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CHAPTER I

INTRODUCTION

In this chapter, we will state some background in functional equations, Cauchy and Jensen Func-
tional equation, alternative functional equations, our proposed problem and the notations used through-

out this thesis.

1.1  Functional Equations

A functional equation is simply an equation of unknown functions. In order to solve the functional

equation, we seek all possible functions satisfying the given functional equation.

Example 1.1.1. Find all functions [ : Z — Z satisfying the functional equation

fle+y)=z+ f(y), foral x,y € Z. (1.1)

Solution. For each x € 7, by (1.1), we observe that

fx+0)=2x+ f(0).

Hence there exists ¢ € Z namely ¢ = f(0) such that

f(z) =x+c forall x € Z. (1.2)

On the contrary, if f is given by (1.2), then f actually satisfies (1.1). Therefore, the general solution

of (1.1) is given by (1.2).

However, some functional equations have no solution as the following example.



Example 1.1.2. Given a functional equation

fle+y) +zf(r)=1 foral x,y € Z. (1.3)

Solution. For each y € 7Z, we substitute x = 0 in (1.3) to obtain f(y) = 1, i.e., we have

f(1)=f(2) =1 (1.4)

By (1.4), setting x = y = 1in (1.3), we get 2 = 1, a contradiction. Therefore, there is no a function

f : Z — Z satistying (1.3).

1.2 Cauchy and Jensen Functional Equation

The additive functional equation,

flx+y) = fl@)+ f(y), (1.5)

is one of the most well-known functional equations. In 1821, Cauchy [3] proved that all continuous
solutions of (1.5) on R are given by f(x) = cx forall x € R, where ¢ is a constant in R. Later
on, the additive functional equation (1.5) was known as the Cauchy functional equation. In 1905,
Hamel [7] constructed the general solution of (1.5) using a Hamel basis over Q. Afterwards, Hewitt
and Zukerman [8] gave a remarkable result of the nonlinear additive functions. In fact, the graph
G(f) = {(z, f(z)) : ¥ € R} is a dense subset of R?, that is, given € > 0 and (z,y) € R,
there exists (a, f(a)) € G(f) such that (z — a)* + (y — f(a))? < &%, which indicates that the
graph G/( f) of a nonlinear additive functions consists of points that disperse all over R2.

The Jensen functional equation is the equation of the form,

f<x + y) _ S+ 1)

5 5 5 (1.6)

which is closely related to the Cauchy functional equation (1.5). In [4], it is shown that the general



solution of (1.6) is of the form f(z) = A(x) + ¢, where A is an additive function, a solution of the
Cauchy functional equation (1.5).
If the domain of the Jensen functional equation (1.6) is a group (G, -), then (1.6) can be written in

the form

flay™) = 2f(z) + flzy) = 0. 5)

Many extensive works on Jensen functional equation on different kinds of groups have been widely

studied (e.g., Le and Thai [12], Ng [14], [15], Parnami and Vasudeva [16], and Stetkeer [19]).

1.3  Alternative Functional Equations

An alternative functional equation is a challenging problem in functional equations. Normally, a
functional equation is a single equation with a function as a variable such as the Cauchy functional
equation (1.5). However, in an alternative functional equation, there are more than one equation that
the function has to satisfy. For instance, Kannappan and Kuczma [10] solved the alternative Cauchy

functional equation

(f(z+y) —af(x) =bf(y) (f(z+y) — f(z) = f(y) =0 (1.7)
on an abelian group. This implies that the solution f has to satisfy
(fle+y) —af(z) =bf(y)) =0 o (flz+y)—f(z) = f(y) =0

Afterwards, Forti [5] has successfully found the general solution of (1.7) in a more general setting of

the form

(cflx+y)—af(z) =bf(y) —d) (f(x +y) — f(z) = fy)) =0.

