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1 INTRODUCTION

1.1 Background and Problem Review

It has been observed in empirical data that large changes in prices of risky assets
tend to come in clusters, and so do small changes. We call this phenomenon volatility
clustering. This phenomenon is observed when there are extended periods of high
market volatility, or the relative rate at which the price of financial asset changes,
followed by a period of low volatility. Investment during high volatility clustering is
riskier and risky assets can be susceptible to large price movement. Volatility clustering
of risky assets, therefore, is an important factor to consider in long-term investment.

Volatility clustering also plays a crucial role in choosing investment strategies
for a pension scheme. Pension schemes are also considered a type of long term
investment and usually have investment time horizon of forty years. There are two
popular types of pension schemes: defined contribution plan and defined benefit plan.
In a defined contribution plan, the final fund value depends on the contribution to the
fund and the fund’s performance. On the other hand, in a defined benefit plan, the final
fund target is fixed and depends on the proportion of final salaries of plan participants.
The final salary can generally be predicted. For example, salaries of government
officials increase in a largely predictable way. The defined benefit plan shares similar
characteristics with other types of funds where the fund’s managers have a fund target,
for instance, a fund targeting five percent gain per year. However, the time horizon of
other types of funds may be for a shorter period of time, such as five years. The
frequency of rebalancing the portfolio in other types of funds could be weekly or
monthly, while the frequency of rebalancing pension fund is usually every one or three
months.

Protecting the wealth of the pension funds especially at the near terminal period
is critical to make sure that it is on track to reach the fund target. In this research, we
will focus on risk management of pension schemes under volatility clustering in risky
asset returns and its implication on investment strategy in a defined benefit pension
fund. Moreover, model extensions that capture specific features of risky asset returns,
such as asymmetric volatility (a phenomenon that volatility is higher in down markets
than in up markets), are explored. The results of this paper will provide additional
insights in investment decision managing a defined benefit pension fund.

ARCH (Engle, 1982) and GARCH (Bollerslev, 1986) models are among the
first models that aim to describe the volatility clustering phenomenon. Other models of
volatility clustering include stochastic volatility models, such as event-risk framework
(Duffie, Pan, and Singleton, 2000). The main idea behind these models is that the
amplitude of volatility depends on its past realizations of the risky asset process. The



GARCH models are selected to model volatility clustering in this research because of
its simplicity. Moreover, the autocorrelation term in the GARCH models conveniently
captures the volatility clustering phenomenon and is easy to understand. Extension
models of the GARCH model are also examined. The GJR and EGARCH models
provide the property to capture the asymmetric volatility.

1.2 Research Questions and Objectives

1. How does the volatility clustering affect strategies in the pension fund
management?

2. How do different volatility clustering models affect the optimal strategies?
Under a defined benefit pension scheme setting, this research examines the
behavior of optimal asset allocation given various volatility clustering models
in the GARCH family models.

3. Which volatility clustering models give the best outcome, highest returns, and
low standard deviations, in backtesting?

1.3 Contributions

Vigna and Haberman (2001) have studied the optimal investment strategy of
risky asset in a pension strategy using simple returns. The optimal investment strategy
only depends on the fund value. In this research, the volatility clustering is considered.
In order to capture the volatility clustering of the risky asset, GARCH family models
(GARCH, GJR and EGARCH models) are examined. We will study how the volatility
clustering affects a defined benefit pension strategy.

The remaining sections are organized as followed. Section 2 explores literature
review of GARCH family models, Bellman equations, and other relevant concepts.
Section 3 looks further into the problem formulation and the overview of dynamic asset
allocations, Monte Carlo simulation and backtesting strategies. Section 4 provides the
numerical method for solving Bellman equation to find the optimal allocations. In
Section 5, there are three parts. The first part is to analyze the optimal allocations, to
investigate and compare the optimal asset allocations across models. Moreover, the
effects of parameters of volatility clustering on optimal asset allocations are examined.
The second part is Monte Carlo simulation, to simulate investment returns and variance
under the decision rules of each model solved in the previous section. We compare the
distribution of optimal weights and its fund value across GARCH family models. The
last part is to backtest the strategies, to evaluate the performance of GARCH family
models. Section 6 provides a summary of the results of this research.
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2 LITERATURE REVIEW

2.1 Concept and Theoretical Background

The dynamic portfolio choice was first introduced by Merton (1969). It has been
extended to many papers in finding optimal asset allocations. The investment strategies
of pension schemes have been studied using various models. For instance, Vigna and
Haberman (2001) have proposed the optimal investment strategy with discrete time
model. Ngwira and Gerrard (2007) utilized the jump-diffusion process in the
investment strategy of a pension scheme. In both important works of Vigna and
Haberman (2001) and Ngwira and Gerrard (2007), volatility is assumed to be constant
through the time horizon. However, there has been evidence of volatility clustering,
where periods of high volatilities tend to cluster together and likewise for low
volatilities periods. The volatility clustering in financial markets has been studied
extensively. Lux and Marchesi (2000) have explained volatility clustering with a
statistical analysis of simulated risky assets. Heteroscedasticity and leptokurtosis of
returns are found within a multi-agent framework. Cont (2007) have studied volatility
clustering in terms of the behavior of market participants with an agent-based model.

Volatility clustering in daily returns has long been observed. However, Jacobsen
and Dannenburg (2003) also found evidence of volatility clustering in long-term stock
returns in the Eurozone using the GARCH model. In this paper, we search for the
optimal asset allocation in pension schemes given volatility clustering in 3-month
returns of the risky asset by using GARCH family models.

This research focuses on managing a pension fund under volatility clustering.
Volatility clustering presents a unique situation for the risk management of pension
scheme. In this paper, we restrict volatility clustering model to the GARCH families.
There are other researchers who have worked on related problems. Event-risk, for
example, has impacts on financial markets and make a huge loss on security prices
which cause individuals and funds to incur a big loss, including Pension fund. Liu,
Longstaff, and Pan (2003) have studied the effect of jump size in optimal asset
allocation.

2.2 GARCH Family models

In discrete time, the GARCH model was first introduced by Bollerslev (1986).
It was adapted from the ARCH model proposed by Engle (1982). GARCH is often used
for modeling stochastic volatility and it has been developed into many extensions.
Later, Ben-Hameur, Breton, and Martinez (2006) provided a dynamic programming
approach in GARCH model setting.
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All models considered in this paper are in the GARCH family. Stock return
dynamic is the same for every model as followed,

Yo =+ oce, 1)
Xt = Yt — U= O-tgt, £t~i' . d.N(O,l),

where Y; is a stock return at time t, u is the mean of return, o; is the volatility at time t,
& Is the white noise process assumed i.i.d. standard normal distribution, and X; is a
normally distributed random variable with volatility o;.

