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CHAPTER I 

INTRODUCTION 

Inventory management is involved with almost all industries, from items in 

grocery stores to drugs in hospitals to spare parts in automobile manufacturers.  

Inventory cost is one of major costs of the business and managing inventory also 

relates to whether shortage occurs or not which directly affects customer’s 

satisfaction.  However, demand is the key factor determining the difficulty of 

inventory management.  When demand is known in advance it is quite easy to decide 

how to store items.  If demand is stochastic it will be more difficult to manage, 

especially when demand pattern changes over time.  Furthermore, an inventory 

system can be considered as multiple levels of locations or so-called a multi-echelon 

system such as a system consisting of retailers supplied by the warehouse(s).  The 

more levels the system has, the more decisions it requires.  The system with multiple 

levels is very complicated since a decision any location makes will affect other 

locations in the system.  In this thesis, we develop methodologies to manage a 2-

echelon inventory system under seasonal demand with the goal to determine the 

ordering policies for all locations with minimum cost respecting to expected service 

level. 

In this work, we focus on the system in a service industry.  The system has a 

single warehouse and N non-identical retailers under seasonal demand.  Each location 

replenishes inventory in a fixed time interval.  Retailers are supplied by a warehouse 

which is supplied by external suppliers and items can be stored at the warehouse and 

retailers.  Unsatisfied demand is considered lost. 
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Demand is assumed to be seasonal without trend.  However, it is driven by 

human factor like the stationary items are driven by school calendars.  Since the 

human factor can drive demand in various lengths of cycle such as a month, a week or 

even a day.  The system considered in this thesis has seasonal demand within a cycle 

of one week.  For example, the demand could be high on Monday, Wednesday, and 

Thursday.  On the other hand, demand could be very low on weekend and this pattern 

repeats every week.  This demand pattern can be found at a drug dispensing system in 

a hospital.  The number of patients diagnosed depends on the number of physicians.  

Physicians’ working days are pre-scheduled and the number of physicians is different 

on each day.  The physician’s schedule repeats every week.  Therefore, demand of 

each drug depends on the physicians’ schedule. 

Dealing with seasonal demand as if it is stationary demand can lead to 

shortage or high holding cost.  Therefore, many papers (Graves and Willems, 2008; 

Reddy and Rajendran, 2005; Kim, Wu, and Huang, 2015, Grewal, Enns, and Rogers, 

2015) tackled a system with trend and seasonal demand by varying ordering policy 

along with the changing phases of demand.  However, their demands changed slowly 

compared to lead time such as the length of demand phase is 2,000 hours where lead 

time is 16 hours (Grewal, Enns, and Rogers, 2015) or 100-period demand phase with 

10 period lead time (Graves and Willems, 2008).  This thesis considers 1-day demand 

phase and 1-day lead time; therefore, changing ordering policy everyday as demand 

changes would not be practical. 

1.1 System overview 

A single warehouse, multi-retailer inventory system provides items to 

customers.  Customer demand occurs at retailers which are supplied by the central 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

warehouse and the warehouse is supplied by external suppliers as shown in Figure 1.  

In the system, items are stored at both warehouse and retailers which are assumed to 

have unlimited storage space.  When the warehouse or any retailer orders items, they 

are replenished with known lead time.  The demand which is not satisfied by on-hand 

inventory is considered lost. 

Demand is assumed to be seasonal fluctuating in a cycle of a certain span of 

periods.  The demand pattern repeats every cycle and the total demand per cycle is 

assumed to be stationary. 

Normally, items are regularly replenished from the warehouse to each retailer.  

This regular replenishing mode operates with a deterministic lead time.  However, in 

some cases, when a retailer faces risk of stockouts, this lead time may be too long to 

satisfy customer demand. 

 

 

Figure  1 Overview of the inventory system 
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To deal with the risk of stockouts, there are two other special replenishing 

modes: an emergency replenishing mode and a transshipment mode as shown in 

Figure 2.  The first one is a special delivery with shorter lead time from warehouse to 

a requesting retailer.  The second one is a delivery, also with shorter lead time, from 

another retailer with excessive items, to the requesting one.  Both special modes have 

shorter fixed lead time than the regular mode.   

The system operates under periodic review basis using (R,𝑠, 𝑆) or a periodic 

base stock policy.  The system controls inventory with echelon stock basis.  

Therefore, each location makes decision based on inventory information of its own 

and of all locations downstream.   

 

 

Figure  2 Replenishing modes in the system 
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1.2 Dissertation objective 

The objective of this dissertation is to study a divergent 2-echelon inventory 

problem with multiple replenishing modes under seasonal demand.  The objective is 

to develop a method to determine ordering policies for items of which demand is 

seasonal without trend.  The method determines (𝑅, 𝑠, 𝑆) ordering policy for each item 

to minimize total cost owing to ordering costs and holding cost respecting to expected 

service level.  

1.3 Dissertation scope and assumption 

1.3.1 Scope 

1. This research focuses only on a divergent 2-echelon inventory system. 

2. This research mainly studies items with seasonal demands without trend and 

total cycle demand is stationary. 

3. This research studies only system with (𝑅, 𝑠, 𝑆) ordering policy. 

4. There are 2 additional replenishing modes to be considered as an option. 

5. An ordering policy is determined for only one item at a time. 

1.3.2 Assumption 

1. Warehouse and retailers have unlimited storage spaces. 

2. The entire ordered lot is delivered at the same time. 

3. Suppliers are always sufficient. 

4. There is no quantity discount from suppliers. 

5. Lead time is deterministic. 

6. Unsatisfied demand is considered lost. 

7. Review period, R, is given as 1 period. 
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1.4 Expected dissertation contribution 

Multi-echelon problem is introduced for decades and stay interesting to many 

researchers.  There are papers about multi-echelon inventor problem in various 

aspects.  These papers cover a variety of system structures, assumptions and solution 

approaches.  Unfortunately, to our extent, no paper is found dealing with multi-

echelon under seasonal demand or multi-echelon with more than 2 replenishing 

modes.   

To analyze the system, demand is often assumed stationary with some 

distribution function.  This assumption helps simplify the problem’s complexity.  This 

assumption is relaxed in this research to reflect the real-life situation.  Additionally, as 

the system has single warehouse and multiple retailers, these retailers can also be 

assumed to be identical or non-identical.  The developed heuristic algorithm is 

expected to be able to solve both the system with identical and non-identical retailers. 

There are some papers dealing with system with multiple replenishing modes, 

but they are limited to only 2 types of replenishing mode: a regular mode with an 

emergency mode or a regular mode with a transshipment mode.  In this study, the 

number of replenishing modes is extended to 3 modes.  Additional replenishing mode 

makes the problem more complicated.  The main contribution of this dissertation is to 

develop a method to determine proper (𝑅, 𝑠, 𝑆) ordering policy for a divergent 2-

echelon system with 3 replenishing modes under seasonal demand. 

The remainder of this thesis is organized as follows.  Chapter 2 reviews the 

literature related to the problem.  Chapter 3 presents the first part of the thesis where a 

methodology based on MIP models are proposed.  Chapter 4 presents the second part 

of the thesis where algorithms to improve computational time are proposed.  Then, the 
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third part of thesis in which a system with multiple replenishing modes are studied is 

presented in Chapter 5.  Finally, Chapter 6 concludes and suggests future research 

extensions. 
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CHAPTER II 

LITERATURE REVIEW 

2.1 Inventory system 

The fundamental decisions of inventory management are simple two 

questions: when to order and how much to order.  Based on these two questions, the 

complexity of the inventory models depending on assumptions and constraints about 

the systems considered.  There are many types of inventories in context of 

manufacturing and distribution.  However, one of the most natural ways is to classify 

by value added (Nahmias, 2009).  With this way of classification, there are 4 types of 

inventories: 1) Raw materials 2) Components 3) Work-in-process and 4) Finished 

goods.  All those types of inventories are items that should be kept as few as possible, 

since they cause unnecessary costs.  There are many reasons to hold inventories.   

1) Economies of scale.  Since machine needs setting up to produce a certain 

type of item, it should be economical to produce a number of items in each 

production setup and store them for future use. 

2) Uncertainties.  Uncertainties are often a major reason to hold inventories 

and uncertain demand is the most important.  When items are unavailable, 

unsatisfied customers may go elsewhere and never return.  Inventory 

provides a buffer to prevent these circumstances. 

3) Speculation.  Inventory could help reducing cost by storing item or 

resource of which values are expected to increase. 

4) Transportation.  When transportation takes long time, in-transit or pipeline 

inventories exist. 
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5) Smoothing.  Anticipating changes in demand and storing inventory for 

peak demand can help level production rates and workforce levels. 

6) System constraints.  There are some constraints about logistics leading to 

hold inventory.  One example is that some items require buying in 

minimum quantities or buying in multiple of batch size.   

7) Control costs.  Different inventory control model leads to different costs of 

inventory control.  Controlling inventories in detail to keep them at 

minimum is more costly than just keeping them in large number to be 

sufficient to use.  The suitability of control model depends on many factors 

such as item cost or difficulty to store. 

Inventory systems are different in details.  There are 5 main characteristics of 

inventory systems.   

1) Demand.  The most significant factors affecting complexity of the model 

are pattern and characteristics of the demand.  There are two aspects about 

demand: it is constant or variable and it is known or random.   

2) Lead time.  Lead time is the amount of time taken from placing order until 

receiving items.  Lead time can be both deterministic and stochastic. 

3) Review time.  The systems that inventory level is known all times are 

referred as continuous review.  On the contrary, in the systems with 

periodic review, inventory levels are known only at discrete points of time. 

4) Excess demand.  Excess demand is demand that cannot immediately 

satisfied by on-hand inventory. When excess demand exists, two most 

common assumptions to deal with it, are either demand is back-ordered (or 

demand can wait to be satisfied in the future) or demand is lost (or demand 
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will be served by outside).  With these two assumptions, there are many 

mixed assumptions between these two such as partial back-ordering (only 

part of demand is backordered, and others are lost) or customer impatience 

(customers can wait only within fixed amount of time or order will be 

cancelled). 

5) Changing inventory.  In some context, inventory experiences changes over 

time.  Some items deteriorate or get obsolete such as food or fashion and 

electronic products. 

2.2 Relevant costs 

To optimize the inventory system, the performance criterion of the system 

must be determined.  Generally, inventory models use cost minimization as its 

criterion.  Although different systems have different characteristics, all costs in the 

system can be classified as one these three categories: holding cost, order cost or 

penalty cost. 

2.2.1 Holding cost 

The holding cost, as known as the carrying cost or the inventory cost, is the 

sum of all costs that are proportional to the amount of items physically on hand at any 

point of time.  The components of the holding cost include a variety of items. These 

components are as follows 

• cost of space to store items  

• taxes and insurance 

• breakage, spoilage, deterioration and obsolescence 

• opportunity cost of alternative investment 
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The opportunity cost is often the most significant to determine holding costs.  

Inventory means cash.  To hold inventory means to invest capital.  The higher 

inventory level, the more capital invested.  Since this capital could be invested in 

other operation or project and other components are generally proportional to the 

value of inventory, the interest rate is often used as components of holding cost.  Let 𝑐 

be the value of a unit of inventory, 𝐼 be the annual interest rate, and ℎ be the holding 

cost in term of money per unit per year. Then 

ℎ = 𝐼𝑐 

2.2.2 Ordering cost 

The order cost depends on the amount of inventory that is ordered or 

produced.  In most applications, order cost consists of two components: the fixed cost, 

𝐾 and the variable cost, 𝑐.  The variable cost is referred to as product cost.  The fixed 

cost is independent of the size of the order as long as the amount ordered is not zero.  

The fixed cost would be referred to as costs of order generation and receiving and 

handling the items. 

2.2.3 Penalty cost 

Penalty cost is also known as shortage cost or stock-out cost.  It is the cost of 

not having sufficient stock on hand to satisfy demand.   The penalty costs, 𝑝, are 

different between systems depending on the systems characteristics.  If the system 

assumes demand is back-ordered, the penalty cost includes whatever delay costs 

might be involved.  If demand lost is assumed, the penalty cost includes the lost profit 

that would have been made.  In both cases, a measure of customer satisfaction could 

be included as the loss-of-goodwill cost.  This loss-of-goodwill can be very difficult 

to estimate in practice. 
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2.2.4 Service level 

It is often difficult to determine the penalty cost since in many cases the shortage 

cost involving intangible components such as the loss-of-goodwill.  A common 

substitute for the shortage cost is a service level.  The service level refers to the 

probability that a demand is met.  The applications of service level in continuous and 

periodic review systems are different but, generally, there are two types of service 

level.  Type 1 service level is the probability of not stocking out in the lead time or the 

percentage of periods that all the demand is satisfied.  Type 2 service level is the 

proportion of demand that are met from stock. 

2.3 Economic order quantity 

Economic order quantity model or EOQ model is the most fundamental 

inventory model.  This model describes the trade-off between fixed order costs and 

holding costs.  It is the basis for analysis of more complex inventory systems. 

An EOQ model is based on an assumption that the demand rate is constant at  

𝐷 units per unit time.  (The unit of time may be day, week, month, etc.) In the basic 

model, shortages are not permitted so the costs include fixed order cost or setup cost 

at 𝐾 per order placed proportional order cost at 𝑐 per unit ordered and holding cost at 

ℎ per unit held per unit time.  Let 𝑄 be the order size.  With no lead time, an order 

size of 𝑄 placed at 𝑡 = 0 instantaneously raises the on-hand inventory level from 0 to 

𝑄.  As the demand rate 𝐷, the order of 𝑄 units will be consumed in cycle length of 

𝑇 = 𝑄/𝐷.  To obtain the cost per unit time, total cost is divided by the cycle length of 

𝑇.  In each cycle, the order cost is 𝐾 + 𝑐𝑄.  For the holding cost, the inventory level 

begins at 𝑄 and decreases to 0 at the end of cycle so the average inventory level is 

𝑄/2.  Therefore, holding cost is 
ℎ𝑄

2
.  The total cost per cycle, 𝐺(𝑄), is 
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𝐺(𝑄) =
𝐾 + 𝑐𝑄

𝑇
+

ℎ𝑄

2
 

From cost function, finding the optimal size of order, 𝑄, is as follows (Nahmias, 

2009). 

𝐺(𝑄) =
𝐾 + 𝑐𝑄

𝑄
𝐷

+
ℎ𝑄

2
=  

𝐾𝐷

𝑄
+ 𝑐𝐷 +

ℎ𝑄

2
 

𝐺(𝑄) =  
𝐾𝐷

𝑄
+ 𝑐𝐷 +

ℎ𝑄

2
 

 The cost function, 𝐺(𝑄), is composed of three terms of cycle setup cost, cycle 

product cost and cycle holding cost, respectively.  Then, the shape of the curve 𝐺(𝑄) 

is considered to find 𝑄 to minimize 𝐺(𝑄). 

𝐺′(𝑄) =  −
𝐾𝐷

𝑄2
+ ℎ/2 

and 

𝐺′′(𝑄) =  2𝐾𝐷/𝑄3   >   0 for  𝑄 > 0 

 Since 𝐺′′(𝑄) > 0, the cost function 𝐺(𝑄) is a convex function of 𝑄.  

Moreover, 𝐺′(0) = −∞ and 𝐺′(∞) = ℎ/2.  The optimal value of 𝑄 occurs where 

𝐺′(𝑄) = 0 which is true when 𝑄2 = 2𝐾𝐷/ℎ.  Therefore, the optimal size of order is  

𝑄∗ = √
2𝐾𝐷

ℎ
 

 In the basic model, it is assumed that lead time is zero so the order size of 𝑄 is 

placed when the inventory level is zero.  In the system with positive lead time, 

another decision variable needs to be defined.  With positive lead time, an order must 

be placed before on-hand inventory is completely consumed. The point that an order 

should be placed in advance is called a reorder point.  To calculate the reorder point, 
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two factors are used: the first one is demand rate, 𝐷, and the other is lead time, 𝑙.  The 

reorder point, 𝑠, is the product of demand rate and lead time. 

𝑠 = 𝐷𝑙 

An order must be placed when on-hand inventory level reaches the level of 𝑠 = 𝐷𝑙. 

 Dealing with inventory system in real life, demand is not always known in 

advance.  The demand rate with uncertainty composed of two components which are 

deterministic component and random one.  As there is random component of demand, 

the goal of the system is to minimize expected costs.  However, an EOQ is still useful 

in the uncertain environment.  EOQ can also be used as the size of order in the system 

but what is difficult to determine is reorder point.  Reorder point must be high enough 

to prevent shortage but not too high that incurs unnecessary holding cost.  The exact 

value for the stock-out cost is often difficult to determine.  As mentioned before, a 

common substitute is a service level.  For example, to use the service level (type 1) to 

determine reorder point is to specify the probability of not stocking out in the lead 

time.  The symbol 𝛼 represents that probability.  First the demand distribution must be 

known.  Then probability, 𝛼, is specified and reorder point, 𝑠 is determined to satisfy 

𝛼.  For example, if 𝛼 is set to 0.95, 𝑠 must be set to 95% covering demand in lead 

time period.  Finally, size of order, 𝑄, is set to EOQ.  This system is known as (𝑠, 𝑄) 

system which is a continuous review inventory system.  When inventory level reaches 

reorder point, 𝑠, order size of 𝑄 is placed.  Another type of review system is periodic 

system.  A system generally used in periodic review is (𝑅, 𝑠, 𝑆) policy.  In this system, 

inventory level is only known in a discrete point of time or every 𝑅 review interval.  It 

is difficult to implement (𝑠, 𝑄) policy in periodic review since, when the inventory 

level is reviewed, it might be above or below 𝑠 making it hardly to place an order 
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when inventory level reaches 𝑠.  With (𝑅, 𝑠, 𝑆) policy, when inventory level is 

reviewed, in every 𝑅 interval, if inventory level, 𝑢, is higher than 𝑠, there is no order 

placed. On the other hand, if inventory level, 𝑢, is equal or less than 𝑠, an order size of 

𝑆 − 𝑢 is placed.  An example for base stock policy, (𝑅, 𝑠, 𝑆), shown as Figure 3. 

 

Figure  3 Example for base stock policy, (𝑅, 𝑠, 𝑆) 

 

In this study the system uses (𝑅, 𝑠, 𝑆) policy with 1-day review interval and 

deterministic lead time for warehouse and retailers. 

2.4 2-echelon inventory system 

Multi-echelon system is the case of an item being stock at more than one 

location with resupply being made between at least some of the locations (Silver, 

Pyke, and Peterson, 1998).  Diks, De Kok, and Lagodimos (1996) classified multi-

echelon system into two types: convergent and divergent structure.  The convergent 

structure is the system that each location is supplied by many higher echelons and has 

one lower echelon as shown in Figure 4. This structure is also called assembly 

structure. 
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Figure  4 Convergent multi-echelon system 

 

The other system, the divergent structure, is the system that each location has 

one higher echelon and supplies many lower echelons as shown in Figure 5. This 

structure is also called distribution structure. 

 

Figure  5 Divergent multi-echelon system 

 

The multi-echelon system is more complex than the single-echelon system 

because demand at the higher echelon, i.e. the warehouse, is dependent on the demand 

at the lower echelons.  The demand at the warehouse is not the demand directly 

required by the customers, but it is the demand required by retailers to serve 

customers.  When the warehouse managers make their decision, they should not 

consider only the demand and inventory level at the warehouse, but they should also 
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consider demands and inventory levels at retailers.  This makes the multi-echelon 

system much more complicated.  However, there are many policies to manage the 

inventory in multi-echelon system.  What policy is applicable for the system is 

dependent on two factors which are information and decision process.  If the 

information at every stock point is shared, this is called centralized information. 

Otherwise, if the stock point has only information of its own and its lower echelon, it 

is decentralized information.  If every stock point makes the decision together (or 

someone is authorized to make the decision) with objective for the whole group 

benefit, this is called global decision. If each stock point makes decision for its own 

benefit, it is local decision.  With these two factors, there are 3 reasonable policies as 

shown in Figure 6. 

Control 

Information 

Global Local 

Centralized VMI Echelon stock 

Decentralized Doesn’t make sense! Installation stock 

 

Figure  6 Multi-echelon system management policies  

(Silver, Pyke, and Peterson, 1998) 

 

The VMI or Vendor managed inventory is the policy that the vendor or 

supplier makes all the decisions that what products, how much and when to refill the 

inventory in each retailer.  An echelon stock policy is each stock point makes its 

ordering decision based on the sum of the installation inventory positions at the 

location and all its downstream locations.  An installation stock policy is each stock 
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point makes its decision based on its individual inventory position (Axater & Rosling 

1993). 

Multi-echelon model was first introduced by Clark and Scarf (1960), who 

studied a serial multi-echelon system.  The system operated with uncertain demand, 

under periodic review ordering policies, and on multi-period time horizon.  They 

introduced the concept of “echelon stock” to find an optimal policy for N-echelon 

serial system.  The echelon stock of a stock point is the stock at the location plus all 

those items in-transit or on-hand but not yet committed to customer at its downstream 

stock points.  Therefore, the echelon inventory position of a stock point is its echelon 

stock plus items in-transit to it.  Federgruen and Zipkin (1984a) extended a serial N-

echelon model proposed by Clark and Scarf (1960) from multi-period horizon to 

infinite time horizon with stationary uncertain demand.  They proposed a new 

computational approach.  However, in their study, the system still operated under an 

order-up-to-level periodic ordering policy.  De Bodt and Graves (1985) continued 

analyzing the serial N-echelon by applying a (𝑠, 𝑄) continuous review policy.  To 

apply continuous review policy, they considered some more assumptions. One of the 

key assumptions made was the nested policies which assumed that the order quantity 

at level must be an integral multiple of the order quantity at an immediately 

successive stage.  With nested policies applied, whenever one stage reorders, all 

downstream stages also reorder.  It was also assumed that an order quantity at higher 

stage was a multiple of order quantity at lower stage.  The model was later modified 

proposed to apply to fast moving items by Mitra and Chatterjee (2004).   

