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CHAPTER I

INTRODUCTION

“Functional equations”originally are equations in which the unknown (or

unknowns) is function. J. Aczél [2] described functional equations as follows.

Functional equations are equations, both sides of which are terms con-

structed from a finite number of unknown functions (of a finite number

of variables) and from a finite number of independent variables. This

construction is effected by a finite number of known functions of one

or several variables (including the four species) and by finitely many

substitutions of terms which contain known and unknown functions

into other known and unknown functions. The functional equations

determine the unknown functions. We speak of functional equations or

system of functional equations, depending on whether we have one or

several equations.

According J. Aczél, J.G. Dhombres [1] and M. Kuczma [9], we know that the his-

tory of the study functional equation may be dated back more than 2200 years

when Archimedes made use of recurrences.

The beginning of a theory of functional equations related to the work of J. Aczél,

a Hungarian mathematician, who was an excellent specialist in this field(see [2]).

Theory of functional equations then has been developed gradually. Especially in

the last two decades, it has grown rapidly. A lot of mathematical papers investi-

gating functional equations have been published. Moreover, functional equations

are included in the mathematical olympiad contest so student could widely learn

in this branch of mathematics. Now functional equations become an important

research field with, a number of interesting results and several applications.
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Probably the best known and the most basic functional equation is the Cauchy

functional equation

f(x+ y) = f(x) + f(y)

containing two variables x, y and one unknown function f of variable. There

are certain other functional equations which can be transformed into the Cauchy

functional equation. Three most important such functional equations are

f(x+ y) = f(x)f(y) (exponential)

f(xy) = f(x) + f(y) (logarithmic)

f(xy) = f(x)f(y) (multiplicative).

Solving a functional equation is always the art that many mathematicians are

crazy, investigating the functional inequalities becomes more interesting problem

and determining the general solution of an alternative functional equation is a

challenging problem.

Next, we will give some general background of functional equation and stability.

Then we threat an alternative functional equation and its literature. Furthermore

we refer to the motivation of our proposed problem.

1.1 Functional Equations

At first we will give a definition of a functional equation based on the concept

of the terms along which was given in the book of Kuczma [9].

Definition 1.1 (Kuczma). A term is defined by the following conditions:

1. Independent variables are terms.

2. If t1, . . . , tp are terms and f(x1, . . . , xp) is a function of p variables, then

f(t1, . . . , tp) also is a term.

3. There exist no other terms.
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Then a functional equation may be defined as follows:

Definition 1.2 (Kuczma). A functional equation is an equality t1 = t2 between

two terms t1 and t2 which contain at least one unknown function and a finite

number of independent variables. This equality is to be satisfied identically with

respect to all the occurring variables in a certain set (of any sort).

The notion of a functional equation as defined above does not contain differential,

integral, operator equation and generally equation in which infinitesimal opera-

tions are performed. As we know, the solutions of a functional equation must be

functions.

A function satisfying a functional equation on a given domain is called a

solution of the equation on that domain. Next, we will give some examples of

functional equations.

Example 1.3. Determine all functions f : R → R satisfying

f(x+ y) = f(x) + y for all x, y ∈ R. (1.1)

Solution. Assume that there exits a function f : R → R satisfying (1.1).

Setting x = 0 in (1.1). , then

f(y) = y + f(0) for all y ∈ R.

which implies that the function f must be given by f(x) = x + c, where c is a

constant.

On the other hand, if a function f is defined by f(x) = x + c for all x ∈ R

where c is a constant, then we have

f(x+ y) = x+ y + c = (x+ c) + y = f(x) + y for all x, y ∈ R.

In general, a functional equation may not necessarily have a solution. The next

example shows such an example.
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Example 1.4. Determine all functions f : R → R satisfying

f(x+ y) = f(y) + x+ 1 for all x, y ∈ R. (1.2)

Solution. Suppose that there exists a function f : R → R satisfying (1.2).

Substituting y = 0 into (1.2), we obtain

f(x) = f(0) + x+ 1 for all x ∈ R.

which implies that the function f must be given by f(x) = x + c, where c is a

constant.

Conversely, if a function f is given by f(x) = x + c for all x ∈ R, then we see

that the left-hand side of (1.2) becomes

f(x+ y) = x+ y + c

while the right-hand side of (1.2) is

f(y) + x+ 1 = x+ y + c+ 1.

Since c ̸= c+ 1, there is no function f : R → R satisfying (1.2).

A classical example of functional equation is the Cauchy functional equation

given as follows:

f(x+ y) = f(x) + f(y) (C)

for all x, y, x + y in the domain of f . In 1821, A.L. Cauchy [4] proved that all

continuous solutions f : R → R are linear functions given by f(x) = cx for all

x ∈ R where c is a constant.

The simplest and most elegant variation of the Cauchy functional equation is

the Jensen’s functional equation which may be expressed in the form

f
(x+ y

2

)
=

f(x) + f(y)

2
. (J)

Every solution of Jensen’s functional equation will be called Jensen function.The

continuous solutions f : R → R of (J) are f(x) = a+ bx for all x ∈ R where a and
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b are constants.

The so-called quadratic functional equation is the equation of the form

f(x+ y) + f(x− y) = 2f(x) + 2f(y). (Q)

The continuous solution to the equation (Q) on R is of the form f(x) = cx2 for

all x ∈ R. Moreover, every solution of the equation (Q) will be called a quadratic

function.

In the next section, we shall provide the history of the study of stability prob-

lems which are now popular research problems for many mathematicians (please

refer to [5] and [14] for details).

1.2 The Stability

The problem of stability originated from the question of S.M. Ulam [17] in

1940. He gave a wide ranging talk before the mathematics club of the University

of Wisconsin in which he discussed a number of important unsolved problems.