GARCH (1,1)

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) model
was proposed by Bollerslev (1986). The GARCH model is used to capture volatility
clustering by the term a; 2 ;. We will study how this model affects optimal investment
strategy. The GARCH model can be written as followed,

of = ag+ ay0f 1 + X2 4, (2)

where a,, a4, B, are coefficients with the constraints of ¢y > 0,2y > 0, 1 >0, a; +
f1 < 1, o is the conditional variance, &~i.i.d.N(0,1) and X,_; = 0,_1&_4, iS

normally distributed with volatility a,_,. The long term variance equal to - :‘0 -
—U17P1

GJR (1,1)

The GJR model was proposed by Glosten, Jagannathan, and Runkle (1993). The
GJR model is an extension of the GARCH model that can capture the asymmetric
volatility, also called leverage effect (changes in stock prices tend to be negatively
correlated with changes in volatility, i.e., volatility is higher after negative returns than
after positive returns of the same amplitude). The GJR model can be written as
followed,

0f = ag + a 071 + B X + wil( XE 4, 3)
It—l = 1, ith—l < 0,
I, =0,if X,_y =0,

where «a,, @4, f, and w, are coefficients with the constraints of ¢y > 0,a; > 0, 5, >
0, a; + B; + 0.5w; < 1, 62 is the conditional variance, &.~i.i.d.N(0,1),and X,_, =
0t_1&¢—1 1S normally distributed with volatility o;_,. The asymmetric volatility,
captured by the dummy variable I;, will also have an effect on the investment decision
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because the volatility depends on whether previous asset return is positive or negative.

. - a
The long-term variance is equal to —————.
1—a1—ﬁ1—0.50)1

EGARCH (1,1)

The exponential GARCH model, proposed by Nelson (1991), is a logarithm
function that is extended from the GARCH model by adding another feature to capture
the leverage effect by the term w;e&;_;. The EGARCH model can be written as
followed,

loga? = ag + ay logof ; + ﬁ1[|5t—1| - E[Igt—ll]] + w1&_1, (4)

where ay, a4, B; and w, are coefficients, o2 is conditional variance, ,~i.i.d.N(0,1),

and E[|e;—411] = \E Even though the constraint of a4, 8;, and w, are relaxed because

of its property of the logarithm function, the parameter a; and S, are expected to be
ag

positive and w, to be negative. The long-term variance is equal to e1-a1,

2.3 Bellman Equation

The dynamic programming is used to solve a dynamic optimization problem
with stochastic processes. In the dynamic programming, there are decisions to make in
every period as the information changes over time. Let V(T, Wy, vy, ...,yr—1) be a
utility function or pay-off function that we try to maximize, which depends on the
information at time T. In this context, V is a decreasing function of the difference
between the final target fund and the terminal fund value. Here, W; is wealth at time ¢,
and y, is weight invested in the risky asset at time t. Given r is the discount rate, At is
the interval time invested and y = e~"2¢ is the discount factor, the dynamic decision
problem can be written as the following equation,

T
](0, WO' O-g) = .I_naX VMV(T' WT' Y1 -"ryT—l)a
Yi,i=0,.,T—1

where J (0, W,, o2) is called the value function at time 0 and depends on initial wealth
W, and initial variance o because these two values influence the decision making of
choosing weight in the risky asset. In order to solve this problem, Bellman equation is
a necessary condition to solve a dynamic programming problem. Bellman’s optimality
principle (Bellman, 1956): “An optimal policy has the property that whatever the initial
state and initial decision are, the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision.” In this research, the GARCH
(1,1) model is used, so at time T the information that needs to use is up to time T — 1.
Given ¢ is variance of the risky asset at time ¢t ,solving the Bellman equation, we get
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J(T —1,Wr_y, 072"—1) = r}gax[yE [V (T, Wp)|Wr_4, 072"—1]],
-1

From the equation above, we get the backward recursive equation that needs to be
solved in optimal asset allocation,

J(t =1L, Wy_q,08 1) = r;iax[yE[/(t, Wy, 62)[Wy_q, 0111
-1

The problem is then solved for the optimal allocation y,,t = 0, ..., T — 1 fromtime T —
1 to time O recursively.
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3 PROBLEM FORMULATION AND OVERVIEW OF
METHODOLOGY

In order to solve the optimal allocation of the risky asset, the dynamic
programming problem is then set up. Firstly, we construct the wealth dynamic that
consists of one risky asset and one risk-free asset,

Wy =Wei(1+ye1Ye + (1 =y )reAt) + ¢ %),

where W, is fund value at time t,
y: Is the weight on the risky asset,
Y,  isthe risky asset return following GARCH family models,
c is the dollar contribution per period,
T¥ is the risk-free rate per year assumed constant,

At s the interval of investment between periods.

Let the retirement date T be the time horizon. In a defined benefit pension
scheme, we care about the wealth at the terminal period. Therefore, we use the
following quadratic objective function setup from Vigna and Haberman (2001),

H(T, WT) = (WT T FT)Z,

where F; is the fixed fund target at time T. By minimizing this objective function, we
make the terminal fund value as close to the fund target as possible. From the objective
function above, the Bellman equation is used to calculate the value function attime T —
1,
J(T =1, Wy, 0f_1) = min|yE[H(T, W)Wy, 0 4]},
-1

Note that the value function depends on the state variables W,_; and o%_, because Wy
depends on Wy_; and o2_;.

The Bellman equation is then applied recursively to compute J (t, W,, ¢2) for all
t<T,

minlE[y(Wt+1—f)2|Wt,0'tz] Jfort =T-1

t, W, a2) ={ ==
J (& W, 00) OminlE[y](H1,Wt+1,a§+1)|Wt,a,?],fort =0,..,T—2
SYes
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Parameters (a4, 1, w;) of the GARCH, GJR, and EGARCH models are
estimated from the time series of S&P500 returns. The same time series is used across
three models, so the results can be compared to each other. We set up the dynamic
programming and solve it at period T — 1, where T is the time horizon. Subsequently,
solve the optimization problem from period T — 2 to period 0 by optimizing the
expectation of the value function J (t, W, 6#) of the next period. This numerical method
will be explained in Section 4 thoroughly.

There are three parts of result in this paper: 1) analyzing the effects of volatility
clustering (a4, 51, w;) on the optimal allocations y;, 2) simulation to compare the
distribution of optimal allocations y, and fund values W; across the models and 3)
backtesting the time series S&P500 to evaluate the performance of each model.

3.1 Analyzing the Effects of Volatility Clustering on the Optimal Allocation

In this part, the objective is to characterize the optimal allocation y, surface of
each model and compare it across GARCH models and its benchmark: constant
volatility model. Moreover, the effects of volatility clustering parameters (a4, 1, @1)
on optimal allocations are examined by varying the parameters of GARCH family
models.