From a serial multi-echelon system, there were studies extending the problem 

to a divergent multi-echelon system.  Bessler and Veinott (1965) extended the pure N-
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echelon serial inventory system to general arborescent structure: a divergent system 

that a stock point supplied multiple downstream stock points.  The system was 

analyzed with periodic ordering review and under multi-period time horizon.  In this 

divergent system, when shortage occurred, items could be transshipped from another 

outlet in the same echelon to the outlet with shortage via their common supply stock 

point.  Then, Eppen and Schrage (1981) analyzed divergent 2-echelon system, which 

had one depot and multiple end stock points, on infinite time horizon.  The problem is 

known as depot-warehouse problem.  To deal with the system on infinite time 

horizon, the problem was restricted to some more assumptions.  At end stock points, 

there were stationary uncertain demand, which was normally distributed, and the 

central depot did not hold any stock.  Holding and penalty cost and lead times at end 

stock points were identical.  They also held an allocation assumption which assumed 

that, in each period, the depot received enough material from the supplier, so that each 

end stock point could be allocated sufficient items to ensure its probability of stock-

out equally.  Under these assumptions, with no set-up costs, optimal order-up-to-

policy at the depot was derived.  On the other hand, with fixed set-up costs, an 

approximately optimal policy was derived.  This depot-warehouse problem was 

further studied in many ways.  Federgruen and Zipkin (1984b) extended the model 

proposed by Eppen and Schrage (1981) by relaxed some assumptions.  In their model, 

holding and penalty costs were non-identical and period demand at end stock points 

did not have to be normally distributed.  The demand was independent in the 

successive period.  Erkip, Hausman, and Nahmias (1990) extended the model 

considered by Eppen and Schrage (1981) in a different way from that by Federgruen 

and Zipkin (1984b).  They ignored fixed costs and focused on demand correlation 
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over time and analyzed its effect on the safety stock.  Bollapragada, Akella, and 

Srinivasan (1998) also extended depot-warehouse problem in another way.  They 

allowed non-identical warehouses.  Various parameters were different across 

warehouses.  These parameters, for instance, were lead times, holding cost and 

penalty cost.  Although Federgruen and Zipkin (1984b) also analyzed the problem 

with non-identical warehouses, Bollapragada, Akella, and Srinivasan (1998) derived 

an ordering policy in a different way.  Diks and De Kok (1998) extended the model 

with non-identical warehouses to a higher-than-two-echelon problem with no fixed 

cost considered.  In their analysis, they assumed a balance assumption which assumed 

that the rationing policy always allocated non-negative stock quantities.  De Kok et al. 

(2018) classified multi-echelon inventory research systematically with various 

dimensions such as system structure, resource, demand, performance indicator, and 

research goal.  They also identified research gap and potential future research based 

on recent technology development. 

2.5 Fluctuating demand 

One of important aspects of the system is demand.  Demand pattern can be 

classified into 4 categories: stationary, trend, seasonal and random (Hanke and 

Wichern, 2005).  These patterns are classified by autocorrelation. 

Autocorrelation is the correlation a variable lagged one or more periods and 

itself.  If a series is random, the autocorrelations between 𝑌𝑡and 𝑌𝑡−𝑘 for any lag 𝑘 are 

close to zero.  The successive values of a time series are not related to each other.  If a 

series has a trend, successive observations are highly correlated, and the 

autocorrelation coefficient are typically significantly different from zero for the first 

several time lags and then gradually drop toward zero as the number of lags increase.  
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If a series has a seasonal pattern, a significant autocorrelation coefficient will occur at 

the seasonal time lag or multiples of the seasonal lag.  The seasonal lag is 4 for 

quarterly data and 12 monthly data.   

The seasonal variation can be divided into 2 kinds: those resulting from 

natural conditions and those resulting from human decisions (Silver, Pyke, and 

Peterson, 1998). Therefore, case-study demand is seasonal pattern based on human 

factors since it is induced by the care unit time pattern and number of physicians.  

The demand of the case-study system is seasonal repeatedly fluctuating in 1-

week cycle.  Demand fluctuates in the same pattern every 7 days. In each cycle, 

demand fluctuates in the same pattern and total demand of each cycle is stationary.  

Although the total cycle demand is stationary, periodic seasonal demand makes the 

system much more complicated.  Unlike the system with stationary demand, dealing 

with inventory in a system with seasonal demand has to take demand pattern into 

account.  If inventory policy is determined as if demand is stationary, the more 

demand fluctuates, the more shortage is likely to occurs.   

With fluctuating demand, there are also researches considering multi-echelon 

inventory system with deterministic dynamic demand.  Zangwill (1969) applied an 

echelon concept to a dynamic lot sizing problem on multi-echelon system.  The multi-

echelon dynamic lot sizing problem was extended with various additional constraints 

and it was mostly solved with mixed integer programming model or algorithms based 

on the model such as Lagrangian relaxation or decomposition strategy.  Diaby and 

Martel (1993) studied a system with transportation and product price discount based 

on order quantity.  They developed mixed integer linear programming model and 

Lagrangian relaxation-based procedure to solve the problem.  Jaruphongsa, 
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Cetinkaya, and Lee (2004) formulated mixed integer programming model for a 

problem with demand time window which there were costs occurred both when items 

shipped earlier or later than definite time ranges.  They decomposed the problem into 

a sequence of smaller problems and developed an algorithm based on dynamic 

programming to solve them.  Afzalabadi, Haiji, and Haiji (2016) proposed heuristics 

for deterministic dynamic demand in infinite time horizon for a 2-echelon system.  

The heuristics determined the optimal length of finite time horizon and the optimum 

ordering pattern which led to the minimum cost within infinite horizon.  The proposed 

heuristics gave better result than Silver-Meal algorithm and EOQ model proposed by 

Kovalev and Ng (2008) which was developed for a discrete time inventory problem.  

Besides deterministic demand, some heuristics were developed based on 

mathematical models to solve uncertain demand.  Tarim and Kingsman (2004) 

developed an algorithm based on a mixed integer programming model to solve lot-

sizing problem with service-level constraints for single-item single location on multi-

period.  Their algorithm was improved from a strategy proposed by Bookbinder and 

Tan (1988).  The algorithm decomposed a problem into two stages: (1) determine 

timing to replenish orders using expected demand of all periods and (2) adjust actual 

order size at the time of ordering when actual demand is realized.  Tarim and 

Kingsman (2006), then, applied the algorithm to calculate the (𝑅, 𝑆) policies for a 

single location with non-stationary demand system and Tarim and Smith (2008) 

improved the algorithm to solve within shorter time by using a constraint 

programming model.   

With non-stationary uncertain demand, there are studies both in single-echelon 

and multi-echelon systems.  Although, there are various methods to deal with non-
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stationary demand, many methods are based on the same concept.  One of the 

concepts that is widely used is dividing the non-stationary demand into many phases 

of stationary demand.  In a multi-echelon system with non-stationary demand, Graves 

and Willems (2008) proposed a model to determine locations to hold safety stock and 

size of safety stock at each location.  The model was based on Grave and Willems 

(2000) which was developed for a system with stationary demand.  The model divided 

a planning horizon into many phases with different stationary demands.  Then, safety 

stock for each phase was determined.  The model also determined how safety stock 

levels changed from phase to phase.  Reddy and Rajendran (2005) developed 

heuristics to determine order-up-to policy for a 5-level serial supply chain with non-

stationary demand at the lowest level.  They proposed a dynamic order-up-to policy 

which the policy changed periodically.  A simulation study was conducted to evaluate 

the heuristics in different settings.  Kim, Wu, and Huang (2015) applied a multi-

period newsvendor model to a perishable product with non-stationary demand in a 2-

echelon system.  The model gave better solutions compared to those from single-

period newsvendor and EOQ model.  Grewal, Enns, and Rogers (2015) applied 

simulation-optimization procedure to solve a single-echelon system with seasonal 

demand of two products.  As demand had seasonal pattern which repeated cycle after 

cycle, each cycle could be divided into many phases with the same demand’s 

character as other cycles.  To correspond with demand in each phase, there were as 

many ordering policies as number of phases in a demand cycle.  Therefore, reorder 

points and lot sizes varied along demand pattern regions.  Ordering policy parameters 

were iteratively improved via process between simulation and optimization models.   
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2.6 Multiple replenishing modes 

To reduce stock out problem, a company could have more than one 

replenishing channels.  Besides regular mode, other replenishing modes with shorter 

lead time could be applied.    For example, a company, which normally use seafreight, 

can also use airfreight as an emergency mode with shorter lead time but more 

expensive. 

Emergency replenishing mode is a special replenishment with shorter lead 

time, but higher cost used in case of imminent shortage from the higher-echelon 

location (Tagaras and Vlachos, 2001).  Generally, a system with more than one source 

is considered as dual supplies where items are replenished by two sources or one 

source with 2 modes (Minner, 2003 and Yao and Minner, 2017).  The dual-supply 

problem is studied in various aspects.  Two main policies: a continuous review and a 

periodic review are applied to this problem.  Moinzadeh and Nahmias (1988) 

developed a heuristic algorithm for a system with 2 supply modes under continuous 

review applying (Q1, Q2, R1, R2) policy where an order of Q1 is placed when on-

hand reached R1 reorder point and an order of Q2 with shorter lead time is placed 

when on-hand reached R2 reorder point.  They used a simulation to validate the 

heuristics and the difference in operation cost between system with and without a 

special supply mode was studied.  Zhou and Yang (2016) proposed heuristics to find 

policy for 2 replenishing modes under continuous review where both modes must 

order in batches.  For a group of periodic review, various aspects of constraints such 

as time to place emergency orders or size of orders were studied.  Chiang and 

Gutierrez (1996) proposed a model with 2 replenishing modes under periodic review 

where, at each review period, either a regular order or an emergency order was placed 
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to raise the inventory position to an expected level.  Chiang (2003) extended the 

model with different variable costs between a regular mode and an emergency mode.  

Chand, Li and Xu (2016) proposed model similar to Chiang (2003) but they allowed 

the buyer to choose between two delivery modes at the beginning of the period.  They 

assumed that the unmet demand was backordered and charged a backlogging cost 

varying with the length of backlogging time.  Therefore, the buyer must trade off 

delivery cost and backlogging cost.  Chiang and Gutierrez (1998) allowed multiple 

emergency orders within a review period.  Regular orders and emergency orders are 

placed periodically but emergency orders have smaller review interval.  Chiang 

(2001) analyzed a special case of the same problem with one-period difference 

between lead times of a regular mode and an emergency mode.  Bylka (2005) 

proposed a model similar to Chiang and Gutierrez (1998) and the model was extended 

with an inventory capacity constraint and a limited backlogging constraint.  Tagaras 

and Vlachos (2001) proposed a model for emergency mode where an emergency 

order would be ordered as late as possible to make the items arrive right before the 

end of the period.  The emergency order is placed to raise on-hand level up to the 

threshold level.  When the on-hand level is less than the threshold level, an emergency 

order is placed to raise on-hand up to the threshold level and no emergency order is 

placed otherwise.  Huang, Zeng and Xu (2018) proposed a system where regular and 

emergency orders were supplied by the capacitated suppliers.  Regular orders were 

triggered before the demand is realized but emergency orders were triggered after 

demand realization.  The quantity of emergency order depended on remaining 

capacity of suppliers.  Johansen and Thorstenson (2014) proposed a Markov decision 

model for a system where regular orders were controlled with reorder point and fixed 
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order quantity and emergency orders were controlled with reorder and order-up-to 

points.  Both regular and emergency orders have constant lead time.  Then Johansen 

(2018) extended the model by assuming stochastic lead time for regular orders.   

All those papers studying inventory systems only considered the systems as an 

arborescent distribution system.  (An arborescent system is a tree-like system which 

each location obtains items only from only one higher location.)  However, in this 

chapter, lateral transshipment is also considered.  Lateral transshipments relaxed a 

system to be more flexible and also more complicated.  To allow lateral 

transshipments, locations of the same level have to pool their inventories (Paterson et 

al., 2011).  There are 2 types of pool policies which are complete pooling and partial 

pooling.  With complete pooling, items can always be transshipped with no condition. 

On the other hand, with partial pooling, items are reserved for local future demand 

and will be transshipped when they are excessive items.  Another classification of 

transshipment orders is when they take place.  If transshipments take place before 

demand is observed as predetermined events used to redistribute inventories, they are 

proactive transshipments.  If transshipments take place to respond to stockouts or 

potential stockouts, they are reactive transshipments.  The studies of transshipment 

orders have both single echelon and multi-echelon structures.  Robinson (1990) 

developed a heuristic technique for multi-location, multi-period problems with 

transshipments.  Optimal ordering policies were determined under two special cases: 

two non-identical locations and any number of identical locations. Olsson (2015) 

studied a single echelon, 2 identical locations with positive transshipment lead times.  

Ordering policy was developed with a heuristic algorithm which separated the whole 

system into 2 sub-systems, each with one retailer.  The positive lead time was treated 
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by keeping track of residual lead time to decide whether to wait for oncoming regular 

order or request transshipment.  Tlili, Moalla, and Campagne (2012) studied 2-

echelon system and 2 identical retailers with transshipments.  Demand was 

independent identical normal distribution.  They developed initial solution with 

heuristics based on simulation optimization and, then, used simulation to fine tune to 

the optimal solution.  Tai and Ching (2014) also studied 2-echelon with a number of 

identical retailers.  Ordering policy was developed by using a Markovian model. 

Through all those literatures there is no study researches the system of 2-

echelon with seasonal demand and emergency replenishment or transshipment are 

allowed.  Summary of literatures are shown in table 1. 
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Table  1 Summary of literatures. 

 
System 

structure 

Demand 

Replenishing 

mode 

Researchers 

Multi-echelon 

(serial) 

stationary 1 

Clark and Scarf (1960), Federgruen and Zipkin 

(1984a), Bodt and Graves (1985), Mitra and Chatterjee 

(2004) 

Multi-echelon 

(divergent) 

stationary 1 

Bessler and Veinott (1965), Eppen and Schrage (1981), 

Federgruen and Zipkin (1984b), Erkip et al (1990), 

Dellaert and Poel (1996), Bollapragada et al (1998), 

Diks and de Kok (1998), Rivard-Royer et al (2002), 

Nicholson et al (2004), Meijiboom and Obel (2007), 

Kumar et al (2008), Kelle et al (2012), Guerrero et al 

(2013), Uthayakumar and Priyan (2013) 

Multi-echelon 

(divergent) 

Deterministic 1 

Zangwill (1969), Diaby and Martel (1993), 

Jaruphongsa et al (2004) 

Single-echelon stationary 2 

Robinson (1990), Tagaras and Vlachos (2001), Olsson 

(2015) 

Multi-echelon stationary 2 

Paterson et al (2011), Tlili et al (2012), Tai and Ching 

(2014) 

Multi-echelon 

(serial) 

non-stationary 

(trend) 

1 Reddy and Rajendran (2005) 

Single-echelon non-stationary  1 

Grewal, Enns, and Roger (2015), Graves and Willems 

(2008) 

Multi-echelon 

(divergent) 

non-stationary 

(seasonal) 

3 This research 
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CHAPTER III 

PERIODIC-REVIEW POLICY FOR A 2-ECHELON INVENTORY 

PROBLEM WITH SEASONAL DEMAND 

3.1 Introduction 

Managing inventory in a multi-echelon system is a very complex problem as it 

leads to a lot of decisions on many activities and constraints, i.e. what, how much, and 

when items should be stored at each location, i.e. retailers and warehouse or 

transported from warehouse to each retailer.   

This chapter focuses on an inventory system with a single warehouse and two 

retailers under seasonal demand.  This system is a 2-echelon inventory system whose 

demand only occurs at retailers.  Retailers are supplied by the warehouse and the 

warehouse is supplied by external suppliers.  All locations are replenished with 

known lead time.  The system is illustrated in Figure 7.  In the system, items are 

stored at both warehouse and retailers.  The demand which is not satisfied by on-hand 

inventory is considered as demand loss. 

 

Figure  7 An overview of the inventory system 
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Demand is assumed to be seasonal without trend and fluctuating within a 

cycle of a certain span of periods.  The demand pattern repeats itself cycle after cycle 

and, as there is no trend, the total demand per cycle is assumed to be stationary.  

Seasonal demands can occur as results from natural force or human decisions (Silver, 

Pyke, and Peterson, 1998).  For example, the demand of skiing equipment is driven 

by weather conditions.  On the other hand, department store sales are influenced by 

holidays and school calendars, which are based on human decision (Hanke and 

Wichern, 2005). Dealing with seasonal demand as if it is stationary demand can lead 

to shortage or high holding cost.  For example, in Table 2, system A calculates 

reorder point and order-up-to point by treating demand stationary with an average of 

300 units/period.  As an order is placed at the end of period and it will arrive at the 

end of next period, items are backlogged in periods 3, 4 and 5. System B raises 

reorder and order-up-to points by 300 units to avoid shortage so there is no backlog, 

but the total holding item is increased to 4,164 units.  On the other hand, system C 

calculates ordering policy by considering seasonal demand.  This policy leads to no 

backlog with the total holding item of 3,408 which is lower than system B.  When 

demand pattern is clearly seasonal.  If the ordering policy is developed without taking 

care of this seasonal pattern, it can lead either to shortage as system A or high holding 

cost as system B.  

This thesis considers the system operated under periodic review basis using 

(𝑅, 𝑠, 𝑆) or periodic review base-stock policy in which inventory level is reviewed 

every 𝑅 periods and when the level reaches 𝑠 or lower, an order must be placed to 

raise the inventory level back to equal or higher than 𝑆.  The system controls 

inventory with echelon stock concept where each location makes its own decision.  
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Each retailer knows its own inventory information while the warehouse can access 

information of every location.  The objective of this chapter is to develop an approach 

for determining a proper inventory policy for each location to minimize the total 

inventory cost. 

Table  2 The difference between treating demand as stationary and seasonal patterns 

 

S
y

st
em

 A
 

Reorder 300 

       
Order-up-to 600 

       
Period 0 1 2 3 4 5 6 Total 

Demand 

 

264 144 360 432 264 144 

 
on-hand inventory 600 336 192 240 168 336 192 2064 

order 

 

0 408 360 432 0 408 

 
backlogged     0 -168 -192 -96 0   

S
y

st
em

 B
 

Reorder 600 

       
Order-up-to 900 

       
Period 0 1 2 3 4 5 6 Total 

Demand 

 

264 144 360 432 264 144 

 
on-hand inventory 900 636 492 540 468 636 492 4164 

order 

 

0 408 360 432 0 408 

 
backlogged     0 0 0 0 0   

S
y

st
em

 C
 

Reorder 432 

       
Order-up-to 792 

       
Period 0 1 2 3 4 5 6 Total 

Demand 

 

264 144 360 432 264 144 

 
on-hand inventory 792 528 384 432 360 528 384 3408 

order 

 

0 408 360 432 0 408 

 
backlogged     0 0 0 0 0   

 

The remainder of this chapter is organized as follows.  Section 3.2 reviews the 

literature related to multi-echelon system. Section 3.3 presents a problem description.  
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Section 3.4 describes the methodology to determine ordering policies.  Section 3.5 

presents results and discussions.  Finally, section 3.6 concludes and suggests future 

research extensions. 

3.2 Literature review 

A multi-echelon system is more complex than a single-echelon system 

because demand at higher echelon, i.e. warehouse, is dependent on demand at lower 

echelons, i.e. retailers.  Demand at warehouse is not directly required by customers 

but it is required by retailers to serve customers.  When a warehouse manager makes 

decisions, he should consider not only demand and inventory levels at the warehouse, 

but also consider demand and inventory levels at retailers.   

A multi-echelon model was first introduced as a serial multi-echelon system 

with stationary uncertain demand.  Clark and Scarf (1960) analyzed the system on 

multi-period time horizon by determining the optimal policy for each echelon 

separately.  The system was extended from multi-period horizon to infinite time 

horizon using periodic base stock policies (Federgruen and Zipkin, 1984a).  Besides 

the periodic review policies, De Bodt and Graves (1985) applied a continuous review 

policy using reorder point and order quantity or so called (𝑠, 𝑄).  The model was later 

modified and proposed to apply to fast moving items by Mitra and Chatterjee (2004).  