Inspired by the work on the alternative Cauchy functional equation, Nakmahachalasint [13] first



investigated the alternative Jensen functional equation of the form

f(x) £2f(zy) + flzy®) =0

on a semigroup.
Next, we will give an example of the general solution of the alternative Cauchy functional equation

on 7 as follows:

Example 1.3.1. Find the general solution f : Z — Z of the alternative Cauchy functional equation

flz+y)==x(f(z)+ f(y)) forall x,y € Z. (1.8)

Solution. In this example, we will prove that the general solution of (1.8) is exactly the solution of the

Cauchy functional equation
fle+y) = f(z)+ fy) forall z,y € Z. (1.9)
First, substituting © = y = 0 in (1.8), we have f(0) = £2/(0) and so
f(0)=0. (1.10)
For each x € Z, replacing y by —x in (1.8), we get
f(0) = £(f(z) + f(=x)).
By (1.10), we conclude that

f(=z) =—f(x) forall z € Z. (1.11)



Suppose in a contrary that there exist 1m, n € 7Z such that

f(m+n) # f(m) + f(n).
By (1.8), we obtain that
f(m+n) =—f(m)— f(n).

By (1.8), (1.11) and (1.13), we get

f(m) = f(m+n—n)
= £(f(m+n) + f(-n))
= +(=f(m) = f(n) = f(n))
= +(=f(m) = 2f(n)),

which implies that
f(m)+ f(n) =0 or f(n)=0.
On the other hand, by (1.8), (1.11) and (1.13), we have

f(n) = f(m+n—m)
= £(f(m+n) + f(=m))

which gives

f(m)+ f(n) =0 or f(m)=0.

Combining (1.14) and (1.15), we get

f(m)+ f(n) =0 or f(m) = f(n) =0.

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)



By (1.13) and (1.16), we have

flm+mn)=0. (1.17)

From (1.16) and (1.17), we obtain that f(m + n) = f(m) + f(n), a contradiction to (1.12).
Therefore, we conclude that (1.9) must hold.

Conversely, if f is given by (1.9), then f also satisfies (1.8).

1.4  Proposed Problem

Motivated by the work of Nakmahachalasint [13] and Forti [5], we studied the alternative Jensen

functional equation in a more general setting. In other words, given integers v, (3, v with
(o, B,7) # k(1,-2,1) forall k € Z, (1.18)

we will find a criterion of the existence of the general solution of the alternative Jensen functional

equation of the form

flay™) =2f(@) + fzy) =0 o af(zy™)+ Bf(x) +1f(zy) =0,  (SA)

where [ is amapping from a group (G, -) to a uniquely divisible abelian group (H, +). Then we show
that, if 3 = a + yor (5,7) € {(0,), (v, ) }, then the above alternative functional equation
is equivalent to the Jensen functional equation (J), in the sense that their sets of solution are the same.

Furthermore, we also find the general solution in the case when the domain (f is a cyclic group.

1.5 Notations

Throughout the dissertation, we will use the following notations. Let (G, +) be a group and (H, +)
be a uniquely divisible abelian group. Next, we will introduce the notations for sequences (ak) kez in

H as follows.

Notation 1. We denote (ay)rez = (@, B) when there exists kg € Z with a; = « foralli < kg



and a; = [ forallz > ko, ie.,

(..., B,83,...) = (@, B).

Notation 2. We denote (ay)rez = (@, B,7) when there exists kg € Z with a; = aforalli < ko,

ax, = ,and a; = y foralli > ko, i.e.,

("'7a7a7 /37 7777"'):(57/877)'

Notation 3. Let p be a positive integer. We denote (ak) ez = (ao, A ap_l) when there exists
ko € Z such that a; = Qg4 (mod p) foralli € Z. In other words, (@, - - -, Q1) is a periodic

sequence of a period p, i.e.,

(..., ag, ..., 0p_1, Op,...,0p_1, ...)Z(Oéo,...,Oép_l).