Among those was the question concerning the stability of homomorphism :

Let G1 be a group and let G2 be a metric group with a metric d(·, ·)

Given ϵ > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality d(h(xy), h(x)h(y)) < δ for all x, y ∈ G1, then

there is a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all

x ∈ G1?

If the answer to this question is affirmative, we say that the functional equation

h(xy) = h(x)h(y) is stable. The first answer to this question was given by D.H.

Hyers [8] in 1941 as follows.

Theorem 1.5. (D.H. Hyers) Assume that E1 and E2 are Banach spaces. If a

function f : E1 → E2 satisfies the inequality

∥f(x+ y)− f(x)− f(y)∥ ≤ ε
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for some ε ≥ 0 and for all x, y ∈ E1, then the limit

a(x) = lim
n→∞

2−nf(2nx)

exists for each x in E1 and a : E1 → E2 is unique additive function such that

∥f(x)− a(x)∥ ≤ ε

for any x ∈ E1. Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then

a is linear.

This result marks the staring point of the theory of Hyers-Ulam stability of

functional equations.

Later, T. Aoki [3] and Th. M. Rassias [13] generalized the concept of the

Hyers-Ulam stability which propelled many mathematicians to study this kind of

stability for a number of important functional equations. Rassias’ result is given

in the following theorem.

Theorem 1.6. (Th.M. Rassias) Let f : E1 → E2 be a mapping between Banach

spaces E1, E2 such that

∥f(x+ y)− f(x)− f(y)∥ ≤ θ(∥x∥p + ∥y∥p) for all x, y ∈ E1,

for some constants θ > 0 and 0 ≤ p < 1. Then there exists a unique additive

mapping A : E1 → E2 such that

∥A(x)− f(x)∥ ≤ 2θ

2− 2p
∥x∥p for all x ∈ E1

Moreover, if f(tx) is continuous in t for each fixed x ∈ E1, then A is linear.

Now we can briefly say that a study of stability of a functional equation is to

consider functional inequality and ask: does there exist a solution of the functional

equation which approximates the solutions of the inequality within a given distance?

In the next section, we provide the study of an alternative functional equation

which is a challenging research problems for many mathematicians.
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1.3 Alternative functional equations

Normally, function equation has only one equation which determine a relativity

of function for any set of independent variable such as, (C) when we determined

x, y, we will know a visible relativity, that is f(x + y) = f(x) + f(y) but, in the

alternative functional equation, a set of independent variable possibly have more

relativity for the example, alternative Cauchy functional equation

f(x+ y) = f(x) + f(y) or f(x+ y) = −f(x)− f(y).

The difference from primary thing is, when we determine x, y we will have

two choices for choose, f(x + y) = f(x) + f(y) or f(x + y) = −f(x) − f(y) but,

we can’t know any equation is true (or all of these true, if a value is suitably in

any positions). The challenges of alternative function is “we don’t know one of

these true or both either.” And in addition, when focus on two set of independent

variable we maybe choose different alternative for that, such an alternative Cauchy

functional equation in primary, if we knew f(4) = f(3) + f(1) maybe possible in

f(8) = −f(6)− f(2) for more detail, please see ([11]).

Next sections we introduce an alternative Cauchy functional equation,

an alternative quadratic functional equation and some examples.

1.3.1 Alternative Cauchy functional equations

An alternative Cauchy functional equation derived from (C) may read

f(x) + f(y) = ±f(x+ y) (1.3)

which its general solution for functions defined on semigroups has been discussed

by M. Kuczma [10]. A more general alternative Cauchy functional equation of the

form

[f(x+ y)− af(x)− bf(y)] · [f(x+ y)− cf(x)− df(y)] = 0,

where f is a function defined on a commutative group, has been solved by R. Ger

[7]. Next example shows that the alternative Cauchy functional equation (1.3) is
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equivalent to the Cauchy functional equation (C).

Example 1.7. A function f : R → R satisfies

f(x+ y) = ±(f(x) + f(y)) for all x, y ∈ R. (1.4)

if and only if f satisfies

f(x+ y) = f(x) + f(y) for all x, y ∈ R. (1.5)

Proof. It is clear that if f satisfies (1.5), then f satisfies(1.4). Thus it is sufficient

to prove that if f satisfies (1.4), then f satisfies (1.5). Let f : R → R be such that

f(x+ y) = ±(f(x) + f(y)). Setting (x, y) = (0, 0) in (1.4), we have f(0) = 0.

Replacing y = −x into (1.4) and using f(0) = 0 give f(−x) = −f(x) for all x ∈ R.

Next, we will prove that f satisfies (1.5) for all x, y ∈ R by contradiction.

Assume that there exist x0, y0 ∈ R such that

f(x0 + y0) ̸= f(x0) + f(y0). (1.6)

Since f(x0 + y0) = ±f(x0) + f(y0), we are left with

f(x0 + y0) = −f(x0)− f(y0). (1.7)

Setting (x, y) = (x0 + y0,−y0) in (1.4) and using f(−x) = −f(x), we get

f(x0) = f(x0 + y0)− f(y0) or f(x0) = −f(x0 + y0) + f(y0). (1.8)

Since f(x0 + y0) ̸= f(x0) + f(y0), we have

f(x0 + y0) = −f(x0) + f(y0). (1.9)

Setting (x, y) = (x0 + y0,−x0) in (1.4) and using f(−x) = −f(x), we get

f(y0) = f(x0 + y0)− f(x0) or f(y0) = −f(x0 + y0) + f(x0). (1.10)

Since f(x0 + y0) ̸= f(x0) + f(y0), we have

f(x0 + y0) = f(x0)− f(y0). (1.11)
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Considering (1.9), (1.11) and (1.7) give f(x0) = f(y0) = f(x0 + y0) = 0. Then

f(x0+y0) = f(x0)+f(y0), which is a contradiction with (1.6). Therefore, f(x+y) =

f(x) + f(y) for all x, y ∈ R.

