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Classification is one of the most prevalent tasks in time series mining. 

Dynamic Time Warping and Longest Common Subsequence are well-known and 

widely used algorithms to measure similarity between two time series sequences using 

non-linear alignment. However, these algorithms work best when the time series pair 

has similar amplitude scaling. Unfortunately, sensor data and most real-world time 

series data usually contain noise, missing values, outlier, and variability or scaling in 

both axes, which is not suitable for the widely used Z-normalization. This research 

introduces the Local Feature Normalization (LFN) and its Local Scaling Feature 

(LSF), which can be used to robustly normalize noisy/warped/missing-valued time 

series. In addition, LSF is utilized to help matching time series containing multiple 

subsequences with a variety of scales; this algorithm is called Longest Common Local 

Scaling Feature (LCSF). Compared to the use of Z-normalized data, our classification 

results show that our proposed LFN is impressively robust, especially on high-error 

and noisy datasets. On both synthetic and real application data for wrist strengthening 

rehabilitation exercise using a mobile phone sensor, our LCSF similarity measure also 

significantly outperforms other existing methods by a large margin. However, LCSF 

has the serious drawback on speed and number of parameters. Finally, this thesis 

proposes local scaling Dynamic Time warping (LSDTW), which has faster speed and 

fewer parameters than LCSF, but LSDTW can impressively outperform LCSF and 

other state-of-the-art approaches. 
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 CHAPTER 1

INTRODUCTION 

Dynamic Time Warping (DTW) (Sakoe & Chiba, 1978; Vlachos, Hadjieleftheriou, 

Gunopulos, & Keogh, 2003) and Longest Common Subsequence (LCSS) (Das, 

Gunopulos, & Mannila, 1997) are the two well-known similarity measures for time 

series data with the ability to warp on the X-axis using non-linear alignment. 

However, the main obstacle of these algorithms is the variability of scales in the 

amplitude; they work at its best when the time series pair has similar amplitude 

scaling. Therefore, time series normalization becomes critical as a minor adjustment 

of scale can actually double the error rates (Rakthanmanon et al., 2012).  

 Currently, Z-normalization is one of the most widely used techniques to 

normalize time series data. Unfortunately, Z-normalization can produce incorrect 

scaling on data containing noise, missing data, outlier, subsequence scaling, and even 

the variability in the time axis. As demonstrated in Fig. 1-1 (a) – (d), each of the 

sequences contains a sine wave followed by a square wave with different variability 

added to the sequences, i.e., (a) Y-axis scaling (amplitude), (b) X-axis scaling 

(warping), (c) noise, and (d) combination of all three; Z-normalization produces 

inaccurate scaling, which in turn causes inaccuracies in classification. Finding 

similarity between two Z-normalized sequences in Fig. 1-1 (d) using DTW or LCSS 

can lead to incorrect alignment. As shown in Fig. 1-1 (e), due to incorrect scaling, 

high-magnitude points of the top sine wave cannot be matched correctly through 

DTW, and the rest of the square wave is wrongly matched, overestimating the 

cumulative distances. In Fig. 1-1 (f), on the other hand, though LCSS can skip data 
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points, the square waves of the two sequences are too different for a relatively small  

parameter to match, and cannot be correctly aligned. 

 To resolve this problem, this work introduces a Local Feature Normalization 

(LFN) that first discovers a Local Scaling Feature (LSF) to normalize time series data 

more accurately, especially for time warped and noisy data. The Longest Common 

Local Scaling Feature (LCSF) similarity measurement is then proposed to effectively 

match time series sequences that contain subsequences with a variety of scales, as 

demonstrated in Fig. 1-1 (g). 
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(f) LCSS 

 

(g) LCSF 

Fig. 1-1 Incorrect scaling caused by Z-normalization in sequences containing (a) 

amplitude scaling, (b) time scaling (warping), (c) noise, and (d) combination of three 

types of variability. (e) Due to incorrect scaling, high magnitude points of the top sine 

wave graph cannot be matched correctly using DTW; however, it cannot skip points, 

and therefore matches the rest of square wave part although the distances are high. (f) 

Though LCSS can skip data points, the square waves of the two sequences are too 

different for a relatively small  parameter to match, and cannot be correctly aligned. 

(g) The proposed LCSF can correctly align the sequences. 
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Other than the problem of undesirable normalization results, typical DTW distance 

functions that consider the raw value of each individual data point can also cause 

misalignment and an increase in misclassification rate. In an attempt to alleviate the 

problem, Derivative Dynamic Time warping (DDTW) (E. J. Keogh & Pazzani, 2001), 

which is performing DTW on derivatives of the data, was introduced to reduce 

misalignment of the classic DTW. However, DDTW still cannot align these multiple-

scale subsequences correctly because the slopes of different-scale sequences are still 

different; for example, the derivative of a function f(x) is merely half of the derivative 

of 2f(x). Adaptive Feature Based Dynamic Time Warping (Xie & Wiltgen, 2010) later 

introduced local and global features of each data point and used the distance between 

the features instead of the original distance, resulting in better alignment and better 

classification. However, this feature distance still cannot handle multiple-scale 

subsequences very well. 

Finally, this research proposes a Local Scaling Dynamic Time Warping (LSDTW), 

which uses a new distance function especially for handling multiple-subsequence-

with-multiple-scale time series. The LSDTW is the DTW-based extension of the 

proposed Local Feature Normalization (LFN) and Longest Common Local Scaling 

Feature (LCSF) (Chonbodeechalermroong & Ratanamahatana, 2018). Longest 

Common Local Scaling Feature (LCSF) was proposed based on the idea of Longest 

Common Subsequence (LCSS), which allows non-linear alignment with an ability to 

skip data points. This novel Local Scaling Dynamic Time Warping (LSDTW), on the 

other hand, is based on DTW with much fewer parameters and with much smaller time 

complexity than Longest Common Local Scaling Feature (LCSF). In particular, the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 

proposed Local Scaling Dynamic Time Warping (LSDTW) still has about the same 

time complexity as the original DTW. 

1.1 Objectives 

This research focuses on inventing new algorithms: normalization, similarity 

measurement and distance measurement that could handle noisy time series and time 

series containing multiple subsequences with multiple scales on both axes.  

 To propose a novel normalization technique that is robust to noisy/warped time 

series data. 

 To propose a novel time series similarity measurement that can handle matching 

multiple-subsequence-with-multiple-scale time series. 

1.2 Scopes of work 

 This work evaluates LFN on small-size UCR datasets that are observed as noisy 

comparing to Z-normalized data with DTW, DTW with global constraint and 

LCSS. 

 This work evaluates LCSF on large-size UCR datasets, synthetic datasets and on 

the wrist strengthening rehabilitation exercises classification dataset. 