CHAPTER 11

THE n-DIMENSIONAL FUNCTIONAL EQUATION OF JENSEN TYPE

First, we will mention the question about the stability of functional equations. This problem was
first introduced by Ulam [21] during his talk in the Mathematics Club of the University of Wisconsin.
He proposed the question as follows:

“Let G be a group and let Gy be a metric group with the metric d. Given € > 0, does there
exista 0 > O such thatif f : G1 — Gy satisfies the inequality d( f (zy), f(z)f(y)) < & for all
x,y € G1, then there exists a homomorphism H : G1 — Go with d(f(x), H(z)) < € for all
re Gy

In the following year, Hyers [9] was the first to answer this stability problem. He found that for

Banach spaces F/; and F, if a mapping f : E; — Ej satisfies the inequality

1f(x+y) = fl) = f)ll <,

for all x,y € F4 and for some £ > 0, then there exists a unique additive mapping A : £y — F»
satisfying the inequality

If(z) = A(2)| < e

and A takes the from of A(x) = lim 27" f(2"x). Afterwards, this notion was called as the Hyers-
n—oo

Ulam stability and leaded to one of fundamental concepts of the stability theory on functional equations.

Aoki [1] and Bourgin [2] generalized Hyers’ theorem for additive mappings by considering the bounded

Cauchy differences. In 1978, Rassias [17] showed that if a mapping f : E; — FEj satisfies

1/ (2 +y)=f(@)=f W)l < 0(<]” + llyll*),

forall z,y € F and forsome @ > 0 and 0 < p < 1, then there exists a unique additive mapping



A : E; — E5 such that

20

/() - A@ £ 5

[l

Later on, this type of stability is called the Hyers-Ulam-Rassias stability.
In this chapter, we will study the general solution and the generalized stability of the Jensen func-

tional equation in more general setting of the form

Zpif(xi) =f Zpixz' ; ®))
i=1 i=1

where n > 1 is an integer, and p1, . . . , P, are positive rational numbers with

> pi=1 2.1)
=1

Note that our work in this chapter appears in [20].

2.1  General Solution on an n-Dimensional Functional Equation of Jensen Type
In this section, we will give the general solution of (pJ) as the following theorem.

Theorem 2.1.1. Let X and Y be real vector spaces. A mapping f : X — Y satisfies the functional

equation (pJ) where . > 1 is an integer, and p1, . . . Py, are positive rational numbers with (2.1) for
allxy,...x, € X, ifand only if f(x) = A(z) + f(0) forallx € X, where A : X — Y is

additive function and f(0) is a constant.

Proof. (Neccessity) Suppose f : X — Y satisfies the functional equation (pJ). Define a function

g: X —Yhby

forall z € X. Note that g(0) = 0.
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Consider
Q<sz-:vi) _ f(zpixi) O = S ) O
i=1 i=1 i=1
— 3 gl @2
=1
Note that g satisfies (pJ). Lets € {1,...n}. Bysettingxs = xandz) = ... = T3 1 = Tg11 =
.= x, = 0,(2.2) becomes

9(psw) = psg(z), (2.3)

forall s € {1,...n} and forallz € X. Next, weput s = ,2541 = yandz; = ... =

Ts—1 = Tsya = ... = T = 0in(2.2) and using (2.3), we will have

9(PsT + Pst1y) = 9(ps) + 9(Ps41Y),

forall z, y € X. Therefore g is additive function. By definition of g, we get f(x) = g(x) + f(0)
forallz € X.
(Sufficiency) Suppose that f(x) = A(x)+ f(0) forallz € X, where A : X — Y is an additive

function and f(0) is a constant. Therefore,

f(;:;pixz) = (ZW@) + f(0 (Zm&) +sz
—sz () + f(0 sz 7).