Next example, we show that another alternative Cauchy functional equation

f(x+ y) = f(x) ± f(y) is equivalent to (1.5) on 2-divisible abelian groups. Let

(G,+) be a 2-divisible group, i.e., for every x ∈ G, there exists y ∈ G such that

x = 2y and (Y,+) be a real (or rational or complex) linear space.

Example 1.8. A function f : G → Y satisfies

f(x+ y) = f(x)± f(y) for all x, y ∈ G. (1.12)

if and only if f satisfies

f(x+ y) = f(x) + f(y) for all x, y ∈ G. (1.13)

Proof. Suppose that f : G → Y satisfies (1.12) for all x, y ∈ G. To show that

f(2x) = 2f(x) for all x, y ∈ G. Setting y = x in (1.12) gives

f(2x) = 2f(x) or f(2x) = 0 for all x ∈ G. (1.14)

Assume that there exists x0 ∈ G such that f(2x0) ̸= 2f(x0). Since G is a 2-divisible

group, we let z0 ∈ G such that 2z0 = x0. Therefore,

f(4z0) ̸= 2f(2z0). (1.15)

Replacing x = 2z0 into (1.14) and using the assumption (1.15), we have

f(4z0) = 0. (1.16)

From (1.15) and (1.16), we can see that

f(2z0) ̸= 0. (1.17)

Setting x = z0 in (1.14) and from (1.17), we get

f(2z0) = 2f(z0). (1.18)



10

Replacing (x, y) = (2z0, z0) into (1.12) and using (1.18), we obtain

f(3z0) = 3f(z0) or f(3z0) = f(z0). (1.19)

Plugging (x, y) = (3z0, z0) in (1.12) and using (1.16), we obtain

f(3z0) = −f(z0) or f(3z0) = f(z0). (1.20)

Considering (1.19) and (1.20), we have

f(3z0) = f(z0). (1.21)

Setting (x, y) = (4z0, z0) in (1.12) and using (1.16), we obtain

f(5z0) = f(z0) or f(5z0) = −f(z0). (1.22)

Putting (x, y) = (3z0, 2z0) in (1.12), then using (1.18) and (1.21), we obtain

f(5z0) = 3f(z0) or f(5z0) = −f(z0). (1.23)

Considering (1.22) and (1.23) gives

f(5z0) = −f(z0). (1.24)

Setting x = 3z0 in (1.14) and using (1.21), we get

f(6z0) = 2f(z0) or f(6z0) = 0. (1.25)

Putting (x, y) = (4z0, 2z0) in (1.12), then using (1.18) and (1.16), we obtain

f(6z0) = 2f(z0) or f(6z0) = −2f(z0). (1.26)

Plugging (x, y) = (5z0, z0) in (1.12) and using (1.24), we obtain

f(6z0) = 0 or f(6z0) = −2f(z0). (1.27)

Comparing (1.25), (1.26) and (1.27), we conclude that f(z0) = 0, which contradicts

(1.17) and (1.18). Therefore, f(2x) = 2f(x) for all x ∈ G. Next, we shall show
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that (1.12) is equivalence to (1.13). The sufficiency of this example is obvious. For

the necessity, suppose there exist x0, y0 ∈ G such that

f(x0 + y0) ̸= f(x0) + f(y0). (1.28)

Setting (x, y) = (x0, y0) into (1.12) and using (1.28), we obtain

f(x0 + y0) = f(x0)− f(y0). (1.29)

Replacing (x, y) = (y0, x0) into (1.12) and using (1.28) gives

f(x0 + y0) = f(y0)− f(x0). (1.30)

Considering (1.29) and (1.30), we conclude that

f(x0) = f(y0) and f(x0 + y0) = 0. (1.31)

Setting (x, y) = (x0 − y0, x0 + y0) into (1.12), then using (1.31) and f(2x) = 2f(x)

for all x ∈ G give

f(x0 − y0) = 2f(x0) (1.32)

Putting (x, y) = (y0, x0 − y0) in (1.12) and using (1.32), we infer that f(x0) = 0.

From (1.31), we get f(x0 + y0) − f(x0) − f(y0) = 0, a contradiction. Therefore,

f(x+ y) = f(x) + f(y) for all x, y ∈ G.

1.3.2 Alternative quadratic functional equations

In 1995, F. Skof [15] proposed the following four alternative quadratic functional

equations:

|f(x+ y)| = |2f(x) + 2f(y)− f(x− y)|, (1.33)

|f(x− y)| = |2f(x) + 2f(y)− f(x+ y)|, (1.34)

|2f(y)| = |f(x+ y) + f(x− y)− 2f(x)|, (1.35)

and |2f(x)| = |f(x+ y) + f(x− y)− 2f(y)| (1.36)
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and proved that for the class of functions f : X → R, whereX is a real linear space,

each of the above functional equation is equivalent to the quadratic functional

equation (Q). Nevertheless, the alternative quadratic functional equations:

|f(x+ y) + f(x− y)| = |2f(x) + 2f(y)| (1.37)

is considerably subtle, and it can only be proved that f is rationally homogeneous

of degree 2, i.e., f(rx) = r2f(x) for all rational numbers r and for all x ∈ X. But

for a specific case whenX = R and f is a continuous function, it can be successfully

shown that the alternative quadratic functional equation (1.37) is equivalent to the

quadratic functional equation (Q).

A more recent result concerning an alternative quadratic functional equation is

due to G.L. Forti [6] who studied the solution of the following functional equation:

f(xy) + f(xy−1)− 2f(x)− 2f(y) ∈ {0, 1},

where f is a function from a group (G, ·) to R and G possesses certain additional

properties. In 2015, P. Nakmahachalasint [12] has shown that the alternative

quadratic functinal equation f(xy−1) + f(xy) = ±2(f(x) + f(y)) is equivalent to

the quadratic functional equation f(xy−1) + f(xy) = 2f(x) + 2f(y) when f is a

mapping from 2-divisible group (G, ·) to a uniquely divisible abelian group (G∗,+).