From a serial inventory system, Bessler and Veinott (1965) generalized the problem 

by including an arborescent structure - a divergent system that a stock point supplied 

multiple downstream stock points.  The system was analyzed with periodic review 

ordering policies in multi-period time horizon.  Then, the problem was extended to a 

divergent 2-echelon system with infinite horizon.  The problem was studied in many 

different ways.  For example, lower echelon locations were identical, and the demand 
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was stationary and normally distributed (Eppen and Scharage, 1981).  Lower echelon 

locations were non-identical (Bollapragada, Akella, and Srinivasan, 1998).   Period 

demands at end stock points were not normally distributed (Federgruen and Zipkin, 

1984b).  Demands had correlation over both location and time (Erkip, Hausman, and 

Nahmias, 1990).   However, these studies assume stationary demand while ours 

assumes seasonal demand.  Furthermore, there are some assumptions required in these 

studies such as nested policy which forces the lower echelon to order when higher 

echelon orders or no inventory at the higher echelon or no fixed ordering cost. 

There are papers considering multi-echelon inventory system with fluctuating 

deterministic demand or so called a deterministic dynamic demand.  Studies in this 

group were called the multi-echelon dynamic lot sizing problem which was extended 

with various additional constraints.  They were mostly solved by mixed integer 

programming models or algorithms such as Lagrangian relaxation or decomposition 

strategy. Zangwill (1969) applied an echelon concept to a multi-echelon dynamic lot 

sizing problem. Diaby and Martel (1993) studied a system with transportation and 

product price discount based on order quantity.  They developed a mixed integer 

programming model and used Lagrangian relaxation-based procedure to solve the 

problem.  Jaruphongsa, Cetinkaya, and Lee (2004) formulated a mixed integer 

programming model for a problem with time window constraint for demand delivery.  

They decomposed the problem into a sequence of smaller problems and developed an 

algorithm based on dynamic programming to solve them.  Afzalabadi, Haji, and Haji 

(2016) proposed heuristics for deterministic dynamic demand in infinite time horizon 

for a 2-echelon system.  The heuristics determined the optimal length of finite time 

horizon and the optimum ordering pattern which led to the minimum cost within 
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infinite horizon.  The proposed heuristics gave better result than Silver-Meal 

algorithm and EOQ model proposed by Kovalev and Ng (2008) which was developed 

for a discrete time inventory problem.  Besides deterministic demand, some heuristics 

were developed based on mathematical models to solve uncertain demand.  Tarim and 

Kingsman (2004) developed an algorithm based on a mixed integer programming 

model to solve lot-sizing problem with service-level constraints for single-item single 

location on multi-period.  Their algorithm was improved from a strategy proposed by 

Bookbinder and Tan (1988).  The algorithm decomposed a problem into two stages: 

(1) determine timing to replenish orders using expected demand of all periods and (2) 

adjust actual order size at the time of ordering when actual demand is realized.  Tarim 

and Kingsman (2006), then, applied the algorithm to calculate the (𝑅, 𝑆) policies for a 

single location with non-stationary demand system and Tarim and Smith (2008) 

improved the algorithm to solve within shorter time by using a constraint 

programming model.   

With non-stationary uncertain demand, there are studies both in single-echelon 

and multi-echelon systems.  Although, there are various methods to deal with non-

stationary demand, many methods are based on the same concept.  One of the 

concepts that is widely used is dividing the non-stationary demand into many phases 

of stationary demand.  In a multi-echelon system with non-stationary demand, Graves 

and Willems (2008) proposed a model to determine locations to hold safety stock and 

size of safety stock at each location.  The model was based on Grave and Willems 

(2000) which was developed for a system with stationary demand.  The model 

divided a planning horizon into many phases with different stationary demands.  

Then, safety stock for each phase was determined.  The model also determined how 
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safety stock levels changed from phase to phase.  Reddy and Rajendran (2005) 

developed heuristics to determine order-up-to policy for a 5-level serial supply chain 

with non-stationary demand at the lowest level.  They proposed a dynamic order-up-

to policy which the policy changed periodically.  A simulation study was conducted 

to evaluate the heuristics in different settings.  Kim, Wu, and Huang (2015) applied a 

multi-period newsvendor model to a perishable product with non-stationary demand 

in a 2-echelon system.  The model gave better solutions compared to those from 

single-period newsvendor and EOQ model.  Grewal, Enns, and Rogers (2015) applied 

simulation-optimization procedure to solve a single-echelon system with seasonal 

demand of two products.  As demand had seasonal pattern which repeated cycle after 

cycle, each cycle could be divided into many phases with the same demand’s 

character as other cycles.  To correspond with demand in each phase, there were as 

many ordering policies as number of phases in a demand cycle.  Therefore, reorder 

points and lot sizes varied along demand pattern regions.  Ordering policy parameters 

were iteratively improved via process between simulation and optimization models.   

Although many researchers chose to apply multiple ordering policies on a 

system with non-stationary demand, the number of decision conditions will grow 

rapidly if the system deals with many products and their demands change frequently.  

Due to complexity, multiple policies for non-stationary demands are not usually 

practical in real-life situations.  The concept to apply different ordering policies to 

each phase of demand is proper when each demand phase is longer than review period 

and lead time.  For example, when demand phase is 2,000 hours and lead time is 16 

hours (Grewal, Enns, and Rogers, 2015).  Tunc et al. (2011) investigated that when 

demands followed a stable seasonal pattern with high uncertainty, stationary policies 
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could reasonably substitute the optimal non-stationary policies.  Stationary policies 

would be efficient in the system with high uncertain demand, high setup cost and low 

penalty cost.  For more classification in multi-echelon inventory system, please refer 

to De Kok et al. (2018).  They classified multi-echelon inventory research 

systematically with various dimensions such as system structure, resource, demand, 

performance indicator, and research goal.  They also identified research gap and 

potential future research based on recent technology development. 

This chapter studies a divergent 2-echelon system with seasonal demand.  

Since demand phase in our problem is one period or a length of each season is one 

period, which is shorter than a review period.  Multiple policies as many papers used 

for seasonal demand may not be proper.  Therefore, we choose to apply a single 

policy to our problem.  The objective of this chapter is to develop a methodology to 

determine ordering policies to minimize the total cost respected to expected service 

level. 

3.3 Problem Statement 

This section describes the problem and shows the model formulation to 

determine ordering policies.  The problem considered is a 2-echelon inventory system 

having one warehouse and 𝑁 retailers with seasonal stochastic demand.  Retailers are 

supplied by the warehouse and the warehouse is supplied by external suppliers.  All 

locations are replenished with known lead time.  Demand that is not satisfied with on-

hand inventory will be considered as demand loss.  The amount of loss must not 

exceed expected service level or, in this case, fill rate - the proportion of demand 

served from on-hand inventory (Nahmias, 2009). 
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Demand is assumed to be seasonal without trend and fluctuating within a 

cycle of a certain span of periods.  The demand pattern repeats itself cycle after cycle 

as shown in Figure 8.  Period demands are assumed to be normally distributed.  For 

example, in Figure 8, each cycle consists of 4 periods.  Average demand of periods 1, 

5, 9 and 13 are normally distributed with the same parameters and so are periods 2, 6, 

10 and 14.  

  The system operates on periodic review basis using reorder point and order-

up-to point or (𝑅, 𝑠, 𝑆).  The system controls inventory with echelon stock basis which 

means each location makes decision on its own inventory information and the 

information of all locations downstream.  This chapter proposes a methodology to 

find optimal inventory policy based on (𝑅, 𝑠, 𝑆) system to minimize ordering and 

holding cost respected to expected service level. 

Since we consider stochastic demand, it is difficult to find the optimal solution 

by using a mathematical model.  However, a mixed integer programming model is 

developed to clarify the problem. 

 

Figure  8 Demand pattern. 
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The model objective is to minimize the total cost due to ordering and holding 

costs.  A mixed-integer programming model is as follows. 

Indices 

𝐼𝑟   is a set of retailers {1,2, . . , 𝑛} 

𝐼𝑟𝑤  is a set of stock points including a warehouse and retailers {0,1, . . , 𝑛} 

(the warehouse is referred as 𝑖 = 0) 

𝐽  is a set of periods {1,2, . . , 𝑚} 

Parameters 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗  = Demand of retailer 𝑖 in period 𝑗 (units) 

𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖  = Ordering cost of stock point 𝑖 ($) 

𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖  = Holding cost of stock point 𝑖 ($/unit/period) 

𝑡𝑖   = Lead time of stock point 𝑖 (periods) 

𝑠𝑒𝑟𝑣𝑙𝑒𝑣𝑒𝑙𝑖  = Expected service level of retailer 𝑖 

𝑟𝑖𝑗  = 1 if stock point 𝑖 reviews its inventory in period 𝑗;  

= 0 otherwise 

𝑀𝑖 = A positive number that is greater than the total demand in planning 

horizon  

      of stock point 𝑖 

Decision variables 

𝐼𝑖𝑗   = On-hand inventory level at stock point 𝑖 at the end of period 𝑗 (units) 

𝑂𝑖𝑗   = Ordering amount of stock point 𝑖 at the end of period 𝑗 (units) 

𝐿𝑜𝑠𝑡𝑖𝑗  = Demand loss of retailer 𝑖 in period 𝑗 (units) 
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𝐿𝑖𝑗    = 1 if on-hand inventory of retailer 𝑖 in period 𝑗 is not sufficient to 

cover period’s demand; 

  = 0 otherwise 

𝑍𝑖𝑗   = 1 if an order at stock point 𝑖 in period 𝑗 is placed; 

= 0 otherwise 

𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖  = reorder point of stock point 𝑖 (units) 

𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖  = order-up-to point of stock point 𝑖 (units) 

 

Objective function 

Minimize ∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0 ∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0  (1) 

 

Subject to 

𝐼𝑖𝑗−1 + 𝑂𝑖𝑗−𝑡𝑖
+ 𝐿𝑜𝑠𝑡𝑖𝑗 =  𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗 + 𝐼𝑖𝑗   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (2) 

𝐼0𝑗−1 + 𝑂0𝑗−𝑡0
= ∑ 𝑂𝑖𝑗

𝑛
𝑖=1 + 𝐼0𝑗     ∀𝑗 ∈ 𝐽  (3) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗 − (𝐼𝑖𝑗−1 + 𝑂𝑖𝑗−𝑡𝑖
) ≤ 𝐿𝑖𝑗  ×  𝑀𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (4) 

(𝐼𝑖𝑗−1 + 𝑂𝑖𝑗−𝑡𝑖
) − 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗 ≤ (1 − 𝐿𝑖𝑗)  × 𝑀𝑖  ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (5) 

𝐿𝑜𝑠𝑡𝑖𝑗 ≤ 𝐿𝑖𝑗  ×  𝑀𝑖      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (6) 

𝐼𝑖𝑗 ≤ (1 − 𝐿𝑖𝑗)  × 𝑀𝑖      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (7) 

𝑍𝑖𝑗 × 𝑟𝑖𝑗 × 𝑀𝑖  ≥  𝑂𝑖𝑗      ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽 (8) 

𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

+ (𝑍𝑖𝑗 + (1 − 𝑟𝑖𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖   

        ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽  (9) 

𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖 + (1 − 𝑍𝑖𝑗) × 𝑀𝑖    ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽            (10) 
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𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

+ (1 − 𝑍𝑖𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖  ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽           (11) 

𝐼𝑖𝑗−1 + ∑ 𝑂𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 + (1 − 𝑍𝑖𝑗) × 𝑀𝑖 ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽           (12) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + (𝑍0𝑗 + (1 − 𝑟0𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0  

∀𝑗 ∈ 𝐽            (13) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 ≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0 + (1 − 𝑍0𝑗) × 𝑀𝑖  

∀𝑗 ∈ 𝐽            (14) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂0𝑗 + (1 − 𝑍0𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0  

         ∀𝑗 ∈ 𝐽             (15) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂0𝑗 ≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0 + (1 − 𝑍0𝑗) × 𝑀𝑖  

         ∀𝑗 ∈ 𝐽             (16) 

1 −
𝐿𝑜𝑠𝑡𝑖𝑗

𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗
 ≥  𝑠𝑒𝑟𝑣𝑙𝑒𝑣𝑒𝑙𝑖     ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽            (17) 

𝐼𝑖𝑗 , 𝑂𝑖𝑗, 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖, 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 ≥ 0    ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽        (18) 

𝑍𝑖𝑗 ∈ {0,1}       ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽        (19) 

 

The objective function (1) is to minimize the total cost of a system due to 

ordering and holding costs.  Constraints (2) are inventory levels and product flows in 

and out (and also loss) at each retailer in each period and constraints (3) are inventory 

levels and product flows in and out at the warehouse.  It is assumed that the 

warehouse always has sufficient items for retailers’ orders so there is no demand loss 

at the warehouse.  Constraints (4) to (7) force decision variables 𝐿𝑜𝑠𝑡𝑖𝑗 and 𝐼𝑖𝑗.  If 

available inventory at the retailer is sufficient to serve period’s demand, 𝐿𝑖𝑗 will be 

zero and 𝐿𝑜𝑠𝑡𝑖𝑗will be zero; otherwise, 𝐿𝑖𝑗 will be 1 and 𝐼𝑖𝑗 will be zero.  Constraints 
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(8) define that, on review period (𝑟𝑖𝑗 = 1), if retailer(s) or warehouse place order, 

fixed ordering costs will occur.  If it is not on review period (𝑟𝑖𝑗 = 0), order amount, 

𝑂𝑖𝑗, will be zero.  In constraints (9) through (16), reorder points and order-up-to 

points for the stock points are defined.  Constraints (9) to (12) are applied to retailers, 

while constraints (13) to (16) are applied to the warehouse.  Constraints (9) and (10) 

force the retailers to place orders when their inventory positions (the total level of 

items on-hand and on-order) are less than or equal to the reorder points and there must 

be no order placed when inventory positions are higher than the reorder points.  In 

constraints (9), if the inventory positions are equal to or lower than reorder points and 

𝑟𝑖𝑗 = 1, 𝑍𝑖𝑗 will be 1.  If 𝑟𝑖𝑗 = 0, 𝑍𝑖𝑗 will be either 1 or 0 where it tends towards 0 due 

to the objective function.  There is a -0.5 term on the left-hand side because, without 

this term, when the inventory position is equal to reorder points, 𝑍𝑖𝑗 can be either 0 or 

1 which means that it might be no order placed.  In constraints (10), on the other 

hand, if the inventory positions are higher than reorder points, 𝑍𝑖𝑗 will be 0.  

Constraints (11) and (12) force the inventory positions after placing orders to be equal 

to the order-up-to points.    In these two constraints, if 𝑍𝑖𝑗 = 0, the constraints will 

always be true.  In constraints (11), when an order is placed or 𝑍𝑖𝑗 = 1, the inventory 

level plus order must not less than the order-up-to point.  Besides, in constraints (12), 

the inventory level plus order must not exceed the order-up-to point.  Constraints (13) 

through (16) are similar to constraints (9) to (12) but they are applied to the 

warehouse.  The major difference between the warehouse and retailers is that, at the 

warehouse, an echelon stock concept is applied so the inventory level is the 

summation of inventory on-hand and on-order in the system.  The echelon stock 
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concept is applied to the warehouse since demands occur only at retailers.  Without 

information of inventory level at retailers, the warehouse must hold stock sufficient to 

fill retailers’ orders all the time which leads to higher holding cost.  By applying the 

echelon stock concept, the warehouse can predict when retailers are about to place 

orders and can manage to fill its inventory just before those orders are placed.  

Constraints (17) guarantee service level for every retailer.  Constraints (18) and (19) 

force all decision variables to be either positive values or binary. 

3.4 Methodology 

Since the system has stochastic seasonal demand, it cannot be directly solved 

by a mixed integer programming model.  Like an approach proposed by Bookbinder 

and Tan (1988), they proposed methodology composed of 2 phases – (1) determine 

timing of replenishment and number of periods to cover (2) determine safety stocks.  

We propose a 2-phase methodology.  The first phase calculated the deterministic 

policies by using average period demand.  These deterministic policies are used to 

determine when to order and the number of period’s demands which the order 

quantity covers.  The second phase is finding appropriate safety stock levels based on 

the deterministic policies from the first phase to absorb variability of stochastic 

demand.  Safety stock levels can be determined by solving various demand scenarios.  

3.4.1 Determining policy for deterministic demand component  

This phase is used to determine when to order and the number of periods 

which the order quantity covers their demand.  Since demand is assumed 

deterministic, policies are determined based on average demand. 
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3.4.1.1 Concepts for determining initial ordering policy 

Since a mixed integer programming model in Section 3 is used to determine 

deterministic policies.  The problem is solved within finite-period horizon while real-

life system lies within infinite period.  A conflict emerges when an infinite horizon 

problem is solved using finite horizon.  While there is no demand after the planning 

time horizon, on-hand inventory level at the last period tends to be zero which gives 

lower holding cost.  Applying this type of solutions to an infinite-horizon problem 

may lead to shortage at the period beyond the considered horizon.  Therefore, 

constraints (20) and (21) are added to the MIP model to force on-hand and on-order 

inventory at the beginning to be equal to those at the end of horizon.  Noted that, in 

case of stationary demand, the planning horizon can be any periods since every period 

has the same average demand.  However, since we consider seasonal demand, each 

period has different average demand so on-hand and on-order inventory at the end of 

horizon must come from the same period of a cycle as the period at the beginning of 

the horizon.  Due to this concept, the planning horizon must be the multiple of cycles. 

 

𝐼𝑖0 =  𝐼𝑖𝑚       ∀𝑖 ∈ 𝐼𝑟𝑤 (20) 

𝑂𝑖0 =  𝑂𝑖𝑚       ∀𝑖 ∈ 𝐼𝑟𝑤 (21) 

 

3.4.1.2 Alternatives for determining initial ordering policy 

As the system operates on periodic review basis or (𝑅, 𝑠, 𝑆) policy, there can 

be alternative solutions for each problem which provide the same minimum total cost.  

For example, the problem with 4-period demand cycle shown in Table 3 has reorder 

point of 480 and order-up-to point of 4480.  Since an order will be placed whenever 
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the inventory position reaches the reorder point or below to raise the level up to the 

order-up-to point, the inventory position will raise to the same level no matter how 

many on-hand items at the time.  Therefore, the reorder points between 480 to 1,359 

with the same order-up-to point of 4,480 give the same result as shown in Table 3.  

Although, both 480 and 1,359 reorder points give the same results in this 

deterministic phase, they can lead to different safety stocks in the second phase which 

means the different total costs. 

Table  3 Example of alternative solutions. 

 
Period 0 1 2 3 4 5 6 7 8 

Demand 

 

880 480 1200 1440 880 480 1200 1440 

on-hand inventory 1360 480 4000 2800 1360 480 4000 2800 1360 

on-order inventory 0 4000 0 0 0 4000 0 0 0 

inventory position 1360 4480 4000 2800 1360 4480 4000 2800 1360 

 

With these alternative solutions, there are 2 policies obtained from the model.  

We name them lower policy and upper policy.  The lower one is the policy with the 

lowest value of reorder point or 480 units in this case and the upper one is the policy 

with highest value or 1,359 units.  The lower and upper policies will apply to all stock 

points in the system.  To obtain lower-alternative policy, the objective function is 

modified as follow.  The objective function (22) is the original function modified as a 

goal programming model of which the main objective is minimizing the total cost 

weighted by 𝑊𝑐𝑜𝑠𝑡 and the secondary objective is minimizing reorder point.  The 

value of 𝑊𝑐𝑜𝑠𝑡 should be high enough to dominate sum of the reorder points. 
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Minimize 𝑊𝑐𝑜𝑠𝑡 × (
∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖

𝑚
𝑗=1 +𝑛

𝑖=0

∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0

) + ∑ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖
𝑛
𝑖=0  

          (22) 

On the other hand, upper-alternative policy can be obtained via another 

modified objective function (23).   

Minimize 𝑊𝑐𝑜𝑠𝑡 × (
∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖

𝑚
𝑗=1 +𝑛

𝑖=0

∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0

) − ∑ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖
𝑛
𝑖=0  

          (23) 

To compare the quality of solutions, one more policy is developed based on 

EOQ concept.  A solution with EOQ concept is determined by forcing the difference 

between reorder point and order-up-to point at each retailer equal to EOQ.  

Constraints (24) is added to the model to force the difference between order-up-to and 

reorder points close to EOQ value.  The 𝑑𝑖𝑓𝑓𝑖
+ is positive when the difference 

between order-up-to point and reorder point is greater than EOQ.  An EOQ-

alternative policy is determined with the objective function (25).  In this case, the 

different between order-up-to point and reorder point equals to EOQ is the main 

objective.  Therefore, 𝑊𝐸𝑂𝑄 must be high enough to dominate another objective. 

(𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑡𝑜𝑖 − 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖) −  𝑒𝑜𝑞𝑖 = 𝑑𝑖𝑓𝑓𝑖
+ − 𝑑𝑖𝑓𝑓𝑖

− ∀𝑖 ∈ 𝐼𝑟 (24) 

Minimize ∑ ∑ 𝑍𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0 ∑ ∑ 𝐼𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖
𝑚
𝑗=1

𝑛
𝑖=0  

+𝑊𝐸𝑂𝑄 × (𝑑𝑖𝑓𝑓𝑖
+ − 𝑑𝑖𝑓𝑓𝑖

−)  (25) 

Therefore, there are 3 alternative policies for each instance from the first 

phase.  After determining initial policies for each instance, each policy will be used as 

input to determine safety stock levels to deal with uncertain component of demand in 

the next phase.  
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3.4.2 Determining safety stock for random demand component 

Since demand is normally distributed, solution from the first phase which 

based on average demand may not achieve expected service level in various 

scenarios.  In this phase, safety stock levels are calculated for all stock points to 

absorb variability of demand. 