Hence, this completes the proof. []
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2.2 Generalized Stability on an n-Dimensional Functional Equation of Jensen
Type
In this section, we will study the generalized stability of (pJ) as the following theorem.
Theorem 2.2.1. Let ¢ : X" — [0,00) be a function. For each integer s = 1,...,n, let Py :

X — [0, 00) be a function such that

os(x) = ¢(0,...,0,2,0,...,0). (2.4)

(o.9]
Suppose that Y p;'¢(p'x) converges and lim p; ™o (pay, ..., plx,) =0

forallxq,...,x, € X. Ifafunction f : X — Y satisfies the inequality

ipzf(xl) —f(ipzxz) < P(xy,. .., mp), (2.5)

=1 =1
forall x\,...,x, € X, then there exists a unique function L : X — Y that satisfies functional
equation (pJ) and the inequality

[£@) - L) < 3 pr0uolo) 29
1=0

forallx € X. The function L is given by

L(@) = £(0)+ lmm p™ (f(o7"2) — J(0). @)

Jorallx € X.

Proof. Suppose f : X — Y satisfies the inequality (2.5). Define a function g : X — Y by

g(x) = f(z) = 1(0), (2.8)
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forall zq, ..., x, € X. It should be noted that g(0) = 0. By (2.1) and (2.5), we get

g(:) — <Zmz> < G(z1,. ., T0), (2.9)
forall z1,...,2, € X. Lets € {1,...,n}. Bysettingzs = randxy = -+ = 31 =
Tgr1 = - = xp = 0,(2.9) becomes

|psg(x) — g(ps)|| < bs(2), (2.10)

forall x € X. We can rewrite the above equation in the form of

|g(z) = p;  g(psa)|| < p5'os(2), @.11)

for all z € X. For each positive integer m and each z € X, we have

l9(x) = p;™g Z( —pg(p )>H
1 o |
Ip5 g (pie) — p Vg (pi ) |
=0
m—1

p;lg(pix) — pitg(pspla)||

~
I
o

3
L

IN

Py s (pla). (2.12)

0

(2

Next, consider the sequence {p; ™ g(pZ*z)}. For each positive integers k < [ and each z € X,

s *g(pia) — plg(pia)|| = ¥ || 9 (hx) — by

I—k—1

kzp;Z 1¢s z+k>
=0

k 1ZPS'L¢S z+k

-k, k

=R g(pl k)|
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Since Zps é(p'x) converges, hm ps Skt Zps_lqbs( itkz) = 0. Therefore,
1=0

L(z) = f(0) + lim p,"g(p;"x) (2.13)

m—00

is well-defined in the Banach space Y. Moreover, as m — 00, (2.12) becomes

|g(x) + £(0) Zps’ Lo (pi)

By the definition of g(x), we see that inequality (2.6) is valid.

To show that L indeed satisfies (pJ), we replace each x; in (2.9) with p7"x; and get

< o(play, ..., ple,). (2.14)

> pigplw) — g <p’s” > pixi>
i=1 i=1

If we multiply the above inequality by p; """ and take the limit as 7 — 00, then by the definition of

L in (2.14) and (2.1), we obtain

L(%) —L ( Z]%%)

which implies that

< lim p,"o(py'xy, ..., pi'Te) =0, (2.15)
m—r00

ZPiL(lﬁi) = L(Zpil'i), (2.16)
i—1 i=1

forall xq,...,x, € X.

To prove the uniqueness, suppose there is another function L' : X — Y satisfying (pJ) and (2.6).
Observe that if we replace Ts by xandputxy = -+ = T3 1 = Tgy1 = - -+ = &, = 0in (2.16),
we get

psL(z) + (1 — ps)L(0) = L(psx), 2.17)

forallz € X, and
L(0) = f(0) + lim p;™g(0) = (0).
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The function L’ obviously possesses the same properties. Therefore,

’

ps(L(z) — L'(z)) = L(psx) — L' (psz) (2.18)

for all z € X. We can prove by the mathematical induction that for each positive integer m,

