bandwidth. Therefore, we have δ ≥ ǫ and if

ǫ = 0, then the customer will be guaranteed not getting non availability service. If ǫ ≥ 0,

then sometime the customers have to suffer non availability service.

Beside QoS parameters, each aggregated demand also has the user parameters such

as activity level α, peak rate a, and the number of users N in that aggregated demand.

Service level agreement module calculates the necessary bandwidth for that demand as

max
(

rfull, rlim
)

; where rfull is the minimum capacity for providing full availability and

rlim is the minimum capacity for providing limited availability. These values will be derived

in Section 3.3. The system must guarantee that the allocated capacity is at least equal to

this calculated bandwidth to uphold the SLA committed to customers. The SLA module

then sends this calculated bandwidths as demands to the Mixed Integer Programming (MIP)

module, which will push the traffic through the best route with the objective to minimize

overall cost in hosting the traffic.

3.2 User model

In this chapter, following the assumption in [10] , the state of each user is modelled

as a discrete-time Markov on-off process, as shown in Figure 3.4. The on-state represents

the active state in which the user requires the constant peak rate a which does not vary with
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each user. And the off-state represents the inactive state in which the user does not send any

packets.

OFF, 0 ON, a

α

1− α

1− α α

Figure 3.4: On-off user model

Pr{0 < Q ≤ a} = 1− Pr{Q = 0} = α (3.1)

where Q is bandwidth demand of the user. In this model, the on-off times of users have

independent geometric distributions.

3.3 Service level agreement

This module automatically calculates the necessary capacity for aggregated demands

from the their SLA parameters. Let Qn denote the bandwidth demand of nth user in the ag-

gregated demand and let rfull denote the necessary capacity to host that aggregated demand.

To guarantee the full availability, one must have the probability to get the full availability

greater than (1− δ), i.e

Pr{
∑

n

Qn ≤ rfull} ≥ 1− δ (3.2)

The probability of n users to be active and N−n users to be inactive in N independent

users follows the binomial distribution. Hence, the term
∑

n Q
n ≤ rfull is equivalent to the

statement that the number of concurrent active users cannot exceed Nfull
excl = ⌊ rfull

a
⌋, where

rfull is the amount of capacities that the substrate network needs to provide to demands for
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Figure 3.5: Minimum capacity requirement for full and limited availability; N = 40, α = .3,

γ = .8, a = 2.

guaranteeing the full availability service.

N
full
excl
∑

n=0

N !

n! (N − n)!
αn(1− α)N−n ≥ 1− δ (3.3)

The minimum capacity for providing full availability can finally be found:

rfull = aNfull
excl (3.4)

With the same derivation, we can find out the minimum capacity requirement rlim for the

limited availability case with N lim
excl = ⌊ rlim

a
⌋ as follows:

Pr{
∑

n

Qn ≤ rlim} ≥ 1− ǫ (3.5)

N lim
excl
∑

n=0

N !

n! (N − n)!
αn(1− α)N−n ≥ 1− ǫ (3.6)

rlim = aγN lim
excl (3.7)

As shown in Figure. 3.5, with the same number of users N , activity level α, reduction factor

γ and user’s peak rate a, we can vary δ and ǫ to have different rfull and rlim. It is also shown

that rfull ≥ rlim does not always hold. For example, if we choose δ = 0.05 and ǫ = 0.0002,

then we have rfull = 34 which is less than rlim = 37. Because the allocated capacity has to
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Figure 3.6: Minimum capacity requirement for full and limited availability vs source activity

level α when N = 40, δ = 0.1, ǫ = 0.0001, γ = 0.8, a = 2.

satisfy both full and limited availability, it must be the maximum between rfull and rlim:

r = max
{

rfull, rlim
}

(3.8)

It is worth noting about the value of rfull and rlim with respect to the activity level α. As

shown in Figure 3.6, when α is small, rfull ≤ rlim. But when α is big, rfull ≥ rlim.

3.4 Mixed integer programming

The substrate network is modelled by the weighted indirect graph G(V s, Es) where

V s is the set of all substrate nodes and Es is the set of all substrate links each of which

has index number l. We can calculate the cost pl for one unit of traffic going through the

substrate link with index l. This cost is varied with the cable distance and interface types.

Here, the m-shortest path first algorithm [21] can be used to find out m least cost paths from

any source to any destination in the substrate network. The link-path routing matrix with

column representing the source-destination pair and row representing the substrate link is

denoted by H = [Hlj] where Hlj = 1 if path j uses link l and = 0 otherwise; and [H
i(k)
lj ]

is the routing matrix for virtual network k, demand i. The virtual network demand which

has index k is modelled as a vector of demands. Each demand includes a source substrate

node, a destination substrate node and the required capacity denoted by r
(k)
i for ith demand
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of virtual network k. We denote z
i(k)
j on path j as the amount of bandwidth that is assigned

to demand i of virtual network k. Based on [42], the cost for one bandwidth unit of demand

i of virtual network k on path j will be added by pl if path j of demand i goes through link

l, and added by 0 otherwise. Summing for all of link l, we have the cost as:
∑

l H
i(k)
lj pl.

Therefore, the total cost for z
i(k)
j units of traffic going through path j is z

i(k)
j

(

∑

l H
i(k)
lj pl

)

and summing for all k, i, j results in the total cost to route all virtual network demands:
∑

k

∑

i

∑

j z
i(k)
j

(

∑

l H
i(k)
lj pl

)

. Let y
(k)
l be allocated bandwidth for link l of virtual network

k. To minimize the total cost in the substrate network, we have to minimize the cost to route

the traffic through the substrate network in parallel with the total bandwidth
∑

l

∑

k y
(k)
l

created for the virtual networks:

∑

k

∑

i

∑

j

z
i(k)
j

(

∑

l

H
i(k)
lj pl

)

+
∑

l

∑

k

y
(k)
l (3.9)

The searching space is determined by constraints. We have the following capacity constraint:

Firstly, the total flow going through any link of any virtual network must not exceed the link

capacity of that virtual network. The virtual link capacity needed to host 1 flow unit will be

increased by 1 unit at link l if this flow goes through link l. As a result, we have the virtual

link bandwidth to host z
i(k)
j flow expressible as

∑

i

∑

j

∑

k H
i(k)
lj z

i(k)
lj and this virtual link

bandwidth has to be smaller than the virtual link bandwidth y
(k)
l that the substrate network

provides to the virtual network. The second capacity constraint is the constraint on the

substrate link capacity. Summing on link l of all virtual networks has to result in the added

capacity not exceeding the bandwidth of the substrate link cl:

∑

k

y
(k)
l ≤ cl ∀l (3.10)

The third constraint is concerned with the demand condition. In particular, the summation

of routed traffic has to be equal to the flow demand r
(k)
i :

∑

j

z
i(k)
j = r

(k)
i ∀i, k (3.11)

The multipath routing is very good in diversifying a traffic through the network and helps

the system to be robust with failures. However, since it cannot guarantee the quality of

service for the users in aggregated demands, we only want to use it when single path routing

cannot provide enough bandwidth to the demands. To build the constraint that prefers one

path routing to multipath routing, we introduce a new indication variable x
i(k)
j which has the
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value of 1 if demand i of virtual network k goes through path j, and value of 0 otherwise.

We construct the constraint as:

z
i(k)
j = x

i(k)
j r

(k)
i ∀i, j, k (3.12)

The purpose of this constraint is to make one demand push all its traffic through only one

path. Finally, we summarize our approach with the following optimization problem:

minimize
∑

k

∑

i

∑

j

z
i(k)
j

(

∑

l

H
i(k)
lj pl

)

+
∑

l

∑

k

y
(k)
l

subject to H(k)z(k) ≤ y(k) ∀k
∑

k

y
(k)
l ≤ cl ∀l

∑

j

z
i(k)
j = r

(k)
i ∀i, k

z
i(k)
j = x

i(k)
j r

(k)
i ∀i, j, k

z
i(k)
j ≥ 0 ∀i, j, k

y
(k)
l ≥ 0 ∀l, k

x
i(k)
j binary

variables x
i(k)
j , y

(k)
l , z

i(k)
j (3.13)

3.5 Results and discussions

All the experiments have been run on MATLAB with the setting as follows. The sub-

strate network has the topology as in Figure 3.7 which is core network taken from [43].

There are two virtual network requests coming to the substrate network. The first one has

eleven edge-to-edge connection demands and the second one has twelve edge-to-edge con-

nection demands. Each connection demand has the source randomly chosen from the node

set {6, 7, 8} and the destination nodes from {11, 12, 13, 14}. Based on the number of users

in each aggregated demand and the QoS parameters, we can find the actual bandwidth for

the demands. The capacity of each substrate link is set to 1 Gbps for the experiments except

the last one which is set randomly. The three shortest paths for each source-destination pair

have been used to construct link-path routing matrix H.