 This work evaluates LSDTW on small-size and large-size UCR datasets, synthetic 

dataset and the wrist strengthening rehabilitation exercises classification dataset. 
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1.3 Publications 

Journal 

 Chonbodeechalermroong, A.,& Hewett, R., Towards Visualizing Big Data 

with Large-Scale Edge Constraint Graph Drawing, Big Data Research. 10 

(2017) 21–32. doi:10.1016/j.bdr.2017.10.001. 

Conferences 

 Chonbodeechalermroong, A.,& Ratanamahatana, C.A., Robust Scale-Invariant 

Normalization and Similarity Measurement for Time Series Data, in: A. 

Sieminski, A. Kozierkiewicz, M. Nunez, Q.T. Ha (Eds.), Modern Approaches 

for Intelligent Information and Database Systems, Springer International 

Publishing, Cham, 2018: pp. 149–160. doi:10.1007/978-3-319-76081-0_13. 

 Chonbodeechalermroong, A.,& Chalidabhongse, T. H., Dynamic contour 

matching for hand gesture recognition from monocular image, in: 2015 12th 

International Joint Conference on Computer Science and Software 

Engineering (JCSSE), 2015: pp. 47–51. doi:10.1109/JCSSE.2015.7219768. 
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 CHAPTER 2

BACKGROUND AND RELATED WORKS 

Regardless of extended usage of DTW and LCSS in the past few decades, many 

researchers may not realize that DTW (Sakoe & Chiba, 1978; Vlachos et al., 2003) 

and LCSS (Das et al., 1997) only work at its best when the data have similar 

amplitude scaling. Normalization has played a big role in trying to resolve this scaling 

issue (Rakthanmanon et al., 2012). However, as shown in Fig. 1-1, the most 

commonly used Z-normalization technique for time series data can still cause DTW 

and LCSS to produce inaccurate results on data with such variability.  

 Nowadays, time series have been used in many applications such as gene 

expression (Bar-Joseph, Gerber, Gifford, Jaakkola, & Simon, 2002), body movement 

recognition from video (Gavrila & Davis, 1995), prosthesis control and rehabilitation 

(Crouch & Huang, 2016; Yun et al., 2017) and hand gesture recognition (X. Chen et 

al., 2007). Most of the applications obtain data from sensors such as 

electromyography (EMG) or accelerometers, which are noisy and contain various 

types of scaling, and sometimes a single sensed time series sequence can have many 

subsequences with a variety of scales.  

 To match these varied-scale subsequences time series using the traditional 

DTW or LCSS, the training set needs to contain all possible combinations of scaling 

of all subsequences, which may not be possible to obtain.  To the best of my 

knowledge, no current normalization technique is specially designed for such 

variability in the data. The proposed Local Feature Normalization (LFN) and Longest 

Common Local Scaling Feature (LCSF) can effectively solve this problem with only a 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 

limited amount of training data. The background of DTW and some of their variations 

and also LCSS will be briefly explained in this section. 

2.1 Dynamic Time Warping (DTW) 

Given two Time Series A and B with length n and m, A = {a1, a2, a3,…,an},  B = {b1, 

b2, b3,…, bm} where ai and bj are real numbers, DTW distance of A and B measuring 

the distance between the two time series is: 

         T   ,       ( ,  )  

{
 
 

 
 

                                       if     and                                

                                          f     and     or n   and m               

 (  ,   )   min{

 ( ,  )

 ( ,  - )

 ( - ,  )

   otherwise                                      

           (1) 

where d(ai, bj) is the distance between ai and bj defined as d(ai, bj) = (ai - bj)
2
. DTW 

has many variations such as a global constraint (Sakoe & Chiba, 1978) that constrains 

the maximum warping distance such that ai will never match with bj if |i - j| > l; l is a 

constraint window size.  

 To speed up time series searching in large datasets, lower bounding 

techniques, LB_Kim (Kim, Park, & Chu, 2001) and LB_Keogh (E. Keogh & 

Ratanamahatana, 2005) are proposed to help estimate the lower bound distance for 

pruning some non-worthy data instances.  

 In addition to lower bounding, another approach to speed up dynamic time 

warping calculation can be done through ―early abandoning‖ (Rakthanmanon et al., 

2012). As DTW is typically applied in K-nearest neighbor classification, the smallest 

distance so far, ƫ, needs to be maintained to finally obtain a nearest sequence to the 

given query. However, to calculate the cumulative distance f(i, j), i from 1 to  n and j 

from 1 to m for each i, it is compulsory that f(i, j  ≥ f(i, j-1). Therefore, the DTW 
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calculation can safely be abandoned when ∀j f(i,j) > ƫ since the cumulative distance 

from this point further will never improve (lower) the best distance so far (ƫ), and 

hence, this candidate will never be the query’s nearest neighbor. This early 

abandoning technique is implemented in this research’s experiments as well to 

achieve some speedup. 

 UCR-DTW (Rakthanmanon et al., 2012) combines many lower bounding 

approaches and early abandoning techniques to significantly speed up DTW. 

However, UCR-DTW also relies on Z-normalization. 

 Due to the ability to non-linearly align time series together, Dynamic Time 

Warping has been popular in many pattern recognition applications, such as signature 

recognition (Faundez-Zanuy, 2007), speech recognition (Godin & Lockwood, 1989), 

shape matching (Marzal & Palazón, 2005), ECG pattern recognition (Huang & 

Kinsner, 2002), Electronic Health Records (EHRs) similarity measurement (Huang & 

Kinsner, 2002), among many others. 

2.2 Derivative Dynamic Time Warping (DDTW) 

Derivative Dynamic Time Warping (DDTW) (E. J. Keogh & Pazzani, 2001) has been 

proposed to help improve the DTW alignment between a time series pair by reducing 

spurious alignment and ―singularities‖ problem (E. J. Keogh & Pazzani, 2001). DDTW 

converts the original time series {a1, a2, a3,…,an}, into its derivative { ’1,  ’2, 

 ’3,…, ’n-2}, using equation (2).  

    ’j = ((ai – ai-1) + (ai+1 – ai-1)/2)/2; j = i-1                   (2) 
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Note that the derivative form is the average slope of each data point. So, the first 

and the last data points will be omitted as they do not have the definition of their 

slopes. Regardless of its ability to improve the alignment, DDTW still has a slight 

problem in that it is sensitive to noise, as little noise can significantly change the slope 

of the graph because each derivative data point considers only three points. Therefore, 

smoothing could become very important. 