3.2 Monte Carlo Simulation

The objective of Monte Carlo simulation is to study the probabilistic behavior
of optimal allocations y, and its fund value W, under each model. Return Y, and
variance o7 of the risky asset are simultaneously simulated under the GARCH, GJR
and EGARCH models for 100,000 possible paths. The simulated allocations follow the
optimal allocation y, from the solution of the dynamic programming. So, the optimal
weight y, varies with the state variables: variance o7 and fund value W,.

3.3 Backtesting the Strategy

Backtesting the strategy evaluates the performance of GARCH family models.
The optimal investment strategy for each GARCH-type model is characterized, the
performance of each strategy under the realized historical data is compared to each
other. The historical returns of S&P500 from the year 1961 to 2015 are used. The first
35 years of time series is used to estimate the parameters, while the latest 20 years of
the time series is used for backtesting. We re-estimating parameters and solve the
dynamic programming problem for the optimal allocation every 5 years.
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4 NUMERICAL METHOD FOR SOLVING BELLMAN
EQUATION

This section provides the numerical method for solving the dynamic
programming problem as mentioned in Section 3 Analyzing the effects of volatility
clustering on the optimal allocations to find the optimal allocations of the GARCH,
GJR, and EGARCH models.

We numerically solve the dynamic programming problem. Grid points of the
state variables are set up in order to solve the optimal allocation. There are two state
variables in this research: variance o7 and fund value W,.

The first state variable is the variance. Grid points of the variance are the same
for all time t. The boundaries of the grid point are set to a,znin,t = 0.001, and 0fax ¢ =
0.03 because the simulated variance are mostly in this range. We use n equally-spaced
grid points for the variance. Given n = 20, we get,

(0,024,068 :0%,) = (0.001,0.0025 ...0.0285,0.03) ,t = 0, ..., T — 1.

The second state variable is fund value. The grid points of fund value are
changed from period to period. At time ¢, the boundaries of the fund value (W,  and
Winax,e) depend on the fund target at that time. The equation of the fund target F,,t =
0, ..., T and the boundary of fund value are shown as followed.

1
Fort=0,..,T—1, Fy = (14 teq)"Froq + c,

where F, = ¢, c is the dollar contribution per period, 7.4 is the required return of
reaching fund target per year, n = 12At, n is the amount of period invested in one year.
At each time t, the boundaries of fund value are set to 0.3F, and 1.5F; because the
simulated fund values are mostly in this range, regardless of the proportion of the risky
asset. We also use n equally-spaced grid points for the fund value.

The grid points of state variables, (W;,0%), i,j =1...n,t =0,..,T — 1, are
then found. For each period, the optimization problem that needs to be solved is equal
to the total pairs of the state variables (n?). From the Bellman equation, we solve the
equation, J(t, W,,c?), at time T-1,

min E [y (T, Wiz, 6% ) |Wr_y, 031 = min E[y(W;z — £)*|Wr_y, 02_].
YT-1 YT-1
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Substituting equation 5 in W; » will yield

. 2
min E[y(Wir_1(1 + yr—1Yr + (1 - }’T—1)TfAt) +c—f) |Wr_1,074].

YT-1

Substituting equation 1 in Y, will yield

. 2
min E[y(W;r—1 (1 + yr_1(u + orerr) + (1 — J/T—l)TfAt) +c—f) Wr_y,08_4] (6)

YT-1

The term o is substituted by GARCH family models. We start at GARCH (1,1) model
by substitute equation 2 in o,

1
min Ey (Wi,T—l (1 +yroa(p+ (ao + 107r_1€5r-1 + ﬁlofT—l)zgl,T) +

YT-1

2
(1- J’T—1)7”fAt) RS f) |Wr_1,0F_4].

We use the numerical method to find the expectation. The variable
g ¢~i.i.d.N(0,1),i = 1,2, are estimated numerically by varying it from —3 to 3 with
the increment of 0.05. Let the probability P(el) = cdf(e{ + 0.025) — cdf (e} —
0.025), where cdf () is the cumulative distribution function of the standard normal

distribution. The sum of the probability, ij:P(e;) = 0.9975, is adjusted to 1 by
I

the normalization, P(e;) = P(&f)/ Zif:P(e{) = P(&{)/0.9975. We can compute
=

the expectation,

3 3
Jr/nin Z Z P(51,T)P(52,T—1)()/ <Wi,T—1 <1 +
1 82”[‘_1=—3 51,T=—3
1
yr-1(u + (ao + al“j?T—1€22,T—1 + .BIO}Z,T—I)ZELT) +
2
(1- YT—1)7”fAt) +c— f) )

For the GJR (1,1) model setting, we substitute equation 3 in equation 6 and
follow the same procedure as GARCH model. We get
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3 3
Jrgl_rll z Z P(gl,T)P(gz,T—l)(y <Wi,T—1 <1 +

&2, 7-1=—3&1,7=-3
1
2 2 2 2 2 7
yr-1(u + (“o t a0 171 F ﬁlo-j,T—l + wllT—laj,T—152,T—1) &)+

2
1- yT—l)rfAt> +c— f) )
In EGARCH (1,1) model setting, from equation 4, we get

logo? = ap + aylogaf + 51[|5t—1| - E[|€t—1|]] + w1E-1,

1
oy = (ea0+a1 logo? 1 +Ba|lec—1]-Ellec—1 |]]+w15t—1)2.

Substituting the equation above o; in equation 6 using the same technique as the
GARCH model will yield

3 3
Jrgl_rll Z Z P(31,T)P(52,T—1) (V <Wi,T—1 <1 +

&2,7-1=—3 &1, 7=-3

N[~

Vr_q <’u + (eao+051 log 0152—1+:31[|€t—1|—E[|€t—1|]]+w1€t—1)

2
(1- )’T—1)7”fAt> +c— f> )

For all GARCH models, at time T — 1, the optimization problem is solved for
the optimal strategy (yr—-,) and the value function (J(T — 1, W; r_1, fffr—l)) for every
pair of state variables. The optimal strategy is then solved by backward recursion
method from ¢t =T — 2 to ¢t = 0. Given a pair of state variables,(W;,,07), i,j =
1...n,

51,T> +

Je(t Wi, 0f) = rrjl}tn E[V]e+1(t: Wi s, O-j%t+1) Wy, of].
Substituting equation 2 in W; ;4 yield
n}/itnE[y]t+1(t, Wi,t(1 +ye(p+oere) + (1 - yt)rfAt) +c O-j?t+1)]'

Taking the expectation, where &, . is the term &, in aﬁt +1 S equation, yield
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3 3
rr}lin Z Z P(gl,t)P(SZ,t—l)()/]t+1(t' Wi,t(1 + ye(u+ orere) +
t Ez’t_1=—3 81,t=—3

(1- yt)rfAt) +c, O-j?t+1))

We substitute equation 2, 3and 4 in aftﬂ for the GARCH, GJR and EGARCH models,
respectively. The updated state variables are then interpolated to the grid of state
variables at the next period to obtain the value function (/Hl(t, Wi,tﬂ,aﬁtﬂ)). We
compute it for all scenarios of (e1¢,€,—1). FOr t =0,...,T — 2, the optimization
problem is solved recursively to get the solution of optimal weight y,, and value
function J,(t, Wi, o).
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5 RESULTS

The results are presented in three sections. The first section characterizes
optimal allocations that are solved by the dynamic programming approach. The effects
of volatility clustering on optimal allocations are also investigated. The second section
provides the result of Monte Carlo simulation, studying the distribution of optimal
weight and its fund value across GARCH family models. The last section, backtesting
the strategies, evaluates the performance of GARCH family models in comparison to
benchmark strategies: the constant volatility model and the buy-and-hold strategy.