46

Figure 3.7: Experiment on the topology of Thailand’s core network
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Figure 3.8: Offering SLA to minimize |rfull − rlim| (ǫ = 0.0001, α = 0.3, a = 2, N = 20)

Figure 3.8 depicts |rfull−rlim| vs δ
ǫ

when reduction factor γ varies from {0.8, 0.85, 0.9}.

From the figure, the graph is stair with the increase of δ. If the increase of δ is not enough

to make Nfull
excl decrease, rfull as well as |rfull − rlim| remain unchanged and the graph

is constant. If the increase of δ is big enough for Nfull
excl to decrease one unit, then rfull

decrease a units and |rfull − rlim| increases a and the graph has a jump. From this fig-

ure, the good enough interval that minimizes |rfull − rlim| is δ
ǫ
= [500, 1000]. Based on

the obtained results, we have chosen the QoS parameters for the following experiments:

ǫ = 0.0001, α = 0.3, a = 2, N = 20.

Figure 3.9 presents the graph of mean cost per user vs activity level α when varying

N in the case of unlimited substrate capacity. From the graph, the higher the number of

users in an demand is the lower the cost per user becomes. The cost per user increases quite
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Figure 3.9: Cost per user vs activity level α with unlimited substrate link capacities; δ =

0.005, ǫ = 0.0001, γ = 0.8, a = 2.

linearly with activity level α. The cost when α = 0 is zero and the cost when α = 1 is equal

to the cost in exclusive case. When N is small, the activity level to make cost maximize is

small. When N is big we need big α for the cost reach maximum. Hence, the more users the

demand has the more profit the InP gains. But we also see from the figure that the decrease

of mean cost per user is not proportional with N . In particular, when N increases from 10

to 20 the mean cost per user decreases a lot. But, when N increases from 30 to 40, the mean

cost per user decreases only a little bit.

Figure 3.10 shows the graph of mean cost per user vs activity level α when varying N

in the case of limited substrate capacity. The substrate link capacity is limited by a number

which is generated by a Gaussian random number generator with mean 250 and standard

deviation is 1/10 of the mean. From the figure, the bigger the demand is, the more expensive

the mean cost per user becomes. The reason for this phenomenon is that the physical shortest

path does not have enough bandwidth to host all traffic in a demand and this demand has to

be split and routed through the worse path than the physical shortest path. The bigger the

demand is the more the traffic of this demand has to be routed through the worse path. This

causes the expensive mean cost per user in big demand.

Figure 3.11 demonstrates the total cost vs activity level α when varying the reduction

factor γ in the case of unlimited substrate capacity. From the figure, the total cost is sensitive
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Figure 3.10: Cost per user vs activity level α with limited substrate capacity; δ = 0.005,

ǫ = 0.0001, γ = 0.8, a = 2

with reduction factor γ when activity level α is small and not sensitive with γ when α is big.

The reason for this phenomenon is as follows. From the Figure 3.6, when α is small the ca-

pacity to satisfy limited availability rlim is bigger than the capacity to satisfy full availability

rfull. When α is big, rfull ≥ rlim. The allocated capacity:

r = max
(

rfull, rlim
)

=







rlim α is small

rfull α is big
(3.14)

The allocated capacity r is the main factor contributing to total cost. Note from (3.7) that γ

only affects limited availability capacity. So, when α is small, r = rlim and total cost vary

with γ. When α is big, r = rfull and total cost does not vary with γ.

Figure 3.12 demonstrates the total cost vs activity level α when varying the reduction

factor γ in the case of limited substrate capacity. From the figure, total cost varies with

α and γ following the same trend as in unlimited substrate capacity case. The difference

between Figure 3.12 and the Figure 3.11 is the total cost in limited substrate capacity case is

higher than the total cost in unlimited substrate capacity case. The reason is that the substrate

capacity of the shortest path is not enough to host the traffic flowing through that path. The

overflow traffic has to be re-routed through the longer path. The cost of this overflow traffic

increases the total cost.

Figure 3.13 depicts the histogram of the cost saving which is the ratio between our
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Figure 3.11: Total cost vs activity level α with unlimited substrate capacity; δ = 0.005,

ǫ = 0.0001, N = 20, a = 2.
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Figure 3.12: Total cost vs activity level α with limited substrate capacity; δ = 0.005, ǫ =

0.0001, N = 20, a = 2
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Figure 3.13: Cost saving histogram with many arrivals, each with random source, destination

and number of users N . (δ = 0.05, ǫ = 0.0001, α = 0.3, γ = 0.8, a = 2)

SLA cost and the exclusive cost in case of having many virtual network demand arrivals

each with random source, destination nodes as well as random number of users N . From

the figure, the cost saving ratio has mean of 0.4164 and standard deviation of 0.0257. This

suggests that our method can save the resource of the substrate network significantly.

Figure 3.14 depicts total cost vs δ in the case of many arrivals each of which has the

random source-destination pair nodes. The other parameters are set as ǫ = 0.0001, a = 2. In

this case, the substrate network resources are deduced with the amount required from virtual

network demands. From the figure, the total cost decreases very fast when δ is from 0 to 0.01,

but does not decrease any more when δ exceeds 0.01. The reason for this phenomenon is that,

when δ reaches 0.01, the resource substrate network needed to provide to virtual network for

guaranteeing the full availability service rfull is smaller than the resource substrate network

needed to provide to the virtual network for guaranteeing the limited availability rlim. In

section 3.3, the necessary resource for a virtual network demand is r = max
(

rfull, rlim
)

.

Hence, when rfull ≤ rlim, r does not change and equal to rlim when δ continues to increase.

Figure 3.15 gives the ratio between the SLA cost and the exclusive cost when γ = 1

, δ = 0, ǫ = 0. The ratio is calculated when randomizing all other experiment parameters

such as δ randomly chosen from the interval [0.001, 0.01], ǫ from the interval [0.00005,

0.0115], α from the interval [0.1, 0.9], γ from the interval [0.7, 0.9], N from the interval
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Figure 3.14: Total cost when varying δ in case of having many arrivals each has random

source, destination

[15, 25], source nodes from the node set {6, 7, 8}, and destination nodes from the node set

{11, 12, 13, 14}. The amount of cost saving has mean = 0.748, variance = 0.0479. This is

the basic factor for the InPs to calculate how much discount they can offer to their customers

who are willing to accept limited availability services.

3.6 Summary

This chapter formulates an optimal scheme for the InP to allocate resource to virtual

networks. This scheme integrates the QoS features of resource allocation to routing and di-

mensioning optimization model for minimizing the embedding cost of virtual networks. The

QoS features are defined by availability parameters. Each virtual-network customer who

wants a service from the infrastructure provider will be provided only one SLA proposal

including the percentage of time to get full availability, the percentage of time to get limited

availability and the bandwidth reduction factor from full availability to limited availability.

Based on the capacity that can be computed from the basic independent on-off source model

assumption, we have formulated the optimization problem to push the virtual network de-

mands through the best route for minimizing the cost of building all virtual networks.

This chapter’s scheme is designed for running on the controller of multi-tenant data

center network to provide additional levels of QoS to the traffic from server-hosting tenants.
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Figure 3.15: Cost saving when random δ, ǫ, α, γ, N, and demands’ source-destination

This traffic is best applicable for our algorithm whose properties are static, single path and

centralized computation. A static resource allocation algorithm allocates resources to a de-

mand only one time and does not change the allocated resources during the demand lifetime.

The advantage of its stability fits well with low variation traffic from server-hosting tenants

which are the aggregation traffic from many applications of tenants. For example, traffic

from the server-hosting tenant, Google, is low variation because it is the aggregation traffic

from many Google applications e.g gmail, youtube, google docs. A single path algorithm

pushes all the traffic from an aggregated demand through only one best path. It has ad-

vantage of QoS with low jitter and high stability to support for strict QoS requirements of

traffic from server-hosting tenants. A centralized algorithm is suitable to run on controller of

multi-tenant data center network to solve the traffic optimization problem centrally with the

advantage of fast convergence.

All the properties of this chapter’s scheme are suitable to control the server-hosting

traffic in multi-tenant data center network, but they are unsuitable to control the IaaS tenants’

traffic which is dynamic, high variation and there are multi-path connections between the

cloud servers. An example of IaaS service is Amazon virtual private cloud [34] which lets

customers rent the computing and networking resources via its website. Customers can easily

require additional resources when they need and release the resources back to the cloud when

they finish using the resources. The flexibilities providing to customers make the Amazon

virtual private cloud network very dynamic. Traffic sources in the Amazon virtual private
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cloud are the servers, which send a huge amount of traffic when active and does not send

when inactive. The behaviour of the traffic sources in Amazon virtual private cloud make its

traffic property more pure chance than smooth. Furthermore, the topology of Amazon virtual

private cloud is fat tree [44] to exploit the cheaper switches in the network core layer than

in a conventional topology requiring high-density-port switches for interconnections within

each data center. This fat tree topology has multi-path connections between cloud’s servers.

