' : a o [ g’/ { (% o A 9 a 1
ﬂ'lillﬁ$3J'I’CL!?HLL‘]J‘]Jﬁ\T]Jﬂ@]ﬁTHi‘]J%'I“H’J‘L!ﬂﬁQﬁﬂﬁ‘UlI'IEJ\?fQﬂLﬁJG]HSIJ@\?LLH'J!@HLLUU@M

v an @ 4
wienawa AsUsznsan

a a a’cgl I U & =2 (% a v oA
’mﬂmwuﬁmﬂumuwuwmmiﬁﬂmmuwaﬂ’gmiﬂi}mumunwmmﬁmumummw
a a 4 a a 4 a a 4
VNP IAUAAITAT NIAIVIAUAFTTATUASINYINITADUNIADT
a 4 a [
AUZINYIAITANT ﬂW'I@\‘iﬂiﬂIﬂJﬂ'l’Jﬂfﬂﬁﬂ
= =
Umsfns 2559

7
ﬁ"llﬁﬂﬁﬂlﬂﬂﬁWWaﬂﬂiiﬁ’Mﬁnﬂmaﬂ

v
& o

o 1 4 b4 o < a a = =2 Ql' v oa o
unAngalazuiNdeyaaiuAN1aIne InusAauATNsAnEN 2554 nliEnnslupaatiny U19W14 (CUIR)
HuiilsdeyaeslidnidnaetneTnuindeinuneiudsanan s
The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.



HALF-NORMAL APPROXIMATION FOR NUMBER OF RETURNS TO
ORIGIN OF RANDOM WALKS

Mr. Tatpon Siripraparat

A Thesis Submitted in Partial Fulfillment of the Requirements
for the Degree of Master of Science Program in Mathematics
Department of Mathematics and Computer Science
Faculty of Science
Chulalongkorn University
Academic Year 2016
Copyright of Chulalongkorn University



Thesis Title HALF-NORMAL APPROXIMATION FOR NUMBER
OF RETURNS TO ORIGIN OF RANDOM WALKS

By Mr. Tatpon Siripraparat
Field of Study Mathematics
Thesis Advisor Professor Kritsana Neammanee, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in

Partial Fulfillment of the Requirements for the Master’s Degree.

.................................... Dean of the Faculty of Science

(Associate Professor Polkit Sangvanich, Ph.D.)

THESIS COMMITTEE

.................................... Chairman

(Associate Professor Songkiat Sumetkijakan, Ph.D.)

.................................... Thesis Advisor

(Professor Kritsana Neammanee, Ph.D.)

.................................... Examiner

.................................... External Examiner

(Assistant Professor Petcharat Rattanawong, Ph.D.)



iv

[y an @ o 1 x Aa o [ g}/ ! v @
nana Asdsemsau: ﬂWi‘]JimJ']ﬂ!ﬂ']LL‘U‘Uﬁ\T]Jﬂﬁﬁ']“ﬁﬁ‘ﬂﬁ]"luﬂuﬂﬁﬁﬁﬂaﬂﬁﬂﬂﬁ

'
a

G NAUVLUAAUNDVFY (HALF-NORMAL APPROXIMATION FOR NUMBER
OF RETURNS TO ORIGIN OF RANDOM WALKS) 8.711/3 ny1ineniinusvan :

= = Y
fl. AT.NHUS LHIVUM, 38 U1

W (X,) dhudduvesiulsguidludaszasunaziimaumnmamu@edndu Ta

i P(X;=D)=p, PX,=-1)=1-p iile O<p<l umgﬁmmudnﬁa nIzUIUMId la

' n !
uaaAnUYIYA (S,) » Fagnilewlay S, =0 uag S, :in e n>1 K, gniSenn
) i=1

9 ' '
fuasinnduIndigaEudu a1 K, :‘{k eN|l<k<n uaz S, :0}‘ Tunsdlvou
a U & A 1 14 Y
AULLUFTUANUIAT UUAD P =3 aoiaas (2015) ueraa 1391 msuvnuasves K, euisn

v Y
a Y Y ! v
ﬂig3JTE1!I@1ﬂﬂ?il!ﬂﬂl!ﬂ\‘ll!ﬂﬂﬁ\‘lﬂﬂ@] Lm%ﬂ\ﬂWGU'E)'LILGUG]LL‘]J‘]JL’E]ﬂg“]JGU’E]{Iﬂ'Iiﬂigiﬂmﬂ'lﬁ NN

g’; 9 [] a a o Ly dy 1Y
HUTSWWBUAZAS (2016) GLWﬂJﬂULGIJﬁlLUUULNL@ﬂETJ 1uawmuwu‘ﬁauuumﬂmﬂgwaumm

' a U o 1 Y
llllllvlul@ﬂgﬂﬂ]@\iﬁgn’lllﬂuagﬂmg Gluﬂf.iiil"ljENLLu’Jmmm‘LIEjiJ@ﬁ‘mJWﬁ uuﬁ@ p ;'55 !5’161,14

msuenuwed K, uaz uaasiniu luigehgmsunusanunalng

MAW adiamaasuayIngmsneuiages alelo¥eliaa

= =1
UMSANYT 2559



4 4 5771998023 : MAJOR MATHEMATICS
KEYWORDS : THE NUMBER OF RETURNS TO THE ORIGIN / STEIN’S
METHOD / CONCENTRATION INEQUALITY APPROACH / UNIFORM AND
NON-UNIFORM BOUNDS
TATPON SIRIPRAPARAT : HALF-NORMAL APPROXIMATION FOR
NUMBER OF RETURNS TO ORIGIN OF RANDOM WALKS.
ADVISOR : PROF. KRITSANA NEAMMANEE, Ph.D., 38 pp.