The model parameters of the GARCH, GJR, and EGARCH models are
estimated using the same time series data of S&P500 3-month returns from the year
1961 to 1995, a total of 35 years or 140 data points. Estimated parameters of the
GARCH, GJR, and EGARCH models are shown in Table 4.1 in Appendix. Model
parameters that are necessary to solve the dynamic programming, are set to be
compatible with the pension scheme setting as followed. The interval between the
portfolio adjustment is set to 3 months because the portfolio adjustment in the long term
investment is not as frequent as in the short term investment. From equation 5, At is
equal to 0.25. The investment window is 20 years, making the total investment of 80
periods. For simplicity, no short selling and leverage are allowed (0 <y, <1,t =
0,..,T —1). The risk-free rate 7y and discount rate r are assumed to be constant at 1
percent per annum, contribution c in each period (3 months) is set to $300, the required
return of fund target .., is set to 5%, fund target Fr is $41,212.

5.1 Analyzing Effects of Volatility Clustering on Optimal Allocations

In this section, we have split the results into two sub-sections. The first sub-
section is to characterize the optimal allocation surface of each model and compare the
optimal allocation across models. The second sub-section is to investigate the effect of
volatility clustering by varying the parameters of GARCH family models.

Comparing optimal allocations across volatility clustering models

The optimal strategies of the GARCH, GJR, and EGARCH models are solved
using Bellman equation. The numerical method for solving the Bellman equation is
provided in Section 4. After the optimal strategy is solved for each model, the optimal
strategy and the value function will be plotted at 2 times: at year 5 (representing early
periods) and at year 15 (representing later periods).
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Figure 1. The surface of optimal allocation and value function of GARCH, GJR and
EGARCH models at years 5 and 15.
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The value function has the lowest value equal to 0 when the fund value equal to
the fund target. The value function is always positive whether the fund value goes above
or below the fund target. From Figure 1, if fund the value exceeds a threshold, the
optimal allocation will put zero weight on the risky asset, which means that from that
time on risk-free investment is enough to reach the target. This is because when the
fund value is equal to the fund target, investment in the risky asset makes the expected
fund value diverge more from the fund target. This threshold can be characterized by
the final fund target, risk-free rate, and contribution rate as follows,

Faep-1 = ~21, )

(147p)n
where F, . is the fund value threshold at time t, and F,;. - = Fr (fund target of T' years).
For example, the fund value threshold at year 15, calculated from equation 7, is
$33,365. If the fund value goes beyond this threshold, the optimal strategy is to invest
all weight in the risk-free asset for the remaining periods. While the fund value
threshold at year 5 is $18,797, the sum of the contribution invested at that time is just
$6,000. The threshold is very high compared to the contribution so the optimal strategy
is to invest high weight in the risky asset because it yields higher expected return than
the risk-free asset.

The plots of the optimal allocation surface do not facilitate comparison among
models. To aid comparison, we cross-section the surfaces, varying fund value and
fixing the time and variance. The cross-section of optimal allocation weight of the
GARCH, GJR, and EGARCH models are provided in Figure 2 below.
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Figure 2. The cross-section of optimal allocation weight of the GARCH, GJR,
EGARCH and constant volatility models at years 5 and 15, the variance of the constant
volatility model = 0.063. In GARCH family models, low variance = 0.0057 and high
variance = 0.0093. The parameters are estimated from the same time series, S&P500,
for all models.
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From Figure 2, Findings of the optimal allocations in GARCH family models
are as followed, while the constant volatility model will be mentioned later.

— In all three models, the optimal weight to put in the risky asset is higher when
the variance of risky asset and/or fund value is low. In the early period, low
variance and low fund value result in the optimal weight closer to one.

— If the fund value already reaches the target, the optimal strategy is to put all the
weight in the risk-free asset.

— In early periods, the optimal strategy will be likely to put more weight in the
risky asset than in later periods. For example, at year 5, the optimal strategy will
put more weight in the risky asset than at year 15.

However, as seen from Figure 2, optimal allocations differ among models. To
better understand what make the characteristic of the optimal allocations difference, we
look at the variance of the risky asset return of GARCH family models (equation 2,3
and 4 for the GARCH, GJR and EGARCH models, respectively). Then we examine
how the variance influences the optimal allocation in each model. The variance
distributions of GARCH family models are then investigated by varying €,_, on the
normal distribution in the range from —3 to 3.

0.03 T T T~ T T 0.08
/ \ —%— GARCH
// \\ —5— GJR 40.07
0.025 | / \ EGARCH
/ \ — — Prob epsilon

0.06
0.02
0.05

0.015 0.04

variance

0.03
0.01

Probability of epsilon

0.02

0.005
0.01

epsilon

Figure 3. The distribution of the variance of the GARCH, GJR and EGARCH models
with varying &,_; from —3to 3, given g2 ; = 0.005.

Consider equation 6, the optimization problem at one period before the terminal
period, the only difference between the three models is the variance distribution that
will lead to different optimal allocations. From Figure 3, the variance of the GARCH
model has the symmetric volatility. Meanwhile, the variance of the GJR and EGARCH
models represent the asymmetry volatility: the effect of the term w, causes the different
variance in the next period, the positive &;_, yield the lower variance than the negative
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&:_41 Of the same size. The different variance distribution provides the different optimal
allocation. However, the variance of the GARCH and GJR models are very similar with
the highest density of e,_, around 0. So, at one period before the terminal period, the
differences of optimal investment strategies are as followed.
— The GARCH and GJR models yield very similar optimal strategies.
— The EGARCH model results in a more aggressive strategy in the later periods
since the variance for all possible —3 < &;,_; < 3 in the EGARCH model is
lower than in the GARCH and GJR models.

Next, volatility clustering models are compared to the non-volatility clustering
model. The constant volatility model is used as a benchmark. It has only one state
variable, the fund value. The optimal allocation of this model is calculated similarly to
GARCH family models.