With the basic setting of Amazon virtual private cloud in mind, in the next chapter,

we decide to use optimization theory for deriving a new dynamic, multi-path algorithm to

allocate resources optimally to virtual network demands. Our algorithm periodically re-

adjusts the allocated bandwidth for all virtual networks’ links. It can flexibly split the traffic

through multi-path to improve the efficiency of substrate network resources. The next gen-

eration of Amazon virtual private cloud is proposed to be cloud resident data center, which

uses OpenFlow system to provide additional network flexibilities to customers. This kind of

cloud-evolved network virtualization has the large size in substrate network but has the small

size in the virtual network. In the Chapter IV algorithm, we design the new model to have

the centralized traffic control in each virtual network while having the distributed virtual link

bandwidth control in the substrate network. Furthermore, the Chapter IV algorithm can use

the SLA demand calculated from Chapter III in its constraints for guaranteeing the virtual

network QoS even when the substrate network is congested.



CHAPTER IV

CENTRALIZED DYNAMIC VIRTUAL NETWORK

ALLOCATION FOR CLOUD RESIDENT DATA CENTER

Dynamic virtual network allocation is a promising traffic control model for cloud resi-

dent data center which offers virtual data centers for customers from the provider’s substrate

cloud. Unfortunately, dynamic virtual network allocation designed in the past was aimed

to the Internet so it needed distributed control methods to scale with such a large network.

The price for the scalability of the completely distributed control method at both the virtual

layer and the substrate layer is the slow convergence of algorithm and the low stability of

traffic. In this chapter, we argue that the distributed controls in both virtual and substrate

networks are not necessary for the cloud resident data center environment because the cloud

resident data center uses a centralized controller as the way to give network control features

to customers. In fact, we can use the centralized algorithm in each virtual data center which

is not a very large network and is managed by only one organization. The distributed al-

gorithm is stilled needed in the substrate network because the substrate network is a large

with many global distributed data centers connected together and the substrate network may

be owned and managed by many providers each of them has different administrative policy.

Based on the specific properties of this model, we have used optimization theory to re-design

the substrate algorithm for periodically re-adjusting the virtual link capacity. Results from

theoretical analysis, simulations, and experiments show that our algorithm has faster conver-

gence time, simpler calculation and can make better use of the feedback information from

virtual networks than the previous algorithm.

4.1 Introduction

The cloud resident data center [45], which has been proposed to replace e.g. the Ama-

zon virtual private cloud (Amazon VPC) [34], offers customers not only a bunch of virtual

machines but also the network services to connect and control traffics among these virtual



55

machines. The restricted traffic control features provided by the Amazon VPC (e.g. statically

add/remove routing entries, access control list) are not enough for the various requirements

of customers. In fact, customers need the ability of freely choosing dynamic routing algo-

rithms, security systems and caching systems to match with their operating model. A cloud

resident data center offers those flexibilities by giving each of virtual data center customers

a physical controller. This controller can then be used to enable those customers to install

proper network control features to control their virtual network portion rented from the in-

frastructure cloud.

There are three main properties of cloud resident data center to define the traffic man-

agement model. Firstly, a cloud resident data center is typically based on the physical net-

work structure of distributed data centers each with a fat-tree topology [44] as shown in

Figure 4.1. This allows the usage of cheaper switches in the network core layer than with a

conventional topology requiring high-density-port switches for interconnections within each

data center. This topology has many paths between each end-host pair so the multi-path traf-

fic engineering is the most suitable for the traffic management model. Secondly, the traffic

demands coming from virtual network customers are a priori unknown so static traffic con-

trols can lead to higher chances of demand loss or capacity waste than dynamically adaptive

traffic controls can. Thirdly, the requirement for virtual network provision to each customer

suggests that cloud resident data centers should support the network virtualization [45].

Figure 4.1: Fat tree topology

The multi-path load balancing problem has been tackled in [46] by designing a traffic

scheduler to estimate the elephant or big demands and using heuristic algorithms to search for

the optimal mapping between these demands and physical paths. The dynamic congestion-
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control problem presented in [47] uses a marking system to decrease the source sending rate

variation for achieving the high throughput even with a small buffer size. The combination

of these two problems has been formulated and solved in the framework of centralized opti-

mization algorithm [36]. However, all the aforementioned works have dealt with the traffic

management problems in only one network layer. A cloud resident data center model needs

the co-operation of traffic management mechanisms between virtual layer and substrate layer

to maximize the total utility and make most uses of the physical resources. Davinci [28] has

addressed this traffic management problem in two layers. At the virtual layer, an optimiza-

tion problem has been formulated on the requirements of customers and solved distributedly

by a decomposition method [31]. At the substrate layer, a periodically updated mechanism

has been proposed to control the capacity of virtual links according to the derived congestion

prices [29]. Unfortunately, this approach has been aimed at such big networks as the Internet

so the distributed algorithms have been used in both substrate layer and virtual layer. This

is not suitable for the traffic management problem in the cloud resident data center with vir-

tualized networks each managed by a centralized controller dedicated for each of the virtual

data center customers. This chapter contains two original contributions.

Firstly, in this paper, the cloud resident data center testbed has been implemented in

the OpenFlow [12] platform. We have decided to use the OpenFlow because of its central-

ized system structure whose controller can have a global view on the overall network. That

centralized controller can give a better decision to manage the traffics inside the network.

Additionally, the OpenFlow is the open system allowing devices from different vendors

to in-operate smoothly via the OpenFlow standard. Our testbed has been implemented on

Linux-based computers installed with OpenFlow switch [12] as the physical layer, FlowVi-

sor [1] as the network virtualization layer, and Network Operating System NOX [14] as the

centralized controller. All the system modules communicate via the OpenFlow [12] protocol

to emulate the dynamics of a small cloud resident data center testbed.

Secondly, this chapter re-designs the traffic control model in [28] for the OpenFlow-

based network setting of cloud resident data center. Due to the centralized control structure of

the OpenFlow, we have decided to implement the centralized optimization algorithm on each

virtual network instead of distributed algorithm. And we have implemented the distributed

traffic control algorithm in the substrate network to periodically control the allocation of

virtual link capacity for the new model of cloud resident data center.



57

The rest of this chapter is organized as follows. Section 4.2 describes the system

model. Section 4.3 presents the derivation of our virtual link capacity updated algorithm for

cloud resident data center. Section 4.4 demonstrates how we implement our algorithm in

OpenFlow based testbed. Section 4.5 shows the results and discussions. The final section is

Conclusion and our future works.

4.2 System description

Figure 4.2 shows the OpenFlow-based cloud resident data center system testbed con-

structed in this research. The system is comprised of four main elements, i.e., virtual network

controller, substrate node, end-host and host manager. The function of virtual network con-

troller is to control how substrate nodes switch the packet flows to suitable destinations. The

substrate nodes switch the packet flows in accordance with the instructions from the virtual

network controller and periodically calculate as well as update to the controller about the

new capacity required for their virtual links. An end-host is a virtual machine on a virtual

network. Each end-host gets traffic optimal rates and multi-path splitting ratio from its host

manager to adjust its outgoing traffic rates. The host manager calculates and controls the

traffic rate of all end-hosts in its virtual network in response to the demands requested from

end-hosts and the virtual network state updated by the controller.

4.2.1 Traffic control in each virtual network

Initially, the virtual network controller creates tunnels to connect its virtual network’s

end-hosts by adding the appropriate switching entries to the OpenFlow switches. Each end-

host monitors its aggregated traffic data at its output port and sends the capacity request

to its host manager periodically. On receiving the requests from all of its end-hosts, the

host manager will calculate the optimal rate for each tunnel and reply these optimal rate

back to the end-hosts. The end-hosts can then adapt the traffic sending rates to the tunnels

accordingly. With this mechanism, the applications on each end-host does not need to wait

for the optimal rate from host-manager but they can send their traffic out immediately each

time they want.
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Figure 4.2: System functional description

4.2.2 Traffic control in the substrate network

The mission of traffic control in the substrate network is to adjust the virtual-link ca-

pacity periodically in order to maximize the total utility. In this chapter, the substrate net-

work uses congestion price of each virtual link to calculate the suitable bandwidth provided

to virtual links. Here, a substrate node does not need to calculate the congestion price for

virtual links one by one by itself as previously implemented in [28]. Instead, in this chapter,

the substrate node collects the congestion price for all virtual links from the host manager.