2.3 Adaptive Feature Based Dynamic Time Warping 

To improve robustness to noise of DDTW, Adaptive Featured Based Dynamic Time 

Warping (AFBDTW) (Xie & Wiltgen, 2010) has been proposed. It is quite similar to 

DDTW, but more points are used in the averaging process, representing the global 

feature of the data. Each data point ai has a local feature flocal(ai) and a global feature 

fglobal(ai). The local feature flocal(ai) = (ai – ai-1, ai – ai+1), which is similar to the slope in 

DDTW. The global feature fglobal(ai) = (ai – (a1 + a2  …   ai-1)/(i-1), ai – (ai+1 + ai+2 

 …   an)/(n-i)); the global feature of a data point is the difference between that point 

and the average of all other points before and after that point. The distance function of 

any two data points ai and bj is as follows: 

distance(ai, bj) = w1* dist(flocal(ai), flocal(bj)) + w2* dist(fglobal(ai), fglobal(bj))          (3) 

where dist is the distance function, proposed in two alternatives: Manhattan distance 

(AFBDTW1) and Euclidian distance (AFBDTW2); w1 and w2 are the weights 

proposed in (Xie & Wiltgen, 2010).  

However, this AFBDTW still could not handle multiple-subsequence-with-

multiple-scale time series data because the local features (slopes) of any two 
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subsequences in different scales will be different, and the global features (average) of 

two subsequences in different scales would also be different. 

2.4 Longest Common Subsequence Similarity Measure (LCSS) 

Given two Time Series A and B with length n and m, A= {a1, a2, a3,…,an}, B = {b1, b2, 

b3,…, bm} where ai and bj are real numbers, LCSS score of A and B measuring the 

similarity between the two time series is: 

               ,       ( ,  )  

{
 
 

 
 
                                                              if     or           

max{

    (  ,   )  ( - ,  - )

 ( ,  - )                    

 ( - ,  )                    

          otherwise          
 (4) 

where s(ai, bj) is the similarity between ai and bj defined as s(ai, bj) = 1 if |ai - bj| < ɛ 

and |i - j| ≤ l, and s(ai, bj) = 0 otherwise; ɛ is a given small arbitrary value; l is a 

constraint window size. This discrete similarity has a drawback that if ɛ is too small, 

many points are considered as noise. If ɛ is too large, too many points can match with 

the others such that LCSS may produce just one-to-one matching (no 

warping/skipping).  

 LCSS’ main advantage is its ability to skip noisy data points while  T  has 

to match every single data point. However, DTW has fewer parameters, making it 

more popular and practical than LCSS. 
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 CHAPTER 3

PROPOSED ALGORITHM 

This chapter explains the proposed Local Scaling Feature (LSF), which is then 

utilized in the proposed Local Feature Normalization (LFN) and Longest Common 

Local Scaling Feature (LCSF) similarity measure. Then, the Local Scaling Dynamic 

Time Warping (LSDTW) Distance measure, the DTW-based extension of Longest 

Common Local Scaling Feature (LCSF), will be explained. 

3.1 Local Scaling Feature (LSF) and Local Feature Normalization (LFN) 

The proposed Local Scaling Feature (LSF) is based on LCSS concept, as this work 

holds the assumption that the data is particularly noisy and LCSS can skip some noisy 

data points. However, Local Scaling Feature (LSF) still works well on non-noisy data.  

 Given two time series A and B with length n and m, A = {a1, a2, a3,…,an}, B = 

{b1, b2, b3,…, bm} where ai and bj are real numbers, one could normalize the time 

series A with some value ai and normalize B with some value bj. If the two time series 

are similar, but having different scaling in the Y-axis, then there must exist ai ≈  j if A 

and B are in the same scaling. Hence, if one normalizes A by ai and B by bj, one will 

get the correct scale of A and B called  ’ =   /  i and  ’ =   /  j.The illustration, the 

proposed normalization mechanism, is shown in Fig. 3-1. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

17 

 

Fig. 3-1 LFN’s mechanism is finding the proper candidates ai and bj, and then uses 

this candidates to normalize (divide) the original time series. 
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 In order to find the correct  ’ and  ’, one might compare all possible 

combinations of ai and bj to normalize and select the best LCSS/DTW score among 

all matched normalized data; however, the time complexity is excessively high: 

O(n
2
m

2
), nm for trying all possible  ’ and  ’, and another nm for doing LCSS/DTW 

on each of  ’ and  ’. However, this huge amount of combination can be reduced by 

finding some potential candidates called Local Scaling Features (LSFs). 

 If ai and bj are potential candidates, then some neighboring points of ai should 

match with some neighboring points of bi. LCSS is then used to match the left 

subsequences of length w: LA = {ai-w,…, ai-1} with LB = {bj–w,…, bj-1} as the Left 

Score (LS), and the right subsequences of length w: RA = {ai+1,…, ai+w} with RB = 

{bj+1,…, bj+w} as the Right Score (RS), then the potential score PS = LS + RS; PS 

measures the local similarity. Then the best c candidates (c highest PS scores) are 

selected as the LSFs. Because the data are assumed to be noisy, one should not use Z-

normalization in calculation of LS and RS. Instead, this local LCSS uses this newly 

proposed special similarity function that requires no normalization. 

 To match the left subsequences LA and LB that is assumed to be in different 

scales and ai and bj are assumed to be matched, there must be indices x and y that 

LAx/LBy is equal to ai/bj where LAx ∈ LA and LBy ∈ LB as well as matching RA and 

RB, as illustrated in Fig. 3-2. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

19 

 

Fig. 3-2 An illustration of potential score calculation of ai and bj; the left/right 

subsequences will be scored using LCSS such that two data points are matched if their 

scale is equal to ai/bj. 

 
 However, another important problem is when ai and bj are much larger than 

LAx and LBy. There is a fact that if LAx and LBy are aligned, then (ai - LAx)/(bj - LBy) is 

also equal to ai/bj. For example, given ai = 10, bj = 20, LAx = 0.2, LBy = 0.1, one could 

see that ai/bj = 0.5 while LAx/LBy = 2, but (ai - LAx)/( bj - LBy) = 0.49. This too little 

value of LAx and LBy comparing to ai and bj can be seen as noise. Therefore, this 

method selects the closest value to ai/bj among LAx/LBy and (ai - LAx)/(bj - LBy). 

According to this principle, the proposed similarity function given the candidate ai 

and bj is as follows: 
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where X ∈ LA (or LB); Y ∈  RA (or RB); ɛ’ is a parameter similar to ɛ in the original 

similarity function.  
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 The best c candidates are used to normalize the time series; then LCSS is 

applied to these c normalized series. In this LCSS part, to distinguish finer 

dissimilarity that helps solve the one-to-one matching problem of the original LCSS 

with large ɛ, this method prefers the continuous similarity score instead of the old 

binary score. Therefore, equation (4) in section 2.4 will be replaced by another 

similarity function, s3(ai, bj) = 1 - |ai - bj|/ɛ. The idea behind this function is that LCSS 

will not match ai to bj when the difference is larger than ɛ because s3(ai, bj) is less 

than 0; however, if the difference is smaller than ɛ, the score will be a continuous 

value from 0 to 1. Similar idea also applies to s2 in Local Scaling Feature (LSF). To 

allow maximum flexibility of matching, window constraint is not applied.  