Let (X,,) be a sequence of independent identically distributed random variables
with P(X; = 1) =p,P(X; = —-1) =1—pfor 0 < p < 1. A random walk is a
discrete time stochastic process (S,)n>o defined by Sy = 0 and S, = ZXi for

n > 1. K, is called the number of returns to the origin if K, = ]{klzel N1 <
k <mn and S, = 0}|. In case of symmetric random walk, i.e., p = %, Dobler
(2015) showed that the distribution of K, can be approximated by half-normal
distribution and he also gave a uniform bound of this approximation. After that
Sama-ae et.al. (2016) gave non-uniform bounds. In this thesis, we improve a non-
uniform bound of Sama-ae et.al. In case of asymmetric random walk, i.e., p # %,
we give a distribution of K, and show that it is not convergent to half-normal

distribution.

Department : ...Mathematics and..... Student’s Signature : .......................
...Computer Science... Advisor’s Signature : ........cccocceeeenn.

Field of Study : ...... Mathematics......

Academic Year : ............ 2016......ueeee.



vi

ACKNOWLEDGEMENTS

I am deeply grateful to my thesis advisor, Professor Dr. Kritsana Neammanee
for his invaluable advance and constant encouragement throughout the course of
this thesis. I am most grateful for his teaching and advice. I would not have
achieved this far and this thesis would not have been completed without all the
support that I have always received from him. Sincere thanks are also extended
to Associate Professor Dr. Songkiat Sumetkijakan, the chairman, Dr. Jiraphan
Suntornchost and Assistant Professor Dr. Petcharat Rattanawong, the committee
members, for their comments and suggestions.

Special thanks go to the Development and Promotion of Science and Technology
Talents Project (DPST) for financial supports.

Additionally, I would like to thank my family, my friends and those whose
names are not mentions here but have greatly inspired and encouraged me through-

out the period of this research.



CONTENTS

page
ABSTRACT IN THATL ..o e iv
ABSTRACT IN ENGLISH ... A\
ACKNOWLEDGEMENTS .. e vi
CON T EN TS vii
CHAPTER
I INTRODUCTION ... 1
IT BOUNDS IN SYMMETRIC CASE .. ... 5
IIT BOUNDS IN ASYMMETRIC CASE ... 22
VI FUTURE RESEARCH ... . 35
REFERENCES . 37



CHAPTER 1
INTRODUCTION

Let (X,,) be a sequence of independent identically distributed random variables
with P(X; =1) = P(X; = —1) = 5. A symmetric random walk is a discrete time
stochastic process (S,),>0 defined by Sy = 0 and S, = ZXi for n > 1. The

i=1
number of returns to the origin which is defined by

K,=H{keN1<k<n and Sp=0}|.
In 2015, Dobler [4] approximated the distribution of K, by half-normal distri-

bution. A distribution H is called half-normal if

0 if 2 <0,
H(z) =

—t2
\/% [Foe=dt  ifz>0.
Theorem 1.1 is his result.

Theorem 1.1. ([}]) Let n be an even positive integer. Then

P(fecs)mof < o (22242) 2

After that, A. Sama-ae et al. [11] improved Theorem 1.1 to the case of a

sup
220

non-uniform bound as follows.
Theorem 1.2. (/11]) Let n be an even positive integer. Then for z > 0
K,
P (Jr=s) e

< 1 107.56185 n 73.75519 n 43.14923 n 13.97885 n 2
T (142)? Vn n ny/n n? n?y/n)’




From Theorem 1.2, we observe that the exponent of z is 3. In this thesis, we
improve the exponent of z to k where £ € N by using the Stein’s method and the

concentration inequality approach. Theorem 1.3 is our main result.

Theorem 1.3. Let W = \/—Z and n be an even positive integer such that n > 4.
n

For z>1 and k € N, we have
K
P (=) e

1 20918 0.8946 2.0958 1 4\ *
< — —t+ —— + +— 129166 ( = | +3-2F| EW*| .
V| % oS 2k 2k 3

From Theorem 1.3, we can see that the result has the form of EW* for k € N.

Therefore we give the bounds of EW* as follows.

L5]-1
Proposition 1.4. EW* < H (k—2i) fork =2,3,4,..., where LgJ is the largest
i=0

k k
integer less than or equal to 5 Futhermore, if k is even, then EW* < 25 (§> L.

1
In case of asymmetric, i.e., p # 50 We consider the number of returns to the

origin [, , defined by
K,p=[{keN1<k<n and S,=0}.

Note that K, 1 = K. First, we give the distribution of K, in Theorem 1.5 and
give the bounds for P(K, , = r) in Theorem 1.6 and Theorem 1.7.

Theorem 1.5. Letn=2m,r=1,2,.... m andqg=1—p.

(i) P(Kyp = 0) = ugp,




where

-1
_ 20—-1 20-1 l—k—1/,2k+2 2k+2
w=3 | (10) - (el ) | eoe s e

and

(j):() for t>s.