Various scenarios of demand are generated from the normal distribution and a 

set of scenarios is solved simultaneously with a MIP model to find safety stock level 

by using ordering policy from the previous model as input parameters.  Those input 

parameters are 𝑑𝑒𝑡𝑒𝑟𝑚𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖, 𝑑𝑒𝑡𝑒𝑟𝑚𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖, 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑖 and 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙. 

Reorder points and order-up-to points of final ordering policy are reorder points and 

order-up-to points from initial policy plus safety stock. 

The model in this phase is developed based on the model in the previous 

section with some adjustment to deal with multiple scenarios and demand loss.  

Additional indices, parameters and decision variables are as follows. 

Additional indices 

𝑆  is a set of scenarios {1,2, . . , 𝑡} 

𝐿  is a set of periods {− max{𝑙𝑒𝑎𝑑𝑇𝑖𝑚𝑒𝑖} + 1, . . ,0} 

Additional parameters 

𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗   = Demand of retailer 𝑖 in period 𝑗 of scenario 𝑠 (units) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑖   = Initial on-hand inventory level of stock point 𝑖 (units) 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙   = Initial on-order of stock point 𝑖 on period 𝑙 (units) 

𝑑𝑒𝑡𝑒𝑟𝑚𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖  = Deterministic reorder point of stock point 𝑖 (units) 

𝑑𝑒𝑡𝑒𝑟𝑚𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖  = Deterministic Order-Up-To point of stock point 𝑖 (units) 
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Additional decision variables 

𝐼𝑠𝑖𝑗  = Inventory level at stock point 𝑖 at the end of period 𝑗 of  

scenario 𝑠 (units) 

𝑂𝑠𝑖𝑗   = Ordering amount of stock point 𝑖 at the end of period 𝑗 of  

scenario 𝑠 (units) 

𝐿𝑜𝑠𝑡𝑠𝑖𝑗   = Demand loss of retailer 𝑖 in period 𝑗 of scenario 𝑠 (units) 

𝐿𝑠𝑖𝑗    = 1 if on-hand inventory of retailer 𝑖 in period 𝑗 of scenario 𝑠 is not 

sufficient to cover period’s demand; 

  = 0 otherwise 

𝑍𝑠𝑖𝑗   = 1 if regular order at stock point 𝑖 in period 𝑗 of scenario 𝑠 is placed; 

= 0 otherwise 

𝑆𝑆𝑖  = Safety stock of stock point 𝑖 (units) 

Objective function 

Minimize 

∑ ∑ ∑ 𝑍𝑠𝑖𝑗 × 𝑐𝑜𝑠𝑡𝑜𝑟𝑑𝑒𝑟𝑖
𝑚
𝑗=1 +𝑛

𝑖=0
𝑡
𝑠=1 ∑ ∑ ∑ 𝐼𝑠𝑖𝑗 × 𝑐𝑜𝑠𝑡ℎ𝑜𝑙𝑑𝑖𝑛𝑔𝑖

𝑚
𝑗=1

𝑛
𝑖=0

𝑡
𝑠=1    

          (26) 

Subject to 

𝐼𝑠𝑖𝑗−1 + 𝑂𝑠𝑖𝑗−𝑡𝑖
+ 𝐿𝑜𝑠𝑡𝑠𝑖𝑗 =  𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗 + 𝐼𝑠𝑖𝑗  

 ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (27) 

𝐼𝑠0𝑗−1 + 𝑂𝑠0𝑗−𝑡0
= ∑ 𝑂𝑠𝑖𝑗

𝑛
𝑖=1 + 𝐼𝑠0𝑗  ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆   (28) 

𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗 − (𝐼𝑠𝑖𝑗−1 + 𝑂𝑠𝑖𝑗−𝑡𝑖
) ≤ 𝐿𝑠𝑖𝑗  ×  𝑀𝑖  

∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (29) 
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(𝐼𝑠𝑖𝑗−1 + 𝑂𝑠𝑖𝑗−𝑡𝑖
) − 𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗 ≤ (1 − 𝐿𝑠𝑖𝑗)  × 𝑀𝑖    

      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (30) 

𝐿𝑜𝑠𝑡𝑠𝑖𝑗 ≤ 𝐿𝑠𝑖𝑗  ×  𝑀𝑖    ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (31) 

𝐼𝑠𝑖𝑗 ≤ (1 − 𝐿𝑠𝑖𝑗)  ×  𝑀𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (32) 

𝑍𝑠𝑖𝑗 × 𝑟𝑖𝑗 × 𝑀𝑖  ≥  𝑂𝑠𝑖𝑗   ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (33) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

+ (𝑍𝑠𝑖𝑗 + (1 − 𝑟𝑖𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖    

∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (34) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗−1
𝑙=𝑗−𝑡𝑖

≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖 + (1 − 𝑍𝑠𝑖𝑗) × 𝑀𝑖     

      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (35) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

+ (1 − 𝑍𝑠𝑖𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖    

∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (36) 

𝐼𝑠𝑖𝑗−1 + ∑ 𝑂𝑠𝑖𝑙
𝑗
𝑙=𝑗−𝑡𝑖

≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 + (1 − 𝑍𝑠𝑖𝑗) × 𝑀𝑖   

      ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (37) 

∑ 𝐼𝑠𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + (𝑍𝑠0𝑗 + (1 − 𝑟0𝑗)) × 𝑀𝑖 − 0.5 ≥ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0 

      ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆   (38) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 ≤ 𝑅𝑒𝑂𝑟𝑑𝑒𝑟0 + (1 − 𝑍𝑠0𝑗) × 𝑀𝑖    

∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆   (39) 

∑ 𝐼𝑠𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂𝑠0𝑗 + (1 − 𝑍0𝑗) × 𝑀𝑖 ≥ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0  

      ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆   (40) 

∑ 𝐼𝑖𝑗−1
𝑛
𝑖=0 + ∑ ∑ 𝑂𝑠𝑖𝑙

𝑗−1
𝑙=𝑗−𝑡𝑖

𝑛
𝑖=0 + 𝑂𝑠0𝑗 ≤ 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0 + (1 − 𝑍𝑠0𝑗) × 𝑀𝑖  

      ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆   (41) 
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1 −
𝐿𝑜𝑠𝑡𝑠𝑖𝑗

𝑑𝑒𝑚𝑎𝑛𝑑𝑠𝑖𝑗
 ≥  𝑠𝑒𝑟𝑣𝑙𝑒𝑣𝑒𝑙𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆 (42) 

𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖 =  𝑑𝑒𝑡𝑒𝑟𝑚𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖 + 𝑆𝑆𝑖   ∀𝑖 ∈ 𝐼𝑟, ∀𝑠 ∈ 𝑆   (43) 

𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 =  𝑑𝑒𝑡𝑒𝑟𝑚𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 + 𝑆𝑆𝑖  

∀𝑖 ∈ 𝐼𝑟, ∀𝑠 ∈ 𝑆   (44) 

𝐼𝑠𝑖0 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝐼𝑖 + 𝑆𝑆𝑖     ∀𝑖 ∈ 𝐼𝑟, ∀𝑠 ∈ 𝑆   (45) 

𝑂𝑠𝑖𝑙 =  𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙    ∀𝑖 ∈ 𝐼𝑟, ∀𝑙 ∈ 𝐿, ∀𝑠 ∈ 𝑆  (46) 

𝐼𝑠𝑖𝑗 , 𝑂𝑠𝑖𝑗, 𝑅𝑒𝑂𝑟𝑑𝑒𝑟𝑖, 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 ≥ 0 ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (47) 

𝑍𝑠𝑖𝑗 ∈ {0,1}     ∀𝑖 ∈ 𝐼𝑟𝑤, ∀𝑗 ∈ 𝐽, ∀𝑠 ∈ 𝑆  (48) 

The objective function (26) is to minimize the total cost of the system in all 

scenarios due to ordering cost and holding cost. Constraints (27) through (42) force 

variables in the same way as constraints (2) to (17).  Constraints (43) and (44) 

calculate reorder points and order-up-to points of the final policy.  Constraints (45) 

force initial on-hand inventory, 𝐼𝑠𝑖0, equal to an initial amount obtained from the 

previous model plus safety stock.  Constraints (46) force initial on-order before the 

first period, 𝑂𝑠𝑖𝑙, equal to an initial amount obtained from the previous model, 

𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑂𝑖𝑙.  Constraints (47) and (48) force all decision variables to be either positive 

values or binary. 

3.5 Experimental Results and Discussion 

The experiment summary is shown in Figure 9.  To test the proposed 

methodology, in the first phase, six instances are developed.  Three instances have 4-

period cycle and the others have 7-period cycle.  Each group of three instances has the 

same period-cycle demand pattern and holding cost but different ordering costs: high, 

low and zero.  High value is ordering costs of which EOQ values close to the 

retailers’ cycle demand and low value is costs of which EOQ values smaller than the 
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cycle demand.  Certainly, the zero value is an ordering cost with value of zero.  In 

Figure 9, the ordering cost and holding cost ratios are shown for each location as 

(WH, R1, R2) which means the warehouse, retailer1 and retailer2.  In all instances, 

holding cost is 1 ($/unit/period).  Demand pattern for each retailer is also shown as 

average demand in each period.  These six instances are solved using an MIP model 

in phase I to find the best reorder and order-up-to points for average demand under 

three initial policies.  These three initial policies are lower, upper and EOQ discussed 

in section 3.4.1.2.  Since the horizon must be multiples of cycles, 6-cycle planning 

horizon is used in this phase.  Therefore, the 4-period cycle instances have 24-period 

horizon and the 7-period cycle instances have 42-period horizon.  The MIP models 

were solved by using CPLEX.  All experiments ran on a computer with 2.00 GHz 

Intel Core i7 processor and 4 GB of RAM. 

In the second phase, 3 different standard deviations are used to generate 

various scenarios of the problem, i.e. 10%, 20% and 25% of average demand.  We 

assumed that demands are normally distributed.  Demand in each period is randomly 

generated based on average and standard deviation of that period.  Demand of the 1st 

period in every cycle has the same average and standard deviation.  This also applies 

to the 2nd, 3rd and so on.  A set of 4 scenarios is randomly generated based on the 

same parameters and solved for safety stock with the second MIP model.  Since they 

are randomly generated, actual demand in each scenario is different.  Each scenario 

has 24-cycle horizon which is 96-period horizon for 4-period instance and 168-period 

horizon for 7-period instance.  The instance with 4-period cycle under 99% is used as 

the base case.  Then a 4-period cycle under 95% service level is used to measure the 

differences between service levels.  Furthermore, the instances with 7-period cycle 
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under 99% service level is used to measure the differences between the number of 

periods in cycle. 

 

Figure  9 Experimental summary 

 

After final policy is developed from the second phase, the performance of the 

policy is tested with additional 1,000-period scenario to investigate whether demand 

loss is within expected service level.   

Policy Determination

Average demand in each period

Period/cycle Retailer 1 Retailer 2

Ordering cost/

Holding cost

(WH, R1, R2)

4 880, 480, 1200, 1440 880, 1840, 2400, 2880 High (12,000, 12,000, 12,000)

4  880, 480, 1200, 1440  880, 1840, 2400, 2880 Low (750, 750, 750)

4  880, 480, 1200, 1440  880, 1840, 2400, 2880 Zero (0, 0, 0)

7 105, 99, 109, 121, 88, 140, 38 226, 228, 220, 209, 159, 287, 71 High (2,450, 2,450, 4,900)

7 105, 99, 109, 121, 88, 140, 38 226, 228, 220, 209, 159, 287, 71 Low (612.5, 612.5, 1225)

7 105, 99, 109, 121, 88, 140, 38 226, 228, 220, 209, 159, 287, 71 Zero (0, 0, 0)

First phase:

Mixed integer programming model

(Determine policies for each instance)

Input: Demand, Order Cost, Holding Cost, Leadtime

Initial Policy

Lower

Upper

EOQ

Output: Initial policies - reorder points, order-up-to points, 

Output: initial on-hand inventory, initial order

Use initial policies as input parameters

SD/demand 

average

generate demand set for 

each SD value
Scenario Set

condition to solve each 

scenario set
Service Level

10% Scenario 1 99%

20% Scenario 2 95%

25% Scenario 3

Scenario 4

Second phase:

Mixed integer programming model

(Determine safety stock for each condition using initial policy)

Safety stock

Output: Final policies - reorder points, order-up-to points, initial on-hand inventory, initial order, safety stock

Policy Evaluation

Test on 1,000-period scenario
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3.5.1 Comparison among the lower, upper and EOQ alternatives. 

Under both 99% and 95% service level, in 4-period cycle instances, all three 

alternatives perform the same way.  Comparing upper and lower policies, upper 

policy gives the lower total cost in every scenario.  The upper policy could give lower 

total costs since it has higher reorder points which lead to lower safety stock in the 

second model.  Since the upper and lower policies have different reorder points but 

the same order-up-to points.  Although reorder points are raised by safety stock to the 

same levels, the upper policies will have lower final order-up-to points which lead to 

smaller sizes of orders and lower holding costs.  In case of zero ordering cost, EOQ 

policy gives the lowest total cost.  In this case, EOQ is zero which means reorder 

points and order-up-to points of retailers in EOQ policy are the same points.  It means 

that the policy of retailers are (𝑅, 𝑆) instead of (𝑅, 𝑠, 𝑆) and they have inventory 

position filled at order-up-to point in every period, which leads to low holding cost 

and low total cost since ordering cost is zero.  The average differences in costs are 

shown in Table 4 and Table 5.  The average difference from the best solution is 

calculated from 4 scenarios, so alternatives with 0.00% difference are the alternatives 

that perform better than the others in all 4 scenarios.  However, in some case, one 

alternative may outperform other alternatives in some scenarios when another 

alternative outperforms it in other scenarios.  For example, in Table 4, at high 

ordering cost and SD to demand average ratio of 25%, upper policy gives better 

results than EOQ policy in 3 scenarios and the EOQ policy performs better in 1 

scenario.  Therefore, upper-alternative difference is 0.01% and EOQ-alternative 

difference is 0.61%. 
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Generally, in Table 4 and Table 5, most instances can be solved within 5 

minutes but, in some cases, it can take almost an hour.  It takes longer time to solve an 

instance with low service level than an instance with high service level.  Since lower 

service level means higher demand loss allowed, the search space is larger than those 

problems with higher service level.  As there are more options to be chosen, it takes 

longer time to find the optimal solution.   

Furthermore, in 7-period cycle instances, upper policy also gives lower total 

cost than lower policy in all scenarios as shown in Table 6.  However, in case of zero 

ordering cost, all three alternatives receive the same policy with the same total cost in 

phase 1 but the upper policy has the highest reorder points at the warehouse.  

Therefore, when their reorder points are raised by safety stock to the same values, the 

upper policy has the lowest order-up-to points in phase 2 which leads to the lowest 

holding costs. 

Most instances in Table 6 can be solved within 15 minutes but, in some cases, 

it can take up to 3 hours.  Comparing computational time, the problems with longer 

planning horizon require longer computational time.  For example, the instances with 

168-period planning horizon require 1527.89 seconds on average which is longer than 

224.24 s required by the instances with 96-period horizon.  Details of all scenarios’ 

costs and computational time are provided at 

http://pioneer.netserv.chula.ac.th/~twipawee/RsS_MIP.zip 
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Table  4 Average difference and computational time for 4-period cycle instances at 

99% service level. 

 

   

Average % Difference  

from Best Solution 

Computational 

Time (s) 

Service Level 

Ordering Cost/ 

Holding Cost 

SD/ 

Average Upper Lower EOQ Upper Lower EOQ 

0.99 High 10% 0.00% 14.64% 10.39% 148.52 110.03 94.14 

  

20% 0.00% 3.61% 1.18% 70.73 93.31 70.86 

  

25% 0.01% 4.46% 0.61% 158.42 91.94 113.72 

 

Low 10% 0.00% 26.84% 12.72% 2641.00 111.80 286.22 

  

20% 0.00% 19.54% 11.09% 124.95 95.75 234.00 

  

25% 0.00% 18.29% 11.01% 126.12 138.34 110.75 

 

Zero 10% 6.82% 35.97% 0.00% 125.69 195.44 106.02 

  

20% 9.60% 30.18% 0.00% 96.38 104.39 60.38 

  

25% 8.07% 27.48% 0.00% 61.55 411.69 72.31 

 

Table  5 Average difference and computational time for 4-period cycle instances at 

95% service level. 

 

   

Average % Difference  

from Best Solution 

Computational 

Time (s) 

Service Level 

Ordering Cost/ 

Holding Cost 

SD/ 

Average Upper Lower EOQ Upper Lower EOQ 

0.95 High 10% 0.00% 14.74% 10.44% 1576.31 242.22 143.74 

  20% 0.00% 3.55% 1.30% 108.73 172.39 74.34 

  25% 0.10% 4.27% 0.39% 112.86 77.00 1625.42 

 Low 10% 0.00% 27.02% 12.77% 687.84 144.97 1191.17 

  20% 0.00% 19.75% 11.39% 127.03 117.03 271.11 

  25% 0.00% 18.49% 11.20% 81.33 88.27 150.52 

 Zero 10% 7.09% 36.41% 0.00% 727.36 104.42 113.27 

  20% 9.25% 30.17% 0.00% 121.42 151.84 97.67 

  25% 7.88% 27.58% 0.00% 107.27 87.50 92.12 
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Table  6 Average difference and computational time for 7-period cycle instances at 

99% service level. 

 

   

Average % Difference  

from Best Solution 

Computational 

Time (s) 

Service Level 

Ordering Cost/ 

Holding Cost 

SD/ 

Average 

Upper Lower EOQ Upper Lower EOQ 

0.99 High 10% 0.00% 5.84% 5.84% 486.16 827.66 844.09 

  20% 0.00% 2.32% 2.32% 1437.59 719.77 745.90 

  25% 0.00% 3.74% 3.74% 11458.00 1893.64 1732.43 

 Low 10% 26.65% 45.16% 0.00% 654.94 672.63 358.24 

  20% 30.52% 43.01% 0.00% 695.42 1359.44 653.16 

  25% 29.57% 43.74% 0.00% 8220.59 1389.48 1394.17 

 Zero 10% 0.00% 70.26% 50.34% 697.93 409.28 189.54 

  20% 0.00% 45.41% 31.98% 787.83 378.00 1491.00 

  25% 0.00% 37.80% 26.37% 617.67 469.65 668.90 

 

3.5.2 Efficiency of each alternative on another set of demands 

Initial policies from the first phase and safety stock from the second phase are 

combined as final ordering policy.  These combinations of deterministic policy and 

safety stock are tested on another scenario with 1,000 periods to compare its 

robustness with total cost and service level.  

Focusing on the robustness of policies, on average for 4-period cycle, average 

loss is around 0.00% to 0.19% for 99% service level and 0.00% to 0.22% for 95% 

service level as shown in Figure 10 and Figure 11.  In a certain period, applying upper 

and EOQ policies can lead to the maximum loss (not the average loss shown in Figure 

10 and Figure 11) as high as 39.75% for 99% service level and 42.58% for 95% 

service level while the maximum loss of lower policies is no higher than 25% and 

30% respectively.  However, the number of periods that loss is higher than the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 56 

expected service level is smaller than 2% in a span of 1,000 periods.  For 7-period 

cycle, average loss is around 0.00% to 0.05% for 99% service level as shown in 

Figure 12.  In a certain period, applying upper and EOQ policies can lead to the 

maximum loss as high as 23.84% for 99% service level while the maximum loss of 

lower policies is no higher than 18.90%.    In a span of 1,000 periods, the number of 

periods that loss is higher than the expected service level is smaller than 1%.  

Therefore, the policies obtained from proposed approach are robust for the problem 

and are practical to use in real life.   

When standard deviation increases, the total cost and loss tends to increase.  

Lower policies give the highest total cost but the lowest loss.  Normally, the upper 

policies tend to give the lowest total cost and highest loss.  Lower policies have the 

highest cost and lowest loss since they have bigger size of orders and hold more 

inventory than other alternatives.  The policies have the bigger size of orders because 

they have bigger differences between reorder points and order-up-to points.  On the 

contrary, upper and EOQ policies give lower total costs due to their smaller orders 

leading to lower holding costs.  In summary, there is trade-off between total cost and 

loss.  For cost-concern, upper or EOQ policies are the preferred.  For loss-concern, 

lower policies are the best choices. 
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Figure  10 Total cost and average loss for 4-period cycle instances at 99% service 

level on 1,000-period horizon. 

 

 

Figure  11 Total cost and average loss for 4-period cycle instances at 95% service 

level on 1,000-period horizon. 
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Figure  12 Total cost and average loss for 7-period cycle instances at 99% service 

level on 1,000-period horizon. 

 
3.5.3 Effect of on-hand and on-order inventory through inventory policy 

Since system operates under periodic review and seasonal demand, some 

values of initial on-hand inventory may lead to shortage while other values may not, 

even though they are applied to the same ordering policy.  The example in Table 7 

illustrates that an ordering policy cannot be applied to every value of initial on-hand 

inventory.    In Table 7, an order is placed at the end of each period.  The system has 

1-period lead time so an order placed at the end of this period will be ready to use at 

the end of the next period.  The system A with 1,360 initial inventory faces no 

shortage.  On the contrary, the system B with 4,000 initial on-hand inventory faces 

shortage at period 5. Therefore, under seasonal demand, it is better to find the proper 

initial on-hand level by letting it be a decision variable than an input parameter.  This 

can help the system avoid shortage. 