However, an alternative quadratic functional equation

f(x+ y) + f(x− y) = 2f(x)± 2f(y)

has not been investigated. Therefore, in this dissertation, we will investigate the

solution of the alternative quadratic functional equation on 2-divisible abelian

group.

1.4 Proposed Problem

Let (G,+) be a 2-divisible abelian group and let (Y,+) be a real (or rational

or complex) linear space.
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In this thesis, we will prove that the alternative quadratic functional equation

f(x+ y) + f(x− y) = 2f(x)± 2f(y) for all x, y ∈ G

is equivalent to the classical quadratic functional equation (Q).

In Chapter II, we introduced an n-dimensional Jensen type functional equation

n∑
i=1

rif(xi) = f

(
n∑

i=1

rixi

)
. (NJ)

We give its general solution and investigate its stabilities of various types.

In Chapter III, we prove the equivalence of the classical quadratic functional

equation and an alternative quadratic functional equation on 2-divisible abelian

groups.



CHAPTER II

THE GENERALIZED STABILITY OF AN

n-DIMENSIONAL JENSEN TYPE FUNCTIONAL

EQUATION

Results in this section was published in Thai Journal of Mathematics ([16]).

Throughout this chapter, we let n > 1 be an integer, r1, r2, . . . , rn be positive

rational numbers satisfying

n∑
i=1

ri = 1. (2.1)

Here, we study an n-dimensional Jensen type functional equation

n∑
i=1

rif(xi) = f

(
n∑

i=1

rixi

)
(NJ)

where f is a function from a real (or rational or complex) linear space X to a real

(or rational or complex) linear space Y .

Next theorem gives the general solutions for (NJ).

Theorem 2.1. Let f : X → Y where X and Y are real (or rational or complex)

linear spaces. Then f satisfies (NJ) for all x1, . . . xn ∈ X if and only if f(x) =

A(x) + k for all x ∈ X where A : X → Y is an additive function and k is a

constant.

Proof. (Neccessity) Suppose f : X → Y satisfies the functional equation (NJ).

Define a function g : X → Y by

g(x) = f(x)− f(0)
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for all x ∈ X. Note that g(0) = 0.

g

(
n∑

i=1

rixi

)
= f

(
n∑

i=1

rixi

)
− f(0)

=
n∑

i=1

rif(xi)−
n∑

i=1

rif(0)

=
n∑

i=1

ri
(
f(xi)− f(0)

)
=

n∑
i=1

rig(xi). (2.2)

Thus g satisfies (NJ). Let s ∈ {1, . . . n},set xs = x and x1 = . . . = xs−1 = xs+1 =

. . . = xn = 0, then (2.2) becomes

g(rsx) = rsg(x) for all s ∈ {1, . . . n} for all x ∈ X. (2.3)

Next, by setting xs = x, xs+1 = y and x1 = . . . = xs−1 = xs+2 = . . . = xn = 0 in

(2.2) and using (2.3), we obtain

g(rsx+ rs+1y) = rsg(x) + rs+1g(y) (2.4)

for all x, y ∈ X. Let u, v ∈ X, set x = r−1
s u and y = r−1

s+1v. From (2.3) and (2.4),

we get

g(u+ v) = g(rsx) + rs+1y)

= rsg(x) + rs+1g(y)

= rsg(r
−1
s u) + rs+1g(r

−1
s+1v)

= g(rsr
−1
s u) + g(rs+1r

−1
s+1v)

= g(u) + g(v). (2.5)

Therefore g is an additive function and, by definition of g, we get f(x) = g(x)+f(0)

for all x ∈ X.

(Sufficiency) Suppose f(x) = A(x) + k for all x ∈ X where A : X → Y is an

additive function and k is a constant. Then,
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f

(
n∑

i=1

rixi

)
= A

(
n∑

i=1

rixi

)
− f(0)

= A

(
n∑

i=1

rixi

)
−

n∑
i=1

rif(0)

=
n∑

i=1

ri(A(xi)− f(0))

=
n∑

i=1

rif(xi).

The following theorem shows the generalized stability of (NJ). In investigating

the stability of n-dimensional Jensen type functional equation we assume, in ad-

dition, that Y is a Banach space. For a function ϕ : Xn → [0,∞), we define for

each s = 1, . . . , n, a function ϕs : X → [0,∞) by

ϕs(x) = ϕ(0, . . . , 0︸ ︷︷ ︸
s−1

, x, 0, . . . , 0︸ ︷︷ ︸
n−s

) (2.6)

for all x ∈ X.

Theorem 2.2. Assume that ϕ : Xn → [0,∞) and f : X → Y satisfy the following

conditions

(i)
∞∑
i=0

r−i
s ϕs(r

i
sx) converges,

(ii) lim
m→∞

r−m
s ϕ(rms x1, . . . , r

m
s xn) = 0 for all x1, . . . , xn ∈ X,

(iii)

∥∥∥∥∥∑n
i=1 rif(xi)− f

(∑n
i=1 rixi

)∥∥∥∥∥ ≤ ϕ(x1, . . . , xn) for all x1, . . . , xn ∈ X.

Then there exists a unique function L : X → Y that satisfies functional equation

(NJ) and

∥∥f(x)− L(x)
∥∥ ≤

∞∑
i=0

r−i−1
s ϕs(r

i
sx) (2.7)
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for all x ∈ X. Moreover, L is given by

L(x) = f(0) + lim
m→∞

r−m
s

(
f(rms x)− f(0)

)
(2.8)

for all x ∈ X.