The optimal allocation of the constant volatility model is also shown in Figure
3. The optimal allocation of the constant volatility only depends on the fund value,
while volatility clustering models depend on both the fund value and the variance. At
both low and high variances, in earlier periods, the result shows that the optimal
strategies in GARCH family models are more conservative than in the constant
volatility model. While in later periods, GARCH family models result in lower optimal
weights than the constant volatility model when the fund value is low, but result in
higher optimal weights when the fund value is high. As discussed, this can imply that
the volatility clustering influences optimal strategies. The volatility clustering model
results in more conservative investment strategy than the non-volatility clustering
model in early periods.

Effect of volatility clustering on optimal strategy

This section examines the effect of volatility clustering in GARCH family
models on the optimal strategy. Two important parameters of GARCH family models
that can represent the volatility clustering effect are a; and ;. The first parameter, «;,
represents how much volatility in the past affects present volatility. The second
parameter, 3;, represents the amplitude of uncertainty in the past period. Moreover, the
extension models, the GJR and EGARCH models, have the additional parameter: w4,
allows for the asymmetric volatility that can capture both the sign and amplitude of the
uncertainty.

To compare the effect of each parameter (a;, f;, and w;) on the optimal
strategy, the benchmark parameters of the GARCH family models are also estimated
from the S&P500 returns as same as the previous section. Each parameter is varied
separately while holding the rest of parameters constant. The same dynamic
programming method as in Section 4 is applied to obtain the optimal strategy. By fixing
the time and the state variable: fund value, the optimal strategies result with varying
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variance are presented. The figures below will show the relationship between the
variance and the optimal weight compared along the varying parameters in the
GARCH, GJR, and EGARCH models. The parameters of the volatility clustering effect
are investigated separately in each model.

Effect of volatility clustering on optimal strategy in the GARCH model

Starting from the GARCH model, we consider its constraint, a; + 8; < 1. The
higher the value of a; + f3;, the higher the effect of volatility clustering is. To study the
effect of volatility clustering on the optimal allocation, the values of a; and f; are
varied and categorized into 4 groups, given benchmark values of the GARCH model
are @y = 0.002208 ar; = 0.5248, 8, = 0.1272, and u = 0.01461.

Group 1: varying a,, fixed

a;=03,6,=01a,+p,=04

a;=07,6,=01a, +p,=08
Group 2: varying B, fixed a,

a;=01,=03a;,+p,=04

a;=01,p,=07a;, +p,=08
Group 3: varying a; + 4, equally weight of a; and £,

a;=02,6,=02,a;, +p,=04

a;=04,$,=04,a;, +,=08
Group 4: fixed a; + B4, varying a, and ;

a;=01,p,=07a;, +p,=08

a,=04,$,=04,a, +5,=08

a,=07,6,=01a, +5,=08
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Figure 4. The cross-section of optimal allocation weights of the GARCH model with
varying a; and f; by fixing fund value at year 15.
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Comparing models in group 1, varying a, and fixed S, the larger the a, the
higher the volatility clustering. In the presence of higher «,, the optimal strategy puts
less weight on the risky asset. The level of volatility clustering, a4, has a significant
impact on the optimal weight.

Comparing models in group 2, varying £, and fixed a;, lower B, results in
higher optimal weight on the risky asset than higher ; one. This is because higher S,
gives more uncertainty to the model, assets become riskier, so the optimal allocation
puts less weight in the risky asset. As a result, the higher 8, leads to more conservative
investment strategy with less weight in the risky asset.

Comparing models in group 3 with varying a, + ; and equally weight of o,
and f3;, at higher sum value, the optimal allocation will put less weight in the risky asset
than at lower sum value. So the optimal strategy is more conservative at lower a; + ;.

Lastly, comparing models in group 4, given a; + f; = 0.8 and varying a, and
B values, at higher 8, model, the optimal allocation puts less weight in the risky asset
than at higher a; model. The result implies that 5, compared at the same level of a4,
makes the asset become riskier causing the optimal strategy to put less weight in the
risky asset. Meanwhile, at @, + B, = 0.4, B, still has a larger impact on the risky asset
than a, although the difference is small as a; + S, is small.

Qo
1-a,-B;1
Similar to the results above, the higher the a4, ; or @; + 1, the higher the long run
variance. Moreover, from Equation 2, we get 62 = a, + o2, (a; + B1e2_1). The fact
that higher a, or B; yield higher variance also verifies the results. The term a; +
B1ef_, is the decay factor of volatility. a, is a fixed component while g, is a random
component with the variation of £2_,. Consider variance of the GARCH model with
varying &,_, in Figure 1, at &,_; = 0, there is no random component, causing variance
to go lower than the previous period. Adding the random component, |&;_;| > 0 gives
higher variance than at ¢;_;. So a; and S, are both important factors on the decision
rule in choosing optimal weight.

To verify the result, the long-run variance of the GARCH model is

Effect of volatility clustering on optimal strategy in the GJR model

In the GJR model, there are three volatility clustering parameters: a;, 5, and
w,. Each volatility clustering parameter is varied with different values to not violate
the constraint a; + f; + 0.5w; <1, given the benchmark values, «a,=
0.002987,a; = 0.3367,, = 0.01317, w; = 0.4024, and u = 0.01385.
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Figure 5.1. The cross-section of optimal allocation weights of GJR model varying a4,
B4, and w by fixing fund value at year 15.

The GJR model is an extension of the GARCH model with the addition of w;
parameter while the rest of the model is the same as the GARCH model. Thus the effects
of a; and B, are the same as in the GARCH model, as seen in Figure 5.1.

The term w,1,_, 2 ; is an additional term that extends from the GARCH model
characterizing asymmetric volatility. When &,_, is more than 0, w,I,_,£2_; is equal to
0, and otherwise, positive. Thus negative &;_,, compared to positive &,_; at the same
level, yields higher variance. The higher the w,, the lower the optimal allocation on the
risky asset.

To study the relative importance of volatility clustering parameters (a4, 81, @4),
we compare the effect of volatility clustering between parameters. The constraint is set
to a;+p;+05w; =0.8 and the benchmark values, a,=0.002987,a; =
0.3367,3, = 0.01317, w; = 0.4024, and 4 = 0.01385.

Benchmark model
a; =03, 5,=03, w; =04
Comparing a4, f; : lower a; and higher £,
a;=0.1,4,=0.50w, =04
Comparing a4, w4 : lower a; and higher w,
a;=0.1,5 =03, w; =0.8
Comparing f;, w4 : lower £; and higher w4
a; =03,,=0.1,w;=0.8
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Figure 5.2. The cross-section of optimal allocation weights of GJR model for
comparing pairs of two parameters ((a4, 51), (a1, w1), (81, w1)) by fixing fund value at
year 15.