To implement the (𝑅, 𝑠, 𝑆) policies with predetermined initial inventory 

obtained from the algorithm, inventory managers may start using the (𝑅, 𝑆) policies 

first.  When the inventory position of any retailer reaches the required level, that 
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retailer can start using (𝑅, 𝑠, 𝑆) policy.  After all retailers use (𝑅, 𝑠, 𝑆), the warehouse 

can use its (𝑅, 𝑠, 𝑆) policy when the echelon inventory position reaches the required 

level. 

Table  7 Example of effect of initial on-hand inventory on shortage. 

 

 

Reorder 480 

      

 

Order-up-to 4480 

      

 

Period 0 1 2 3 4 5 6 

S
y

st
em

 A
 

Demand 

 

880 480 1200 1440 880 480 

on-hand inventory 1360 480 0 2800 1360 480 0 

order 

 

4000 0 0 0 4000 0 

S
y

st
em

 B
 

Demand 

 

880 480 1200 1440 880 480 

on-hand inventory 4000 3120 2640 1440 0 -880 3120 

order 

 

0 0 0 4480 0 0 

 

3.6 Conclusion 

A methodology to deal with multi-echelon inventory system with seasonal 

demand is proposed.  Since the seasonal stochastic demand cannot be directly solved 

with a MIP model, the 2-phase methodology is proposed.  The first phase determines 

deterministic policy by solving a deterministic problem based on average demand and 

the second phase calculates safety stock by solving multiple scenarios of the problem 

generated from demand distribution.   The MIP model for the first phase is used to 

find reorder and order-up-to points.  We found that there are alternative optimal 

solutions where multiple reorder points provide the same total cost.  However, these 

alternatives may lead to different cost in the second phase.  Therefore, we explore 3 

different alternatives from the first phase including lower, upper and EOQ.  In the 

second phase, another MIP model is developed.  It uses reorder and order-up-to points 
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from phase 1 as inputs and solves multiple randomly-generated scenarios 

simultaneously for safety stock that leads to the minimum total cost respected to 

required service level. 

The proposed methodology can find solutions within a reasonable amount of 

time (generally within 15 minutes).  The policy with the highest reorder point tends to 

get the lowest cost in most scenarios but they face more demand loss comparing to 

other policies.  On average, when the upper-alternative policies is the best policy, it 

gives the total cost that is around 17% better than other policies.  On the other hand, 

the policy with the lowest reorder point tends to get the highest cost but the lowest 

demand loss.  The highest average loss from the lower-alternative policies is only 

0.07% while the highest average loss from other policies is 0.22%.   

As the problem that we considered in this chapter assumed that unsatisfied 

demand was lost and the problem with lost-sales assumption received more attention 

recently (De Kok et al., 2018), to make the problem be more interesting, it can be 

extended in various aspects such as considering shortage cost, considering ordering 

batch sizes, exploring other replenishment policies or exploring other replenishment 

modes.  The methodology can be improved as well.  The proposed methodology 

based upon MIP models can solve only limited problem size. While the problem sizes 

increase such as increasing in demand volume or increasing in the number of periods 

per cycle, the optimal solution may not be able to obtain using the MIP models.  

Heuristic approach should be developed to solve the problem.    
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CHAPTER IV 

HEURISTICS FOR PERIODIC-REVIEW POLICY IN A 2-ECHELON 

INVENTORY PROBLEM WITH SEASONAL DEMAND 

4.1 Introduction 

A distribution system with one-warehouse and multi-retailer is a very complex 

system since it is involved with a lot of decisions from many activities and constraints 

such as how many and at what time items should be transported from the warehouse 

to retailers or stored at the warehouse or each retailer. 

This chapter focuses on an inventory system with a single warehouse and 𝑁 

non-identical retailers under seasonal demand.  This system is a 2-echelon inventory 

system in which each location replenishes inventory in a fixed time interval.  Retailers 

are supplied by a warehouse which is supplied by external suppliers and items can be 

stored at the warehouse and retailers.  Unfilled demand is considered as demand loss. 

Demand is assumed to be seasonal without trend.  In this case, demand is 

fluctuating within a certain span of periods called cycle and demand pattern repeats 

itself cycle after cycle.  However, as there is no trend, the total demand per cycle is 

assumed to be stationary.  When it comes to the term seasonal demand, both natural 

force and human decisions can be factors of seasonal pattern (Silver, Pyke, and 

Peterson, 1998).  For example, the demand of umbrella or raincoat is driven by 

weather conditions.  On the other hand, stationary sales are influenced by school 

calendars, which are based on human decision (Hanke and Wichern, 2005).  Human 

factor can drive demand in the same way as natural force does and it can drive 

demand in various lengths of cycle such as a month, a week or even a day.  The 
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system considered in this chapter has seasonal demand within a cycle of one week as 

it is driven by human factor.  For example, the demand could be high on Monday, 

Wednesday, and Thursday.  On the other hand, demand could be very low on 

weekend and this pattern repeats every week.  This demand pattern can be found at a 

drug dispensing system in a hospital.  The number of patients diagnosed depends on 

the number of physicians.  Physicians’ working days are pre-scheduled and the 

number of physicians is different on each day.  The physician’s schedule repeats 

every week.  Therefore, demand of each drug depends on the physicians’ schedule. 

Dealing with seasonal demand as if it is stationary demand can lead to 

shortage or high holding cost.  Therefore, many papers (Graves and Willems, 2008; 

Reddy and Rajendran, 2005; Kim, Wu, and Huang, 2015, Grewal, Enns, and Rogers, 

2015) tackled a system with trend and seasonal demand by varying ordering policy 

along with the changing phases of demand.  However, their demands changed slowly 

compared to lead time such as the length of demand phase is 2,000 hours where lead 

time is 16 hours (Grewal, Enns, and Rogers, 2015) or 100-period demand phase with 

10 period lead time (Graves and Willems, 2008).  This thesis considers 1-day demand 

phase and 1-day lead time; therefore, changing ordering policy everyday as demand 

changes would not be practical. 

As we developed a 2-phase mixed-integer programming model for the 

problem in Chapter 3. The proposed methodology has some limitations.  For example, 

the number of potential solutions increases along with the number of retailers and the 

computational time grows exponentially as the number of retailers increases.  In a 

preliminary study, the average computational time for instances with 2, 3, and 5 
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retailers are 24.70s, 69.87s, and 7,571.30s, respectively.  We use the modeling 

framework from Chapter 3 to develop heuristics to determine proper ordering policy 

to minimize the total inventory cost.   

The remainder of this chapter is organized as follows.  Section 4.2 reviews the 

literature related to the multi-echelon system. Section 4.3 presents a problem 

description.  Section 4.4 describes heuristics to determine ordering policies.  Section 

4.5 presents results and discussions.  Finally, section 4.6 concludes and suggests 

future research extensions. 

4.2 Literature review 

A multi-echelon model was first introduced as a serial multi-echelon system 

with stationary demand.  Papers in this group include Clark and Scarf (1960), De Bodt 

and Graves (1985) and Ji et al. (2016).  Besides a serial multi-echelon system, a 

divergent and general structure inventory systems were also studied including Bessler 

and Veinott (1965), Erkip, Hausman, and Nahmias (1990), Chu and Shen (2010), 

Erugaz et al. (2014) and Shang, Tao, and Zhou (2015).  These studies explored 

various aspects of multi-echelon inventory system, but they assumed stationary 

demand which made them different from our system with seasonal demand. 

Many researchers studied a multi-echelon system with deterministic demand 

called the multi-echelon dynamic lot sizing problem.  Examples of techniques used to 

solve this problem are mixed integer programming models, Lagrangian relaxation and 

decomposition strategy.  Papers in this group include Zangwill (1969), Bookbinder 

and Tan (1988), Diaby and Martel (1993), and Tarim and Smith (2008), Afzalabadi, 

Haji, and Haji (2016). 
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Various methods were used to deal with non-stationary demand in both trend 

and seasonal patterns.  These methods were based on the same concept.  The concept 

that was widely used was dividing non-stationary demand into many phases of 

stationary demand.  Then, an ordering policy was developed for each phase.  Graves 

and Willems (2008) proposed a model to determine the size of safety stock at each 

location in a multi-echelon system.  As the model divided a planning horizon into 

phases of different stationary demand, it determined size of safety stock in each phase 

and also how safety stock changed from phase to phase.   Reddy and Rajendran 

(2005) proposed a dynamic order-up-to policy which a policy changed periodically 

and developed heuristics to determine a policy for a 5-level serial supply chain where 

non-stationary demand occurred at the lowest level.   Kim, Wu, and Huang (2015) 

applied a multi-period newsvendor model in a 2-echelon system to a perishable 

product with non-stationary demand.  Grewal, Enns, and Rogers (2015) applied 

simulation-optimization procedure to solve a single-echelon system of two products 

with seasonal demand.   

Despite efficiency of the method that divides demand into many phases and 

applies different ordering policy to each phase, the number of decision conditions 

grows rapidly when demand changes frequently.  The concept to divide demand into 

phases and develop policy for each phase is proper when lengths of phases are longer 

than review period and replenishing lead time which means there could be a number 

of orders placed within one phase.  For example, a length of each demand phase is a 

quarter and lengths of review period and lead time are days or weeks.  In our problem, 

review period and replenishing lead time are both one period which is equal to the 

length of each demand phase.  It could be a situation in which an order arrives when 
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the policy has already changed, and it would be confusing for users to take care of the 

inventory level.  In this problem, using one ordering policy on each location is more 

practical than using many policies.  However, using one ordering policy on each 

location instead of using many policies leads to higher total cost.  It is a trade-off 

between ease of use and the total cost.  Tunc et al. (2011) investigated that using only 

one policy for each location could reasonably substitute the method of using many 

policies when demands followed a stable seasonal pattern with high uncertainty, high 

setup cost and low penalty cost. 

4.3 Problem statement 

This chapter considers a 2-echelon inventory system having one warehouse 

and 𝑁 non-identical retailers with seasonal demand.  Each location replenishes 

inventory in a fixed time interval.  Retailers are supplied by the warehouse which is 

supplied by external suppliers and items can be stored at the warehouse and retailers.  

Demand that is not satisfied with on-hand inventory are considered as demand loss.  

This demand loss must not exceed expected service level.  In this problem, the service 

level is fill rate - the proportion of demand served from on-hand inventory (Nahmias, 

2009).  

Demand is assumed to be seasonal without trend and fluctuating within a 

cycle.  The demand pattern repeats cycle after cycle.  Period demand is assumed to be 

normally distributed.  For example, if each cycle consists of 4 periods, average 

demand of periods 1, 5, 9 and 13 will be normally distributed with the same 

parameters and so will periods 2, 6, 10 and 14.  This results in the same expected total 

demand in every cycle. 
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 The system operates on periodic review basis using reorder point and order-

up-to point or (𝑅, 𝑠, 𝑆).  The system controls inventory with echelon stock basis where 

each location makes decision based on inventory information of its own and of all 

locations downstream.  This thesis proposes algorithms to find ordering policy based 

on (𝑅, 𝑠, 𝑆) system to minimize ordering and holding costs respected to expected 

service level. 

With (𝑅, 𝑠, 𝑆) policy, location 𝑖 reviews its inventory position every 𝑅𝑖 

periods.  If its inventory position (on-hand plus on-order inventory) is equal to or 

lower than its reorder point, 𝑠𝑖, an order will be placed to raise inventory position to 

be equal to or higher than its order-up-to point, 𝑆𝑖.  For the warehouse, as echelon 

concept is applied, its inventory position is the total inventory position of its own and 

all retailers. 

An example of the system with one warehouse and 2 retailers is shown in 

Figure 13.  Retailer 1 and retailer 2 show their inventory positions and on-hand 

inventories.  Warehouse (Installation Stock) shows its local inventory position and on-

hand inventory.  Warehouse (Echelon Stock) shows its echelon inventory position and 

on-hand inventory. 

Each location has 1-period lead time and reviews its inventory at the end of 

every period.  Retailers have a 4-period cycle or retailers’ average demands repeat 

every 4 periods.  In Figure 13, the slope in each period represents an average demand 

of that period.  With 4-period cycle, the slopes of the 4 periods are different but the 

slopes of any consecutive 4 periods repeat the same pattern.  This is the main 

difference between seasonal demand and stationary or trend demand as stationary 
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demand is assumed to have the same slope on every period and trend demand is 

assumed to have either steeper or flatter slopes along the planning horizon.   

 

Figure  13 Inventory levels at each location in the system. 

 

Retailers 1 and 2 operate with reorder points of 432 and 860, and order-up-to 

points of 792 and 1,540, respectively.  When their inventory positions are at or below 

reorder points, orders are placed to raise inventory positions up to order-up-to points 

and the on-hand levels increase when orders arrive in the next period.  Orders from 

retailers are demand for the warehouse.  The warehouse’s reorder and order-up-to 
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points are 1,920 and 3,484.  Retailer 1 orders at the end of periods 2, 3, and 4 of each 

cycle and retailer 2 orders at the end of periods 2 and 4 of each cycle.  The warehouse 

orders at the end of periods 1 and 3 of each cycle.  With 1-period lead time, an order 

placed at the end of period 𝑗 will arrives at the end of period  𝑗 + 1 and will be 

available to use from the beginning of period  𝑗 + 2.  The total order from all retailers 

is demand of the warehouse as the warehouse’s inventory position or on-hand 

inventory (installation stock) drops at the end of periods 2, 3, and 4.  In warehouse 

(echelon stock), inventory position and on-hand inventory do not drop when retailers 

order because items are only moved from the warehouse to retailers, not out of the 

system.   

The system shown in Figure 13 assumes deterministic demand by using 

average demand of each period in a cycle to determine initial ordering policy.  As 

demand is normally distributed, actual demand can be either higher or lower than the 

average.  Therefore, using average demand to determine ordering policy will have 

50% probability to serve actual demand.  To raise probability of serving actual 

demand, the system must have safety stock.  Safety stock level at each location is 

mainly determined by service level and variability of demand. 

4.4 Methodology 

To solve the problem, we develop heuristic algorithms based on a 2-phase 

methodology proposed in Chapter 3.  A methodology composed of 2 phases like an 

approach proposed by Bookbinder and Tan (1988).  The first phase determines timing 

of replenishment and number of periods that an order serves based on average 

demand.  The second phase determines safety stock levels based on the initial policies 

from the first phase to absorb variability of stochastic demand. 
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4.4.1 Heuristics to determine policy for average demand 

An algorithm in this phase is used to determine when to order and the number 

of periods which an order quantity serves their demand.  Policies are determined 

based on an average demand of each period.   

4.4.1.1 Heuristics to find potential policies for retailers 

In this system, customers’ demand occur only at retailers and demand at a 

warehouse is the total order placed by retailers. Consequently, an ordering policy of 

the warehouse depends on ordering policies of retailers.  The algorithm finds all 

potential policies for retailers and use combinations of retailers’ policies to find the 

optimal policy for the warehouse and retailers. 

Since determining optimal (𝑅, 𝑠, 𝑆) is very difficult, an approximation 

relationship which is widely used to determine order quantity, 𝑄, reorder point, 𝑠, 

and, order-up-to point, 𝑆, is that  𝑆 is equal to  𝑠 + 𝑄 (Silver, Pyke, and Peterson, 

1998; Nahmias, 2009).  The order quantity, 𝑄, determines timing of replenishment.  

The smaller 𝑄 requires more frequent replenishment while the bigger 𝑄 requires less 

frequent replenishment.  With average demand 200 units per period and 𝑄 of 600 

units, an order would be placed every 3 periods.  However, if average demands of 

periods are different, such as, in a cycle of 4 periods are 100, 200, 300, and 200, an 

order of 600 can serve a group of periods 1, 2, and 3 but it cannot serve a group of 

periods 2, 3, and 4.  Furthermore, if a location has on-hand of 800 at the beginning of 

period 1, the on-hand level at the end of each period will be 700, 500, 200, and 0.  If it 

has the on-hand of 800 at the beginning of period 3, the on-hand levels at the next 4 

periods will be 500, 300, 200, and 0.  Both cases result in zero on-hand at the end of 

the fourth period but the total on-hand levels of them are 1,400 and 1,000, 
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respectively.  This means that the first case costs more holding cost.  Therefore, 

choosing the period on which an order is placed can reduce the total cost.  Therefore, 

with seasonal demand, proper timing of replenishment must be determined.  Different 

replenishment periods result in different outcomes. 

The proposed algorithm starts by determining period(s) in a cycle to place 

order(s) and calculating 𝑄.  𝑄 is determined by the number of periods that each order 

should cover or the span of periods, 𝑠𝑝.  Since average demand of each period within 

a cycle is different, same 𝑠𝑝 may come up with different 𝑄.  Therefore, the period that 

an order starts covering demand, 𝑎𝑝, is used to determine different ordering policy.  

Then, with 𝑠𝑝 and 𝑎𝑝, order-up-to point can be calculated based upon equation (50). 

𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 = ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑗
𝑗=𝑎𝑝+𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑖+𝑠𝑝−1
𝑗=𝑎𝑝    (50) 

The order-up-to point for location 𝑖, 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖, is the summation of 

demand during 𝑠𝑝 + 𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑖 starting from period 𝑎𝑝 so, after serving demand 𝑠𝑝 

periods, it has enough on-hand inventory until the next order arrives.  Therefore, 

reorder point, 𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖, is the inventory level that the location should place an order 

or the inventory level after it serves demand in 𝑠𝑝 periods as in equation (51).  We 

generate different reorder points by choosing different starting points to calculate 𝑠𝑝-

period demand.  The starting point is referred as 𝑠ℎ. 

𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖 = 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖 − ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑗
𝑗=𝑎𝑝+𝑠ℎ+𝑠𝑝−1
𝑗=𝑎𝑝+𝑠ℎ   (51) 

Then, an initial on-hand inventory, 𝐼𝑖0, and an initial on-order inventory, 𝑂𝑖0, 

are determined.  For the first iteration, 𝑂𝑖0 is set to be zero and 𝐼𝑖0 is a sufficient 

amount of inventory to cover demand until the first order arrives.  Equation (52) is 

used to calculate an initial on-hand inventory. 
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𝐼𝑖0 = 𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖 + ∑ 𝐷𝑒𝑚𝑎𝑛𝑑𝑖𝑗
𝑗=𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑖
𝑗=1    (52) 

The algorithm varies 𝑠𝑝, 𝑎𝑝 and 𝑠ℎ to find the potential policies.  Parameters 

𝑎𝑝 and 𝑠ℎ vary from 1 to the number of periods in a cycle and parameter 𝑠𝑝 can vary 

in any number of periods.  Therefore, there should be a method to limit search range 

for 𝑠𝑝. 

As the average demand of each cycle is stationary, economic order quantity, 

𝐸𝑂𝑄 could be used to find preliminary order quantity.  The 𝐸𝑂𝑄 of any location can 

be calculated as√
2𝐾𝐷

ℎ
 where 𝐾 is ordering cost, 𝐷 is cycle demand and ℎ is holding 

cost per unit per cycle.  It is proved that, in stationary demand, the farther 𝑄 is away 

from 𝐸𝑂𝑄, the higher total cost occurs (Nahmias, 2009).  Therefore, even though, our 

problem has seasonal demand pattern, we would like to search 𝑠𝑝 within a range close 

to 𝐸𝑂𝑄. 

From retailer’s point of view, there are 2 ways to consider the warehouse’s 

ordering cost. 1) The warehouse orders items to serve any specific retailer only.  In 

this case, the warehouse’s ordering cost should be considered as a part of retailer’s 

ordering cost.  2) The warehouse serves any retailer with its on-hand inventory.  In 

this case, there is no cost from warehouse added to retailer’s ordering cost.  Hence, 

there would be two  𝐸𝑂𝑄 values for each retailer - i.e., one that uses only retailer 

ordering cost, 𝐸𝑂𝑄𝑙𝑜𝑤𝑒𝑟𝑖, and one that uses sum of warehouse and retailer ordering 

cost, 𝐸𝑂𝑄𝑢𝑝𝑝𝑒𝑟𝑖. 

With seasonal demand, the policy with 𝑄 equals to fraction of cycle demand 

would give higher cost although it is closer to 𝐸𝑂𝑄.  We observed that 𝑠𝑝 which are 

multiple of cycles can always give policies that on-hand level reaches zero when an 
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order arrives.  On the other hand, 𝑠𝑝 equal to fraction of cycle might give policies 

where there is on-hand inventory left on order’s arrival.  Figure 14 shows an example 

of 4-period cycle demand.  Two systems operate with different ordering policies 

while they have the same parameters.  Their average demand is 300 units per period, 

ordering cost is $1,350 and holding cost is 1 $ per unit per period.  Therefore, the 

𝐸𝑂𝑄 is 900 units.  The system A is expected to order every 4 periods starting on 

period 1 of a cycle while the system B is expected to order every 3 periods starting on 

period 1.  System A uses up all its inventory when next order arrives as in periods 2, 

6, and 10.  On the other hand, system B has redundant inventory in some periods such 

as periods 2 and 10.  In a horizon of 12 periods, the system B has higher total on-hand 

inventory and also orders more frequently than system A which leads to higher total 

holding cost and higher total ordering cost.  Noted that system B has  𝑄 closer to 𝐸𝑂𝑄 

than system A. 