Proof. Define a function g : X → Y by

g(x) = f(x)− f(0) (2.9)

for all x ∈ X. It should be noted that g(0) = 0. By (2.1),∥∥∥∥∥
n∑

i=1

rig(xi)− g

(
n∑

i=1

rixi

)∥∥∥∥∥ ≤ ϕ(x1, . . . , xn) (2.10)

for all x1, . . . , xn ∈ X. Let s ∈ {1, . . . , n} . Set xs = x and x1 = · · · = xs−1 =

xs+1 = · · · = xn = 0, then (2.10) becomes

∥∥rsg(x)− g(rsx)
∥∥ ≤ ϕs(x) (2.11)

for all x ∈ X. Rewrite the above equation to

∥∥g(x)− r−1
s g(rsx)

∥∥ ≤ r−1
s ϕs(x) (2.12)

for all x ∈ X. For each positive integer m and each x ∈ X, we have

∥∥g(x)− r−m
s g(rms x)

∥∥ =

∥∥∥∥∥
m−1∑
i=0

(
r−i
s g(risx)− r−(i+1)

s g(ri+1
s x)

)∥∥∥∥∥
≤

m−1∑
i=0

∥∥r−i
s g(risx)− r−(i+1)

s g(ri+1
s x)

∥∥
=

m−1∑
i=0

r−i
s

∥∥g(risx)− r−1
s g(rsr

i
sx)
∥∥

≤
m−1∑
i=0

r−i−1
s ϕs(r

i
sx). (2.13)

Consider the sequence {r−m
s g(rms x)}. For each positive integers k < l and for each
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x ∈ X, ∥∥r−k
s g(rksx)− r−l

s g(rlsx)
∥∥ = r−k

s

∥∥g(rksx)− r−(l−k)
s g(rl−k

s rksx)
∥∥

≤ r−k
s

l−k−1∑
i=0

r−i−1
s ϕs(r

i+k
s x)

≤ r−k−1
s

∞∑
i=0

r−i
s ϕs(r

i+k
s x).

Since
∞∑
i=0

r−i
s ϕ(risx) converges, lim

k→∞
r−k−1
s

∞∑
i=0

r−i
s ϕs(r

i+k
s x) = 0. This implies that

L(x) = f(0) + lim
m→∞

r−m
s g(rms x) (2.14)

is well-defined in the Banach space Y . Moreover, as m → ∞, (2.13) becomes∥∥g(x) + f(0)− L(x)
∥∥ ≤

∞∑
i=0

r−i−1
s ϕs(r

i
sx).

Recalling the definition of g(x), we see that inequality (2.7) is valid.

To show that L indeed satisfies (NJ), replace each xi in (2.10) with rms xi,∥∥∥∥∥
n∑

i=1

rig(r
m
s xi)− g

(
rms

n∑
i=1

rixi

)∥∥∥∥∥ ≤ ϕ(rms x1, . . . , r
m
s xn). (2.15)

If we multiply the above inequality by r−m
s and take the limit as m → ∞, then by

the definition of L in (2.14) and (2.1), we obtain∥∥∥∥∥
n∑

i=1

riL(xi)− L

(
n∑

i=1

rixi

)∥∥∥∥∥ ≤ lim
m→∞

r−m
s ϕ(rms x1, . . . , r

m
s xn) = 0, (2.16)

which implies that

n∑
i=1

riL(xi) = L

(
n∑

i=1

rixi

)
(2.17)

for all x1, . . . , xn ∈ X.

To prove the uniqueness, suppose there is another function L
′
: X → Y satisfy-

ing (NJ) and (2.7). Observe that if we replace xs by x and put x1 = · · · = xs−1 =

xs+1 = · · · = xn = 0 in (2.17), then

rsL(x) + (1− rs)L(0) = L(rsx) (2.18)
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for all x ∈ X, and

L(0) = f(0) + lim
m→∞

r−m
s g(0) = f(0).

The function L
′
obviously possesses the same properties. Therefore,

rs
(
L(x)− L

′
(x)
)
= L(rsx)− L

′
(rsx) (2.19)

for all x ∈ X. We can prove by mathematical induction that for each positive

integer m,

rms
(
L(x)− L

′
(x)
)
= L(rms x)− L

′
(rms x)

for all x ∈ X. Therefore, for each positive integer m,

∥∥L(x)− L
′
(x)
∥∥ = r−m

s

∥∥L(rmx)− L
′
(rms x)

∥∥
≤ r−m

s

(∥∥L(rmx)− f(rms x)
∥∥+ ∥∥L′

(rms x)− f(rms x)
∥∥)

≤ 2r−m
s

∞∑
i=0

r−i−1
s ϕs(r

i+m
s x)

for all x ∈ X. Since
∞∑
i=0

r−i
s ϕ(risx) converges, lim

m→∞
r−m
s

∞∑
i=0

r−i−1
s ϕ(ri+m

s x) = 0. We

conclude that L(x) = L
′
(x) for all x ∈ X.

Theorem 2.3. Assume that ϕ : Xn → [0,∞) and f : X → Y satisfy the following

conditions

(i)
∞∑
i=0

risϕs(r
−i
s x) converges,

(ii) lim
m→∞

rms ϕ(r
−m
s x1, . . . , r

−m
s xn) = 0 for all x1, . . . , xn ∈ X,

(iii)

∥∥∥∥∥∑n
i=1 rif(xi)− f

(∑n
i=1 rixi

)∥∥∥∥∥ ≤ ϕ(x1, . . . , xn) for all x1, . . . , xn ∈ X.

Then there exists a unique function L : X → Y that satisfies functional equation

(NJ) and

∥∥f(x)− L(x)
∥∥ ≤

∞∑
i=1

ri−1
s ϕs(r

−i
s x) (2.20)
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for all x ∈ X. Moreover, L is given by

L(x) = f(0) + lim
m→∞

rms (f(r
−m
s x)− f(0)) (2.21)

for all x ∈ X.