Theorem 1.6. Letn=2m,r=1,2,.... mandq=1—p.
[P(Knp=0)=Ip—qll < Anp

where

1 P q m
An,p = (_ + 5) (4PQ) .

2mm \ q

Theorem 1.7. Letn=2m,r=1,2,.... m andqg=1—p.

|P(Knp=71)—2pq)" (p—q)| < Dppr

where
V2(p—q) V2 1<p q)m—r
Do = L= U _(gpgyr 4+ | =+ = (L 41 4pg)™.
P Vrr(l — 4pq)( ) vom o w\q p) Jr (4pq)
Finally, we will show that the distribution of T does not converge to half-
n

normal distribution. Theorem 1.8 and 1.9 are our results.

K, 1
Theorem 1.8. P P < 0| does not converge to H(0) for p # —.
vn 2
Kn,
Theorem 1.9. For z >0, P \/_ < z | does not converge to H(z) for p > ®(z)
n

orp<1l—®(2).



We organize this thesis as follows. We improve the bound of K, in case of

symmetric in chapter 2. In chapter 3, we find the distribution of K, , in case of

Kn ’p

vn

converge in distribution to half-normal distribution. In chapter 4 we present the

does not

asymmetric, give the bound of its and show that the distribution of

idea for future research.



CHAPTER 11
BOUNDS IN SYMMETRIC CASE

Define the sequence (S,)n,>0 by Sp = 0 and S,, = ZXi for n > 1, where
i=1
X1, Xa, ..., are independent identically distributed random variables with P(X; =

1
1) = P(X; = —1) = 7 In this thesis, let n be an even positive integer, say

n = 2m, and K,, denote the number of returns to the origin, i.e.,
K,=|{keN1<k<n and S,=0}|

K, _ .
Let W = NG It is known ([5], p.96) that for each r € {0,1,...,m}
n

o) =P =0 = o (") = s ()

2

and a random variable X with support [0, m] N Z has probability mass function p

if and only if

E[2m = X +1)(9(X) —g(X = 1)) = (X + 1)g(X)] =0 (2.2)

for all function g : [—1,m] N Z — R such that g(—1) = 0 ([4], p.178).
From (2.2) Débler [4] showed that

0< EK,=@2m+1)P(K,=0)—1<

and hence,

EW <4/Z. (2.4)

™



From (2.2), Sama-ae et al. ([11], p.5) showed that
0< EK2=2m+3-32m+1)P(K, =0) <2m=n, (2.5)
and hence,
EW? < 1. (2.6)

In 2015, Dobler [4] approximated the distribution of K, by half-normal distribu-
tion. A distribution H is called half-normal if

0 if z <0,
H(z) =
z —¢2 .
\/% [ e=dt ifz>0.
Theorem 2.1 is his result.

Theorem 2.1. ([/]) Let n be an even positive integer. Then

P(%Sz)—ﬂ(z) <L<ﬂg §>+3

sup
220

- \/ﬁ \ 2 +4 on

After that, A. Sama-ae et al. [11] improved Theorem 2.1 to the case of a

non-uniform bound as follows.

Theorem 2.2. (/11]) Let n be an even positive integer. Then for z > 0
Kn 5"1
P|—=<z)—-H(2)
NZD

Step

where

5 107.56185 n 73.75519 n 43.14923 n 13.97885 n 2
" vn n ny/n n? nZy/n )’
From Theorem 2.2, we observe that the exponent of z is 3. In this chapter, we
improve the exponent of z to & where £ € N by using the Stein’s method and the
concentration inequality approach. To do this, we first need to know & moment

and concentration inequality for our main result.



2.1 k' moment of W

In this section, we give bounds of the £ moment of W as follows.
15)-1
Proposition 2.3. EW* < H (k—2i) fork =2,3,4,..., where L%J is the largest
i=0

k k
integer less than or equal to 5 Futhermore, if k is even, then EW* < 25 (5) L.

[5]-1

Proof. From (2.5) we know that EK? < n < ns (k — 2i) for k = 2. Hence,

—

i=0
we will prove the proposition for k& > 3.

Let g : [-1,m]NZ — R defined by

g(t) =
0 it ¢t<0
Note that
Eg(K,—-1)= ig(r - 1)P(K, =r)
r=0
= Zm:(r D P(K, =7)
r=1

I\
o

Il
(]
VR
el
~ |
—_
N~~~
ﬁN
[—
S~—
Bl
AN
L
e,
—~
=
|
=

I 03
[
—_ =

-3 (’“ , 1) (B P = 1)
DY P =
_ -1 (k ; 1) (_l)k—l—lEKL + (_1)k_1(1 — P(Kn = O))

N
Il
—



and EK,g(K, —1) =Y rg(r— 1)P(K, =)

From (2.2), (2.7) and (2.8),

0= E[2m — K, + 1)(9(Kn) — g(Ky — 1)) = (K + 1)g(Ky)]
= B[(2m — K, + 1)K, = g(Kp — 1)) = (K, + 1) K]
=2mEK*! —2mFEg(K, — 1)+ EK,9(K, — 1) — Eg(K,, — 1) — 2EKF
=2mEK*! — 2m + 1)Eg(K, — 1) + EK,g(K, — 1) — 2EK*

= 2mEK*! — (2m + 1) (i (k ; 1) (- EK. + (-1 - P(K, = 0)))

=1

— k—1 k—1-1 I+1 k
+) DT ER < 2Bk
=0

k—1

= 2mEKF! — (2m + 1) (Z (k ; 1) (-)*"EKL + (=11 - P(K, = 0))>

=1
= k—1 k—1-—1 +1 k k
+> VB + K - 2BK
=0

k—2
k—1
— 2mEK"' — (2m+1) (Z ( z )(—1)’“‘HEK£L + EK"!