From Figure 5.2, the benchmark model (a; = 0.3, 8, = 0.3, w; = 0.4) is used
to compare with other models. To compare relative importance between parameters,
first, we start with a pair of (a4, 8;). The benchmark model is compared by adjusting
lower a; and higher B; (a; = 0.1, 8; = 0.5, w; = 0.4). The result is the higher g, has
more sensitivity than the benchmark model just as in GARCH model. Next, we compare
the benchmark model with pairs of (a,, w;) and (B;, w,) by lower a; and higher w,
(¢; = 0.1, 8, = 0.3, w; = 0.8) and lower g; and higher w; (¢; = 0.3,8; = 0.1, w; =
0.8), respectively. The result is higher w; has more sensitivity than the benchmark
model in both scenarios. As a summary, the term w; has the most sensitivity on the
optimal allocation followed by g, and a, respectively. This implies that the strategy is
more concern about the leverage effect w, than the amplitude of the uncertainty £, and
the autocorrelation of volatility «;. The uncertainty terms (S, w;) that depend on the
return of risky asset &,_,, then, have more impact on optimal allocation than the
predictable term (a;) that depends on the variance of risky asset o2

%o
1—a1—ﬁ1—0.5w1

GARCH model with an addition of the term w,. Similar to the result in the GARCH
model, the higher the a4, 81, w, or a; + B, + 0.5w,, the higher the long run variance.
Moreover, according to equation 3, 6?2 = ay + 02 ,(a; + (B + wil_1)e? ), higher
ay, B1 Or w, Yields higher variance. a; + (B; + w1l,_1)eZ ; is the decay factor of
volatility, a; is a fixed component while ; + w41;_; is a random component with the
variation of €2 ;. a; and B; have the same effects as in the GARCH model. While the
extension term, w;, can also capture the sign of &,_; by the indicator I, I, =
Owhene;_; > 0and I, =1 when &_,. The term w; should give us the more realistic

The long-run variance of the GJR model is . It is similar to the
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distribution of volatility, asymmetric volatility, and provide the better strategy than in
the GARCH model.

Effect of volatility clustering on optimal strategy in the EGARCH model

There are also three volatility clustering parameters (a4, 51, and w;) in the
EGARCH model. As there is no constraint in the EGARCH model, each volatility
clustering parameter is varied with higher different values than the GARCH and GJR
models, given benchmark values of a, = —1.4468,a; = 0.7163,3; = 0.3104, w; =
—0.1293, and u = 0.01291.
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Figure 6. The cross-section of optimal allocation weights of the EGARCH model
varying a4, 1, and w, by fixing fund value at year 15.

The effect of a; in the EGARCH model is reverse from the GARCH model.
Due to the characteristic of log function, log(n) is less than 0 when n < 1, and the fact
that 0 < o < 1, the term a; log 62, is more negative when «a; is higher, resulting in
overall lower variance in the current period (¢?). Given low a; resulting in high
variance, the optimal strategy will put a lower weight on the risky asset than high «;.

The effect of 8, in the EGARCH model is the same as in the GARCH and GJR
models. The higher the g, is, the higher the weight of optimal allocation is.

The term w, is a direct variation of &;_,. w; is used to capture the asymmetric
effect, i.e. high negative returns causing high volatility and lower volatility for positive
returns. So high w, results in the model highlighting the volatility of the risky asset,
resulting in lower optimal weight in the risky asset.

In the EGARCH model, there is no constraint between parameters (a4, 51, and
w,) SO the parameters cannot be compared in the same way as the GARCH and GJR
models (0 < a; + f; + w; < 1). From Figure 6, consider when 0.15< a; <
0.75,0.3 < f; < 0.9, and —0.75 < w; < —0.15, the range of each parameter are
fixed to 0.6. The sensitivity of parameter that has the most impact is the autocorrelation
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of volatility a; followed by the amplitude of the uncertainty 8, and the leverage effect
w4, respectively. The a; is the power of the variance o2 ;. Even though the EGARCH
model has no constraint, a very low value on a; could results in a lot higher variance
than it should be. This is why the optimal strategy when a; = 0.15 rarely put weight in
the risky asset. This also applies to the higher 5; and |w,| resulting in extremely high
variance.

@0

The long-run variance of the EGARCH model is e1-#1 when a, < 0 and 0 <
a; < 1. The higher the a;, the lower the long-run variance, while #; and w, have no
effect on long-run variance. Moreover, according to equation 4, we get of =
e (07 ) MePrler-l+oile-1) where ¢y = ay — B1E[|e~1]] and 0 < o2, < 1. The
higher S;, higher w, or lower a; yields higher variance. e is the constant multiplier
to o2 ,. a, is the constant power of g7 ;. efrlée-1l+@1(e-1) js the random component,
bases on &,_,. f; captures the amplitude of &,_,, while w; captures the sign and also
amplitude of &,_;. The effect of w4, like in GJR model, allows the model capture more
property of e,_; and provide the better strategy than in the GARCH model.

The EGARCH and GJR models have an additional feature from the GARCH
model, w term, that can capture the sign effects of return: negative residuals induce
larger increases in the variance than positive residuals, asymmetric volatility. Consider
when a market crashes, stock prices drop dramatically, causing a significant increase in
market volatility. This phenomenon will make investment strategies of asymmetric
GARCH models be more cautious about the market crash’s situation than the GARCH
model. By intuition, due to higher volatility in asymmetric volatility models, it will
lower the weight in the risky asset compare to GARCH model in order to reduce the
risk. As discussed, we think that the EGARCH and GJR models will have better
investment decisions than GARCH model in the backtest period.

Table 1. Summary of the effect of a4, 5; and w; on optimal allocation in the GARCH,
GJR, and EGARCH models.

Conservative strategy Aggressive strategy
Parameter(s) / riskier model /less risky model
a; (GARCH, GJR) Higher a, Lower a,
a; (EGARCH) Lower a; Higher ay
By Higher g, Lower B,
w; (GJR, EGARCH) Higher w, Lower w,
a; + f1 (GARCH, GJR) Higher a; + ; Lower a; + f;
Fix a; + 81 (GARCH) Higher £,/ Lower a4 Higher ay/ Lower B,
Fix a, + 1 + 0.5w, | 1) Higher B,/ Lower a, 1) Higher 3,/ Lower a;
(GJR) 2) Higher w,/ Lower a4, 5; | 2) Higher a4, B,/ Lower w;
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5.2 Monte Carlo Simulation

In this section, we will examine how the different volatility clustering models
affect the optimal strategy. Monte Carlo simulation is used to investigate the
distribution of the optimal weight and the fund value in each model. In particular, the
average of the simulated allocation and the simulated fund value are compared in each
model.