The optimization solver in the host manager gives the solution of dual variables, which are

congestion prices, while solving the central optimization problem for end-host traffic send-

ing rate. This way of collecting congestion price information makes our algorithm outper-

form [28] because the substrate nodes do not need the computational resource to calculate

the congestion price for each virtual link and they do not need to spend a lot of time to wait

for the algorithm of calculating congestion price to converge. So, our algorithm can re-adjust

the virtual link capacity faster and hence more frequently than the approaches in [28]
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4.3 Proposed optimization framework for cloud resident data center

4.3.1 Modeling and notations

The substrate network is modelled by a weighted, directed graph G(V s, Es), where V s

is the set of all substrate nodes and Es is the set of all directed substrate links. In Figure 4.3,

there are three substrate nodes indexed by {1, 2, 3} and six directed substrate links indexed

by {1, 2, 3, 4, 5, 6} between substrate node pairs {1 − 2, 2 − 1, 1 − 3, 3 − 1, 2 − 3, 3 − 2},

respectively. Similarly, a virtual network k is modelled as a graph G(V (k), E(k)), where

k ∈ K is an element in the virtual network index set. Here, V (k) is the set of nodes in

virtual network k and Ev(k) is the set of virtual links in virtual network k. For example, in

Figure 4.3, there are two virtual networks, the yellow one and the red one, each with the

same topology as that of substrate network.

Figure 4.3: Example of traffic allocation when hosting many virtual networks on a substrate

network.

Let r
(k)
i denote the demand i of virtual network k. The virtual network controllers use

their own traffic engineering algorithm to control the traffic flowing through their networks.

And the substrate network controls the virtual link capacity by using virtual link congestion

price information. For the example model in Figure 4.3, there is one demand on each of the
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two virtual networks, denoted as r
(1)
1 and r

(2)
1 , respectively. In Figure 4.3, there are two paths

{1− 3, 1− 2− 3} for demand r
(1)
1 and two paths {1− 2, 1− 3− 2} for demand r

(2)
1 .

Define l as the general link index, where l ∈ L denotes the substrate link in the sub-

strate network and l ∈ Lk denotes the virtual link in virtual network k. Link l of substrate

network has the capacity of cl. Link l of virtual network k has capacity y
(k)
l . For virtual net-

work k, each demand can usually be assigned along more than one path at the same time so

let us define z
i(k)
j as the max flow rate available on path j for demand i of virtual network k.

Usually, this flow rate must be less than or equal to the instantaneous amount of capacity on

path j that is assigned to that demand i to prevent any possible traffic losses . The aim of our

optimization is to find the proper values of these capacity and flow rate allocation parameters

y
(k)
l and z

i(k)
j .

To define the set of all possible paths whose capacity and flow rate allocation will be

found by our proposed optimization, we use the m-shortest path first algorithm [21] to find

m least cost paths from each source to each destination in the substrate network as well as in

the virtual networks. Then we restrict our optimization search space within those obtainable

paths only.

The link-path routing matrix for virtual network k [23] with its column representing

each path in source-destination pairs and its row representing each substrate link index is

denoted by H
(k), where H

i(k)
lj = 1 if demand i of virtual network k on path j uses virtual

network link l and H
i(k)
lj = 0 otherwise.

For example, in Figure 4.3, there are two routing matrices H(1) for virtual network 1

and H
(2) for virtual network 2. Here, H(1) = [0 1; 0 0; 1 0; 0 0; 0 1; 0 0] because demand 1

of virtual network 1 on path 1 uses virtual network links 3 and demand 1 of virtual network

1 on path 2 uses virtual network links 1 and 5. Similarly, the second routing matrix H
(2) =

[1 0; 0 0; 0 1; 0 0; 0 1; 0 0].



61

4.3.2 Virtual-network centralized algorithm

For each fixed k with fixed values of y
(k)
l :

maximize: U (k)
(

z
i(k)
j , y

(k)
l

)

subject to:
∑

i

∑

j

H
i(k)
lj z

i(k)
j ≤ y

(k)
l ∀l ∈ Lk

z
i(k)
j ≥ 0 ∀i, j

variables: z
i(k)
j (4.1)

As in [28], the objective functionU (k)
(

z
i(k)
j , y

(k)
l

)

of the virtual network centralized problem

(4.1) can be any concave utility function which varies with the capacity allocation param-

eters. The first constraint implies for each virtual network that the instantaneous capacity

requirement or total flow rate from all demands on their paths sharing a given virtual link

cannot exceed the capacity assigned for that virtual link by the substrate network. The sec-

ond constraint states that the capacity allocations must be non-negative. The two examples

of virtual network centralized problem are throughput sensitive problem and delay-sensitive

problem.

4.3.3 Substrate-network distributed algorithm

Our starting point is the same as [28] but with the setting of cloud resident data center

in mind, we have derived a different virtual link capacity updated algorithm to match within

our OpenFlow based network testbed. Our centralized substrate network optimization is

stated by:

maximize:
∑

k

w(k)U (k)
(

z
i(k)
j , y

(k)
l

)

subject to:
∑

i

∑

j

H
i(k)
lj z

i(k)
j ≤ y

(k)
l ∀l ∈ Lk, ∀k

∑

k

y
(k)
l ≤ cl ∀l ∈ L

y
(k)
l , z

i(k)
j ≥ 0 ∀i, j, k

variables: z
i(k)
j , y

(k)
l (4.2)

Here, w(k) is the weight for each virtual network k. By using the centralized solver for

each virtual network, we can derive the new virtual link capacity updated algorithm which is

expectedly converging faster and better in processing bursty traffics than that of [28].
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The problem in (4.2) is the convex problem because the objective function of this

problem is the positive-weighted sum of concave objective functions (4.1) and the constraints

are affine with z
i(k)
j , y

(k)
l . The problem has coupled variables z

i(k)
j , y

(k)
l so we decouple it by

the primal decomposition method [31]. We fix the the variable y
(k)
l to make the problem

only varies with z
i(k)
j and the new problem can be divided into many centralized problems of

(4.1). The optimization solver CVXOPT [37] which implements the so called primal-dual

interior point method [29] is used to solve each problem of (4.1) centrally in the controller

of each virtual network.

The results of optimization solver for each sub-problem are optimal flow rates z
∗i(k)
j

and link congestion price λ
∗(k)
l . Now, after solving the sub-problem, we need to find the new

virtual link capacity y
(k)
l that we have fixed in the previous step. The updated algorithm is

derived from the master problem as follows:

maximize:
∑

k

w(k)U (k)
(

z
∗i(k)
j , y

(k)
l

)

∑

k

y
(k)
l ≤ cl ∀l ∈ L

y
(k)
l ≥ 0 ∀k, l

variables: y
(k)
l (4.3)

The above master optimization problem is also the convex problem because it has the same

concave objective function as (4.2) and the affine constraints. As suggested in [29] for the

convex optimization problem, because it is easy to project on the non-negative orthant con-

straint y
(k)
l ≥ 0, we simplify the way to solve the problem (4.3) by considering the constraint

y
(k)
l ≥ 0 as implicit constraint and solve the problem with explicit constraint first then project

the results on the implicit constraint domain. The problem with explicit constraint has cou-

pled constraint
∑

k y
(k)
l ≤ cl so we use the dual decomposition [31] to decouple it. We find

the Lagrange function of (4.3) as follows:

L
(

y
(k)
l , µl

)

=
∑

k

w(k)U (k)
(

z
∗i(k)
j , y

(k)
l

)

−
∑

l

µl(
∑

k

y
(k)
l − cl)

=
∑

k

w(k)U (k)
(

z
∗i(k)
j , y

(k)
l

)

−
∑

k

∑

l

y
(k)
l µl +

∑

l

µlcl (4.4)

Note that µl is the dual variable for the master problem which is different from λ
(k)
l , the dual

variable of sub-problems.
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We use the gradient projection method to find the supremum of problem (4.4) which

has implicit constraint of non-negative orthant and the variable of y
(k)
l . The update function

for y
(k)
l is

y
(k)
l (t + T ) =

[

y
(k)
l (t) + β

∂

∂y
(k)
l

L
(

y
(k)
l , µl

)

]+

(4.5)

where T is the time period for updating virtual link capacity in the substrate network and the

updated time argument has been appended in the parenthesis following the variable y
(k)
l . []+

denotes the projection on to non-negative orthant domain.

The partial derivative of objective function at the optimality is the link congestion

price. Apply to our problem:

∂

∂y
(k)
l

(

∑

k∈K

U (k)
(

z
∗i(k)
j , y

(k)
l

)

)

= λ
∗(k)
l (4.6)

Using (4.6) we have partial derivative of Lagrange function as

∂

∂y
(k)
l

L
(

y
(k)
l , µl

)

= w(k)λ
∗(k)
l − µl (4.7)

To find µl, we define p∗(k) as the optimal value of (4.1) and p∗ as the optimal value of (4.3).

We have

p∗ =
∑

k

w(k)p∗(k)

∂p∗

∂cl
=
∑

k∈Kl

w(k)∂p
∗(k)

∂cl

µ∗
l =

∑

k∈Kl

w(k)λ
∗(k)
l

∂y
(k)
l

∂cl
(4.8)

where Kl is the set of virtual networks hosted on substrate link l.