=1

+ (=D (1= P(K, = 0))) +§ (k i 1> (—1) T ERE (Z ) ;) EKM!

— EK*



E_1 k—2
:(zm—(2m+1)—(k_2>)EKj;1 2m+1< ( ) DFYIER
=1

+ (=D - P(K, = 0))) + i (k ; 1) (- EK — EKE

=0
k—

= —kEKF' —(n+1) ( <k ; 1) (-DF"'EK + (-1 (1 - P(K, = 0)))

1=
k—

3
+ ( ) k 1— ZEKZ+1 EKk

=0

Therefore,

EKF

= —kEKF' —(n+1) ( (k ; 1> (- EK. + (-1 - P(K, = 0)))

=1

Zj( ) ) ER (2.9)

We can see that

EK? = -3EK? - (n+1)(—2EK, +1— P(K, =0)) + FK,
= —3EK?+2(n+1)EK, — (n+1)(1 - P(K, =0)) + FK,
< -3EK:+2(n+1)EK, + FK,
= —3EK? +2nFK, + 3EK,
< -3EK? +2nFEK, + 3EK’

— 2nFEK, (2.10)
where we have used the fact that

KF <K' for keN (2.11)



in the last inequality. Since

1—P(Kn:0):zm:P(Kn:r)

I
y

KF  forall keN,

n

so we get

EK}

10

(2.12)

= —4FK? - (n+1)(3EK, —3EK? -1+ P(K, =0)) — EK, + 3EK?

= —4EK? - 3(n+ 1)EK, +3(n+ 1)EK. + (n+ 1)(1 — P(K,
+3EK?

=3nEK; —4EK, + 6EK — 3nEK, — 4EK, + n(1 — P(K, = 0))

+ (1 - P(K, =0))
<3nEK? - 4FEK? +6FEK? — 3nFK, — 4EK, + nEK? + EK,
<4nEK? - 4AFEK? +6EK? — 3nEK,,.

By (2.11) and the fact that
EK'' <nEK! for [1€N,
we get

EK}!<4nEK? —AEK? + 6EK? — 3EK?
= 4nFEK? — AFK? + 3EK?
< 4nEK? — AEK? + 3EK?

<4nEK?.

(2.13)

(2.14)

(2.15)
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For k > 5, by (2.9),

EKF
k—2

= —kEK'' —(n+41) ( ( > Y EK! +(—1)k‘1(1—P(Kn:0)))

=1
k=3

+) <k B 1) (1) BRI

=0

= A, + B, + C), + Dy, (2.16)

where

A, = n(k B 1) EKF2

We next estimate Dy, by (2.11), (2.14) and (2.16), we get

Dy,

= —nz ( ) ) EK] + (: i ;)EKS‘Z - (::;)EK§—3
_Z< ) k 1- lEKl (Z 3) Kk 2+Z< ) k—l—lEK711+1

kE—1 E—1 kE—1
= EKF2 EKF3 4 EKM2 D*EK,
()i = (g e (L) Bt ot

k—4
k—1 e
+ Z < z >(—1)k “(-nEK! — EK! + EK'™)
=1
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k—4

< K: } ;) EKF? + (Z } ;) EK}W} + ; (k ; 1) (=(n+1)EK. + (n+ 1)EK!)

- K: _ ;> - (: . :13)] BKL. (2.17)

Therefore, by (2.16) and (2.17),

EKF

k—1 k—1 k—1 k—1
< k=2 k-1 k—3 k—2
_n(k_Q)EKn KEKE n(k_?))EKn +[<k_2>+(k_3)]EKn

— (n+1)(-1)*'1 - P(K, =0))

kE—1 k—1 E—1 kE—1
EKF? _kEKFT — EKFE3 EKF2
"(k—z) g " ”(k—3) g '*[(k—2>*‘(k—3)} "

+(n+1)(1— P(K, =0)). (2.18)

IN

By (2.11) and (2.14),

-1
EEKF — (Z 2) EKF? = kEK*' — (K — 1)EKF2
= kBE(KM! — KF2) 4 EKM2
> EK*2, (2.19)
and
k 1 k—3 k 1 k—2 __ k—1 k—3 k—2
n(k_g)EKn (k_g)EKn =5 E(nK* KM
k—1
> E(KF?2 - gk-2
> () y)e &)
=0 (2.20)
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Thus, by (2.12), (2.18), (2.19) and (2.20),

k—1

EKF <
”—”(k:—Q

)EK§—2 — EKF? 4+ (n+1)1 - P(K, =0))

<n(k—1)EK"? - EK"? + (n+1)EK"?
=n(k - 1)EK"? - EKF? 4 nEK*? 4 EKF2

=nkEK"? for k=5,6,7,....
From this fact and (2.10), (2.15) , we have
EKF <nkEKF? for k=345 ... (2.21)

Next we will show that

k—1
ERK» <nF]J2k—2i) for k=234, (2.22)

i=0
and

k-1
EK2+1 < ks H(Qk_%—'— 1) for k=1,2,3,.... (2.23)
i=0

From (2.5) and (2.15), we see that

k—1
EK} <4n? < 8n? = n* H(2k —2i) for k=2
=0

Assume that EK2k < pko TR0 (2ko — 2i) is true for kg € N\{1}. Thus, by (2.21),

EKX0t2 < n(2ky + 2) EK 2o
ko—1
< n(2ko + 2)nf [ (2k — 2i)
=0
ko
= nfot T (2ko — 2i +2).