 The sequence with the best LCSS score is chosen to be the output of the Local 

Feature Normalization (LFN). Note that the flipping candidates (ai/bj < 0) need not 

be calculated to save some time and improve overall accuracy as it rarely happens to 

be in the same class. 

 The time complexity of finding the potential candidates is O(w
2
mn); w

2
 is the 

complexity of using LCSS to calculate each candidate’s PS; O(mn) is for finding all 

possible candidates. Applying LCSS on the normalized series c times uses O(cmn). 

Therefore, the overall complexity is O(w
2
mn + cmn). Practically, w and c are 

relatively small comparing to n and m such that the potential complexity could only 

be O(nm)  
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3.2 Longest Common Local Scaling Feature (LCSF) 

As shown in Fig. 1-1(a), some time series may contain several subsequences, each of 

which may also have different scaling. Local Scaling Feature (LSF) could be utilized 

to handle multiple scaling in subsequences.  

 To Find a Local Scaling Feature (LSF), LCSS is performed on both sides of 

the candidate subsequence; each side has a length of w so that the maximum possible 

value for PS is 2w. Given a threshold t, a candidate whose PS score is larger than or 

equal to 2wt is called the potential candidate; t is the ratio of the maximum possible 

value of PS; t ∈ (0, 1]. 

 

Fig. 3-3 The crossing of high PS score LSF; the alignment lines shown the high PS 

score LSF, however, the dash line is crossing some other lines. 
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 After finding the best c potential candidates with PS  ≥  wt, each candidate 

consists of the indices i, j (denoting the position in A and B) and the PS score: (i, j, 

PS); however, there can be two or more candidates, which are crossing, for example, 

(i, j, PS1) and (u, v, PS2): i > u and j < v. This crossing could occur because either 

each potential candidate is discovered locally, or the threshold t is too small. An 

example of crossing is illustrated in Fig. 3-3. 

 In order to find a proper longest LSF matching, this method sorts the potential 

candidates in an ascending order of i, together with a descending order of j, then find 

the longest increasing subsequence based on j on the sorted potential candidates. The 

output of the longest increasing subsequence is the LCSF score. For example, given 

the potential candidates (1, 2, 0.5), (1, 3, 0.6), (1, 4, 0.9), (2, 3, 0.6) and (3, 4, 0.6), 

after sorting, the result will be (1, 4, 0.9), (1, 3, 0.6), (1, 2, 0.5), (2, 3, 0.6) and (3, 4, 

0.6). If one looks only on the list of j, one will see {4, 3, 2, 3, 4}. Then the proper 

longest increasing subsequences on this set will be {2, 3, 4}, where |{2, 3, 4}| = 3 is 

the output of  the Longest Common Local Scaling Feature (LCSF) similarity score. 

 Discovering all potential candidates, the O(w
2
mn) time complexity is needed, 

as described in the previous section. Sorting c candidates needs O(clog(c)), and 

finding the longest increasing subsequences using the efficient algorithm (Fredman, 

1975) requires O(clog(c)) time complexity. Hence, the overall complexity is O(w
2
mn 

+ clog(c)). Longest Common Local Scaling Feature (LCSF) has four parameters: w, 

ɛ’, t and c to tune. However, to make sure that no potential candidates are missed, the 

parameter c can be ignored and accept all potential candidates (PS  ≥  wt).  The 

pseudocode of Local Scaling Feature (LSF), Local Feature Normalization (LFN) and 

Longest Common Local Scaling Feature (LCSF) are as follows. 
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LSF(A,B,w, t, c) 

pcs ={} #set of potential candidates 

for i in |A|: 

  for j in |B|: 

    LS  = lc  ’(A[i-w,i-1], B[j-w,j-1], A[i], B[i]) 

    RS = lc  ’(A[i+1,i+w], B[j+1,j+w] , A[i], 

B[i]) 

    PS = LS + RS 

    if PS >= 2wt: 

      if  |pcs| < c: 

        pcs.add((i,j,ps)) 

      else if PS  > pcs.getMinPS(): 

        pcs.removeMin() 

        pcs.add((i,j,ps)) 

return pcs 

#lc  ’ is LCSS using s2 as a similarity 

function, given A[i] and B[i] 

LFN(A, B, w) 

pcs = LSF(A, B, w, 0, c) 

max= 0 

for f in pcs: 

   ’ = A/A[f.i] 

   ’ = B/B[f.j] 

  l = lc  ’’( ’,  ’) 

  if l > max: 

    max = l 

     e t ’, e t ’ =  ’, ’ 

return max, e t ’, e t ’ 

# lc  ’’ is LCSS using s3 as a similarity 

function 

LCSF(A, B, w, t, c) 

pcs = LSF(A, B, w, t, c) #c is set to   in this resrach experiment 

sort(pcs) in ascending order of i and in descending order of j on equal i 

return longest_increasing_subsequence(pcs) based on j 

3.3 Local Scaling Dynamic Time Warping (LSDTW) 

A Local Scaling Dynamic Time Warping (LSDTW) Distance measure is proposed 

here to resolve the problem of multiple scales in multiple subsequences with relatively 

low time complexity compared with the state-of-the-art approach. If a time series 

sequence has multiple subsequences, where each subsequence does have different 

scales, normalizing the whole time series sequence will not guarantee correct scaling 

of the result. However, if one normalizes those subsequences locally, most likely one 

will have correct scaling results. However, segmentation of time series into proper 

subsequences is still problematic and becoming a challenging task. 

Instead of performing time series segmentation, this paper proposes an easy but 

powerful approach using only values of the data points from the time series pair. More 

specifically, the distance between a data point ai in A and another data point bj in B will 

no longer be only the difference in their original values. Instead, the distance will cover 

the distance between the normalized local subsequences around ai and the normalized 

local subsequences around bj.  
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Given the parameter w, all of the local subsequences {ai-w,…ai+w} and {bj-

w,…,bj+w}—w points before and after ai and bj, respectively, will be normalized using 

0-1 normalization. Thus, every normalized sequence will have a minimum value of 0 

and a maximum value of 1. If every point in the subsequence is identical (min = max), 

every point will be set to 0.5 by default. This local normalization does not use Z-

normalization here due to the problems mentioned in Fig. 1-1. It is important to note 

that this method only normalizes a copy of the subsequence, not the original one. For a 

data point ai, there are i-1 points to its left and n-i points to its right, and there will not 

be enough points on the left or the right side when i <= w or i > n – w. In other words, 

the largest number of possible data points on the left would be wl = min(w, i-1, j-1), 

and the largest number of possible data points on the right would be wr = min(w, n-i, 

m-j). Therefore, the subsequences {ai-wl,…ai+wr} and {bj-wl,…,bj+wr} with the length of 

wl + 1 + wr will be used instead.  