! /7

e (L(z) — L (x)) = L(pd"z) — L (p'x),
for all z € X. Therefore, for each positive integer m,

|L(z) — L' (z)|| = p;"||L(p™x) — L'(p?fr)H
" (|| L") = fF )| + (|1 (0x) = f(pia)]))

<2p8mzpsz 1¢3 Z+m )7

oo o
forallz € X. Since Y p;'d(p.x) converges, lim p;™ > po " 1p(pi™x) = 0. We conclude
i=0 m—>00 i=0

that L(z) = L' () forallz € X. [

Theorem 2.2.2. Let ¢ : X" — [0,00) be a function. For each integer s = 1,...,n, let ¢ :

X — [0, 00) be a function such that (2.4) and Y, p.¢(p; ‘x) converges and
=0
hm s "o(p; ™y, .0y " y) = 0forall xy, ... 2, € X

If afunction f : X — Y satisfies the inequality (2.5), then there exists a unique function L : X —

Y that satisfies functional equation (pJ) and the inequality
1) — L@ < 35 6o ) 019
=1
forall x € X. The function L is given by
L(z) = f(0) + lim p2f(p;"x) (2.20)

forallx € X.
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Proof. Let f : X — Y satisfy the inequality (2.5). Similar to the derivation of (2.8)-(2.11), we can

replace inequality (2.11) with

|9(z) — psg(p;'2)|| < ¢s(p; '),

forall x € X. For each positive integer 1 and each x € X, we get

| (Zpi”g(p;“’%) - pig(p;"fc)) H

|g(z) = plg(p; )| = |

i=1
<D g Va) = plg(p ) |
=1

= oM |glps T Va) — peg(ps s V)|

m
- »
<> P oa(ps ). (2.21)
We now investigate the sequence {p;" g(ps_mx) } For each positive integer k < [ andeachx € X,

|pEg(ps*a) — pig(p ||—p5||g py ) — pEg(p, PpEa) ||

<ps sz 1¢s )

- Z p2¢s (ps_i_kx)
i=1

Since Zps (py i) converges, hm ps -1 Zp8¢5( k) = 0. Thus,
1=0

L(z) = f(0) + lim pg(p;™x) (2.22)

is well-defined in the Banach space Y. Furthermore, (2.21) becomes as m — 00,

lg(x) + £(0) Zpi Lo (py
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By the definition of (), inequality (2.19) is valid.
In order to show that L satisfies (pJ), we replace each x; by p; "' x; in (2.9) and multiply p7*. By

taking the limit as M — 00, we have

< lim plo(p; ™1, ..., p; ") =0,

m—o0

ZPiL(%‘) —L < ZPz%)

which implies (2.16).
To prove the uniqueness, suppose there is another function L' : X — Y
satisfying (pJ) and (2.6). Replacing x4 by p;lx andputxy = -+ = X5 ] = Tgqp) = -+ = T =

0in (2.16), (2.18) becomes

ps(L(pste) — L (p;'x)) = L(x) — L ().

For each positive m, we can show by mathematical induction that

/

pe (L(p;™x) — L (p, ™)) = L(z) — L (2),
for all z € X. Hence, for each positive integer m,
[L(x) = L'(2)[| = p || Lp~™"2) — L' (o ™) |
<Py (L) = )| + (|12 (7) = fom)]))

<20y B os 0 ),
i=1

e} [ee]
forall z € X. Since > p'é(p;ix) converges, lim p™ > pi~to(p; ™) = 0. We therefore
i=1 Moo =0

obtain that L(x) = L'(z) forallz € X. [

2.3  Stability on an n-Dimensional Functional Equation of Jensen Type

In this section, we will give the stability of (pJ) in various case as in the following theorem.
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Theorem 2.3.1. Let € > 0 be a real number. If a function f : X — Y satisfies the inequality

sz-f (v;) — f < Z pi:cz-) <e, (2.23)

forall xy,...,x, € X, then there exists a unique function L : X — Y that satisfies (pJ) and
|f(@) = L@)|| < 7——,
- Pmin

forallx € X, where ppin = min{py,...,pn}

Proof. Let
O(x1,...,x,) =€
forallxy,...,x, € X inTheorem2.2.2. We note that Theorem 2.2.2 holds forevery s = 1, ..., n.
We then choose s such that ps = Pyin = min{ps, ..., p, }. Therefore, (2.19) becomes
> £ £
fl@) = L) <e) vt = =
H H ; ° 1_ps 1_pmin7
forall z € X as desired. []

The following theorem proves the stability of (pJ).