=0
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By Mathematical Induction, we have (2.22).
Similarly, from (2.3) and (2.10) we can see that

k—1
2
EK? < 2\/;1\/5 <snvn=nt2J@k-2i+1) for k=1
m
=0

Hence (2.23) is true for £ = 1. To use mathematical induction,we assume that

EK2otl < phots 155" (2ko — 2i + 1) is true for ko € N. Therefore, by (2.21),

EK0t3 < n(2ky + 3) EK 2ot
ko—1
1
< n(2ko + 3)n*otz ] (2ko —2i+1)

1=0

ko
= n*o*2 T (2ko — 2i + 3).

=0

By Mathematical Induction, we have (2.23).
By (2.22) and (2.23), we get

(k—2i) for k>2. (2.24)

Hence,
l5)-1

EW* < (k—2i) for k=234,....
0

7=

2.2 Non-uniform concentration inequality

In this section, we use the idea of Sama-ae et al.([11], pp.6-8) to obtain the

following non-uniform concentration inequality.
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Proposition 2.4. (Non-uniform concentration inequality). For z > 0 and k € N,

1 2 1
o (o))

1 2k
P(Z<W§z+—)§ 3EWHF 4

i) = Vi

Proof. Let f:R — R be defined by

)
0 if t<z—\/iﬁ,
FO)=Q@+F)t—2+2) if 2-d<t<z+
\%(t%-\/ig)k if t>z+\/iﬁ

Then

i _ 1 1
z if  z \/ﬁ<t<z+\/ﬁ,

) 1 1
0 if t<z—\/—ﬁort>z—|—\/—ﬁ.

We can follow the argument of Sama-ae et al. ([11], p.7) to show that

p (z <W <zt %) < % (QE[Wf(W)] + %E[f(W)}) |

Note that,
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and
2 1\*
BV < —=| 2 (W n %)
< —kE (W’“ + ! k)
n (v/n)
k L 1
- (B )
By (2.11),
LEW’“ _ EKF < ! EKM = pwkt!
Vn (V)b ()

This implies

BV < 2 (Bt )
Hence, by (2.4),
P ( W<zt %)
< Fﬁ (s ) + 7 (o0 e

2.3 Non—uniform bounds

Stein’s method of obtaining the bound in the normal approximation for depen-
dent random variables was investigated by Stein ([12]). Stein’s technique is free of

Fourier technique and relied instead on the differential equation. It was first de-
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veloped to the Poisson approximation by Chen ([2]). Nowadays, the method were
developed on other distributions (see [1], [3], [6], [7], [8], [9], [10] for examples). In
2015, Dobler ([4]) applied Stein’s method in order to approximate to distribution of
K,, by half-normal distribution. He gave Stein’s equation for standard half-normal

approximaton,

f'(w) =z f(z) = h(x) — H(z) (2.25)

where f and h are a continuous, piecewise differentiable functions on [0, 00). Let

z > 0 and define h, : [0,00) — R by

1 if0<x <z,
h,(z) =
0 ifzx >z

Then the solution of equation (2.25) is f, : [0,00) — R given by

2

2me’T (1 — ®(2))(2®(z)
2me’T (1 — ®(2))(20(2)

—1) ifzx <z,
(2.26)
—-1) ifzx> =z

f2<x) =

We see that f, is not differentiable at x = 2, then we define derivative of f, at
x = z from (2.25).

Hence,
F1(2) = 2v/2meT (1— 0(2))(20(2) — 1) + 2(1 — B(2)).
and
|fi(z)] <1 forall x>0 ([4], p-177). (2.27)
From (2.25), for any random variable W, we get

E(fz(W)) = EW [.(W)) = P(W < z) — H(2).

z
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This implies that, we can bound |E(f.(W)) — E(W f,(W))| instead of |[P(W <

z) — H(z)|. We call this technique Stein’s method. In this section, we give a

non—uniform bound for K,,. From now on, we use f to represent f,.

Theorem 2.5. Let W = —2 and n be an even positive integer such that n > 4.

NG

For z>1 and k € N, we have

(=) e

722 2 k
€5 267 4

—Vn

1 |2.091 8946 2.0958 1 4\*
<_[ L —k<29166(3) +3~2’“>EW’“+1].

Proof. Let k € N. Débler [4] and Sama-ae et al. [11] used Stein’s method to show

that

|P(W < z)— H(z)| <|Aq| + |Az| + |As|

where

1 1

4] < ]E w (s - sov = o)) ||+ | JzEUrom| (. 7o),

|A2 ([11]7 p97 {4]7 p179>7

/_/ s)+ sf'( ))dsdt]

|As| < Pz <W < 2+ ﬁ) ([11], p.11, [4], p.179).