Proof. Referring the process (2.9)-(2.12), we can replace inequality (2.12) with∥∥g(x)− rsg(r
−1
s x)

∥∥ ≤ ϕs(r
−1
s x)

for all x ∈ X. For each positive integer m and each x ∈ X, we get

∥∥g(x)− rms g(r
−m
s x)

∥∥ =

∥∥∥∥∥(
m∑
i=1

ri−1
s g(r−(i−1)

s x)− risg(r
−i
s x)

)∥∥∥∥∥
≤

m∑
i=1

∥∥ri−1
s g(r−(i−1)

s x)− risg(r
−i
s x)

∥∥
=

m∑
i=1

ri−1
s

∥∥g(r−(i−1)
s x)− rsg(r

−1
s r−(i−1)

s x)
∥∥

≤
m∑
i=1

ri−1
s ϕs(r

−i
s x). (2.22)

We investigate the sequence {rms g(r−m
s x)}. For each positive integer k < l and

each x ∈ X,∥∥rksg(r−k
s x)− rlsg(r

−l
s x)

∥∥ = rks
∥∥g(r−k

s x)− rl−k
s g(r−(l−k)

s r−k
s x)

∥∥
≤ rks

l−k∑
i=1

ri−1
s ϕs(r

−i−k
s x)

≤ rk−1
s

∞∑
i=1

risϕs(r
−i−k
s x).

Since
∞∑
i=0

risϕ(r
−i
s x) converges, lim

k→∞
rk−1
s

∞∑
i=0

risϕs(r
−i−k
s x) = 0. Thus,

L(x) = f(0) + lim
m→∞

rms g(r
−m
s x) (2.23)

is well-defined in the Banach space Y . Furthermore, (2.22) becomes as m → ∞,

∥∥g(x) + f(0)− L(x)
∥∥ ≤

∞∑
i=1

ri−1
s ϕs(r

−i
s x).
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By the definition of g(x), inequality (2.20) is valid.

In order to show that L satisfies (NJ). We replace each xi by r−m
s xi in (2.10)

and multiply rms , then take the limit as m → ∞, we have∥∥∥∥∥
n∑

i=1

riL(xi)− L

(
n∑

i=1

rixi

)∥∥∥∥∥ ≤ lim
m→∞

rms ϕ(r
−m
s x1, . . . , r

−m
s xn) = 0,

which implies (2.17).

To prove the uniqueness, suppose there is another function L′ : X −→ Y

satisfying (NJ) and (2.7). Replacing x by r−1
s x and put x1 = · · · = xs−1 = xs+1 =

· · · = xn = 0 in (2.17); consequently, (2.19) becomes

rs
(
L(r−1

s x)− L
′
(r−1

s x)
)
= L(x)− L

′
(x).

For each positive m, we can show by mathematical induction that

rms
(
L(r−m

s x)− L
′
(r−m

s x)
)
= L(x)− L

′
(x)

for all x ∈ X. Therefore, for each positive integer m,∥∥L(x)− L
′
(x)
∥∥ = rms

∥∥L(p−mx)− L
′
(r−m

s x)
∥∥

≤ rms
(∥∥L(r−mx)− f(r−m

s x)
∥∥+ ∥∥L′

(r−m
s x)− f(r−m

s x)
∥∥)

≤ 2rms

∞∑
i=1

ri−1
s ϕs(r

−i−m
s x)

for all x ∈ X. Since
∞∑
i=1

risϕ(r
−i
s x) converges, lim

m→∞
rms

∞∑
i=0

ri−1
s ϕ(r−i−m

s x) = 0. We

obtain that L(x) = L
′
(x) for all x ∈ X.

Theorem 2.4. Let ε > 0 be a real number. If a function f : X → Y satisfies the

inequality ∥∥∥∥∥
n∑

i=1

rif(xi)− f

(
n∑

i=1

rixi

)∥∥∥∥∥ ≤ ε (2.24)

for all x1, . . . , xn ∈ X, then there exists a unique function L : X → Y that satisfies

(NJ) and ∥∥f(x)− L(x)
∥∥ ≤ ε

1− rmin

for all x ∈ X, where rmin = min{r1, . . . , rn}.
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Proof. Let

ϕ(x1, . . . , xn) = ε

for all x1, . . . , xn ∈ X in Theorem 2.3. We can see that Theorem 2.3 holds for

every s = 1, . . . , n. We choose s such that rs = rmin = min{r1, . . . , rn}. Then

(2.20) becomes ∥∥f(x)− L(x)
∥∥ ≤ ε

∞∑
i=1

ri−1
s =

ε

1− rs
=

ε

1− rmin

for all x ∈ X as desired.

The following theorem proves the stability of (NJ).

Theorem 2.5. Let ε > 0 and m > 0 be real numbers with m ̸= 1. If a function

f : X → Y satisfies the inequality∥∥∥∥∥
n∑

i=1

rif(xi)− f

(
n∑

i=1

rixi

)∥∥∥∥∥ ≤ ε

n∑
i=1

∥xi∥m (2.25)

for all x1, . . . , xn ∈ X, then there exists a unique function L : X → Y that satisfies

(NJ) and ∥∥f(x)− L(x)
∥∥ ≤ ε

M
∥x∥m

for all x ∈ X, where M = max
i=1,...,n

| ri − rmi |.

Proof. In the case 0 < m < 1, let

ϕ(x1, . . . , xn) = ε

n∑
i=1

∥xi∥m

for all x1, . . . , xn ∈ X in Theorem 2.3. Then we can see that Theorem 2.3 holds

for every s = 1, . . . , n. We choose s such that

| rs − rms |= M = max
i=1,...,n

| ri − rmi | .