 

 

Figure  14 Example for search range. 

 

Therefore, 𝑄 should range within the numbers of cycles close to 𝐸𝑂𝑄𝑙𝑜𝑤𝑒𝑟𝑖 

and 𝐸𝑂𝑄𝑢𝑝𝑝𝑒𝑟𝑖, for example, at any location, if the cycle demand is 1,000 and 
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𝐸𝑂𝑄𝑙𝑜𝑤𝑒𝑟𝑖 is 2,100 and 𝐸𝑂𝑄𝑢𝑝𝑝𝑒𝑟𝑖 is 3,200, the 𝑠𝑝 is between 2 and 4 cycles.  The 

range for 𝑠𝑝 is determined as equations (53) and (54). 

𝑙𝑜𝑤𝑒𝑟𝑅𝑎𝑛𝑔𝑒 = 𝑚𝑖𝑛 {⌊
𝐸𝑂𝑄𝑙𝑜𝑤𝑒𝑟𝑖

𝑐𝑦𝑐𝑙𝑒𝐷𝑒𝑚𝑎𝑛𝑑
⌋ × 𝑐𝑦𝑐𝑙𝑒𝑃𝑒𝑟𝑖𝑜𝑑, ∀𝑖 ∈ 𝐼} (53) 

𝑢𝑝𝑝𝑒𝑟𝑅𝑎𝑛𝑔𝑒 = 𝑚𝑎𝑥 {⌈
𝐸𝑂𝑄𝑢𝑝𝑝𝑒𝑟𝑖

𝑐𝑦𝑐𝑙𝑒𝐷𝑒𝑚𝑎𝑛𝑑
⌉ × 𝑐𝑦𝑐𝑙𝑒𝑃𝑒𝑟𝑖𝑜𝑑, ∀𝑖 ∈ 𝐼 } (54) 

The algorithm to determine ordering policy for each retailer can be summarized as 

shown in Figure 15. 

1. procedure 𝐹𝑖𝑛𝑑𝐿𝑜𝑐𝑎𝑡𝑖𝑜𝑛𝑃𝑜𝑙𝑖𝑐𝑦(𝑙𝑜𝑤𝑒𝑟𝑅𝑎𝑛𝑔𝑒, 𝑢𝑝𝑝𝑒𝑟𝑅𝑎𝑛𝑔𝑒) 

2. 𝐹𝑖: a set of potential policies of location 𝑖 

3. 𝑃𝑖: a potential policy of location 𝑖 

4. 𝑐𝑦𝑐𝑙𝑒𝑃𝑒𝑟𝑖𝑜𝑑: the number of periods per cycle 

5. 𝑙𝑜𝑤𝑒𝑟𝑅𝑎𝑛𝑔𝑒: lower search range 

6. 𝑢𝑝𝑝𝑒𝑟𝑅𝑎𝑛𝑔𝑒: upper search range 

7. for 𝑠𝑝 in [𝑙𝑜𝑤𝑒𝑟𝑅𝑎𝑛𝑔𝑒.. 𝑢𝑝𝑝𝑒𝑟𝑅𝑎𝑛𝑔𝑒] do 

8.  for 𝑎𝑝 in [1. . 𝑐𝑦𝑐𝑙𝑒𝑃𝑒𝑟𝑖𝑜𝑑] do 

9.   for 𝑠ℎ in [1. . 𝑐𝑦𝑐𝑙𝑒𝑃𝑒𝑟𝑖𝑜𝑑] do 

10.    Compute 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖, 𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖, 𝐼𝑖0, and 𝑂𝑖0 

11.    Compute demand loss for period 𝑗, 𝑙𝑜𝑠𝑡𝑖𝑗 

12.    if max{𝑙𝑜𝑠𝑡𝑖𝑗} = 0 do 

13.     Reassign 𝐼𝑖0 and 𝑂𝑖0 

14.     Compute policy total cost, 𝐶𝑜𝑠𝑡𝑖 

15.     𝑃𝑖 ← {𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖, 𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖, 𝐼𝑖0, 𝑂𝑖0, 𝐶𝑜𝑠𝑡𝑖} 

16.     Collect policy 𝐹𝑖 ← 𝐹𝑖 ∪ {𝑃𝑖} 

17. return 𝐹𝑖 

Figure  15 The algorithm to find potential policies of each location. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 74 

The algorithm will find all potential policies for each retailer by changing 𝑠𝑝, 

𝑎𝑝 and 𝑠ℎ.  If the policy gives no demand loss, which means it is an acceptable 

policy, the algorithm will reassign 𝐼𝑖0 and 𝑂𝑖0 to be on-hand and on-order levels at the 

end of a cycle after 𝑠𝑝 to make ordering pattern repeat.  Then, the policy will be 

collected as one of potential solutions. 

 4.4.1.2 Heuristics to find potential policies for the warehouse 

From the previous section, potential ordering policies for each retailer are 

found.  Since warehouse demand comes from retailers’ orders, warehouse policy must 

be obtained based upon combinations of retailer policies.  Due to a large number of 

retailer policy combinations, a genetic algorithm (GA) is used to find the best set of 

warehouse and retailer policies. 

 A GA starts by ranking policies of each retailer ascending by the total retailer 

cost, breaks tie arbitrarily.  Then, a set of chromosomes representing combinations of 

retailer policies are created.  A chromosome consists of 𝑁 members where 𝑁 is a 

number of retailers.  Each member, 𝑟𝑖, represents the policy of retailer 𝑖.  For 

example, a chromosome of 2 retailers, 𝑟1|𝑟2 = 10|15, represents the combination of 

the 10th and 15th policies of retailers 1 and 2, respectively.  Chromosomes are 

randomly generated and added to a set called chromosome pool until size of 

chromosome pool is equal to population size, 𝑃.  In our experiment, 𝑃 is 200. 

With a set of 𝑃 chromosomes, two genetic operators, crossover and mutation, 

are used.  Crossover operator creates new chromosomes by randomly picking up two 

chromosomes as parents and swapping members between parents to create two new 

chromosomes as offspring.  We use k-point crossover where k or the number of 

crossover sites can be any number between 1 to 𝑁 − 1 (Sastry, Goldberg, and 
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Kendall, 2005).  For example, two parents, 1|3 and 12|15, will give two offspring, 

1|15 and 12|3.  When a chromosome has more than 2 members, the algorithm 

randomly selects k and crossover sites.  For example, two parents, 1|3|7 and 

12|15|11, might give offspring as 1|3|11 and 12|15|7 or 1|15|7 and 12|3|11.  In 

our experiment, crossover probability is 0.7 which means parents chromosomes are 

randomly selected from the chromosome pool and give offspring until the number of 

offspring is equal to 0.7𝑃.  Another operator, mutation, creates chromosomes by 

randomly assigning a new value to a randomly selected chromosome’s member.  For 

example, a second member of a chromosome, 10|15, is randomly selected and it is 

assigned a new value as 10|23.  In our experiment, the mutation probability is 0.2 and 

only one member in any chromosome can be mutated in each iteration.  Therefore, the 

number of new chromosomes from mutation operator is 0.2𝑃.  After crossover and 

mutation, the chromosome pool is an enlarged set with new chromosomes added from 

these operators and its size will become, 𝑃′ which is 1.9𝑃 in our experiment. 

The policy for the warehouse is determined based on chromosomes of retailer 

policies.  Each solution evaluated by its total cost (including warehouse cost).  Each 

chromosome 𝑝 will be given its value, 𝐷𝑖𝑓𝑓𝐶𝑜𝑠𝑡𝑝, as its difference between its total 

cost and the maximum cost among chromosomes.  Therefore, the probability to be 

selected for the next iteration of each chromosome is calculated as equation (55).  A 

solution with lower total cost will have higher probability of selection. 

𝑃𝑟𝑜𝑏𝑝 =
𝐷𝑖𝑓𝑓𝐶𝑜𝑠𝑡𝑝

∑ 𝐷𝑖𝑓𝑓𝐶𝑜𝑠𝑡𝑝
𝑝=𝑃′
𝑝=1

   (55) 
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Then, 𝑃 chromosomes will be selected for the next iteration.  The best solution 

is always included in the next iteration while another 𝑃 − 1 solutions are selected 

based upon their probabilities. 

The algorithm continues until there is no improvement for 𝐶 generations 

where 𝐶 is called stopping criteria.  In our experiment, 𝐶 is set to be 20. 

A GA is used to find proper combination of retailer policies.  To evaluate each 

combination, we need to find warehouse policy based on that combination and 

calculate total inventory cost (warehouse + retailer).  With echelon stock concept a 

methodology to generate warehouse policy is slightly different from retailer policy. 

With each combination, information from each retailer is used to determine 

policies for the warehouse.  Range of warehouse’s 𝑠𝑝 are the minimum and maximum 

𝑠𝑝 of retailers.  Other parameters can be calculated as equation (56) – (59). 

𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0 = ∑ 𝑂𝑛𝐻𝑎𝑛𝑑𝑖,𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0−1𝑖∈𝐼 +   

∑ ∑ 𝑂𝑟𝑑𝑒𝑟𝑖𝑗
𝑗=𝑎𝑝+𝑠𝑝−1
𝑗=𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑖𝑖∈𝐼  (56) 

𝑅𝑒𝑜𝑟𝑑𝑒𝑟0 = 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0 − ∑ ∑ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗𝑖∈𝐼
𝑗=𝑎𝑝+𝑠ℎ+𝑠𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0−1
𝑗=𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0+𝑠ℎ  (57) 

𝐼0,0 = ∑ ∑ 𝑂𝑟𝑑𝑒𝑟𝑖𝑗𝑖∈𝐼
𝑗=𝑎𝑝−1
𝑗=1        (58) 

𝑂0,0 = 0         (59) 

With echelon stock concept, when the warehouse orders, it has to consider 

retailers’ inventory position which is the on-hand and on-order levels at any given 

period.  𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜0 is the summation of retailers’ inventory position at the 

warehouse’s ordering period, 𝑎𝑝 − 𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0 − 1, and the total demand from 

retailers within a span of periods, 𝑠𝑝 + 𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0, starting from the ordering period. 

The retailers’ inventory position level is ∑ 𝑂𝑛𝐻𝑎𝑛𝑑𝑖,𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0−1𝑖∈𝐼 +
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∑ ∑ 𝑂𝑟𝑑𝑒𝑟𝑖𝑗
𝑗=𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0−1
𝑗=𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒𝑖𝑖∈𝐼  and the total demand from retailers is 

∑ ∑ 𝑂𝑟𝑑𝑒𝑟𝑖𝑗𝑖∈𝐼
𝑗=𝑎𝑝+𝑠𝑝−1
𝑗=𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0

 which lead to the summation in equation (56).  𝑅𝑒𝑜𝑟𝑑𝑒𝑟0 

is the inventory level that the warehouse should place an order or the level after the 

system serves customer’s demand in 𝑠𝑝 periods.  Other potential 𝑅𝑒𝑜𝑟𝑑𝑒𝑟0 are also 

calculated by changing group of periods with 𝑠ℎ.  

∑ ∑ 𝑑𝑒𝑚𝑎𝑛𝑑𝑖𝑗𝑖∈𝐼
𝑗=𝑎𝑝+𝑠ℎ+𝑠𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0−1
𝑗=𝑎𝑝−𝑙𝑒𝑎𝑑𝑡𝑖𝑚𝑒0+𝑠ℎ  is considered to determine 𝑅𝑒𝑜𝑟𝑑𝑒𝑟0 

because it is the number of items flow out of the system and decreases the echelon 

inventory position.  Initial 𝐼0,0 is a sufficient amount of inventory to cover demand 

until the first order arrives and initial 𝑂0,0 is zero. 

Like retailers, if the policy gives no demand loss, the algorithm will reassign 

values to 𝐼0,0 and 𝑂0,0 and collect the policy.  

4.4.2 Heuristics to determine safety stock levels 

Since the solutions found in the first phase are based on average demand, they 

may not achieve expected service level under demand which is normally distributed.  

To absorb demand’s variability, in this phase, safety stock levels are determined for 

all locations. 

Instances of demand with 400-period horizon are generated from the normal 

distribution and solved to find safety stock level by using an ordering policy from the 

previous phase as input parameters -  𝑅𝑒𝑜𝑟𝑑𝑒𝑟𝑖, 𝑂𝑟𝑑𝑒𝑟𝑈𝑝𝑇𝑜𝑖, 𝐼𝑖0 and 𝑂𝑖0.  Once 

safety stock is found, the final on-hand inventory at period 0, reorder points and 

order-up-to points are these values from the initial policy plus safety stock. 

To find safety stock of the system; first, the algorithm finds safety stock level 

for each retailer independently.  Then, the safety stock level of the warehouse is 
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determined based on retailers’ safety stock levels.  The algorithm can be described as 

follows. 

The algorithm begins with determining search range.  With expected service 

level, 𝐸𝑆𝐿,  the 𝑧 value respected to 𝐸𝑆𝐿 is determined.  The algorithm sets the search 

range for safety stock levels from 𝑙𝑜𝑤 = 0 to  ℎ𝑖𝑔ℎ = ⌈𝑧 × 𝑆𝐷⌉ where 𝑆𝐷 is the 

standard deviation of demand.  For the warehouse, 𝑆𝐷 is the standard deviation of the 

total orders from retailers.  Then the safety stock level is set to be  ℎ𝑖𝑔ℎ and its actual 

service level is evaluated using simulation based on actual demand.  If actual service 

level for  ℎ𝑖𝑔ℎ, 𝐴𝑆𝐿ℎ𝑖𝑔ℎ, is lower than expected service level, 𝐸𝑆𝐿, the search range 

will change to 𝑙𝑜𝑤 = ℎ𝑖𝑔ℎ, 𝑧 = 𝑧 + 1 and ℎ𝑖𝑔ℎ = ⌈𝑧 × 𝑆𝐷⌉ and 𝐴𝑆𝐿ℎ𝑖𝑔ℎ is re-

calculated.  This process will repeat until 𝐴𝑆𝐿ℎ𝑖𝑔ℎ is greater than 𝐸𝑆𝐿.  Then, search 

range is between  𝑙𝑜𝑤 and ℎ𝑖𝑔ℎ.  After determining search range, 𝑚𝑖𝑑 is set to be 

⌈
𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
⌉.  Then, the algorithm starts a binary search. 

A binary search is then applied to find optimal safety stock.  If 𝐴𝑆𝐿𝑚𝑖𝑑 ≥

𝐸𝑆𝐿, search range will change to ℎ𝑖𝑔ℎ = 𝑚𝑖𝑑 and 𝑚𝑖𝑑 = ⌈
𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
⌉.  Otherwise, if 

𝐴𝑆𝐿𝑚𝑖𝑑 < 𝐸𝑆𝐿, search range will change to 𝑙𝑜𝑤 = 𝑚𝑖𝑑 and 𝑚𝑖𝑑 = ⌈
𝑙𝑜𝑤+ℎ𝑖𝑔ℎ

2
⌉.  The 

algorithm iterates as long as ℎ𝑖𝑔ℎ > 𝑙𝑜𝑤 + 1.  Then, the safety stock for the location 

is ℎ𝑖𝑔ℎ.  Consequently, with ℎ𝑖𝑔ℎ as the safety stock, the final policy for the location 

can be calculated. 

The algorithm finds the safety stock level for each location.  For the 

warehouse, demand is total order from retailers in each period.  Safety stock of the 

warehouse can serve all demand within training instances. 
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4.5 Experimental Results and Discussion 

In this section, the proposed algorithms are compared with MIP models on 

their solution quality and computational time.  The MIP models are solved with 

CPLEX Studio 12.6 and the proposed algorithms ran on Python.  All experiments ran 

on a computer with 2.00 GHz Intel Core i7 processor and 4 GB of RAM.  Then, the 

proper lengths of planning horizon to determine safety stock levels are investigated. 

4.5.1 Comparison of the proposed algorithms and the MIP models 

Recall that the problem is divided into 2 phases which are solved 

independently.  The heuristic solutions in phase 1 are compared with the optimal 

solutions from the MIP model for phase 1 and the heuristic solutions in phase 2 are 

compared with those optimal solutions from the MIP model of the second phase. 

4.5.1.1 Comparison on the first phase 

In the first phase, 9 instances are used to test algorithm’s performance: 3 

instances with 2 retailers, 3 instances with 3 retailers and the other 3 instances with 5 

retailers.  These 3 instances for each size have the same demand pattern and holding 

cost but different ordering cost i.e. high, low and zero as shown in table 8.  All 

retailers and warehouse have the same ordering cost.  High, low and zero values are 

determined by relationship between retailers’ 𝐸𝑂𝑄 and retailer’s cycle demand.  High 

value is an ordering cost of which 𝐸𝑂𝑄 is equal to the cycle demand, low value is a 

cost leading to 𝐸𝑂𝑄 equal to a quarter of cycle demand and zero is the one with zero 

ordering cost. 
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Table  8 Summary of instance parameters. 

 

  Average Demand Ordering Cost 

Size Retailer 

Period 

1 

Period 

2 

Period 

3 

Period 

4 High Low Zero 

2 
Retailer 

1 880 480 1,200 1,440 
12,000 750 0 

2 880 1,840 2,400 2,880 

3 
Retailer 

1 264 144 360 432 

3,200 200 0 2 176 368 480 576 

3 800 100 900 200 

5 
Retailer 

1 80 160 60 100 

800 50 0 

2 160 60 80 100 

3 120 80 100 100 

4 88 48 120 144 

5 48 120 144 88 

 

The algorithm can find the optimal solution for every instance.  With 2 and 3 

retailers, the algorithm spends slightly longer time to find the optimal solutions but, 

with 5 retailers, the algorithm’s computational time is 97.49% on average less than 

the MIP model’s as shown in Figure 16. 

 

Figure  16 Comparisons of average computational time and cost difference of MIP 

model and heuristics. 
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4.5.1.2 Comparison on the second phase 

In the second phase, to evaluate performance of the algorithm for safety stock, 

3 instances having 2 retailers from the first phase are used to compare the results.  The 

instances for 3 and 5 retailers cannot used in this phase because the MIP model cannot 

find the optimal solutions within 4 hours.  Actual demand of each instance is 

generated based on 3 different values of standard deviation i.e. 10%, 20% and 25% of 

average demand.  Therefore, with 3 instances from the first phase and 3 standard 

deviations, 9 instances are used in the second phase. 

Demand of 400 periods are generated for each instance to find safety stock.  

Every instance is solved with 95% service level.  The proposed algorithm can find the 

optimal solutions for all instances.  The computational time for the second phase of 

the MIP model is between 77.00 s to 242.22 s while the computational time of the 

proposed algorithm is between 5.01 s to 5.70 s which is 95.99% less on average.  The 

computational time and cost difference are shown in Figure 17. 

 

Figure  17 Comparisons of computational time and cost difference of MIP model and 

heuristics for the second phase. 
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4.5.2 Length of planning horizon to determine safety stock 

After the final policy is obtained, another question is how it performs on other 

instances or how robust it is.  To test the robustness of the solution, each final policy 

is applied to another 10,000-period instance to investigate demand loss compared to 

expected service level.  The final policies can provide less than 1% average demand 

loss in 10,000 periods.  On average, 32.78 out of 10,000 periods or 0.33% have 

service level lower than 95%.  Therefore, the final policy from the second phase is 

efficient enough for the real-life situation. 

 However, if we want to improve the number of periods with unsatisfied 

expected service level (NUS), longer horizon must be used in the second phase of 

algorithm.  In the experiment, different lengths of horizon, which are 1,000, 10,000, 

20,000, 30,000, 40,000 and 50,000 periods, are generated to determine safety stock.  

Then, the final policy is applied to instances with 10,000-period horizon to investigate 

the NUS.  It is shown in Figure 18 that the longer horizon used, the smaller NUS 

becomes.  However, the safety stock level increases as the NUS decreases.  Hence, 

there is a trade-off between the NUS and the holding cost due to safety stock level.  

Noted that the computational time increases along with the length of horizon but a 

50,000-period instance can be solved within 20 minutes. 
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Figure  18 Average number of periods with unsatisfied expected service level (NUS) 

and average total safety stock with different training planning horizon lengths. 

 

4.6 Conclusion 

A 2-phase algorithm to determine ordering policy for a 2-echelon inventory 

system is proposed.  The first phase is used to determine initial ordering policy for 

each location.  The second phase is used to determine safety stock.  The algorithm can 

find the solutions which are as good as the optimal solutions from the MIP models.  

With 2 and 3 retailers, the first-phase algorithm requires computational time slightly 

higher than the MIP model but, with 5 retailers, the algorithm requires much smaller 

amount of time.  With 2 retailers, the second-phase algorithm requires 95.99% less 

time on average.  The final policies are applied to the problems with longer horizon.  

The results show that the policies are robust since they give acceptable average 

demand loss.  However, the longer horizon should be used in the second phase to 
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determine service level if the lower number of periods with unsatisfied expected 

service level is required.  Noted that longer horizon requires longer computational 

time and leads to higher safety stock. 

This chapter considers only one replenishing mode which is from upstream 

warehouse.  However, in reality, other replenishing modes can be explored such as 

emergency replenishing from the warehouse or transshipment between retailers.  