By Proposition 2.4,

|As] < ——

e, 1 21
S Y

Next, we will bound |A;|. Sama-ae. et al. ([11], p.8) showed that

\/_ k

3 V2 3z

f(z) < + for < T

722 22
de3m  zy/me

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)
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By (2.27) and (2.33),

N
W
< EW |f/(¢)|dt
-
w 3 w
, z , 32
=EW / IfOIL(W < —)dt| + EW / | (OIW > —)dt
w—-L 4 w—-L 4
h " v
1 3 2 3
<—|l—=+ fZQ EW + EWI(W > =)
v | \de32  zy/mez 47
1 [ 3 2 2 3z,
< — =+ f2 \ﬁ+EWH(W2—Z) (2.34)
v | \des  zy/me? m 47]
where we have used (2.4) in the last inequality.
Note that,
32 4\ pi
PW > =) < (g) s (2.35)
and
3 32\ _ 1 (4\*
EWI(W > f) < (EWHyra (P(W > Zz)) < — (g) EW . (2.36)
z
From Sama-ae et al. ([11], p.4), we have
1 1
BIFOV)| < — + 2P (W2 ) (237)
e’ 4

From (2.29), (2.34), (2.35), (2.36) and (2.37),

1| 1 3 2 2 1 [/4\" 4
A <—=|—z + 2 T \/_2 —+—k(—) EWkH(—Qle)
Vi | 2% de’sz  zy/me? T2 \3 3z

(2.38)




To bound |A;|, Sama-ae et al.([1

elf, [ o

where

A21 =

1

Inzesz

A22 —

1

A23 -

2n

s)+ sf'(

[ZP(W > 31) + EWI(W >

Using (2.4) and (2.33), we have

|Aga| < (

1
< Z

-2

3

7 2
4@3%

2
+ \/_22 E
z2\/TeT

3
46%2

)
z\/Tes

Thus by (2.35) and (2.36), it follows that

| Aas

<

A
|

)

s))dsdt

/_ [ o < S

)
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1], pp.9-10) wrote A, in the form of

< Agi| 4+ [Aga| 4 | Ags| (2.39)

([11]a pp9 - 10)7

([11], pp.9 — 10).

/W /W asc{ W < 52)dsdt
max{—, s
W= Jt vn 4
1 1 /2
/= 2.40
k k
1 gkl 1 (%) EW’““]
2k+1 2k \ 3
4
(3 >+ 1) (2.41)




Forn >4 and z > 1, by (

|4| <

| Ag|

IN

S-Sl gl-

|A3] <

By (2.28),

) — H(2)

2. 0918 0.89

1.5984  0.6366

722 22

2.32), (2.38), (2.42), we get that
€32 zez

k
L2338 (N
2k 3 ’
0.4934  0.2589

. 0.5833 /4\"
2 + = —+ A (—) EWktt :
€32 zer z 3

2\ " 2.
3 (—> EWH 4 —0258> .
z

z

46 2.0958

Ai?

€ 32 ze

k
= Z

2

1 4\* k k+1
+— 29166 (= | +3-2° | EW )
z 3

21



CHAPTER I11
BOUNDS IN ASYMMETRIC CASE

In chapter II, we consider the number of returns to the origin, K, in case of
symmetric random walk, p = % In this case we know that the distribution of K,
converge in distribution to half-normal distribution. In this chapter we investigate
an asymmetric random walk. Let (X,) be independent identically distributed

1
random variables such that P(X, = 1) = p =1—- P(X,, = 0) for p # 5 and

K,p=H{keN1<k<n and Sp=0}

be the number of returns to the origin. Note that Kn’% = K,. For asymmetric

n?p

vn

to half-normal distribution. We organize this chapter as follows. The distribution

case, we will show that the distribution of does not converge in distribution

of K, is in section 3.1 while the bounds for P(K, , = r) are in section 3.2. In
section 3.3 we show that the distribution of K, , does not converge to half normal

distribution.

3.1 Distribution of K, ,

Let n =2m and r € {0,1,...,m}. In this section, we give distribution of K, ,.
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Theorem 3.1. Letn=2m,r=1,2,...,m and g =1 — p.

(i) P(Kn,p = 0) = uzm,

pr r+2l\r+1 2m —r m
where
/201 2N—1
_ - _ - I—k—1/, 2k+2 2k-+2
Usy k:0[<l+’“> (l+k+1)}(m) (p* ™ +¢*2)
and

<i)=0 for t>s.

Proof. Let l=r,r+1,...,m,
pro1 be the probability that the 7 return occurs at step 21 and

ug; be the probability that no return occurs on 21 steps, i.e.,
UQlZP(Sl %0,...,321 %0)

Hence p;.91tgy, o1 is the probability that 7 return occurs at step 21 and does not

occur at origin in the remaining 2m — 2[ steps. This implies
m—r—1
P(Kpp=r1)= Z Pr2r+21U2m—2r—21 1 Pr,2m. (3.1)

=0

Feller showed that

20 —
prot = o r_ . < l T) 2"(pg)t for I =r,r+1,....m and poo=1 ([5],p.275)

(3.2)
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and
!
P(S1>0,...,8 >0)=Y P(S1>0,... Sy >0,8y =2k ([5,p.77)
k=1

with the number of paths satisfying the condition indicated on the right side equals

2l—1 2l —1
(l+k—1) B (l+k> (15, p-73),
l+klk

and we can see that the probability of each number in these paths equals p'™*q

Therefore,

P(S; >0,...,594 >0)
(25 - 1) - (2;;11)] PGy Kz; N D - <2zl+_21)] P22
+ot KZ:D - <2l2_z 1)} ey
) ;:J KQZl;’j) - (l —2:1<:_+1 1)] A (3.3)

Similarly, we get that

“lrra—1 2 —1
P(S;<0,...,8y<0)=)Y_ K ) ~ < )} PR (3.4)
[\ U+ I+ k+1

Thus, by (3.3) and (3.4),

u?l:P(Sl%Ow"aSZZ%O)

P(S; >0,...,8;>0)+ P(S; <0,...,594 <0)

-1
Z 20-1 _ 20-1 Pl ik
I+ k I+ k+1

=0
-

201\ ([ 20-1 plokLghtk
Z\i+k) Ukt

+



l

>
Il

By (3.1), (3.2) and (3.5), we have Theorem 3.1.