Next, this method defines α and β as a 0-1 normalized {ai-wl,…ai+wr} sequences and 

a 0-1 normalized {bj-wl,…,bj+wr} sequence, respectively. The dissimilarity between α 

and β is robust to scale variance since α and β are already locally normalized such that 

their squared Euclidean distance, (α – β)
2
, can provide much better DTW alignment for 

multiple-subsequence-with-multiple-scale time series data.  However, even though 

the distance (α – β)
2
 can provide scale invariant alignment, my preliminary 

experiments discovered that it is too flexible. Therefore, this thesis proposes a function 

that involves original data points into its calculation (with relatively lower priority), 

while maintaining its scale-robust alignment feature of the local normalized distance. 

However, since wl and wr may vary, the squared distance has to be normalized 
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(divided) by wl + 1 + wr. Hence, my proposed distance function is summarized as 

follows (6). 

  wl = min(w, i-1, j-1)  

  wr = min(w, n-i, m-j)     

  α = {α1, α2, …, αwl+wr+1} = 0_1_normalize({ai-wl, …, ai+wr}) 

  β = {β1, β 2, …, βwl+wr+1} = 0_1_normalize({bj-wl, …, bj+wr})  (6) 

  αwl+1 = ai         

  β wl+1 = bj 

  LSdist(ai, bj) = (α – β)
2
/(wl + 1 + wr) 

The impact of a single original point to other points in a local subsequence 

implicitly equals to the original DTW distance with just the weight of 1/(wl + 1 + wr), 

while the rest of the local subsequence implicitly has the weight of (wl + wr)/(wl + 1 + 

wr). This research calls a DTW distance measure that uses my proposed LSdist 

distance function (6) a Local Scaling Dynamic Time Warping (LSDTW). Note that 

when w = 0, LSDTW simply becomes the original DTW.  

The time complexity of the proposed Local Scaling Dynamic Time Warping 

(LSDTW) is O(wmn)—O(mn) comes from the  T ’s complexity, and O w) is from 

my proposed distance function between two data points. If w is relatively small or is a 

(small) constant (which usually are the cases), the complexity will eventually be 

O(mn , the same as the original  T ’s complexity. 

To calculate the dissimilarity between α and β, one may use other distance 

measures such as original DTW or LCSS. However, when w is relatively small such 

that the alignment will not warp that much, using a squared distance or Euclidian 

distance could give excellent results with only very small overheads comparing to 

DTW or LCSS. In addition, if the leftmost point of one time series sequence is 
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matched with the rightmost point of another time series sequence, wl and wr will be 

smaller than w, then this method will simply set the distance to infinity to bypass 

unnecessary computation as this scenario will be less likely to happen in reality.   

The alignment results from matching multiple-subsequence-with-multiple-scale 

time series data, comparing among the classic DTW, DDTW, Feature Based Dynamic 

Time Warping (FBDTW), the proposed Longest Common Local Scaling Feature 

(LCSF) and the proposed Local Scaling Dynamic Time Warping (LSDTW) are shown 

in Fig. 3-4 - Fig. 3-8 

 
Fig. 3-4 Alignment from DTW of two Z-normalized time series consisting of two 

subsequences: a sine wave and a square wave, which have extremely different scaling 

on both X and Y axes. Evidently, it produces incorrect alignments. 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

27 

 
Fig. 3-5 Alignment from DDTW of two Z-normalized time series consisting of two 

subsequences: a sine wave and a square wave, which have extremely different scaling 

on both X and Y axes. Evidently, it produces incorrect alignments. 

 
Fig. 3-6 Alignment from FBDTW of two Z-normalized time series consisting of two 

subsequences: a sine wave and a square wave, which have extremely different scaling 

on both X and Y axes. Evidently, it produces incorrect alignments. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 

 
Fig. 3-7 The proposed LCSF can align quite correctly but LCSF is based on LCSS 

that does not allow duplicate matching such that some data points the lower time 

series’ sine wave, which are longer than the upper time series’ sine wave, are skipped. 

 
Fig. 3-8 The proposed LSDTW can correctly align these two time series pair, 

matching the sine wave from one sequence to another sine wave of another sequence, 

and matching the square wave from one sequence to another square wave of another 

sequence.   
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 CHAPTER 4

EXPERIMENTS 

UCR’s public datasets (Y. Chen et al., 2015), synthetic datasets and Real World 

Applications data were used to evaluate Local Feature Normalization (LFN), Longest 

Common Local Scaling Feature (LCSF) and Local Scaling Dynamic Time Warping 

(LSDTW). 

4.1 UCR datasets 

Local Feature Normalization (LFN) has more parameters and higher time complexity 

than Local Scaling Dynamic Time Warping (LSDTW). Therefore the Local Feature 

Normalization (LFN) will be evaluated in the smaller size dataset: fewer instances, 

short time series length. While Local Scaling Dynamic Time Warping (LSDTW) will 

additionally be evaluated on larger datasets: more instances, longer length time series. 

 Small-size UCR datasets 4.1.1

The performance of Local Feature Normalization (LFN), Longest Common Local 

Scaling Feature (LCSF) and Local Scaling Dynamic Time Warping (LSDTW) were 

evaluated using 1-nearest neighbor (1-NN) classification (Peterson, 2009) on 21 

UCR’s public datasets (Y. Chen et al., 2015).  

 Note that every dataset on this archive is already Z-normalized, labeled, and 

split into training and test sets. The datasets are selected based on their high-noise and 

relatively small size criteria. 

 To find an optimal set of parameters w, ɛ’ and ɛ in LFN, the experiments use 

grid search on a given training set. Leave-one-out cross-validation is used to calculate 
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the accuracy for each parameter setup. The highest-accuracy setup is used to evaluate 

the test set.   

 To avoid a small floating point inaccuracy problem, this experiment defines 

integers e’ = 1/ ɛ’ and e = 1/ ɛ, then the experiments iterate the multiplier e(e’)  instead 

of the divider ɛ(ɛ’). Based on my empirical results, e and e’ are chosen from a set {1, 

2, 3, 6, 10}, w from a set [4, 10], and c = 3. The higher c value gives more opportunity 

for better accuracy, but it consumes more time; however, c = 3 empirically appears to 

be the smallest c value that does not sacrifice much accuracy.  

 In Table 4-1, the experiment compares classification accuracy of the proposed 

Local Feature Normalization (LFN), Longest Common Local Scaling Feature (LCSF) 

and Local Scaling Dynamic Time Warping (LSDTW) with well-known similarity 

measures: 1) Euclidean Distance, 2) DTW with the best global constraint window 

reported on the UCR repository, 3) DTW with no global constraint, 4) the original 

LCSS, and 5) the LCSS using s3 similarity function with the same Local Feature 

Normalization (LFN)’s ɛ parameter that shows the comparison between Z-

normalization and my normalization.  