In practical networks, a service provider prefers to allocate all their capacity fairly to

increase the quality of services. In our system, by the constraint cl =
∑

k∈Kl
y
(k)
l , we

allocate fairly all of our residual capacity to virtual network customers:

∂y
(k)
l

∂cl
=

y
(k)
l

∑

κ∈Kl
y
(κ)
l

(4.9)

Hence, we have from (4.8), (4.9) that

µ∗
l =

∑

k∈Kl
w(k)λ

∗(k)
l y

(k)
l

∑

k∈Kl
y
(k)
l

(4.10)
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And the final virtual link capacity update function can be obtained by combining (4.5)

(4.7)(4.10) as follows

y
(k)
l (t + T ) =

[

y
(k)
l (t) + β

(

w(k)λ
∗(k)
l −

∑

k∈Kl
w(k)λ

∗(k)
l y

(k)
l (t)

∑

k∈Kl
y
(k)
l (t)

)]+

(4.11)

As a summary, in (4.11), we can find the value of y
(k)
l at time t + T from the previously

updated value of y
(k)
l at time t. In the recursion, β is a constant step size that can be chosen

through experiments to improve the algorithm convergence. The value of link congestion

price λ
∗(k)
l in virtual network k can be obtained by centralized optimization solver. This

equation also has a reasonable interpretation because if the weighted rate of utility increase

per unit of capacity being added for a given virtual link l, i.e. the term w(k)λ
∗(k)
l , is greater

than the rate of utility increase as averaged over all the virtual link capacity upgrade, then that

virtual link l of the virtual network k should be allocated more capacity. On the contrary, if

the weighted rate of utility increase per unit of capacity being added for a given virtual link l

is lower than the rate of utility increase as averaged over all the virtual link capacity upgrade,

then that virtual link l should be assigned less capacity.

4.3.4 Convergence and optimality

Theorem: The updated equation (4.11) converges to optimal point of (4.2) if:

• The problem (4.1) is convex optimization.

• The virtual link bandwidth allocation is updated after the convergence of (4.1)

• The stepsize β in (4.11) is small enough or diminishing (diminishing step size usually

converge faster constant step size).

Proof:

From the above interpretation of (4.11) about the principal for increasing and decreas-

ing bandwidth of each virtual link y
(k)
l , the aggregated utility on each physical link l and

hence, the total utility overall substrate network:
∑

k w
(k)U (k)(z

∗i(k)
j , y

(k)
l ) will be increased

after each virtual link capacity updated period T . Because we always keep cl =
∑

k y
(k)
l ,

L(y
(k)
l , µl) increases monotonically after every period of updating virtual link capacity. But,

L(y
(k)
l , µl) is concave function so it is only able to increase until the maximum point which
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also be the stationary point when y
(k)
l moves to the limited point ŷ

(k)
l . At the limited point

we have:

w(k)λ
∗(k)
l =

∑

k∈Kl
w(k)λ

∗(k)
l ŷ

(k)
l

∑

k∈Kl
ŷ
(k)
l

(4.12)

It means that at the limited point ŷ
(k)
l , the weighted rate of utility increase per unit of capacity

being added for a given virtual link l is equal to the rate of utility increase as averaged over

all the virtual link capacity upgrade and y
(k)
l does not change any more. Hence,

∂

∂y
(k)
l

L(ŷ
(k)
l , µl) = 0 ∀l, k

∑

k

y
(k)
l ≤ cl ∀l

µl(
∑

k

y
(k)
l − cl) = 0 ∀l

The KKT conditions [29] are satisfied for the convex problem of (4.3), then the limited point

of (4.11) is the optimal point of (4.3). Because the equation (4.1) is converged before the

virtual link bandwidth update time, at y
(k)
l = ŷ

(k)
l , we also have z

i(k)
j = z

∗i(k)
j and they are

the optimal point y
∗(k)
l and z

∗i(k)
j for the problem of (4.2).QED

4.4 Implementation

4.4.1 General testbed description

We have built a testbed to implement and evaluate our optimization algorithm with a

rack of seven computers named PC1-5 and TA, TB, respectively. Each computer is equipped

with Core 2 quad 2.40 GHz and 4 GBytes of RAM. Ubuntu OS 11.04 with the core of 2.6.38

has been installed on each physical computer.

4.4.2 Logical model

The logical model of our network is presented in Figure 4.4. In this model, three

substrate nodes have been created by installing OpenFlow switch software v0.8.9r2 on com-

puters PC1-3 to make them work as PC-based switches. FlowVisor has been used to create

a virtualization layer on those substrate nodes. The virtual network controller has been in-

stantiated by a Python script running on top of the network operating system NOX. We have
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written a Python script to add the switching entries to OpenFlow switches and control them to

forward packets according to VLAN IDs. To implement end-hosts to split the traffic through

paths and limit the rate of outgoing traffics, we have written a Python script using Scapy [38]

to create two kinds of packets with VLAN ID = 2 and VLAN ID = 3. And the end-hosts

send the packets to output ports according to the control information from the central host

manager. This host manager has been implemented on PC5 by a Python script which com-

municates with all end-hosts and the controller in the corresponding virtual network. This

script periodically takes traffic demands from end-hosts and virtual link capacity value up-

dates from substrate nodes as its inputs and use CVXOPT [37] to calculate the optimal rates

for all end-hosts and congestion price values for all virtual links in the virtual network.

Figure 4.4: Logical model of cloud resident data center testbed in this chapter.

There are three networks used to connect all elements of system as depicted in Fig-
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ure 4.4. Controller network (172.16.0.x) is used for controllers on PC4 to send control sig-

nals to switches PC1-3. Host control network (192.168.0.x) is used by the host manager to

get information from end-hosts and controllers as well as to send control signals to end-hosts.

The main network is used for end-hosts in a virtual network to send traffics to each other.

Switches are connected to the first controller (named ENG) via tcp port:7000 and the second

controller (named SCI) via tcp port:9000.

4.4.3 Virtual-network centralized algorithm implementation

We have implemented the throughput-sensitive centralized algorithm on each host

manager using Python CVXOPT [37] with the objective function which tries to maximize

the overall throughput of network meanwhile keeps the link capacity uncongested as follows:

max:
∑

i

w
(k)
i log

(

∑

j

z
i(k)
j

)

− q
∑

l∈Lk

exp
(

u
(k)
l

)

(4.13)

where the utilization u
(k)
l of virtual network link l can be calculated from u

(k)
l = H

(k)∗z(k)

y
(k)
l

and q serves as a weighting coefficient for regulating the utilization of virtual links. This

objective function here is different from [28] in that we add weight w
(k)
i to each demand

for controlling the network resource provided to each demand. This weight is calculated

by w
(k)
i = r(k)

∑

i r
(k) , where r(k) is the demand i of virtual network k. End-hosts TA, TB

periodically send the requested demand to the host manager which calculates the optimal

flow rate for each end-host to send its traffic through each path. Upon receiving this optimal

sending rate, end-hosts then adjust their outbound flow rate. We use Scapy [38] to create the

packets with the wanted VLAN IDs to split traffic to different paths. For example, if end-

host TA receives the optimal rate like this (100, 40), then it understands that it should send its

traffic with the rate of 100 packets/s on VLAN 2 and 40 packets/s on VLAN 3. The end-host

uses Scapy to create 100 ∗ T packets/s with VLAN-ID = 2 as well as 40 ∗ T packets/s with

VLAN-ID = 3 and send them out to switch PC1 as fast as possible. After sending out all

the created packets, end-host will stop for the rest of period T . At switch PC1, the packets

with VLAN-ID = 2 are forwarded through the upper path with two hops and the packets with

VLAN-ID = 3 are forwarded through the lower path with one hop.
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4.4.4 Substrate-network distributed algorithm implementation

We have implemented our substrate algorithm on each OpenFlow switch. After each

time a host manager completes calculating the optimal rate for all end-hosts, the host man-

ager sends the newly updated congestion price to the OpenFlow switches. Each OpenFlow

switch on receiving the congestion price calculates the new capacity of its virtual links by

using the equation that we have derived in (4.11). The new virtual link capacity informa-

tion is then updated to the host manager, which in turn uses this information in its capacity

constraints to calculate the optimal flow rate for end-hosts in the next optimization step.

4.4.5 Simulator

Since our physical testbed is restricted to 7 PCs with 3 switching nodes, we have imple-

mented our algorithm in MATLAB environment for two nodes topology and Abilene topol-

ogy [28] to test and compare our algorithm with the previous approach in larger topology.