Another way to extend the algorithm is considering a batch-size constraint.  The batch 

size could even be different for the warehouse and retailers.  This constraint would be 

a useful research extension in real-life situation. 
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CHAPTER V 

MULTIPLE REPLENISHING MODES FOR PERIODIC-REVIEW IN A 2-

ECHELON INVENTORY PROBLEM WITH SEASONAL DEMAND 

5.1. Introduction 

An inventory system with one-warehouse and multi-retailer is a complex 

system which receives attention from many researchers.  The system is involved with 

a lot of decisions such as how many items should be stored at each location and at 

what time they should be transported from the warehouse to retailers.  Determining 

ordering policy for such system is a very difficult task.  Even though proper inventory 

policy is applied.  Under stochastic demand, a retailer could run out of stock and the 

demand will be considered lost.  In this situation, a special replenishing mode with 

shorter lead time may be used to prevent stockouts.  These special modes can be an 

emergency replenishing mode which is a replenishing mode with shorter lead time 

supplied by the warehouse (Minner, 2003) or a transshipment which is a mode where 

items are requested from other retailers with excessive on-hand stock (Paterson et al., 

2011). 

 This chapter focuses on a 2-echelon inventory system with a single warehouse 

and 𝑁 non-identical retailers under seasonal demand.  Generally, retailers are supplied 

by a warehouse which is supplied by external suppliers and items can be stored at the 

warehouse and retailers.  This regular replenishment has a fixed lead time.  When a 

retailer faces the risk of stockout, items could be transported via one of special modes 

with fixed shorter lead times i.e. emergency replenishment from warehouse and 

transshipment from another retailer.  Unfilled demand is considered as demand loss. 

 Demand is assumed to be seasonal without trend.  It fluctuates within a certain 

span of periods called cycle and its pattern repeats cycle after cycle.  The system 
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considered in this thesis has seasonal demand driven by human factor and the demand 

fluctuates within a cycle of one week.  Under this seasonal demand, the ordering 

policies for the regular replenishment in this chapter is obtained from an algorithm 

proposed in Chapter 4.  However, although the policies from the algorithm give low 

total demand loss in the test problem, there are some periods with unsatisfied service 

level.  Therefore, to reduce the number of these periods, special replenishing modes 

are applied.  For ease of use, the ordering policy for both special modes could be 

static policy which applies one policy on every period.  However, since demand is 

seasonal, dynamic policy which applies a different policy for each period in the 

demand cycle is introduced.  Since the dynamic policy varies policies depending on 

demand on each period, it tends to give better result such as lower number of special 

orders and also lower ordering cost.  Therefore, there is a trade-off between static and 

dynamic policies.  Then, we investigate the differences between using static and 

dynamic policies for special modes and find situations which are appropriate for static 

and dynamic policies. 

The remainder of this chapter is organized as follows.  Section 5.2 reviews the 

literature related to the system with multiple replenishing modes. Section 5.3 presents 

a problem description.  Section 5.4 describes a methodology to determine ordering 

policies for special modes.  Section 5.5 presents results and discussions.  Finally, 

Section 5.6 concludes and suggests future research extensions. 

5.2. Literature Review 

To reduce stock out problem, a company could have more than one 

replenishing channels.  Besides regular mode, other replenishing modes with shorter 

lead time could be applied.    For example, a company, which normally use seafreight, 
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can also use airfreight as an emergency mode with shorter lead time but more 

expensive.   

Emergency replenishing mode is a special replenishment with shorter lead 

time, but higher cost used in case of imminent shortage from the higher-echelon 

location (Tagaras and Vlachos, 2001).  Generally, a system with more than one source 

is considered as dual supplies where items are replenished by two sources or one 

source with 2 modes (Minner, 2003 and Yao and Minner, 2017).  The dual-supply 

problem is studied in various aspects.  Two main policies: a continuous review and a 

periodic review are applied to this problem.  Moinzadeh and Nahmias (1988) 

developed a heuristic algorithm for a system with 2 supply modes under continuous 

review applying (Q1, Q2, R1, R2) policy where an order of Q1 is placed when on-

hand reached R1 reorder point and an order of Q2 with shorter lead time is placed 

when on-hand reached R2 reorder point.  They used a simulation to validate the 

heuristics and the difference in operation cost between system with and without a 

special supply mode was studied.  Zhou and Yang (2016) proposed heuristics to find 

policy for 2 replenishing modes under continuous review where both modes must 

order in batches.  For a group of periodic review, various aspects of constraints such 

as time to place emergency orders or size of orders were studied.  Chiang and 

Gutierrez (1996) proposed a model with 2 replenishing modes under periodic review 

where, at each review period, either a regular order or an emergency order was placed 

to raise the inventory position to an expected level.  Chiang (2003) extended the 

model with different variable costs between a regular mode and an emergency mode.  

Chand, Li and Xu (2016) proposed model similar to Chiang (2003) but they allowed 

the buyer to choose between two delivery modes at the beginning of the period.  They 
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assumed that the unmet demand was backordered and charged a backlogging cost 

varying with the length of backlogging time.  Therefore, the buyer must trade off 

delivery cost and backlogging cost.  Chiang and Gutierrez (1998) allowed multiple 

emergency orders within a review period.  Regular orders and emergency orders are 

placed periodically but emergency orders have smaller review interval.  Chiang 

(2001) analyzed a special case of the same problem with one-period difference 

between lead times of a regular mode and an emergency mode.  Bylka (2005) 

proposed a model similar to Chiang and Gutierrez (1998) and the model was extended 

with an inventory capacity constraint and a limited backlogging constraint.  Tagaras 

and Vlachos (2001) proposed a model for emergency mode where an emergency 

order would be ordered as late as possible to make the items arrive right before the 

end of the period.  The emergency order is placed to raise on-hand level up to the 

threshold level.  When the on-hand level is less than the threshold level, an emergency 

order is placed to raise on-hand up to the threshold level and no emergency order is 

placed otherwise.  Huang, Zeng and Xu (2018) proposed a system where regular and 

emergency orders were supplied by the capacitated suppliers.  Regular orders were 

triggered before the demand is realized but emergency orders were triggered after 

demand realization.  The quantity of emergency order depended on remaining 

capacity of suppliers.  Johansen and Thorstenson (2014) proposed a Markov decision 

model for a system where regular orders were controlled with reorder point and fixed 

order quantity and emergency orders were controlled with reorder and order-up-to 

points.  Both regular and emergency orders have constant lead time.  Then Johansen 

(2018) extended the model by assuming stochastic lead time for regular orders.   
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All those papers studying inventory systems only considered the systems as an 

arborescent distribution system.  (An arborescent system is a tree-like system which 

each location obtains items only from only one higher location.)  However, in this 

chapter, lateral transshipment is also considered.  Lateral transshipments relaxed a 

system to be more flexible and also more complicated.  To allow lateral 

transshipments, locations of the same level have to pool their inventories (Paterson et 

al., 2011).  There are 2 types of pool policies which are complete pooling and partial 

pooling.  With complete pooling, items can always be transshipped with no condition. 

On the other hand, with partial pooling, items are reserved for local future demand 

and will be transshipped when they are excessive items.  Another classification of 

transshipment orders is when they take place.  If transshipments take place before 

demand is observed as predetermined events used to redistribute inventories, they are 

proactive transshipments.  If transshipments take place to respond to stockouts or 

potential stockouts, they are reactive transshipments.  The studies of transshipment 

orders have both single echelon and multi-echelon structures.  Robinson (1990) 

developed a heuristic technique for multi-location, multi-period problems with 

transshipments.  Optimal ordering policies were determined under two special cases: 

two non-identical locations and any number of identical locations. Olsson (2015) 

studied a single echelon, 2 identical locations with positive transshipment lead times.  

Ordering policy was developed with a heuristic algorithm which separated the whole 

system into 2 sub-systems, each with one retailer.  The positive lead time was treated 

by keeping track of residual lead time to decide whether to wait for oncoming regular 

order or request transshipment.  Tlili, Moalla, and Campagne (2012) studied 2-

echelon system and 2 identical retailers with transshipments.  Demand was 
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independent identical normal distribution.  They developed initial solution with 

heuristics based on simulation optimization and, then, used simulation to fine tune to 

the optimal solution.  Tai and Ching (2014) also studied 2-echelon with a number of 

identical retailers.  Ordering policy was developed by using a Markovian model. 

In this chapter we studied 2 special modes.  The emergency mode places 

orders in a similar way to Gutierrez (1998) and Chiang (2001) where the inventory 

position is reviewed periodically, and there can be both regular and emergency orders 

in each period.  An emergency order has smaller review interval.  Then, if the 

warehouse cannot fulfill an emergency order, the retailer will request transshipment 

from another retailer.  The transshipment applies partial pooling concept where items 

will be transshipped only when they are excessive items.   

5.3. Problem Statement 

This thesis considers a 2-echelon inventory system having one warehouse and 

𝑁 non-identical retailers with seasonal demand.  Demand in each period is normally 

distributed with different means and standard deviations.  Each location replenishes 

inventory in a fixed lead time.  Normally, retailers are supplied by the warehouse 

which is supplied by external suppliers and items can be stored at the warehouse and 

retailers.  Demand that is not satisfied with on-hand inventory are considered as 

demand loss.  In this problem, the service level is fill rate - the proportion of demand 

served from on-hand inventory (Nahmias, 2009).  Therefore, in each period, the ratio 

of demand served from on-hand inventory to period’s demand must not be lower than 

expected service level.   

Despite safety stock level, with uncertain demand, there could be some 

periods which satisfied demand is below the expected service level.  To reduce these 
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periods with unsatisfied service level, an emergency replenishing mode is applied.  

With this special mode, a retailer can order items from the warehouse with shorter 

fixed lead time but higher ordering cost than regular replenishing mode.  However, 

since the system is a 2-echelon system and the warehouse has limited items, the 

warehouse might not be able to fulfill some emergency orders due to its on-hand 

items.  When the warehouse cannot serve an emergency order, there should be 

another special mode to help retailer prevent shortage.  A transshipment mode is 

another mode where a retailer requests items from another retailer on the same 

echelon which has excessive on-hand items.  A transshipment has shorter fixed lead 

time than an emergency mode because the warehouse locates far from customers and 

retailers.  However, since the transshipment disturbs a retailer which gives items to 

the location facing stockouts, the system prefers an emergency mode to a 

transshipment and assume that transshipment has higher ordering cost.  Hence, when 

a retailer faces stockouts it will consider requesting emergency order, then, if the 

warehouse cannot serve the order, a transshipment will be considered.  Therefore, two 

special replenishing modes respond to situations where one of the retailers faces the 

risk of stockouts.  One is an emergency mode from the warehouse and the other is a 

transshipment from another retailer with sufficient stock on hand.  All replenishing 

modes operate on periodic review basis using reorder point and order-up-to point or 

(𝑅, 𝑠, 𝑆).  The special modes have shorter review interval and lead time than the 

regular mode.   

When there are 3 replenishing modes, an example for the inventory movement 

in the system can be shown as Figure 19.  In Figure 19, there are one warehouse and 2 

retailers.  To make it easy, every location has 1-period lead time and 1-period review 
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interval for a regular replenishing mode and zero lead time and continuous review for 

other special modes.  With 1-period review interval, a regular mode reviews 

location’s inventory position at the end of every period.  If an inventory position 

reaches a reorder point during any period, an order will be placed at the end of that 

period.  On the other hand, with continuous review, whenever an inventory position 

reaches a reorder point, an order is immediately placed.  The reorder point and order-

up-to point for a regular mode of each location is shown in Figure 19.   

 

Figure  19 Inventory movement in a system with 3 replenishing modes. 
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An order is placed as the inventory level reaches reorder point.  At the 

beginning of period 1, retailer 1 reaches the reorder point and places an order of 200 

units.  The inventory position immediately rises to 300 units and the inventory level at 

the warehouse drops from 600 to 400 units.  Afterwards, the order arrives at the 

beginning of period 2. 

In period 4, demand spike consumes items stored at retailer 2.  The retailer is 

at risk of stockouts, so it requests an emergency replenishing from the warehouse.  

The order depletes the inventory at the warehouse.  Therefore, in the same period, 

when retailer 1 requests an emergency order afterward, the warehouse cannot satisfy 

an order.  Consequently, retailer 1 has to request a transshipment order from retailer 2. 

5.4. Methodology 

The policy of the regular mode is determined with the methodology proposed 

in Chapter 4.  Initial reorder point and order-up-to point for each location are 

determined with heuristic algorithm and safety stock levels are determined with 

simulation on training instances to find the final policy which satisfies the expected 

service level.  However, under stochastic demand, a retailer could run out of stock 

which leads to demand loss.  Then, special replenishing modes with shorter lead time 

would be used to prevent shortage. 

Since the demand is seasonal, a concept that is widely used is to apply 

different policies on different periods of demand (Tunc et al., 2011).  However, 

applying multiple policies would be a difficult task, especially when the demand 

changes frequently.  A trade-off between ease of use and a lower cost is taken into 

account.  Therefore, two types of ordering policies for special modes are determined 

i.e. static and dynamic policies.  A static policy is a policy which every period applies 
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the same policy.  A dynamic policy is a policy which each period in a cycle has its 

own policy.  Both dynamic and static policies for special modes operate based on (R, 

s, S) policy in the same way as the regular mode.  When an inventory position reaches 

a reorder point during any period, an order is placed to raise an inventory position to 

an order-up-to point of that period. 

Special modes have shorter lead time and review interval than a regular mode.  

To consider special modes, each period is divided into a group of sub-period.  

Demand in each sub-period is assumed to be fraction of period’s demand and the 

demand of every sub-period in the same period is distributed with the same mean and 

standard deviation.  Each special mode reviews inventory position at the end of every 

sub-period.  If an order is placed at the end of sub-period j, items will be delivered at 

the end of sub-period j+lead time.  Therefore, items which arrive at the end sub-

period j+lead time can serve customer demand in that sub-period. This is different 

from the regular mode where an order arriving at the end of period j will be available 

to serve customer from the next period.  As special orders are supposed to prevent 

stockouts on any period, any special order which will arrive on next period cannot be 

placed. 

First, an order-up-to point for an emergency mode on each period is 

determined as follow.  As it is found in Chapter 3 that, under seasonal demand, the 

same size of order could lead to different holding cost when it was ordered in a 

different period.  If an emergency order is too large, it will delay a regular order or if 

it is too low it will rush regular order.  From a regular replenishing mode, we can 

calculate expected on-hand levels of each period.  In Table 9, for a 4-period demand 

cycle, a regular order is expected in period 1 of each cycle.  The on-hand levels shown 
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are the levels at the end of periods.  These levels are determined by an ordering policy 

of a regular mode.  These numbers repeat cycle after cycle.  Therefore, expected on-

hand levels at the end of periods 1, 2, 3 and 4 are 1480, 5000, 3800 and 2,360 

respectively.  Therefore, for a dynamic policy, if retailer’s on-hand level reaches 

emergency reorder point in any sub-period, an emergency order is placed to raise on-

hand level to the expected on-hand level of that period.  For a static policy, an 

expected on-hand level is the lowest level which is higher than the emergency reorder 

point.  Please note that the expected on-hand levels are calculated based on the 

expected demand without considering variation of demand. 

Table  9 An example of regular-mode ordering policy 

 
Reorder 1,480                 

Order-up-to 5,480         

 

      

                    

  Cycle 1 Cycle 2 

Period 0 1 2 3 4 5 6 7 8 

Demand 

 

880 480 1,200 1,440 880 480 1,200 1,440 

On hand 2,360 1,480 5,000 3,800 2,360 1,480 5,000 3,800 2,360 

Order 

 

4,000 

   

4,000 

   
 

Then, since an emergency mode is triggered when a location faces risk of 

stockouts under the same demand distribution, for a dynamic policy, a reorder point 

for each period can be calculated with equation (60) as follows.  For a static policy, 

the reorder point is the highest reorder point of all periods in a cycle. 

𝑠 = 𝑥̂𝑅+𝐿 + 𝑧𝜎𝑅+𝐿   (60) 
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where, 

𝑅 = review interval (sub-period) 

𝐿 = lead time (sub-period) 

𝑥̂𝑡= expected demand in a period of duration 𝑡 (unit) 

𝜎𝑡= standard deviation of demand over a period of duration 𝑡 

𝑧 = the z-value corresponding to the expected service level  

When an emergency order is requested but the warehouse does not have 

sufficient items, a transshipment is considered.  In contrast to emergency mode, a 

transshipment mode is one retailer requests items from another retailer.  As a 

transshipment decreases on-hand level on another retailer, this mode will only request 

an amount to prevent stockouts.  Therefore, an order-up-to point for a transshipment 

mode, 𝑆𝑇, is calculated with equation (60) which is used to calculate a reorder point 

for an emergency mode.  To prevent stockouts, a location should hold items at least 

equal to 𝑆𝑇.  Therefore, a reorder point is 𝑆𝑇 − 1.  Please note that although the 𝑆𝑇 is 

calculated with equation (60), it is not the same value of a reorder point of an 

emergency mode due to different lead time between two modes. 

An example of ordering policies for emergency and transshipment modes is 

shown in Table 10 and Table 11.  In the example, standard deviation of demand is 

assumed to be 5% of period’s demand.  Each period is divided into 4 sub-periods. A 

lead time for an emergency mode is 2 sub-period and a lead time for a transshipment 

is 1 sub-period.  A review interval for special modes is 1 sub-period.  The ordering 

policy for a regular mode, demand pattern and expected on-hand are the same as in 

Table 9.  In each period, average demand is the same for each sub-period so sub-
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period’s demand in period 1 is 
880

4
= 220 and its standard deviation is √

1

4
(880 ×

5%) = 22. 

Therefore, for an emergency mode, order-up-to points for the dynamic policy 

are determined.  Reorder points for the dynamic policy are determined with 2 sub-

period lead time and 1 sub-period review interval.    For period 1, average demand 

during lead time and review period is 𝑥̂𝑅+𝐿 = 𝑥̂1+2 = 660 and standard deviation is 

𝜎𝑅+𝐿 = √1 + 2(22) = 38.11 and, then, a reorder point is 𝑠 = 𝑥̂𝑅+𝐿 + 𝑧𝜎𝑅+𝐿 =

660 + 1.64 × 38.11 = 722.54.  Then, a reorder point is rounded up to 723.  A static 

policy is determined as the highest reorder point and lowest order-up-to point.  For a 

transshipment mode, order-up-to points for the dynamic policy are determined with 

equation (1) with 1 sub-period lead time and 1 sub-period review interval.  Therefore, 

its order-up-to points are lower than the reorder points of an emergency mode.  Then, 

reorder points are determined by order-up-to minus 1.  Afterwards, a static policy is 

determined as the highest order-up-to and reorder points. 

Too many items transshipped would lead to stockouts at the retailer that 

provides items.  We apply a partial pooling concept that items are reserved for local 

future demand (Paterson et al., 2011).  The items will be transshipped from a retailer 

when they are excessive items only.     
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Table  10 An example of ordering policies for special replenishing modes. 

 
Number of Sub-periods 4 SD/Average Demand 5% 

 
Lead Time (Emergency) 2 Expected Service Level 95% 

 
Lead Time (Transshipment) 1 z (Expected Service Level) 1.64 

 
Review Interval 1     

      
Periods 

 

1 2 3 4 

Demand (Period) 

 

880 480 1,200 1,440 

On-Hand (unit) 

 

1,480 5,000 3,800 2,360 

Demand (Sub-period) 220 120 300 360 

SD (sub-period) 

 

22 12 30 36 

SD (Emergency) 

 

38.11 20.78 51.96 62.35 

SD (Transshipment) 31.11 16.97 42.43 50.91 

 

Table  11 An example of dynamic and static ordering policies 

 

 

Dynamic  

Policy 

Static 

Policy 

Periods 1 2 3 4  

Order-up-to (Emergency) 1,480 5,000 3,800 2,360 1,480 

Reorder (Emergency) 723 395 986 1,183 1,183 

Order-up-to (Transshipment) 492 268 670 804 804 

Reorder (Transshipment) 491 267 669 803 803 
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Using the transshipment mode, we also need to decide which retailer should 

be requested order.  These potential retailers are the location with on-hand items more 

than its reorder point after sending a considered order.  We use a following ratio to 

find potential retailers.  A potential retailer is the one with ratio higher than 1.  Then, 

the transshipping retailer is the potential retailer with the highest ratio. 

𝑟𝑖 =
𝐼𝑖−𝑇

𝑠𝑖
   (61) 

where, 

𝑇= a considered transshipment order (unit) 

𝑟𝑖= ratio of retailer 𝑖  

𝐼𝑖= on-hand items of retailer 𝑖 (unit) 

𝑠𝑖= reorder point of retailer 𝑖 (unit) 

 On each sub-period, special modes place order only when the items arrive 

within that period.  Therefore, special modes consider only on-hand inventory of a 

retailer and on-order of emergency and transshipment modes.  When the inventory 

position gets below both emergency and transshipment reorder points, an emergency 

will always be considered first.  When an inventory position reaches an emergency 

reorder point, an order is placed to raise the on-hand to an emergency order-up-to 

point.  If an emergency order is placed on that sub-period, an inventory position is 

raised to be higher than both emergency and transshipment reorder points and there 

will be no transshipment order placed.  If the warehouse cannot deliver the whole 

order, no items is delivered.  Then, a transshipment is considered when there is no 

emergency order on that sub-period. 
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5.5. Result and Discussion 

To prevent periods with unsatisfied service level, safety stock would be very 

high.  Therefore, we expect special replenishing modes to eliminate the number of 

periods with unsatisfied service level (NUS).  The special modes should help reduce 

the NUS without increasing holding cost.  Since it transfers items from one location to 

another in the system to serve demand. 