Thus, (2.7) becomes∥∥f(x)− L(x)
∥∥ ≤ ε

∞∑
i=1

ri−1
s ∥r−i

s x∥m = ε∥x∥mr−1
s

∞∑
i=1

ri(1−m)
s

= εr−1
s ∥x∥m

( r1−m
s

1− r1−m
s

)
=

ε

rms − rs
∥x∥m =

ε

M
∥x∥m
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for all x ∈ X. In the case m > 1, let

ϕ(x1, . . . , xn) = ε
n∑

i=1

∥xi∥m

for all x1, . . . , xn ∈ X in Theorem 2.1. Since Theorem 2.1 holds for every s =

1, . . . , n, (2.7) becomes

∥∥f(x)− L(x)
∥∥ ≤ ε

∞∑
i=0

r−i−1
s ∥risx∥m = ε∥x∥mr−1

s

∞∑
i=0

ri(m−1)
s

= ε∥x∥mr−1
s

( 1

1− rm−1
s

)
=

ε

rs − rms
∥x∥m =

ε

M
∥x∥m

for all x ∈ X.



CHAPTER III

ALTERNATIVE QUADRATIC FUNCTIONAL

EQUATION ON 2-DIVISIBLE ABELIAN GROUPS

Throughout this chapter, let f be a function from a 2-divisible abelian group to

a real (or rational or complex) linear space Y . We will prove that the alternative

quadratic functional equation

f(x+ y) + f(x− y) = 2f(x)± 2f(y), (AQ)

is equivalent to the quadratic functional equation (Q) for functions f : G → Y . It

should be noted that the 2-divisibility property of the domain of the function has

been extensively used in the work of Skof [15], but here we will present a proof

which relies on a minimal use of 2-divisibility.

Many substitutions will be made through the alternative quadratic functional

equation (AQ), it therefore is quite convenient to adopt the following notations for

the rest of this chapter:

AQf (x, y) :=
(
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

or f(x+ y) + f(x− y) = 2f(x)− 2f(y)
)
.

First of all, we will give two of the most basic properties that can be derived

directly from the alternative quadratic functional equation (AQ).

Lemma 3.1. If a function f : G → Y satisfies (AQ) for all x, y ∈ G, then

1. f(0) = 0, and

2. f(−x) = f(x) for all x ∈ G, i.e. f is an even function.

Proof. Suppose that f : G → Y satisfies (AQ) for all x, y ∈ G.
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1. Considering AQf (0, 0), we immediately get f(0) = 0.

2. Assume that there exists x0 ∈ G such that

f(−x0) ̸= f(x0) (3.1)

Considering AQf (0, x0) and substituting f(0) = 0, we can see that

f(−x0) = f(x0) or f(−x0) = −3f(x0). (3.2)

Similarly, AQf (0,−x0) with f(0) = 0 gives

f(−x0) = f(x0) or f(x0) = −3f(−x0). (3.3)

Taking the assumption (3.1) into account, we can derive from (3.2) and (3.3)

that

f(−x0) = −3f(x0) and f(x0) = −3f(−x0)..

Solving the above equation gives

f(−x0) = 0 and f(x0) = 0,

which contradicts the assumption (3.1).

Therefore, f(−x) = f(x) for all x ∈ G as desired.

The next lemma will use the 2-divisibility property of the group G to prove

that f(2x) = 4f(x) for all x ∈ G, where f is any function satisfying (AQ).

Lemma 3.2. If a function f : G → Y satisfies (AQ) for all x, y ∈ G, then

f(2x) = 4f(x) for all x ∈ G.

Proof. Suppose that f : G → Y satisfies (AQ) for all x, y ∈ G.

For any x ∈ G, AQf (x, x) with f(0) = 0 simplifies to

f(2x) = 4f(x) or f(2x) = 0 for all x ∈ G. (3.4)
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Assume that there exists x0 ∈ G such that f(2x0) ̸= 4f(x0). Since G is a 2-divisible

group, we let z0 ∈ G such that 2z0 = x0. Therefore,

f(4z0) ̸= 4f(2z0). (3.5)

With x = 2z0 in (3.4) and taking the assumption (3.5) into account, we have

f(4z0) = 0. (3.6)

From (3.5) and (3.6), we know that

f(2z0) ̸= 0 (3.7)

With x = z0 in (3.4) and taking (3.7) into account, we now have

f(2z0) = 4f(z0). (3.8)

AQf (2z0, z0) with f(2z0) from (3.8) gives

f(3z0) = 9f(z0) or f(3z0) = 5f(z0). (3.9)

AQf (3z0, z0) with f(4z0) from (3.6) and f(2z0) from (3.8) gives

f(3z0) = f(z0) or f(3z0) = 3f(z0). (3.10)

Considering all possibilities in (3.9) and (3.10), we infer that f(z0) = 0, which

contradicts (3.7) and (3.8).

Therefore, f(2x) = 4f(x) for all x ∈ G as desired.

The following lemma will now generalize Lemma 3.1 and Lemma 3.2 to the

following important lemma which actually proves that f is integrally homogeneous

of degree 2.

Lemma 3.3. If a function f : G → Y satisfies (AQ) for all x, y ∈ G, then

f(nx) = n2f(x) for all x ∈ G and for all n ∈ Z.
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Proof. Suppose that f : G → Y satisfies (AQ) for all x, y ∈ G, and let x ∈ G. We

will first prove by mathematical induction that, for all n = −1, 0, 1, . . .,

f(nx) = n2f(x). (3.11)

For n = 1, (3.11) is trivial. While for n = −1, 0, 2, (3.11) follows from Lemma 3.1

and Lemma 3.2.

Now suppose that f(kx) = k2f(x) for all k = −1, 0, 1, . . . , n for an integer n ≥ 2.