 To tune for the w parameter of Local Scaling Dynamic Time Warping 

(LSDTW), grid search was used in the training set to find the w parameter; w was 

selected from { ,  %,  %,…,   %  of the time series length}; w > 0.  Leave-one-out 

cross validation and 1-NN classifier were used to calculate the accuracy for each w. 

The w value with a highest accuracy in the training set was then used to evaluate the 

test set. A boldface number indicates the highest accuracy of each dataset. 
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 The LCSF’s parameters are trained as follows: t ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, w 

∈ [4, 10], e’ ∈ [1, 10]. 

Table 4-1 Classification accuracy on small size UCR datasets (* observed as noisy dataset) 

Name 
Euclidean  

Distance 

DTW (best 

global  

constraint) 

DTW LCSS LCSS(s3) LFN LCSF LSDTW(w) 

Beetle Fly* 0.750 0.700 0.700 0.700 0.700 0.850 0.700 0.950(15) 

Bird 

Chicken* 
0.550 0.700 0.750 0.750 0.850 0.850 0.850 0.850(10) 

Distal 

Phalanx 

Outline Age 

Group* 

0.782 0.772 0.792 0.760 0.758 0.812 0.763 0.780(4) 

Distal 

Phalanx 

Outline 

Correct* 

0.752 0.768 0.768 0.747 0.760 0.777 0.733 0.765(7) 

Distal 

Phalanx TW* 
0.727 0.728 0.710 0.727 0.727 0.732 0.725 0.732(7) 

ECG 0.880 0.880 0.770 0.880 0.880 0.890 0.820 0.900(8) 

ECG Five 

Days 
0.797 0.797 0.768 0.770 0.770 0.801 0.782 0.969(4) 

Herring* 0.516 0.531 0.531 0.578 0.485 0.594 0.563 0.641(20) 

Italy Power 

Demand 
0.955 0.955 0.950 0.830 0.845 0.961 0.893 0.948(2) 
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Medical 

Images 
0.684 0.747 0.737 0.641 0.707 0.703 0.674 0.767(2) 

Middle 

Phalanx 

Outline Age 

Group* 

0.740 0.747 0.750 0.750 0.725 0.750 0.728 0.755(2) 

Middle 

Phalanx 

Outline 

Correct 

0.753 0.682 0.648 0.648 0.605 0.742 0.685 0.755(5) 

Middle 

Phalanx TW* 
0.561 0.581 0.584 0.576 0.584 0.591 0.589 0.599(8) 

Mote Strain 0.879 0.866 0.835 0.897 0.903 0.882 0.947 0.892(4) 

Proximal 

Phalanx 

Outline Age 

Group 

0.785 0.785 0.805 0.746 0.777 0.805 0.761 0.820(6) 

Proximal 

Phalanx 

Outline 

Correct 

0.808 0.790 0.784 0.770 0.756 0.801 0.794 0.856(5) 

Proximal 

Phalanx TW* 
0.708 0.737 0.737 0.735 0.727 0.745 0.690 0.735(5) 

Sony AIBO 

Robot 

Surface* 

0.695 0.695 0.725 0.642 0.607 0.819 0.740 0.802(3) 

Sony AIBO 

Robot 

SurfaceII 

0.859 0.859 0.831 0.791 0.842 0.842 0.861 0.861(1) 
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Two Lead 

ECG 
0.747 0.868 0.904 0.943 0.900 0.955 0.940 0.940(5) 

Wine* 0.611 0.611 0.574 0.500 0.500 0.741 0.667 0.815(1) 

In these datasets, Longest Common Local Scaling Feature (LCSF) preformed not 

quite well comparing to the LFN and LSDTW because LCSF was not created for 

general time series, but for the multiple-subsequence-with-multiple-scale time 

series, which were evaluated in next sections. However, LSDTW was created to cope 

both general and multiple-subsequence-with-multiple-scale time series such that the 

LSDTW performed very well among these datasets. 

 For the proposed Local Feature Normalization (LFN) comparing to the other 

popular algorithms (excluding LSDTW), Euclidean Distance, DTW (best global 

constraint), DTW and LCSS the proposed LFN produces the highest accuracy in 16 

out of 21 datasets among other methods. Local Feature Normalization (LFN) 

exclusively outperforms others on noisy and low-accuracy (DTW accuracy ≤ 0.7) 

datasets, e.g., MiddlePhalanxTW, Wine, Herring, BeetleFly, and BirdChicken. For 

high-accuracy datasets, my LFN algorithm performs better or only slightly less 

accurately as this research observes that these datasets are already in the correct scale. 

Local Feature Normalization (LFN) outperforms LCSS (original and s3) on 19/21 

datasets, which shows significant improvement of my normalization. If c or w is too 

small, obtained LSFs might not cover true important features and that some errors 

may occur. Local Feature Normalization (LFN) impressively outperforms DTW with 

global constraints and LCSF in 19/21 datasets. 
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 Comparing the proposed Local Scaling Dynamic Time Warping (LSDTW), to 

the other popular algorithms (excluding LFN): Euclidean Distance, DTW (best global 

constraint), DTW and LCSS, the proposed Local Scaling Dynamic Time Warping 

(LSDTW) produces the highest accuracy in 14 out of 21 datasets.  

 Comparing only the Local Feature Normalization (LFN) and the Local Scaling 

Dynamic Time Warping (LSDTW), LSDTW has the highest accuracy in 15 out of 21 

datasets. If every method is taken into the account, LSDTW produces the highest 

accuracy in 14 out of 21 datasets. 

 Larger-size UCR datasets 4.1.2

These datasets were additionally used to evaluate the classification accuracy of the 

proposed Local Scaling Dynamic Time Warping (LSDTW) on general time series. 

LFN has higher time complexity and more parameters than LSDTW, but LFN cannot 

perform better than LSDTW such that LFN will not be more evaluated. Similar to the 

previous experiments, 1-nearest neighbor (1-NN) classifier was used on 20 UCR 

public datasets, comparing the results with DTW, DDTW, AFBDTW1, AFBDTW2 

and LCSF. Every dataset on this archive has also already been Z-normalized, labeled, 

and split into training and test sets.  

Grid search was used in the training set to find the w parameter; w was selected 

from { ,  %,  %,…,   %  of the time series length}; w > 0.  Leave-one-out cross 

validation and 1-NN classifier were used to calculate the accuracy for each w. The w 

value with a highest accuracy in the training set was then used to evaluate the test set. 

Table 4-2 compares the classification accuracies of the proposed Local Scaling 

Dynamic Time Warping (LSDTW) with other rival methods, i.e., DTW, DDTW, 
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AFBDTW1, and AFBDTW2, along with their improvement over DTW. A boldface 

number indicates the highest accuracy of each dataset, and a red number indicates a 

decline in the accuracy comparing with DTW. 

Longest Common Local Scaling Feature (LCSF) was also evaluated here, even 

though Longest Common Local Scaling Feature (LCSF) has such a large time 

complexity that was almost impossible to complete the experiments on all datasets 

within realistic amount of time. 