There are 3 settings with 4-period cycle and 3 settings with 7-period cycle and 

these 6 settings are solved on demand standard deviation of 5%, 10%, 15% and 20% 

of demand average.  Therefore, 24 instances are used to explore benefit of using 

special replenishing modes.  Example of parameter settings are shown in Table 12.  In 

Table 11, each retailer has different demand pattern.  Average demand on each period 

is shown for every retailer.  All settings for the same length of cycle have different 

ordering costs for a regular replenishing mode.  With high ordering cost, a retailer 

would order less frequent than with low ordering cost.  As Chapter 3 studied the 

problem with regular mode, ordering policies would control the locations to place 

orders according to the periods in demand cycle.  Therefore, with high ordering cost, 

a retailer would order only once in a cycle but with low ordering cost, it would order 

every period.  On different demand deviation, the policies for a regular mode would 

be different due to different safety stock but, as they have the same demand pattern, 

they would be expected to place orders on the same period in a cycle.  Each location 

has its own number of expected orders per cycle.  For example, if a retailer under 7-

period cycle has this number of 1, it places an order every 7 periods.  If a retailer 

under 4-period cycle the number of expected orders of 3, it may place orders on 

periods 1, 2, 3 or 1, 3, 4 of the cycle or any other group of 3 periods. 
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Every instance is tested under 95% service level.  The regular replenishment 

has 1-period lead time and reviews inventory levels every period.  For the special 

replenishing modes, each period is divided into 4 sub-period and special modes 

review inventory level every sub-period.  The emergency mode has 2-sub-period lead 

time and the transshipment has 1-sub-period lead time.  Every policy for special 

modes is tested on a 10,000-period instance. 

Table  12 Parameters of each instance. 

 

 

5.5.1 The difference between emergency and transshipment modes 

The number of emergency and transshipment orders decreases as the deviation 

of demand increases as shown in Figure 20.  The number of orders tends to decrease 

because, under higher deviation demand, the safety stock on each location is higher 

where retailers face the risk of stockouts less frequently.  However, instances under 

the same demand deviation have different number of special orders.  Another factor 

affecting the number of orders is the number of expected orders per cycle shown in 

Table 11.  The instances with higher number of expected orders tend to have more 

special orders.  With 4-period cycle, instances with setting 1 have the lowest Number 

of expected orders and they also have the lowest number of special orders.  Instances 

with 7-period behave in a similar way.  Instances with setting 2 also have the lowest 

number of expected orders and number of special orders.  However, the instances 

with setting 1 have more special orders than instances with setting 3.  The reason 

Retailer 1 Retailer 2 Retailer 3 Warehouse Retailer 1 Retailer 2 Retailer 3

1 880, 480,1200, 1440 880, 1840, 2400, 2880 1 1 1

2 880, 480,1200, 1440 880, 1840, 2400, 2880 2 3 2

3 88,48, 120, 144 88, 184, 240, 288 2 3 2

1 107, 101, 111, 109, 76, 142, 54 242, 269, 263, 281, 184, 106, 55 458, 344, 396, 452, 295, 611,244 1 0.5 7 7

2 107, 101, 111, 109, 76, 142, 54 242, 269, 263, 281, 184, 106, 55 458, 344, 396, 452, 295, 611,244 2 1 1 7

3 107, 101, 111, 109, 76, 142, 54 242, 269, 263, 281, 184, 106, 55 458, 344, 396, 452, 295, 611,244 7 7 1 7

Setting
No.

Retailer

Period/

Cycle

Number of Expected Orders/CycleAverage Demand/Period

2 4

3 7
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could be that the setting 1 orders frequent on a retailer 2 which has demand which is 

larger and fluctuates more than retailer 1.  A retailer faces the risk of stockouts when 

its on-hand is low.  This situation would be in the period where a retailer waits for an 

order to arrive.  Since an on-hand level is at its highest in the period that an order 

arrives and at its lowest in the period right before an order’s arrival.  With a policy 

that leads to order frequently, a retailer tends to face the risk of stockouts more 

frequently than with a policy that rarely orders. 

 

Figure  20 Number of transshipment orders to emergency orders 

 

Between an emergency mode and transshipment mode, the number of 

transshipment orders is around 12% of the number of emergency orders.  Since the 

system always considers emergency mode before a transshipment mode, a 

transshipment order can occur when an emergency order cannot be placed such as 
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when the warehouse cannot fulfill the order or at the last sub-period.  To consider this 

relationship, the ratio of number of transshipment orders to number of emergency 

orders is calculated as 𝑅𝑇/𝐸 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓  𝑡𝑟𝑎𝑛𝑠𝑠ℎ𝑖𝑝𝑚𝑒𝑛𝑡 𝑜𝑟𝑑𝑒𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓𝑒𝑚𝑒𝑟𝑔𝑒𝑛𝑐𝑦 𝑜𝑟𝑑𝑒𝑟𝑠
× 100.  The ratio for 

each instance is shown on Figure 21.  On average, 𝑅𝑇/𝐸 is 18% under dynamic 

policies and 6% under static policies.  Due to more emergency orders, 𝑅𝑇/𝐸 under 

static policies is much lower than 𝑅𝑇/𝐸 under dynamic policies.  The ratio tends to 

increase as the deviation of demand increases for dynamic policies because, with high 

deviation demand, the number of emergency and transshipment orders decreases but 

the number of emergency orders decreases more rapidly. 

 

Figure  21 Ratio of number of transshipment orders to emergency orders 
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5.5.2 The difference between dynamic and static policies 

 With special replenishing modes, the number of periods with unsatisfied 

service level, NUS, is eliminated while the holding cost for each instance slightly 

increases.  On average, static and dynamic policies give holding costs 0.85% and 

0.72% higher than those of instances without any special mode.  However, as the 

static policy uses the highest reorder point of the demand cycle, it is expected to place 

more special orders than the dynamic policy.  The number of special orders of a static 

and dynamic policies are shown in Figure 22.  The Figure 22 also illustrates the NUS 

of the system without special modes and with special modes under static and dynamic 

policies 

 

Figure  22 Number of periods with unsatisfied service level and number of special 

orders on each instance 
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However, the number of special orders from a dynamic policy gets closer to 

those from a static policy under higher standard deviation of demand and shorter 

demand cycle as shown in Figure 23.  We calculate a ratio of number of special orders 

from dynamic policy to static policy as 𝑅𝐷/𝑆 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑜𝑟𝑑𝑒𝑟𝑠𝑑𝑦𝑛𝑎𝑚𝑖𝑐

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑜𝑟𝑑𝑒𝑟𝑠𝑠𝑡𝑎𝑡𝑖𝑐
× 100.  

As the number of special orders for 7-period instances is higher than those for 4-

period instances, 𝑅𝐷/𝑆 is lower for 7-period instances.  On average, 4-period instances 

give 𝑅𝐷/𝑆 of 53% while 7-period instances have 𝑅𝐷/𝑆 only 31%.  To consider whether 

to choose a static policy or a dynamic policy, one factor to take into account is the 

frequency of special orders.  The ratio of number of special orders to regular orders is 

calculated as 𝑅𝑆/𝑅 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑝𝑒𝑐𝑖𝑎𝑙 𝑜𝑟𝑑𝑒𝑟𝑠

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑜𝑟𝑑𝑒𝑟𝑠
× 100.  In Figure 23, 𝑅𝑆/𝑅 is around 1% 

to 25% under dynamic policies and 4% to 55% under static policies.  Similar to the 

ratio of number of special orders from dynamic policy to static policy, 𝑅𝐷/𝑆, 7-period 

instances give higher 𝑅𝑆/𝑅 than 4-period instances.  For 7-period instances, 𝑅𝑆/𝑅 is 

around 10% to 55% under static policies and 1% to 25% under dynamic policies.  For 

4-period instances, 𝑅𝑆/𝑅 is around 4% to 23% and 3% to 14% under static and 

dynamic policies, respectively.  The 𝑅𝐷/𝑆 is higher with shorter demand cycle because 

the difference between dynamic and static policies is directly affected by the number 

of policies for special modes.  While a static policy has only one policy for each 

special mode, a dynamic policy has policies as many as the number of periods in a 

cycle.  Therefore, the longer cycle is, the bigger difference between dynamic and 

static policies becomes.  Furthermore, 𝑅𝑆/𝑅 of dynamic and static policies get closer 

when the length of cycle is shorter.  It is due to the same reason that the difference 
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between two policies is affected by the length of cycle or the number of dynamic 

policies.  

Therefore, from 𝑅𝐷/𝑆 and 𝑅𝑆/𝑅 when the deviation of demand is high and 

demand cycle is short, a static policy can substitute the dynamic policy. 

 

Figure  23 Ratio of number of special orders 
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 It is obvious that when the safety stock is higher the ratio, 𝑅𝑆/𝑅, as in section 

5.5.2, will be lower and vice versa.  We investigate how different safety stock affects 

number of special orders.  In Figure 24, 𝑅𝑆/𝑅 decreases when the safety stock 

increases.  The relationship goes in the same way for both static and dynamic policies.  

Therefore, if holding cost of the system is high compared to ordering cost of special 

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

S
et

ti
n
g
 1

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
5
%

 S
D

S
et

ti
n
g
 2

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
5
%

 S
D

S
et

ti
n
g
 3

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
5
%

 S
D

S
et

ti
n
g
 1

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
5
%

 S
D

S
et

ti
n
g
 2

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
5
%

 S
D

S
et

ti
n
g
 3

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
5
%

 S
D

S
et

ti
n
g
 1

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
1
0
%

 S
D

S
et

ti
n
g
 2

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
1
0
%

 S
D

S
et

ti
n
g
 3

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
1
0
%

 S
D

S
et

ti
n

g
 1

, 
7

 P
er

io
d

, 
3

 R
et

ai
le

rs
, 
1

0
%

 S
D

S
et

ti
n

g
 2

, 
7

 P
er

io
d

, 
3

 R
et

ai
le

rs
, 
1

0
%

 S
D

S
et

ti
n

g
 3

, 
7

 P
er

io
d

, 
3

 R
et

ai
le

rs
, 
1

0
%

 S
D

S
et

ti
n
g
 1

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
1
5
%

 S
D

S
et

ti
n
g
 2

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
1
5
%

 S
D

S
et

ti
n
g
 3

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
1
5
%

 S
D

S
et

ti
n
g
 1

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
1
5
%

 S
D

S
et

ti
n
g
 2

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
1
5
%

 S
D

S
et

ti
n
g
 3

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
1
5
%

 S
D

S
et

ti
n
g
 1

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
2
0
%

 S
D

S
et

ti
n
g
 2

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
2
0
%

 S
D

S
et

ti
n
g
 3

, 
4
 P

er
io

d
, 
2
 R

et
ai

le
rs

, 
2
0
%

 S
D

S
et

ti
n
g
 1

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
2
0
%

 S
D

S
et

ti
n
g
 2

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
2
0
%

 S
D

S
et

ti
n
g
 3

, 
7
 P

er
io

d
, 
3
 R

et
ai

le
rs

, 
2
0
%

 S
D

R
at

io
 o

f 
N

u
m

b
er

 o
f 

O
rd

er
s

Instance

Ratio of Number of Special Orders

Dynamic Policy to Regular Mode

Static Policy to Regular Mode

Dynamic Policy to Static Policy



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 107 

modes, decrease safety stock level and let the special modes respond to stockouts 

would be a good choice. 

 

Figure  24 Safety stock levels vs number of special orders 

 

5.6 Conclusion 

 An emergency and transshipment modes are considered as special modes to 

prevent stockouts.  In our experiment, the number of special orders tends to decrease 

in instances with high deviation demand because the safety stock on each location 

under these instances is high.  Therefore, the retailers face the risk of stockouts less 

frequently.  With a policy for a regular mode that leads to order frequently, a retailer 

tends to face the risk of stockouts more frequently which leads to more special orders.  

Since we let the system considers emergency mode before a transshipment mode, the 

number of transshipment orders is around 12% of the number of emergency orders.  

The ratio tends to increase under the higher deviation of demand.  With high deviation 

demand, the number of emergency and transshipment orders decreases but the number 

of emergency orders decreases more rapidly. 
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Two types of policies for special replenishing modes are considered.  The first 

one is a static policy which applies one policy on every period and the other is a 

dynamic policy which varies policy for each period in the demand cycle.  The static 

policy would be easier to implement while the dynamic policy would give a better 

result.  We investigate these policies to find how they affect the system in different 

situations.  With special replenishing modes, the number of periods with unsatisfied 

service level, NUS, is eliminated while the holding cost for each instance is slightly 

higher.  A dynamic policy tends to give smaller number of special orders.  However, 

the number of special orders from a dynamic policy gets closer to those from a static 

policy with higher demand deviation and shorter demand cycle.  Therefore, in case of 

high deviation demand and short demand cycle, for ease of use the static policy can 

substitute the dynamic policy. 

Moreover, the number of special orders is in inverse proportion to the size of 

safety stock levels.  Therefore, one way to reduce holding cost is to let special modes 

respond to stockouts and decrease safety stock. 

As this chapter focuses on the 2-echelon system under seasonal demand, there 

are various aspects to extend the problem.  This chapter considers only replenishing 

policies with a unit size of items.  However, in reality, a batch-size constraint would 

be applied.  The batch size could even be different for the warehouse and retailers.  

Furthermore, the system would be explored how it performs when each location has 

stochastic lead time. Another constraint which reflects real-life is how to determine 

ordering policies for the system with capacitated space.  These constraints would be a 

useful research extension in real-life situation. 
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CHAPTER VI 

CONCLUDING REMARKS AND FUTURE WORKS 

In this thesis, we propose methodologies to determine ordering policies for a 

2-echelon inventory system under seasonal demand.  Our objective is to determine the 

ordering policies for all locations with minimum cost respected to expected service 

level.  The first part of the dissertation decomposes a problem into 2 phases and 

develop a methodology based on mixed-integer programming models (MIP models).  

The first phase determines deterministic policy by solving a deterministic problem 

based on average demand.  The MIP model in this phase is used to find reorder and 

order-up-to points.  Then, the second phase calculates safety stock by solving multiple 

scenarios of the problem generated from demand distribution.  We found that there 

are alternative optimal solutions where multiple reorder points give the same total 

cost, but these alternatives lead to different cost in the second phase.  In the second 

phase, another MIP model uses reorder and order-up-to points from the first phase as 

inputs and solve multiple scenarios with randomly generated demand simultaneously 

for safety stock that leads to the minimum total cost respected to required service 

level.  The policy with the highest reorder point tends to give the lowest cost but they 

face more demand loss than other policies.  On the other hand, the policy with the 

lowest reorder point tends to give the highest cost but the lowest demand loss. 

The methodology considers the average demand of each period in the first 

phase, so it absorbs the fluctuation of demand’s mean in this phase.  Therefore, we 

believe that the model could deal with demand with any seasonal pattern as the policy 

tends to place an order on the period with small demand size to minimize holding 

cost.  However, as we assume that the standard deviation of demand is a proportion of 
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demand size, a period with smaller size of demand also has smaller deviation.  

Relaxing this assumption would lead to different results which should be studied 

further. 

 The proposed methodology in Chapter 3 can find solutions within a reasonable 

amount of time. However, it can be improved.  Since the methodology is based upon 

MIP modes, it can solve limited problem size.  While the problem sizes increase i.e. 

larger demand volume or greater number of retailers, the optimal solution may not be 

able to obtain with MIP models. 

 In the second part of the thesis (Chapter 4), we develop algorithms to solve the 

problem with smaller computational time.  The problem is still decomposed into 2 

phases.  In the first phase to determine deterministic policies, a heuristic algorithm is 

developed partially based on the concept of the genetic algorithm.  Then, in the 

second phase to determine safety stock levels, another algorithm is developed using 

binary search.  The algorithms can find the solutions which are as good as the optimal 

solutions from the MIP models.  Solving for the solutions in 2 phases, the total 

computational time from proposed algorithms is much smaller than those from the 

MIP models.  Furthermore, we also find that the policies are more robust when the 

longer planning horizon is used in the second phase. 

 The genetic algorithm is chosen in this thesis since it is an efficient 

metaheuristic used in various research domains.  The algorithm is also appropriate for 

this problem since the solutions can be encoded into chromosomes which stay feasible 

after crossover and mutation.  Furthermore, the objective to find the solution with 

lowest cost is easy to define a fitness function as shown in Chapter 4.  It is also easy 

to adjust the search by tuning crossover rate and mutation rate.  With too high 
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crossover rate, the search would converge too soon while, with too high mutation rate, 

the search would lose the good solutions.  In our experiment, we investigate the 

results of using crossover rate of 0.6, 0.7, 0.8, and 0.9, and mutation rate of 0.1, 0.2, 

and 0.3.  Crossover rates of 0.8 and 0.9 lead to premature convergence with mutation 

rate of 0.1.  On the other hand, with crossover rate of 0.6, the search finds the optimal 

solution with mutation rate of 0.1 but it cannot find the optimal solution with mutation 

rate of 0.2 and 0.3.  With crossover rate of 0.7, the search finds the optimal solution 

with all mutation rates.  Therefore, we choose the crossover rate of 0.7 and mutation 

rate of 0.2. 

 From Figure 16, the first phase of the proposed methodology requires more 

computational time when the system has more retailers since the more retailers means 

the longer chromosomes to calculate.  Consequently, the second phase also requires 

more computational time with more retailers as it has more periods to simulate.  

However, as the computational time grows linearly, we believe that the computational 

time will be reasonable to use this methodology until the size of 20 retailers.  

Therefore, the algorithm is appropriate for the problem since the size of case study is 

around 10 retailers. 

 Several directions are possible for future work related to Chapter 3 and 4.  It 

can be extended in various aspects such as considering shortage cost or considering 

batch-size constraint.  Considering multiple items is also an interesting way since it 

could lead to difficult decisions such as joint ordering or shared storage space.     

Another way to extend the problem is to consider multiple replenishing modes. 

 In the third part of the thesis (Chapter 5), beside the regular replenishing, two 

special replenishing modes with shorter fixed lead time are considered.  These special 
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modes are an emergency mode which is a mode supplied by the warehouse and a 

transshipment which is a mode where items are requested from other retailers with 

excessive on-hand stock.  Normally, retailers are supplied by the warehouse via a 

regular replenishing mode but when any retailer faces the risk of stockout, items could 

be transported via one of special modes.  An emergency mode is always considered 

first, while a transshipment mode is considered when the warehouse cannot fulfill an 

emergency order.  As the demand is seasonal, two types of policies for special modes 

are considered.  The first one is a static policy which applies one policy on every 

period and the other is a dynamic policy which varies policy for each period in the 

demand cycle.  We investigate these policies to find how they affect the system in 

different situations.  A dynamic policy tends to give smaller number of special orders.  

However, the number of special orders from a dynamic policy gets closer to those 

from a static policy with higher demand deviation and shorter demand cycle.  

Therefore, since a static policy is easier to implement, in case of high deviation 

demand and short demand cycle, the static policy can substitute the dynamic policy.  

Moreover, the number of special orders is in inverse proportion to the size of safety 

stock levels.  Therefore, one way to reduce holding cost is to let special modes 

respond to stockouts and decrease safety stock.  In Chapter 5, the ratio of number of 

special orders to regular orders and the ratio of number of transshipment orders to 

emergency orders are investigated in various deviation.  With these ratios, if ordering 

cost of each special mode is realized, an approximate cost of using special modes 

could be calculated.  For example, in a system with 5% deviation of demand average 

and 4-period cycle, Figure 21 and 23 show that, for a static policy, the number of 

special orders is around 25% of number of regular orders and the number of 
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transshipment orders around 5% of emergency orders.  Therefore, if the number of 

regular orders is 1,000 and ordering costs an emergency mode and a transshipment 

mode are $10 and $20, the approximate cost of applying special modes is around 

(1,000 × 25% × 95% × 10) + (1,000 × 25% × 5% × 20) = $2,625. 

 There are several possible extensions of Chapter 5.  First, like in Chapter 3 and 

4, a batch-size constraint can be applied to reflect real-life situations.  With multiple 

replenishing modes, a batch-size constraint could be different for each echelon and 

each replenishing mode.  For example, a regular mode must be placed as multiple of 

large packages, but an emergency mode can be placed as multiple of small packages 

and a transshipment can be place in unit.  Another interesting constraint is capacitated 

space constraint.  Since each location stores many types of items to serve customers, 

storage space must be shared among these different items.  Therefore, the space used 

to store each item would be limited.  Therefore, ordering policy should take storage 

capacity into account.  Furthermore, one might explore how the system performs 

when each mode has stochastic lead time.  These additional constraints would be 

useful research directions. 

 Overall, we develop methodologies to determine ordering policies for a 2-

echelon inventory system under seasonal demand.  We decompose a problem into 2 

phases.  Then, we propose a methodology based on MIP models and we improve the 

methodology by developing algorithms based on the genetic algorithm and binary 

search to solve the problem with smaller computational time.  Beside a regular 

replenishing mode in the first and second parts, a problem is extended with two 

special replenishing modes which used to prevent stockouts.  Our work is motivated 
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by a case-study problem in a healthcare sector, but we believe that the methodology is 

useful for any other inventory system with similar characteristics. 
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