3.2 Approximation of P(K, , =r)

1
_ 20 -1 20-1 I—k—1/, 2k+2 2k+2
N OKl+k> (l+k+1)}<pq> (P™" ),

25

(3.5)

In this section, we give the bounds of P(K,,, = r). Theorem 3.2 and Theorem

3.3 are our results.

Theorem 3.2. Letn=2m,r=1,2,.... mandqg=1—p.

[P(Knp=0)=Ip—qll < Anp

where

1 p q)
Npp= =+ =) (4pg)™.
P orm (q D ( pQ)

Proof. First, we will prove theorem in case of p > ¢. By Theorem 3.1, we have

uy = (pq)! (g) A+ (pq)! (%) B for 1=1,2,...,m

where

RGN )"
[ (A 6

(3.6)



) ~—
ISHIR-)
~__
B )
—
7 N\
QIS ~ !
N aul
)(\
IR/,
\)_
~ 11ll_l I
N N N _ -
= = N K3 RS
P Q,
— — = @/I\
—
NRERCTIS — c 2
2 | ~__ — =<
N l\)) _k _nT
— o= R S R
2= T N o~ —
S S SR A
o in = _
- oo A= I
p_q__\l//l\ cz
~— — — N
T m e~ g
_1 _ (p_qg\l/
N~ — N VR +
~———— | _O\)ll0 ,
== e L
sz asll as
= T8 =
ﬂ} 7~ N N
|~ + +
= .
N

5 . .
m_|_+/l\+2(.\ml\
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Since 0 < 4 <1,
p
-1
20— 1 20—1
B < _
;KM) ()
20 —
> (3.9)

From (3.6), (3.8), (3.9) and the fact that

(7 =500

so we get

s ()

- 2(p61)l<l) (E + %) +(p—q). (3.10)

By Stirling’s formula ([5], p.54):
V2ritzelemmm < {1 < V2rltze e, (3.11)

we have

21\  (21)!
1)
V2r(20) 22 e2lezn

= 1 1
orlltieletaiTi |3 ele Tzl

4l 1 2
= e24l 12041
vl
4[

5
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1
where we have used the fact that — <

3 = T2 1 in the last inequality.

By (3.10) and this fact, we get

uy < (p—q) + 2\}5 (S + %) (4pq)"

L (p ¢ ;

<p-q+ 5 (5 + 5) (4pq)
=P —q) + Day. (3.12)

By (3.7), we get that

= (50 () 2 ()

Since

(2lk_1)§<2ll_1) for k=01....0  (|4],p.181), (3.13)

so we get

S RIONCORepI0)




By (3.13),

B > 0.

By (3.6), (3.14), (3.15) and the fact that

l Vrl

([4], p. 181),

_ 22l—v 9
(QZ U>§ V2 for v=1,2,...,1

e O
=(p-q—q" 221/;_\1/5 ((S)Hl - 1)

o-o-r 222 () o)

By (3.12) and (3.17), we follow that

lugr — (p—q)| < Dy, for 1=1,2,...,m.

Similarly, if p < ¢, we can get that

lugr — (g — p)| < Dy for 1=1,2,...,m.

Hence, by (3.18) and (3.19),

lug — |p—ql| < Dy, for 1=1,2,... ,m.

29

(3.15)

(3.16)

)" )

(3.17)

(3.18)

(3.19)

(3.20)



By Theorem 3.1 (i), we get that

[P(Knp=0) = p—dll < Anyp.

Theorem 3.3. Letn=2m,r=1,2,...,m and g=1—p.

[P(Knp =7) = (2p0)"(p — )| < Do

30

where
Boripr = 7 ~apg) PO+ (m T <q * p) NG ) (4pq)

Proof. By Theorem 3.1 (i7) and (3.12),

P(Kn,p =)

r+20\r+1 2m —r

m—r—1
+ 21 2m —
=2" E . <T >(pq)7"“umm_r_z>+ - (m 7n>2”(pq)m
1=0

m—r—1
r r+ 21 1 P q
< 2T a (_ _'_ _>
- 2(; 7‘—1—2l<r—|—l><pq) ( 2n(m—r—=10) \q¢ P

= A1+ Ay + 43

(3.21)
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— r+2l\ r+1

T 2m —r
A_ 27‘ m
3 2m—7"< m > (pq)

m—r—1
p q r 2r+2l\/_ : 1 o
A <2r _+_ r+ 4 m—r
' (q p ; r4+20\/7(r+1) \/27r(m—7’—l)(pq)

_1(2, 1) (g :
_7r<q+p (4pq) ; (r+20)/(r+10)(m—r—1)

(3.22)

By (3.16), we get

m—r—1
, , ro (r+2l .
te=pyo-a+2 Y (e
=1

<(2pq)"(p—q) +2 i:_ TI%%M
V2r(4pq)” " 1

< CpaV(p—a)+ ﬂ’“(“p%(p Z )

) (p—q)

= (2pq)"(p—q) +

= (2pq)"(p —q) +

\/§4pq p—q "<&
: > (i)
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V2(4pg)"(p—q) 1