Theorem 2.3.2. Let £ > 0 andr > O be real numbers with v # 1. If a function f : X — Y

satisfies the inequality

n n n
> pif(x) - f(Zpixi> <ed il (2.24)
=1 =1 =1
Jorall xy,...,x, € X, then there exists a unique function L : X — Y that satisfies (pJ) and

1) = L) | < <l

forallx € X, where M = max | p; — pf |.

i=1,....,n
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Proof. Forthecase 0 < r < 1, welet

n
(b(l‘l, e 7xn> = gz ‘|$l”r>
=1

forallzy, ..., 2, € X inTheorem2.2.2. We note that Theorem 2.2.2 holds forevery s = 1, ..., n.

We then choose s such that

.....

Thus, (2.6) becomes

£ @) = L@)| < e > p oyl = ellal ey D pl
i=1 i=1

1—r
— T pS € T € T
=l (255 ) = o el = g7l

S S

forall x € X. For the case r > 1, we let
n
Sar,. ) =y [,
i=1

forall xq,...,x, € X in Theorem 2.1.1. Since Theorem 2.1.1 holds forevery s = 1,...,n, (2.6)

becomes

/@) = L) < e kel = cllel ot Do
1=0 i=0

1 ) € , € ,
— xr = — ||
) = el = g lel

—cllap:(

forall z € X. This completes the proof. []



CHAPTER 111
THE WEAK FORM OF ALTERNATIVE JENSEN FUNCTIONAL

EQUATIONS

In this chapter, we will give a criterion for the existence of the general solution for the functional

equation

flay™) —2f(@) + flay) =0 or  flay™)+Bf(x) + flay) =0. (WA

For the case /3 is an integer and 5 # —2, our work appears in [18]. Let (G, -) be a group, (H, +)
be a uniquely divisible abelian group. Given a rational number 3 # —2 and a function f : G — H.

For every pair of x, y € (G, we define

and

In addition, we denote the statement
PO () = (Jy(x) =0 o FP(2)= o) .
The set of solution to the statement Pflsﬁ ) (x) will be denoted by AEQ H) ie.,

AEZ),H) ={f:G— H| szsﬁ)(x) forallz,y € G},
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while the set of solution of .J,, () = 0 is denoted by

Jem ={f:G—=H|J(x) =0 forallz,y € G}.

3.1 Auxiliary Lemmas

Lemma3.1.1. Let f € Al and .y € G.
Jy(x) = 0and Fy(ﬁ)(x) = Oifand only if f(x) =

Proof. Assume that J, () = 0 and Féﬁ)(:v) = 0. Therefore, Féﬁ)(w) — Jy(x) =0,ie,

(8+2)f(z) = 0.

Since 5 # —2, we must have f(x) = 0. Conversely, we assume that f(z) = 0. Since
f € A(’g)H we have J,(z) = 0 or Fy(ﬁ)(x) = 0. As f(z) = 0, therefore Jy(xz) = 0
and F( (z) =0. []

Lemma 3.1.2. Let f € AE?H andletx,y € G.
(1) 1f J,(xy™') = 0 and J,(zy) = 0, then J,(z) = 0.
@) fFP (xy™) = 0and F”) (zy) = 0, then Fy\” (z) = 0.

Proof. Suppose that all the assumptions in the lemma hold.