We not only use throughput-sensitive utility function for both virtual networks as in testbed

implementation but also add the delay-sensitive utility function which tries to minimize the

total delay of network as follows:

min:
∑

i

∑

j

z
i(1)
j

∑

l

H
i(1)
lj (pl + f(u

(1)
l )) (4.14)

In our testbed implementation, with two throughput-sensitive utility functions, congestion

price alone is enough to reflect the demand for more bandwidth of each virtual link. But in

our simulation, the throughput-sensitive utility function and delay-sensitive utility function

are so different in the form, we have added ∂

∂y
(k)
l

U
(k)
l to congestion price λ∗

l to better reflect

the demand for bandwidth than the congestion price alone.

4.5 Evaluation

4.5.1 Simulation results

The Figure 4.5 compares the time to convergence between our proposed algorithm

(CD: Centralized control in virtual networks, Distributed control in the substrate network)

and Davinci algorithm [28] (DD: Distributed control in both virtual networks and substrate

network) in two nodes topology. The upper graph of Figure 4.5 shows that with the same

setting of q = 0.5, w(1) = 1, w(2) = 105 β = 0.2 and r
(1)
1 = 110 Mbps, our proposed



69

0 10 20 30 40 50 60
0

200

400

600

Iteration number

A
llo

ca
te

d 
ca

pa
ci

ty
 (

M
bp

/s
)

 

 
DD: y

2
(1)

CD: y
2
(1)

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

Time to convergence (s)

A
llo

ca
te

d 
ca

pa
ci

ty
 (

M
bi

ts
/s

)

 

 
DD: y

2
(1)

CD: y
2
(1)

Figure 4.5: Comparing with Davinci in two nodes topology. The Simulation running with

MATLAB on computer of 2 duo CPU T9400@2.53GHz, 4GBytes of RAM, Ubuntu 12.04

algorithm needs nearly the same number of outer iterations, which are the number of itera-

tions to solve the master problem (4.3) distributedly, as in [28]. But, as showed in the lower

graph, our algorithm needs much shorter time to converge than the one in [28]. The reason

for this phenomenon is that for each outer iteration we need maximum 0.2 seconds to solve

optimization problems on two virtual networks centrally but [28] needs 2 seconds to solve

them distributedly. The more time needed for [28] to solve problem at each iteration make it

converge slower than our proposed algorithm.

The Figure 4.6 presents the number of iterations to convergence of our algorithm in the

Abilene topology [48]. From the figure, the algorithm converges very slow when step size

β is so small and diverges when step size β is large. The reason is that when β is large, the

searching point will jump through optimal point after each iteration. Also from the figure,

the graph with demand r
(1)
1 = 200 Mbps on delay sensitive network converges faster than

the graph with demand r
(1)
1 = 110 Mbps. The reason of this phenomenon is that the initial

capacity for all virtual links of all virtual networks are set to be 500 Mbps which is the half

of each substrate link capacity. The initial virtual link capacity vector is the initial point for

our optimization algorithm. This initial point is nearer to the solution of demand 200 Mbps

than the solution of demand 110 Mbps. So, the algorithm with input demand of 200 Mbps

converges faster than the algorithm with input demand of 110 Mbps.
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Figure 4.6: Step size β vs number of iterations to convergence in Abilene topology

4.5.2 Testbed evaluation results

Figure 4.7 depicts the dynamics of actual traffic on ENG virtual network (upper graph)

and SCI virtual network (lower graph). This result is based on the demands which are

changed randomly every 40 optimization iterations and β which is 0.05 at the beginning

and being added by 0.05 each time the demand changes. The substrate link capacity is set

to 5 Mbps. From the figure, the convergence rate increases after each time demand changes.

But there are some periods such as 120, 200, 320, the convergence rate decreases even with

higher β. This phenomenon is caused by the large changing in demand. Our algorithm uses

the optimal points from previous optimization period to be the initial point for the next opti-

mization period. If the initial point is so far from the demand, then our algorithm needs more

iterations to converge.

Figure 4.8 depicts the virtual link updated period T and the time to convergence in 2

demand patterns which are: increase with 1 Mbps step and 2 Mbps step. From the figure,

if the virtual link update period is smaller than the maximum time to solve the optimization

problem in each virtual network added with the communication time between end hosts with

host manager of that virtual network which is equal 0.7 in our case, then our algorithm will

need very long time to converge. If T ≥ 0.7 second, then the virtual network optimization

problem is guaranteed to be solved completely before the updated time of our proposed

algorithm (4.11), and our algorithm is converged. When our proposed algorithm converge,
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Figure 4.7: Dynamics of traffic on ENG and SCI network

the time to convergence is quite linear with the iteration period (T ). The reason is that

the number of iterations needed to solve the master problem is nearly constant. The linear

increase of time to converge is only caused by the increase in the updated time period T .
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Figure 4.8: Time to convergence vs virtual link bandwidth updated period T

Figure 4.9 shows how virtual capacity of each virtual network adapts when there is a

link-down event from iteration 36− 148. At iteration 36, when the physical link VLAN 3 is

down, the capacity which was allocated to both virtual networks ENG (y
(1)
2 ) and SCI (y

(2)
2 )

from physical link VLAN 3 is vanished. The capacity allocated to virtual network ENG

(y
(1)
1 ) and SCI (y

(2)
1 ) from physical link VLAN 2 is adjusted in around 20 iterations by our
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updated equation (4.11) to converge to the new optimal point that the allocated virtual link

capacity are proportional to the demands from both virtual networks. When the physical link

of VLAN 3 is up again at iteration 148, our updated algorithm immediately allocated the

equal bandwidth 3.5 Mbps to each virtual link hosted on the physical link VLAN 3. This

initial allocation phenomenon caused by fair allocation of equation (4.9). After the initial

allocation, our algorithm gradually adjusts the allocated capacity to the new optimal point

which allocated total 3 Mbps of traffic for the virtual network ENG and 7 Mbps of traffic for

the virtual network SCI.
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Figure 4.9: Traffic dynamics when the physical link VLAN 3 is down and then recovered

4.6 Conclusion

In this chapter, we have derived an algorithm to dynamically allocate the capacity to

virtual network links for maximizing the aggregated utility. With the cloud resident data

center setting in mind, we have used the centralized algorithm to implement in each virtual

network to be suitable with OpenFlow centralized controller. At the substrate network, we

have derived a new updated algorithm to make use of congestion price which is calculated

from the centralized controllers. We have implemented our algorithm in MATLAB as well as

testbed environment and the results show that our algorithm converges to the optimality faster

than the previous approach such as Davinci [28] so it can use physical resource effectively.

To make any optimization algorithm work in the real world, we need to tune many

parameters of our algorithm. The convergence time of our algorithm is based heavily on the
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convergence time of each centralized algorithm on each virtual network. In the future, we

intend to improve the convergence rate of virtual network algorithm by pre-calculating the

optimization problem in virtual networks with all the input demands and make a mapping

table between traffic demands and primal/dual solutions. When there is a demand comming

to the network, the host manager only needs to find the optimal results from the mapping

table. Future results will be reported accordingly.



CHAPTER V

CONCLUSION

This dissertation aims to develop the novel network control algorithms for working ap-

propriately in the recent network virtualization of multi-tenant data center network. Taking

into account the new network virtualization constraints, we have originally derived the two

algorithms, static and dynamic, by using optimization theory. The in-depth investigations of

the two algorithms are presented in Chapter III and Chapter IV, correspondingly. Sum-

mary of the contributions of each chapter is shown in the following sections, together with

suggestions for possible future works.

5.1 Contributions from chapter III

In Chapter III, an optimization problem of resource allocation for network virtualiza-

tion has been formulated and solved. The novelty in our formulation is that we have inte-

grated the QoS features of the resource allocation to routing and dimensioning optimization

model for minimizing the operating cost of virtual networks. The QoS is defined by avail-

ability parameters. Each customer, who wants a service from the InPs, is provided a SLA

proposal. This proposal includes the percentage of time to get full availability, the percent-

age of time to get limited availability and a bandwidth reduction factor from full availability

to limited availability. Based on the capacity, which can be computed from the basic inde-

pendent on-off source model assumption, this thesis formulates the optimization problem to

push the virtual network demand through their best route for minimizing the cost of building

all virtual networks. The cost saving ratio being quantitative here with mean = 0.748 and

variance = 0.0479 based on reported numerical results of Figure 3.15 is significant. The InP

can offer a portion of that obtainable saving to limited availability customers, and they will

get the benefit from the reduced service price. Furthermore, the InP which has additionally

flexible services can attract more customers than the InP with only exclusive service.
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5.2 Contributions from chapter IV

In Chapter IV, the cloud resident data center testbed has been implemented in the

OpenFlow platform. This chapter has decided to use the OpenFlow because of its central-

ized system structure whose controller can have a global view on the overall network. That

centralized controller can give a better decision to manage the traffics inside the network.