< (2pg)"(p—a) + i g (3.23)
We next estimate Ag, by (3.16), we obtain
PP s
= 2mr_ " \fm (4pg)™
< \/\jrzm(élpq)m- (3.24)
Hence, by (3.21), (3.22), (3.23) and (3.24),
P(Knp =)
< % (g + %) m\/—;@pq)m + (2pg)"(p — q) + ﬂ(4p%p —4) ] _14pq
+ \/\{sz(ﬁlpq)’”
= (2pg)"(p — q) + ﬁ(ﬂp:4ﬁq)< )"+ (\/{sz + % <§ + %) m\;;) (4pg)™
(3.25)

m—r—1
r r+ 2l 1 P q —r—
227“ r+1 o (_+_> 4 m—r—I
> T+2l<r+l>(pq) (p T o \a b (4pq)

=0
P q m
—+ —) (4pq)
p

= (2pq)"(p —q) — 5 ! (
" 2r(m—1r) \¢

r mir_l r T+ 2l r+l 1 b q m—r—I
+2 — T+2l(r+l)(pq) : (p—q— 2r(m —1r —1) (g—i_]_?) (4pg) >

o %) (4pg)™

1
2ry/2m(m —r) (q

> (2pq)"(p —q) —



. V2(p—q) , V2 1 (p q¢\m-—r m

> (2pq)"(p—q) — m@pq) - (\/ﬁJr - (5 +23) 7 ) (4pq)
(3.26)

By (3.25) and (3.26), we get that

|P(Knp=1)—(209)"(p — @) < Dppr
where
_ V2(p—q) P (V2 1 (p g\m-—r m
B = V(1 — 4pq) pa)+ (x/ﬁ T3 (q " p) VT ) (4pa)
O

3.3 Convergence to Half-normal Distribution

In case of symmetric, i.e., p = ¢ = %, we know from [4] that

P Kn’pgz — H(z) for 2>0
NG

where H is a half-normal distribution defined by
H(z) =20(z) — 1.

n?p

NG

In this section we will show that does not converge in distribution to H

in case of asymmetric, i.e., p # q.

K, 1
Theorem 3.4. P ( \/_’p < 0) does not converge to H(0) for p # X
n

Proof. Since H(0) =2®(0) —1 =0,

'p (f;_f < 0) - H(O)‘ = P(Kop=0) > p— g — A,

where A, ,, be defined in Theorem 3.2.
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If P Ky <z | — H(0), then
Vn

K
—ql < 1 P < — i -
0<[|p—dql < JEEO‘P ( NG 0) H(O)' + lim A, =0
with is a contradiction.

K, 1
Hence, P ( \/_T’Lp < 0) does not converge to H(0) for p # 7 O

K,
Theorem 3.5. For z >0, P ( \/;p < z) does not converge to H(z) for p > ®(z)
n

orp<1—9>o(2).

Proof. Note that

P <*’f/"ﬁp < z) “H(2) > P(Ky, = 0) — H(2)
> p—ql—H(z) = Dy

=[2p—1| = (20(2) — 1) — Ly
where A, , be defined in Theorem 3.2 and

20— 1| — (2®(2) — 1) > 0 <= |2p — 1| > 2P(2) — 1
= 2p—1>20(2)—1 or 2p—1<1-29(z)

= p>P(z) or p<l—>P(z).

Let p be such that p > ®(2) or p < 1 — ®(2).

K.
S that lim P —2 <z | = H(2).
uppose that lim (\/ﬁ < z) (2)

Hence,

+ lim A, , =0

n—o0

K,
O<|2p—1\—H(z)§nli_)ngo)P(\/T_’f §z) — H(z)

K
which is contradiction. Then we conclude that P < P < z) does not converge

N
to H(z) for p > ®(z) or p < 1 — ®(2). O



CHAPTER IV
FUTURE RESEARCH

In this thesis, we investigate the statistic of random walk in 2 directions.

I) Find a non-uniform bound in half-normal approximation H for the number of

1
5-

return to the origin (K,) in case of symmetric, i.e., p =
IT) We find the probability mass function of K, , in case of asymmetric random
walk and give its bound and show that the distribution of K, , does not converge
to H(z).

This work can be extended to other statistics, that is, the maximum value (M,,)

and the number of sign changes (C,,) defined by
M, = max S,

0<k<n

Cn = 02m+1 - ‘{1 S k S 2m : Sk—l . Sk+1 = —1}|

respectively.
We suggest 2 directions of future research.
Direction 1. we may investigate the non-uniform bound of M, and C,, in case of
symmetric random walk.

In our work, we gave the non-uniform bound of K, in case of symmetric. The
important tool is we have to bound EK* by positive constant (depends on k). In

order to be find this, we need the following lemma.

Lemma 4.1. For all g : [-1,m|NZ — R such that g(—1) = 0,

El@2m — K, +1)(g(K,) — g(K, — 1)) = (K, + 1)g(K,)] = 0.

To give the non-uniform bounds of M, and C,,, one can use our idea with
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following lemmas.

Lemma 4.2. For all g : [-1,m]NZ — R such that g(—1) = 0,

E(m+ M) (g(My) — g(My — 1)) = 2M,g(M,)] = 0.

Lemma 4.3. For all g : [-1,m]NZ — R such that g(—1) = 0,

E(m+14Cu)(9(Cn) — 9(Cn = 1)) = 2(C 4+ 1)g(Cn)] = 0.

Direction 2. We can follow argument in chapter III to show that the distribution
of M, and C), do not converge to half-normal distribution in case of asymmetric

random walk.
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