We will prove that f
(
(n+1)x

)
= (n+1)2f(x) by a contradiction; i.e., assume that

f
(
(n+ 1)x

)
̸= (n+ 1)2f(x). (3.12)

AQf (nx, x) with f
(
(n−1)x

)
and f(nx) from the induction hypothesis will simplify

to

f
(
(n+ 1)x

)
= (n+ 1)2f(x) or f

(
(n+ 1)x

)
=
(
n2 + 2n− 3

)
f(x).

Taking the assumption (3.12) into account, we are left with

f
(
(n+ 1)x

)
=
(
n2 + 2n− 3

)
f(x). (3.13)

AQf

(
(n − 1)x, 2x

)
with f

(
(n − 3)x

)
, f
(
(n − 1)x

)
and f(2x) from the induction

hypothesis, will simplify to

f
(
(n+ 1)x

)
= (n+ 1)2f(x) or f

(
(n+ 1)x

)
=
(
n2 + 2n− 15

)
f(x).

Taking the assumption (3.12) into account, we are left with

f
(
(n+ 1)x

)
= (n2 + 2n− 15)f(x). (3.14)

Equating (3.13) and (3.14) will lead to the conclusion that

f(x) = 0 and f
(
(n+ 1)x

)
= 0,

which contradicts (3.12).

Therefore, (3.11) holds for all n = −1, 0, 1, . . ..
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Lemma 3.1 tells us that f is an even function; therefore, (3.11) also holds for all

negative integers n. This completes the proof of the lemma.

The following theorem will show that the alternative quadratic functional equa-

tion (AQ) is equivalent to the quadratic functional equation.

Theorem 3.4. A function f : G → Y satisfies (AQ) for all x, y ∈ G if and only

if f satisfies (Q) for all x, y ∈ G.

Proof. (⇐) A function f : G → Y satisfies (Q) for all x, y ∈ G, then it is obvious

that f satisfies (AQ) for all x, y ∈ G.

(⇒) Suppose that a function f : G → Y satisfies (AQ) for all x, y ∈ G.

We will prove that f satisfies (Q) for all x, y ∈ G by a contradiction.

Suppose there exist x0, y0 ∈ G such that

f(x0 + y0) + f(x0 − y0) ̸= 2f(x0) + 2f(y0). (3.15)

The assumption (3.15) will be used to eliminate an alternative from AQf (x, y) for

many suitable choices of x and y.

In order to better understand the ideas, we will divide the proof into a few steps.

Step 1: Determine f(x0 + y0), f(x0 − y0), f(y0) in terms of f(x0).

AQf (x0, y0) with (3.15) gives

f(x0 + y0) + f(x0 − y0) = 2f(x0)− 2f(y0). (3.16)

AQf (x0 + y0, x0 − y0) with f(2x) = 4f(x) simplifies to

2f(x0) + 2f(y0) = f(x0 + y0) + f(x0 − y0)

or 2f(x0) + 2f(y0) = f(x0 + y0)− f(x0 − y0).

Taking the assumption (3.15) into account, we are left with

f(x0 + y0)− f(x0 − y0) = 2f(x0) + 2f(y0). (3.17)
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AQf (y0, x0) with f(−x) = f(x) as well as the assumption (3.15) gives

f(x0 + y0) + f(x0 − y0) = 2f(y0)− 2f(x0). (3.18)

For convenience, we will let

a := f(x0).

Equating (3.16) and (3.18) yields

f(y0) = a.

From (3.16) and (3.17), we get that

f(x0 + y0) = 2a and f(x0 − y0) = −2a.

The values of f(x0+ y0), f(x0− y0), f(y0) and f(x0) in terms of a will be regarded

as known and will be used in the subsequent steps.

Step 2: Determine all possible values of f(x0 + 2y0) and f(x0 − 2y0).

AQf (x0 + 2y0, x0 − 2y0) with f(2x) = 4f(x) and f(4x) = 16f(x) gives

10a = f(x0 + 2y0)± f(x0 − 2y0). (3.19)

AQf (x0 − y0,−y0) with f(−x) = f(x) gives

f(x0 − 2y0) ∈ {−3a,−7a}. (3.20)

Substituting f(x0 − 2y0) from (3.19) into (3.20) gives 4 possible values for f(x0 +

2y0):

f(x0 + 2y0) ∈ {3a, 7a, 13a, 17a}. (3.21)

AQf (x0 + y0, y0) gives 2 possible values for f(x0 + 2y0):

f(x0 + 2y0) ∈ {a, 5a}. (3.22)

Step 3: Put the jigsaw together to conclude the value of a.

From the values of f(x0 + 2y0) in (3.21) and (3.22), we can conclude that a = 0,

which in turn implies that

f(x0 + y0) = f(x0 − y0) = f(x0) = f(y0) = 0

and eventually contradict the assumption (3.15).
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Therefore, f satisfies (Q) as desired.

The following example will show that the 2-divisibility of G is crucial to the

equivalence of (AQ) and (Q). It should be emphasize that the 2-divisibility has

been used only in the proof of Lemma. 3.2.

Example 3.5. Consider a function f : Z → R defined by

f(n) =

0 if n is even,

1 if n is odd

for all n ∈ Z.

For any m,n ∈ Z, we can see that m+n and m−n are always of the same parity.

Therefore,

f(m+ n) + f(m− n) =

0 if m ≡ n (mod 2),

2 if m ̸≡ n (mod 2).

Moreover, if m ≡ n (mod 2), then f(m)− f(n) = 0,

and if m ̸≡ n (mod 2), then f(m) + f(n) = 1. Hence,

f(m+ n) + f(m− n) = 2f(m)± 2f(n);

that is, f satisfies (AQ) for all m,n ∈ Z.

However, one can easily verify that

f(2) + f(0) ̸= 2f(1) + 2f(1).

Hence, f does not satisfy (Q).

Therefore, the alternative quadratic functional equation (AQ) is not equivalent to

the quadratic functional equation (Q) for this particular function f defined on the

group (Z,+) which is not 2-divisible.
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