First, return and variance of the GARCH, GJR, and EGARCH models are
simulated using the estimated parameters provided in Table 4.1 of Appendix. In the
simulation, the simulated weight follows the optimal allocation in the previous section.
The simulated weight invested in each period depends on the state variables: fund value
and variance. Henceforth, the distribution of simulated weight and simulated fund value
are found from 100,000 paths of each model. The average weight and the average fund
value are calculated from the simulated weight and the simulated fund value. The
distribution of simulated weight and the average weight of the GARCH, GJR,
EGARCH models are shown in Figure 7.1 and Figure 7.2 respectively.
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Figure 7.1. The distribution of simulated weight of the GARCH, GJR and EGARCH
models at several periods.
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Figure 7.2. The average simulated weight in the risky asset of the GARCH, GJR, and
EGARCH models.

We start simulating from year 0 to year 20 so the last period invested is one
period before the time horizon, year 19.75. From Figure 7.1, the weight in risky asset
is concentrated at near 0 and 1. When the weight is close to 1 for the risky asset, the
fund value is lower than fund target. For example, at year 5 and 10, most of the
simulated weights are invested closer to 1. Conversely, when the weight is close to 0,
the fund value is close to the fund target. The closer the weight is to 0, the smaller the
gap between the fund value and the fund target. This means that if the probability is
high at a weight close to 0 at the terminal period, the model likely will perform well.

At early periods, every model puts all weight in the risky asset. After that, the
optimal weight is decreasing to 0.8-1.0 in the risky asset at approximately year 3 for
the EGARCH model, and year 4 for the GARCH and GJR models. The average of
simulated weight continues to lower as time passes by. At year 5, simulated weight
invests all weight in the risky asset with probabilities of 0.9, 0.85 and 0.65 for the
GARCH, GJR and EGARCH models, respectively. This implies that the EGARCH
model implies more conservative investment strategy at earlier periods than other
models. As seen in Figure 7.2, the average weight of the EGARCH model decays
slower than other models, causing the EGARCH model to put more aggressive strategy
than the GARCH and GJR models in later periods. Moreover, the GARCH and GJR
models have very similar optimal allocation weight, on average.



0.2 F

0.15 |

probability

0.05 |

03[

probability
o
N

o
N

Figure 8.1. The distribution of simulated fund value of the GARCH, GJR and EGARCH

5 years 10 years

0.1

models at several periods.

Figure 8.2. The average fund value in the risky asset of the GARCH, GJR, and
EGARCH models. Target terminal wealth, discounted with risk-free and contribution

: &
R —— GARCH 0.1 pres
i —©—GJR
/ EGARCH | | 0.08
>
4 i 5 0.06 o ) —— GARCH
5
% S W —5—GJR
) 5 0.04 pf‘ EGARCH
Vi
=4 1 %
, 0.02 o
3 v
ah | | = PN O(Mw«“* . ‘
4000 6000 8000 10000 12000 14000 16000 1 15 2
fund value fund value <104
15 years 20 years
; d o
*— GARCH 04r —*—GARCH | ||
—e—GJR —6—GJR et
EGARCH 503 EcARCH | ] |
Z
So2f
| g I\
\ |
-, I J {
M “ 01 . Nl
- 1 \
) it .
o P58 - \ Er= \|
P i i | Y eSS S-S T 2 | | \
2 25 3 15 2 25
fund value 104 fund value| Fundtarget [10%

4
x10
4 T T T T T
—¥— GARCH
35 —65—GJR
EGARCH
—O— *Target

3

fund value
= N
o N [$)]

-

8 10 12 14 16 18
time

rate, is calculated from equation 7.

average return and consequently higher average fund value.
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The distribution of simulated fund value and the average fund value of the
GARCH, GJR, EGARCH models are shown in Figure 8.1 and Figure 8.2 respectively.
In Figure 8.2, the GARCH model resulted in the highest mean of simulated fund value,
followed by the GJR and EGARCH models. Because the expected return of the risky
asset is positive, on average, investing with more weight on risky asset leads to higher
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Finally, we look at the average return of simulated terminal fund value. The

average return (7,4 is solved from the equation, chzO(l + ra,,g)t = Fr, Where c is

the contribution, and F; is terminal fund value. Thus the fund value will reach the target
if the average return is more than the fund target (4%).

Table 2. Probabilistic distribution of average return per year of simulated terminal fund
value, a total of 100,000 paths from each model, given fund target equal to 4% per year.
The number in each cell shows the probability that the average return of simulated
terminal fund value falls within a given range.

Model <2.5% 2.5-3% 3-3.5% 3.5-4% >4%
GARCH 0.1494 0.0633 0.1192 0.6620 0.0061
GJR 0.1987 0.0858 0.1598 0.5556 0.0001
EGARCH 0.2505 0.0859 0.1407 0.4861 0.0368

From Table 2, the highest density of average return of simulated fund value is
at range 3.5%-4%. The EGARCH model has the highest probability of reaching the
target (when average return >4%). Most of the simulated fund values do not reach the
fund target because the optimal strategy tries to protect wealth at the later periods. For
example, at year 15, some paths of fund value nearly reach the target and hence lower
weight in the risky asset, as seen in the distribution of simulated weight.

5.3 Backtesting the Strategy

In this section, the optimal strategies are compared to each other under the
realized historical data. Time series of 55 years of historical return is used. The
historical return of S&P500 from the year 1961 to 2015 is collected as a sample. The
first 35 years of time series is used to estimate the parameters of GARCH family
models. The optimal strategy is then calculated. Afterward, the latest 20 years of time
series is used for backtesting. Fund portfolios are constructed assuming the GARCH,
GJR, and EGARCH models. Subsequently, the portfolios are adjusted in each period
using the calculated optimal strategies. The parameters of GARCH family models are
re-estimated every 5 years by using a rolling window of historical returns of 35 years
and the optimal allocation is also re-calculated. The estimated parameters are provided
in Table 4.1 - Table 4.4 in Appendix, each table for every 5-year re-estimation in the
given backtesting period. Then, the performance of funds assuming different models
are compared.

There are two benchmarks to compare with volatility clustering models. The
first one is constant volatility model. The optimal allocation of this model is calculated
similarly to volatility clustering models with only one state variable, the fund value.
The re-estimation of constant volatility is also done at every 5 years. The second



35

benchmark model is the buy-and-hold strategy, which represents the market index. This
strategy will put all the weight in the risky asset in the first period and keep all weight
on the risky asset when the contribution is added in each period until reaching the
terminal period. In the backtesting period, fund target is set to 4% and the risk-free rate

is set to 1%.
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Figure 9.1. 3-month return of S&P500 between years 1996-2015.
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Figure 9.3. Backtesting weight invested in S&P500 of the GARCH, GJR, EGARCH
and benchmark models between years 1996-2015.
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Figure 9.4. Backtesting fund value of the GARCH, GJR, EGARCH, benchmark models

and fund target between years 1996-2015.
Note. *Target fund value threshold F,.., discounted with the risk-free and contribution rates, is
calculated from equation 7.