Table 4-2 Classification accuracy and the improvement over DTW 

Dataset 

Name 

DTW DDTW AFBDTW1 Improvement AFBDTW2 Improvement LCSF LSDTW(w) Improvement 

50 words 0.690 0.651 0.787 14.06% 0.807 16.96% 0.712 0.798(24) 15.62% 

Adiac 0.604 0.591 0.660 9.27% 0.683 13.08% 0.458 0.685(12) 13.41% 

Beef 0.633 0.767 0.667 5.37% 0.633 0% 0.667 0.967(9) 52.76% 

CBF 0.997 0.577 0.996 -0.1% 0.979 -1.81% 0.813 0.999(1) 0.2% 

Coffee 1 0.929 0.821 -17.9% 0.864 -13.6% 0.964 1(17) 0% 

ECG200 0.770 0.730 0.880 14.29% 0.880 14.29% 0.820 0.900(8) 16.88% 

Face All 0.808 0.445 0.811 0.37% 0.802 -0.74% 0.795 0.812(7) 0.47% 

Face Four 0.830 0.580 0.875 5.42% 0.875 5.42% 0.955 0.943(11) 13.64% 

Fish 0.823 0.851 0.903 9.72% 0.949 15.31% 0.943 0.931(19) 13.17% 

Gun Point 0.907 0.907 0.980 8.05% 0.980 8.05% 0.973 0.987(14) 8.78% 

Lightning2 0.869 0.623 0.885 1.84% 0.885 1.84% 0.803 0.902(1) 3.76% 
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Lightning7 0.726 0.562 0.712 -1.93% 0.699 -3.72% 0.671 0.808(10) 11.29% 

Olive Oil 0.833 0.833 0.833 0% 0.800 -3.96% 0.933 0.833(40) 0% 

OSU Leaf 0.591 0.731 0.731 23.69% 0.756 27.92% 0.777 0.843(9) 42.64% 

Swedish 
Leaf 0.792 0.827 0.891 12.5% 0.886 11.87% 0.842 0.891(13) 12.53% 

Synthetic 

Control 0.993 0.570 0.977 -1.61% 0.947 -4.63% 0.933 0.970(1) -2.32% 

Trace 1 0.960 1 0% 1 0% 0.980 1(11) 0% 

Two 

Patterns 1 0.813 1 0% 1 0% 1 1(1) 0% 

wafer 0.980 0.944 0.993 1.33% 0.994 1.43% 0.996 0.993(2) 1.33% 

yoga 0.836 0.958 0.868 3.83% 0.866 3.59% 0.836 0.866(17) 3.59% 

The proposed Local Scaling Dynamic Time Warping (LSDTW) could perform as 

good as or outperformed DTW in 19 out of 20 datasets, outperformed DDTW in 19 out 

of 20 datasets, outperformed AFBDTW1 in 18 out of 20 datasets, and outperformed 

AFBDTW2 in 16 out of 20 datasets. In some datasets, Local Scaling Dynamic Time 

Warping (LSDTW) drastically outperformed DTW—a 52.76% improvement in Beef 

dataset and a 46.64% improvement in OSULeaf dataset. In particular, time series 

sequences within each class of these datasets actually contain subsequences with 

similar shape but in different scales, exactly for which characteristic the Local Scaling 

Dynamic Time Warping (LSDTW) was particularly created.  

Comparing to the Longest Common Local Scaling Feature (LCSF), Local Scaling 

Dynamic Time Warping (LSDTW) performed as good as or outperformed LCSF in 16 
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out of 20 datasets. Most importantly, Longest Common Local Scaling Feature (LCSF) 

performs poorly in many datasets; LCSF outperforms DTW only in 10 datasets. The 

reason behind this poor performance is that the Longest Common Local Scaling 

Feature (LCSF) considers only the local scaling distance such that it cannot 

distinguish, for example, sin(x) shape and 10sin(x) shape.  

In classification problem, the Longest Common Local Scaling Feature (LCSF) is 

good only for the multiple-subsequence-with-multiple-scale time series but not the 

others in general. On the other hand, Local Scaling Dynamic Time Warping (LSDTW) 

is the updated version from Longest Common Local Scaling Feature (LCSF) that 

counters this problem by taking the original data point into consideration. 

4.2 Synthetic Data 

To emphasize the robustness of the proposed Local Scaling Dynamic Time Warping 

(LSDTW) and Longest Common Local Scaling Feature (LCSF), they both were 

evaluated on synthetic datasets, which are designed to be multiple-subsequence-with-

multiple-scale time series. Local Feature Normalization (LFN) was also compared 

here. The generated datasets have four classes. Each class contains two non-

overlapping subsequences, selected from the three patterns: a sine wave, a square 

wave, or a triangle wave. Each subsequence length varies from 30 to 60 data points 

with its amplitude varying from 0.1 to 10.0. The generated dataset was perturbed by 3 

means: 1) 5-20% noise multiplier (random noise between zero and the amplitude 

multiplied by the noise multiplier is added to each data point), 2) 5-20% missing data, 

and 3) 5-20% combination of noise and missing data. The challenge of this dataset is 

that each time series sequence within each class will contain multiple subsequences of 
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different lengths and different scaling. Each sequence has a total length of 100 data 

points, and each class contains 25 sequences (100 instances/dataset). Examples of the 

datasets are shown in Fig. 4-1. 

 

CLASS 1 

 

CLASS 2 

 

CLASS 3 
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CLASS 4 

Fig. 4-1 Examples of the four classes of synthetic data 

The experiment tuned the parameter w and evaluated the performance using five-

fold cross-validation and 1-NN classifier. As shown in Table 4-3, the proposed Local 

Scaling Dynamic Time Warping (LSDTW) significantly outperforms all other 

methods by giving almost all perfect classification results, demonstrating robustness of 

the proposed method. LFN obviously perform worse than LCSF and LSDTW, which 

are created for handling this kind of time series. 