Additionally, the OpenFlow is the open system allowing devices from different vendors to

in-operate smoothly via the OpenFlow standard. In this chapter, A testbed has been im-

plemented on Linux-based computers installed with OpenFlow switch [12], as the physical

layer, FlowVisor [1] as the network virtualization layer, and Network Operating System

NOX [14] as the centralized controller. All the system modules communicate via the Open-

Flow [12] protocol to emulate the dynamics of a small cloud resident data center testbed.

Secondly, this chapter uses optimization theory [29] to re-design the traffic control

model in [28] for the OpenFlow-based network setting of cloud resident data center. Due to

the centralized control structure of the OpenFlow, we have applied [31] to re-derive the opti-

mization problem into the centralized algorithm instead of the distributed algorithm for each

virtual network. In the substrate network, we have derived the new distributed algorithm to

re-allocate bandwidth for the virtual links periodically. In addition, we have theoretically

proven the convergence property of this algorithm. In the experiment, we have implemented

our new algorithm on both simulation (MATLAB) and testbed (OpenFlow network virtual-

ization system). The simulation results show that our algorithm converges faster than the

previous algorithms such as Davinci [28]. The testbed’s experiment results show that our

algorithm converges fast to re-adjusts effectively the traffic flowing in cloud resident data

center in both cases, normal and failure recovery case.

5.3 Possible future works

• Malicious behaviour. Same as [28], the algorithm derived in Chapter IV also cannot

provide substrate resources fairly if a virtual network tries to acquire more resources

than necessary. In this situation, the greedy behaviours of any virtual network will

harm the performance of all other virtual networks. The paper [32] has proposed a

non-cooperative game framework in which a new term in congestion price has been

introduced for charging additional money to all the virtual networks hosting on the sub-
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strate congested links. This new formulation can be applied to this research’s frame-

work to relieve the malicious behaviours.

• Relax capacity assumption. When solving the optimization problem in Chapter IV,

we have assumed that InP allocates fairly all of its substrate resources to virtual net-

work customers. This assumption limits the searching space on the boundary of the

constraint set to prove theoretically that the algorithm derived in this thesis always con-

verges to the optimal point. But now a day, because many providers set maximum rate

for each traffic demand at their access switches, the total bandwidth of all demand may

not reach the physical capacity and make the assumption invalid. In this situation, the

algorithm needs additional constraints to limit the resources allocated for each demand

and the searching space is not only on the boundary but also inside the constraint set.

Searching inside the constraint set may make the algorithm not converge. An interest-

ing future direction of this dissertation is to improve the algorithm for the convergence

even in this practical situation.

• Reduction of substrate computing load. To calculate the virtual link capacity for all

virtual networks, the substrate algorithm derived in ChapterIV spends a lot of com-

puting resources. Following [49], redesign the substrate algorithm can be redesigned

to calculate only virtual network’s congestion prices, then update back to virtual net-

work’s controllers. The controllers will base on received congestion price to figure out

the needed virtual link bandwidth. Reducing from calculating all virtual link capacities

to only congestion prices unloads the substrate’s computing tasks significantly

• Scaled-up experiment. In this dissertation’s algorithm, many important parameters

need to be found from experiments such as step size β and updated period T . The

recommended values of these parameters are only trustable if the algorithm can be

tested in the big enough testbed. With the limitation of our research lab resources,

the algorithm has just been implemented in a small computer based testbed. Fortu-

nately, many inter-continental future internet testbeds such as OF@TEIN, OF@JGN,

PlanetLab, VINI, FEDERICA [11] have been rapidly built up. They use the same soft-

ware modules e.g. OpenFlow, OpenVswitch, FlowVisor as in this research’s testbed

to implement their inter-continental testbed. Implementing the algorithm in the inter-

continental testbed and find the best way to tune the algorithm’s parameters is one of



77

interesting future direction of this dissertation.

• Node assigment. Virtual network allocation needs both links and nodes assignment.

Specially for cloud network, the efficient allocation of computing nodes is more impor-

tant than the efficient allocation of link bandwidth. The dynamics in node assignment

relate to adding more computing nodes for virtual data center or taking them back

to the substrate cloud. Hence, the node assignment algorithm does not need as fine

scale control as virtual link bandwidth assignment. One interesting extension for our

algorithm is to allocate optimally both nodes and links for virtual network demand.

• TCP compatibility. Currently, the algorithm in this thesis can only work with the opti-

mization derived traffic control algorithm in virtual network. Because the popular TCP

protocol, which is designed by heuristics in the past, can be derived from optimization

decomposition [49], it’s likely that our algorithm is able to work with TCP. An interest-

ing future work to develop our algorithm is to make it work with TCP. Compatibility

with TCP will enable our algorithm to integrate to many existing systems such as cloud

network and internet.

• Improve convergence rate. Speed up the convergence rate of this thesis’s algorithm

is one of the ultimate goal. We have changed the control model in each virtual network

from distributed to centralize; we have tuned step size β and updated period T to make

our algorithm converge faster. Beside that, another way to improve the convergence

rate of virtual network algorithm is pre-calculating the optimization problem in vir-

tual networks with all the input demands and make a mapping table between traffic

demands and primal/dual solutions. When there is a demand come to the network, the

host manager only needs to find the optimal results from the mapping table.
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Appendix A

Virtual network centralized algorithms

In this appendix, we give the detailed explanations for the virtual-network centralized

algorithm used in Chapter IV. The throughput-sensitive traffic control problem is presented

in Section A.1. Here, we prove the throughput-sensitive traffic control is convex problem and

proportional fair. Section A.2 discusses delay-sensitive traffic control in which we present

the piece wise linear approximation method to convert this problem to be solvable problem.

A.1 Throughput-sensitive traffic control

The throughput-sensitive traffic control for one virtual network of (4.1) can be formu-

lated as an optimization problem follows

maximize
∑

i

wi log

(

∑

j

zij

)

− q
∑

l∈L2

exp (ul)

subject to
∑

i

∑

j

H i
ljz

i
j ≤ yl ∀l ∈ L

zij ≥ 0 ∀i, j

variables zij , (1)

where wi is the weight for demand i, zij is the max flow rate available on path j for demand

i. The link-path routing matrix with its column representing each path in source-destination

pairs and its row representing each link is denoted by H i
lj , where H i

lj = 1 if demand i on

path j uses link l and H
i(k)
lj = 0 otherwise. The capacity and utilization of link l are denoted

as yl and ul, correspondingly. The importance of the low link congestion
∑

l∈L2
exp (ul) in

the objective function is denoted as q. If q is high, then the optimization will try to minimize

the link utilization. If q is low, then the optimization will try to maximize throughput

Under the constraints of virtual-link capacity, the optimization problem (1) maximizes

the traffic flowing through the virtual network, meanwhile prevents the virtual network’s

links from being congested. This optimization problem is convex and proportionally fair.
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Because of the affine constraints, the convex property of (1) can be proven by showing

its objective function is concave [29]. This objective function is composed by two basic

functions f(zi) = log(
∑

j z
i
j), ∀i, where zi is an allocated traffic vector for demand i via

multi-path {j|∀j} and g(ul) =
∑

l∈L2
exp (ul). The following part proves the convexity of

these two basic functions, and applies the composition rule [29] to justify the convexity of

the objective function of (1).

The first and second derivative of f(zi) with zij are calculated as follows

∂

∂zij
f(zi) =

1

zij
∀i (2)

∂2

∂zij∂z
i
p

f(zi) =







−1

zij
2 if j = p

0 otherwise

(3)

From (3), Hessian ∇2f(zi) is negative semi-definite, hence f(zi) is concave function with

variable zi. Let g(ul) =
∑

l∈L2
exp (ul). The first and second derivative of g(ul) is as

follows:

∂

∂ul

g(ul) = exp(ul)

∂

∂ul∂up

g(ul) =







exp (ul) if l = p

0 otherwise
(4)

The negative semi-definite of Hessian matrix ∇2g(ul) implies g(ul) convex [29]. Hence,

g(zij) is convex with zij because it is the composition of a convex function g(ul) with a non-

decreased affine function ul(zj) =
∑

i

∑

j H
i
lj
zij

yl
. The objective function of 1 is a composition

of the two concave functions f(zi) and −qg(zij), then it’s concave [29]. The constraints
∑

i

∑

j H
i
ljz

i
j ∀l ∈ L are affine with the variable zi. Hence (1) is convex optimization

problem [29].

Furthermore, the solution for this optimization problem is proportionally fair [50, 51].

A point is proportionally fair if it satisfies the following equation:

∑

i

zi − zi∗

zi∗
≤ 0 (5)

The objective function in problem (1) without the second term can be presented as the func-

tion of traffic demand as

f(z) =
∑

i

wi log
(

zi
)

∂

∂zi
f(z) =

wi

zi
(6)
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Applying Taylor series to first order approximate f(z) at the optimal point z∗ as

f(z) = f(z∗) + (z − z∗)T∇f(z∗) + o(δ)

f(z)− f(z∗) =
∑

i

zi − zi∗

zi∗
(7)

But f(z) is a convex function, f(z)− f(z∗) ≤ 0. And we have:

∑

i

zi − zi∗

zi∗
≤ 0 (8)

The equation (8) proves that the optimal solution of (1) is also proportionally fair.