The backtest result is shown in Figure 9.1-9.4. In the first 5 years of backtesting,
1996-2000, strategies of the GARCH, GJR, and EGARCH models put the optimal
weight in the risky asset close to 1, very much like the constant volatility model. This
shows that all the volatility clustering models invest by ignoring what the level of
variance is in the first 5 years. In the next 5 years, 2001-2005, the optimal strategy of
the GARCH and GJR models still put weight close to 1 in the risky asset, while the
EGARCH model uses a more conservative strategy than other models on the risky asset.
In years 2006-2010, when financial crisis occurred in 2008, all volatility clustering
models reduce the weight on the risky asset dramatically. The EGARCH model is the
model with the least weight on the risky asset, followed by the GJR and GARCH
models. Meanwhile, the constant volatility model still puts weight close to 1 during the
financial crisis. In years 2011-2015, the optimal strategies for all models including
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constant volatility model reduce weights on risky asset dramatically to protect the
wealth in the later periods. However, the return of S&P500 became more positive
causing the buy-and-hold strategy to outperform all the optimal strategies in other
models.

Table 3. Average return per year of backtest fund.

Value Model Benchmark
GARCH GJR EGARCH Constant S&P500
Return 3.31% 3.26% 3.27% 3.14% 3.86%
SD 12.83% 12.36% 11.88% 13.03% 13.13%
Sharpe ratio 0.1800 0.1828 0.1911 0.1642 0.2178

The average returns of backtested funds are shown in Table 3. The strategy with
the highest average return is the buy-and-hold strategy. The average returns from
strategies implied by volatility clustering models are lower than the buy-and-hold
strategy, but still outperform the strategy from the constant volatility model. Overall,
all the strategies of GARCH family models result in similar returns with each other.
However, the EGARCH model yields returns with the lowest standard deviation. This
will be beneficial in the presence of financial crises since the optimal strategy implied
by the EGARCH model is more conservative. The standard deviation implied by the
EGARCH model is the lowest, followed by the GJR, GARCH, constant volatility
models and the buy-and-hold strategy. The buy-and-hold strategy also gives the best
Sharpe ratio, the return to risk ratio. However, all strategies in volatility clustering
models still yield better Sharpe ratios than the constant volatility model. Comparing
volatility clustering models with the constant volatility model, the optimal strategies
implied by volatility clustering models yields higher average returns with lower
standard deviation and higher Sharpe ratio in backtesting. As shown above, volatility
clustering models outperform non-volatility clustering models. Hence, for pension fund
management, this paper highly recommends taking volatility clustering in
consideration.
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6 CONCLUSION

This paper asks how the volatility clustering affects strategies in the pension
fund management. Moreover, how the different volatility clustering models affect the
optimal strategies. Lastly, we test which volatility clustering model give the best
outcome in backtesting.

This research has investigated three different volatility clustering models, the
GARCH, GJR and EGARCH models, for use in the management of defined benefit
pensions. First, model parameters are estimated using a time series of S&P500 3-month
returns. The surface of the optimal allocation and the value function are obtained by
solving the Bellman equation. The solutions of the optimal allocation depend on the
variance dynamic of each model. Findings are that at lower fund value and lower
variance of returns, optimal allocations have a higher weight in the risky asset.
Moreover, in comparison to a model with no volatility clustering effect, GARCH family
models have more conservative strategies. In volatility clustering models, volatility-
clustering parameters, «, adjusting volatility in the past period and j; capturing the
amplitude of uncertainties, have the impact on the decision rule in choosing optimal
allocations. Meanwhile, the term w; in the GJR and EGARCH models allows
asymmetric volatility and highlights high uncertainties given negative returns, resulting
in a more conservative strategy.

After the optimal strategies are found, Monte Carlo simulation is performed to
find the distribution of optimal weights and simulated fund performance implied by
optimal strategies from different models. The result shows that the EGARCH model
yields the most reasonable strategy and, unlike the GARCH and GJR models, rarely
gives extreme weight on the risky asset.

Lastly, in backtesting strategy, the strategies implied by three models are tested
on historical returns data. All the strategies provide similar returns of S&P500 between
years 1996-2015. However, the EGARCH model yields the most conservative strategy,
which is beneficial if a financial crisis occurs. In comparison to the constant volatility
model, the volatility clustering models result in fund management strategies that
outperform the non-volatility clustering model, with higher fund value and lower
standard deviation in the terminal period.

In the financial market, portfolio managers should take into account the effect
of volatility clustering, using a model that can best capture the clustering effects in the
actual market. Our research supports that the EGARCH model has the best performance
as the evident from backtesting. Even though the strategy of the EGARCH model is
more conservative than other models, the fund performance implied by the EGARCH
model is similar to other volatility clustering models and would outperform other
models during a financial crisis.
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APPENDIX Estimated Parameters

Table 4. Estimated parameters of the GARCH, GJR, and EGARCH models at specific

periods.

Table 4.1. Year 1996-2000

Parameters GARCH GJR EGARCH
value 0.002208 0.002987 -1.4468
o SE 0.001830 0.001464 1.373
value 0.5248 0.3367 0.7163
“ SE 0.3442 0.3221 0.2683
value 0.1272 0.01317 0.3104
& SE 0.1009 0.1677 0.2335
value - 0.4024 -0.1293
@ SE - 0.1967 0.06781
value 0.01461 0.01385 0.01291
# SE 0.007917 0.007765 0.007719
Table 4.2. Year 2001-2005
Parameters GARCH GJR EGARCH
value 0.002042 0.002918 -1.603
o SE 0.001843 0.001646 1.4800
value 0.5613 0.3755 0.6829
“ SE 0.3332 0.3366 0.2910
value 0.1275 - 0.2463
& SE 0.0087 i 0.2129
value - 0.3843 -0.1389
® SE - 0.2039 0.07679
value 0.01852 0.01619 0.01527
H SE 0.007482 0.007320 0.007456




Table 4.3. Year 2006-2010
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Parameters GARCH GJR EGARCH
value 0.001040 0.002319 -1.098
o SE 0.0007265 0.001232 0.8376
value 0.5947 0.4550 0.7811
“ SE 0.1675 0.2502 0.1653
value 0.2930 i 0.3813
& SE 0.1243 i 0.2247
value - 0.4220 -0.1061
@ SE \ 0.2066 0.07322
value 0.01893 0.01658 0.01381
# SE 0.006937 0.007197 0.007375
Table 4.4. Year 2011-2015
Parameters GARCH GJR EGARCH
value 0.0008618 0.002699 -1.033
o SE 0.0006043 0.001351 0.7636
value 0.6430 0.3904 0.7951
“ SE 0.1530 0.2542 0.1483
value 0.2576 i 0.3662
& SE 0.1128 - 0.2121
value i 0.3881 -0.09203
@ SE i 0.2261 0.07556
value 0.01892 0.01743 0.01442
H SE 0.006997 0.007121 0.007210
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