Table 4-3 Classification accuracy on synthetic datasets 

missing chance%:noise 

multiplier% DTW DDTW AFBDTW1 AFBDTW2 LFN LCSF LSDTW 

5:00 0.93 0.78 0.98 0.96 0.96 1.00 1.00 

10:00 0.96 0.72 0.94 0.92 0.96 1.00 1.00 

15:00 0.93 0.86 0.98 1.00 0.96 0.99 1.00 

20:00 0.86 0.78 0.90 0.90 0.95 0.98 1.00 

0:05 0.94 0.90 0.98 0.98 0.98 1.00 1.00 

0:10 0.98 0.86 0.96 0.96 0.95 1.00 1.00 
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0:15 0.98 0.78 1.00 1.00 0.98 0.99 1.00 

0:20 0.95 0.76 1.00 1.00 0.96 0.97 1.00 

5:05 0.92 0.78 0.98 0.98 0.98 1.00 0.98 

10:10 0.95 0.84 0.92 0.92 0.95 1.00 0.98 

15:15 0.93 0.68 0.98 0.98 0.93 0.99 1.00 

20:20 0.86 0.76 0.90 0.88 0.86 0.96 0.98 

 

4.3 Real World data and Applications 

To explore possibilities in applying the proposed Local Scaling Dynamic Time 

Warping (LSDTW) and Longest Common Local Scaling Feature (LCSF) to real-

world problems, this experiment looked at the problem on wrist strengthening 

rehabilitation exercises for wrist injuries according to Dr. Steve Lucey, an orthopedic 

surgeon at Sports Medicine & Joint Replacement of Greensboro (Lucey, 2018). This 

wrist strengthening exercise has three exercise routines, i.e., wrist flexion, wrist 

extension, and wrist radial deviation, as shown in Fig. 4-2. Wrist flexion starts with 

palm up and slowly bends the wrist upward, then returns to the starting position. Wrist 

extension starts with palm down and slowly bends the wrist upward, then returns to 

the starting position. Wrist radial deviation starts with the wrist in the sideways 

position with the thumb pointing upward, then bends the wrist upward without 

moving the forearm before returning to the starting position. As a typical 

rehabilitation exercise usually contains multiple repetitive moves, the speed and force 
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made by human in each repetition generally vary. This can cause a signal to have 

multiple subsequences with variability in scales, both in X and Y axes.  

 

Fig. 4-2 The three wrist strengthening exercises for wrist injuries with sampled time 

series sequences showing for each class; a mobile phone is tied and taped on middle 

and ring fingers. 

 

To capture the signals as time series sequences, an accelerometer from a mobile 

phone was used as a sensor. An Android application was written to collect 

accelerometer data (magnitude channel) with 20 Hz sampling rate from a smart phone 

(Android 5.1.1, 2.0 GB RAM). The Android application collected 70 samples for each 

class (210 samples in total), each with two repetitions of the routine to make the 

movement more apparent on the sampled signals. The maximum length of the sample 

is 48 data points. 

The experiment was evaluated using 10-fold and 5-fold cross-validation with 1-NN 

classifier. The w parameter was trained using the same way as the experiments on 

UCR datasets. As shown in Table 4-4, the proposed LSDTW has impressively better 

accuracy especially over DTW and DDTW. 
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Table 4-4 Accuracy on wrist strengthening rehabilitation exercise classification 

Fold DTW DDTW AFBDTW2 AFBDTW1 LFN LCSF LSDTW 

10 0.842 0.857 0.892 0.892 0.857 0.920 0.971 

5 0.880 0.894 0.921 0.917 0.894 0.937 0.971 
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 CHAPTER 5

CONCLUSION 

This thesis proposed a Local Feature Normalization (LFN) and a Local Scaling Feature 

(LSF) to normalize noisy/scaled data, and a Longest Common Local Scaling Feature 

(LCSF) similarity measure for time series containing multiple subsequences with a 

variety of scales. The classification results show that the proposed Local Feature 

Normalization (LFN) is very robust, especially on high-error and noisy datasets, and 

the proposed Longest Common Local Scaling Feature (LCSF) also outperforms others 

on both synthetic and real datasets. The execution time of Local Feature Normalization 

(LFN) and Longest Common Local Scaling Feature (LCSF) are O(mn) the same as 

DTW and LCSS if w and c are fixed. 

This thesis also proposed an extension version of Local Feature Normalization 

(LFN) and Longest Common Local Scaling Feature (LCSF) called Local Scaling 

Dynamic Time Warping (LSDTW) to solve a major limitation of Dynamic time 

warping, the inflexible Y-axis matching. This Y-axis inflexibility makes DTW cannot 

handle multiple-subsequence-with-multiple-scale time series, while the proposed 

Local Scaling Dynamic Time Warping (LSDTW), which bases itself on Dynamic 

Time Warping with a simple but powerful distance function, gives more flexibility on 

both X and Y axes. 

Local Scaling Dynamic Time Warping (LSDTW) significantly outperforms many 

existing approaches; DTW, DDTW, AFBDTW, and LCSF, on most datasets, 

especially on synthetic and real-world application datasets, while practically 

consuming the same time complexity as the original DTW.  
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The future researches would be exploring on extending Local Scaling Dynamic 

Time Warping (LSDTW) to work with global constraints and lower bounding 

technique to further reduce time complexity and increase accuracy. 
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Local Scaling Dynamic Time Warping Origin (LSDTWO)  

  wl = min(w, i-1, j-1)  

  wr = min(w, n-i, m-j)     

  α = {α1, α2, …, αwl+wr+1} = 0_1_normalize({ai-wl, …, ai+wr})      (0) 

  β = {β1, β 2, …, βwl+wr+1} = 0_1_normalize({bj-wl, …, bj+wr})   

  LSdist_o(ai, bj) = (α – β)
2
/(wl + 1 + wr) 

At the beginning, the original Local Scaling Dynamic Time Warping, Local Scaling 

Dynamic Time Warping Origin (LSDTWO), was designed only for handling 

multiple-subsequence-with-multiple-scale time series, such that it was not consider 

the original data point. The Local Scaling Dynamic Time Warping Origin (LSDTWO) 

uses the distance function LSdist_o in     as the  T ’s distance function, which is 

only the distance of the normalized local subsequences. The result is that the Local 

Scaling Dynamic Time Warping Origin (LSDTWO) could produce such an aesthetic 

alignment, which could handle multiple-subsequence-with-multiple-scale time series 

matching very well. 

 However, when LSDTWO was used in the classification problem, LSDTWO 

performed very poorly in many datasets as shown in Table A-1; Local Scaling 

Dynamic Time Warping Origin lost Dynamic Time Warping and Adaptive Feature 

Based Dynamic Time Warping in many datasets marked as underlined. 

Table A-1 Preliminary experiments classification 

 DTW AFBDTW1 LSDTW LSDTWO 

50words 0.690 0.787 0.798 0.741 

Adiac 0.604 0.660 0.685 0.657 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

49 

Beef 0.633 0.667 0.967 0.967 

CBF 0.997 0.996 0.999 0.999 

FaceAll 0.808 0.811 0.812 0.808 

Lighting2 0.869 0.885 0.902 0.656 

OliveOil 0.833 0.833 0.833 0.767 

 After conducting many preliminary experiments, the idea of using the original 

point was invented and that became the successfully proposed Local Scaling Dynamic 

Time Warping (LSDTW). Because the weight of the original data point of Local 

Scaling Dynamic Time Warping (LSDTW) is relatively small, the time series 

matching alignments from LSDTW and LSDTWO are not much different as 

illustrated in Fig. A-1. 
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a) LSDTWO 

 
b) LSDTW 

 

Fig. A-1 The comparison between a) LSDTWO and b) LSDTW 
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