A.2 Delay-sensitive traffic control

The second example for the virtual network centralized algorithm, (4.1) is as follows:

minimize
∑

i

∑

j

zij
∑

l

H i
lj(fl + f(ul))

subject to
∑

i

∑

j

H i
ljz

i
j ≤ yl ∀l ∈ L

zij ≥ 0 ∀i, j

variables zij (9)

where zij is max flow rate available on path j for demand i. The link path routing matrix

with its column representing each path in source-destination and its row representing each

link index is denoted by H i
lj , where H i

lj = 1 if demand ion path j uses link l and H i
lj = 0

otherwise. The propagation delay is denoted by fl. The queue in each node is modelled

as M/M/1 and the total delay for a packet pass through a node is denoted by f(ul) and is

calculate as follows [52]

f(ul) =
1

cl − bl
(10)

where cl is capacity of link l, and bl is load on link l. Let U (1) be denoted as the objective

function of (9) and the objective function with the queuing delay from (10) is expressible as

U (1) =
∑

i

∑

j

zij
∑

l

H i
lj(fl + f(ul))

=
∑

l

bl(fl +
1

cl − bl
) (11)

(12)
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The objective function in (11) is convex but it is difficult to solve. We use piece wise linear

approximation as in [53] to linearly approximate the (11) as the following:

max
∀bl

Ul =























































blfl +
1.5
yl
bl, 0 ≤ bl ≤

yl
3

blfl +
4.5
yl
bl − 1, yl

3
≤ bl ≤

2yl
3

blfl +
30
yl
bl − 18, 2yl

3
≤ bl ≤

9yl
10

blfl +
70
yl
bl − 54, 9yl

10
≤ bl ≤ cl

blfl +
500
yl
bl − 484, yl ≤ bl ≤

11cl
10

blfl +
5000
yl

bl − 5434, 11yl
10

≤ bl ≤ ∞

(13)
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Appendix B

List of notations

1− δ , Probability of getting full avaiablility

1− ǫ , Probability of getting limited avaiablility

γ , Reduction factor which is the ratio of capacity provided to

a limited availability user comparing with the capacity pro-

vided to a full availability user

α , Activity level

a , Peak rate

N , Number of users in an aggregated demand

rfull , The minimum capacity for providing full availability

rlim , The minimum capacity for providing limited availability

Qn , The bandwidth demand of nth user

Nfull
excl , Number of users getting exclusive service with the capacity

enough for providing full availability service to Nfull users

N lim
excl , Number of users getting exclusive service with the capac-

ity enough for providing limited availability service to N lim

users

V s , Set of all substrate nodes

Es , Set of all substrate links

l , The general link index number

L , Set of all substrate network’s link index number

k , Virtual network index number

K , Set of all virtual network’s index number

Kl , Set of all virtual network’s index number which has a link

hosting on link l

Lk , Set of all substrate links hosted by virtual network k



88

i , The traffic demand’s index

j , The path index for each traffic demand i

H
i(k)
lj , The link-path routing matrix for virtual network k with its

column representing each path in source-destination pairs

and its row representing each substrate link index which

H
i(k)
lj = 1 if demand i of virtual network k on path j uses

virtual network link l and H
i(k)
lj = 0 otherwise

r
(k)
i , Demand i of virtual network k

pl , price for one unit of traffic flowing through link l

z
i(k)
j , Max flow rate available on path j for demand i of virtual

network k.

z
∗i(k)
j , Optimal flow rate available on path j for demand i of virtual

network k

x
(k)
i , An indication variable which has the value of 1 if demand

i of virtual network k goes through path j, and value of 0

otherwise.

y
(k)
l , Bandwidth allocated to link l o virtual network k

ỹ
(k)
l , A feasible bandwidth allocated to link l o virtual network k

y
∗(k)
l , Optimal bandwidth allocated to link l o virtual network k

cl , Capacity of substrate’s link l

V (k) , Set of all virtual nodes in virtual network k

E(k) , Set of all virtual links in virtual network k

m , Number of paths for each traffic demand

U (k)() , Utility function of virtual network k

U (1) , Delay-sensitive utility function

U
(1)
l , Utility got from link l

ul , Utilization of link l

w(k) , Weight of virtual network k

wi , Weight of demand i

λ
(k)
l , Dual variable of link l in virtual network k for the optimiza-

tion sub-problem (4.1)

λ
∗(k)
l , Optimal dual variable of link l in virtual network k



89

T , The period for substrate network to update virtual link band-

width

β , Step size in gradient projection method to search for feasi-

ble optimal point

q , Priority for link low utilization

fl , Propagation delay of link l

f(ul) , Queuing delay of link l with utilization ul

µl , Dual variable for the optimization master problem

p∗ , Optimal solution for the substrate primal problem of (4.2)

p∗(k) , Optimal solution for the primal problem of

bl , Load on link l
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Appendix C

List of publications

Tri Trinh, Hiroshi Esaki and Chaodit Aswakul

“An analysis of careful overbooking for dynamically adaptive virtual networks”,

appeared in Proceedings of IEICE Technical Committee Workshop on Internet

Architecture, 28-29 October 2010, Bangkok, Thailand, 2010. Content taken from

Chapter III.

“Quality of Service Using Careful Overbooking for Optimal Virtual Network

Resource Allocation”, appeared in Proceedings of 8th International Conference on

Electrical Engineering/Electronics, Computer, Telecommunications and Information

Technology (ECTI-CON 2011), 17-19 May 2011. Khon Kaen, Thailand, 2011.

Content taken from Chapter III.

“Dynamic Virtual Network Allocation for OpenFlow Based Cloud Resident

Data Center”, appeared in IEICE TRANSACTIONS on Communications

Vol.E96-B, No.01, pp.56-64, Jan. 2013. Content taken from Chapter IV.



Biography

Mr Trinh Minh Tri was born in 1981 in Hanoi, Vietnam. He received the Bachelor

of Electronics and Telecommunication from Hanoi University of Science and Technology,

Hanoi, Vietnam, in 2004, and the Master of Science in Electronics and Telecommunications

from the same University, in 2006. He has been pursuing the Doctoral degree in Electri-

cal Engineering at Chulalongkorn University, Bangkok, Thailand, since 2009. His research

interests include Network Virtualization, Optimal Traffic Control for Cloud Network.


	Cover (English)
	Cover (Thai)
	Accepted
	Abstract in Thai
	Abstract in English
	Acknowledgements
	Contents
	Figures

	Figures
	Chapter 1 Introduction

	1.1 Network virtualization for multi-tenant data center
	1.2 Resource allocation approaches in network virtualization
	1.2.1 Problem description
	1.2.2 Static virtual network allocation
	1.2.3 Dynamic virtual network allocation

	1.3 Objective of dissertation
	1.4 Scope of dissertation
	1.5 Organization of dissertation

	Chapter 2
Theoretical background and cloud resident data center testbed
	2.1 Theoretical background
	2.1.1 Primal decomposition
	2.1.2 Gradient projection method
	2.1.3 Congestion price
	2.1.4 Karush Kuhn Tucker conditions

	2.2 Cloud resident data center testbed
	2.2.1 Traffic control in each virtual network
	2.2.2 Traffic control in the substrate network

	2.3 Concluding remarks

	Chapter 3
Optimal static virtual network allocation with careful overbooking
	3.1 System description
	3.2 User model
	3.3 Service level agreement
	3.4 Mixed integer programming
	3.5 Results and discussions
	3.6 Summary

	Chapter 4
Centralized dynamic virtual network allocation for cloud resident data center
	4.1 Introduction
	4.2 System description
	4.2.1 Traffic control in each virtual network
	4.2.2 Traffic control in the substrate network

	4.3 Proposed optimization framework for cloud resident data center
	4.3.1 Modeling and notations
	4.3.2 Virtual-network centralized algorithm

	4.3.3 Substrate-network distributed algorithm
	4.3.4 Convergence and optimality

	4.4 Implementation
	4.4.1 General testbed description
	4.4.2 Logical model
	4.4.3 Virtual-network centralized algorithm implementation
	4.4.4 Substrate-network distributed algorithm implementation
	4.4.5 Simulator

	4.5 Evaluation
	4.5.1 Simulation results
	4.5.2 Testbed evaluation results

	4.6 Conclusion

	Chapter 5
Conclusion
	5.1 Contributions from chapter III
	5.2 Contributions from chapter IV
	5.3 Possible future works

	References
	Appendices
	Appendix A Virtual network centralized algorithms
	Appendix B List of notations
	Appendix C List of publications

	Vita