(1) If J,(x) # 0, then Fy(ﬁ) (2) = 0. Therefore, J,(zy ') + 2Fy(ﬁ) () + Jy(zy) = 0, ie,

flay™?) +2(1+ B) f(x) + fzy®) = 0. 3.1)

Consider Pf;f) (z). The alternative f(zy~2) — 2f(x) + f(zy?) = 0 and (3.1) gives
(2 + B)f(x) = 0, while the alternative f(xy %) + 8f(x) + f(zy?) = 0and (3.1) also
gives (2 + () f(xz) = 0. Since § # —2, we get f(z) = 0. Therefore, J,(x) = 0 by

Lemma 3.1.1.
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@) 1f F\7 (x) # 0, then J, () = 0. Therefore, Fy” (zy~1) — BJ,(z) + Fy” (zy) = 0,
1.€.,

flay™) +2(1+ B) f(x) + f(zy®) = 0.

By a similar argument as above, we will have f(z) = 0. Therefore, Fy(ﬁ) (x) = 0 by Lemma

3.1.1.

]
Lemma3.13. Let f € AL andletz,y € G.

IfJ,(xzy™t) =0, J,(x) # 0 and Féﬁ) (zy?) # 0, then 3 = 0 and

—f(z) ¥nelZr,

f(x) ifnez" .

flzy") =

Proof. Suppose that all the assumptions in the lemma hold. By Lemma 3.1.1, Jy (x) 2 ( implies that
f(x) # 0. From J,,(z) # 0 and szgﬁ) (x), we obtain that Fy(ﬁ)(:v) = (. From Fy(ﬁ)(a?yQ) #0
and Pf;ﬂ) (zy?), we get J,(zy*) = 0. From J,(zy~") = 0 and J, () # 0, Lemma 3.1.2 gives
J,(zy) # 0. By the alternatives in P £ (2y), we obtain that Fy (zy) = 0. If Fy” (zy%) = 0,
then by Lemma 3.1.2, we must have F;B) (zy?) = 0, a contradiction. Therefore, Fy(ﬁ)(:(:y3) # 0
and the alternatives in P fZS’B) (zy?) give J,(zy?) = 0.

Eliminating f(zy ") from J,(zy ') = 0 and Fy(’g)(x) = 0, we get

flzy™) + (14 28) f(z) +2f (zy) = 0. (3.2)

We will consider each alternative in Pf;g) () as follows:

(1) Assume that J2(x) = 0. Solving Fy(ﬁ) (zy) =0, Jy2(2) = 0and (3.2), we have

Flay) +2f(x) = 0 and f(ay?) + (1 —26)f(x) = 0, (3)
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By (3.3) and Fy(ﬁ) (x) =0, we get

flay™) +(B8—-2)f(x) =0. (3.4)

From J,(zy?) = 0 and (3.3), we obtain that f(zy®) — 48f(x) = 0. Considering the
alternatives in 'Pf;zﬁ) (xy), we conclude that (5 4 2) f(x) = 0. Since § # —2, we must

have f(x) = 0, a contradiction. Thus this case does not exist.

(2) Assume that Fy(f) () = 0. Solving Fy(ﬁ)(my) =0, Fy(f) (x) = 0, and (3.2), we have

f(x) + fzy) =0 and f(zy®) + (1 - B)f(z) = 0. (3.5)

Eliminating f(zy?) and f(2y?*) from J,(zy?) = 0, J,(zy*) = 0 and (3.5), we get

flay®) + (1 =3p)f(z) =0. (3.6)

We will consider the alternative in Pf;g ) (zy?) as follows: If J,2 (zy*) = 0, then from (3.5),
(3.6) and J,2(zy?) = 0, we conclude that (8 + 2) f(z) = 0. Since 8 # —2, we have
f(x) = 0, a contradiction. Thus we must get F'5’ (%) = 0. Solving (3.5), (3.6) and
Fy(f)(l’f) = 0, we conclude that (8 + 2)3f(x) = 0. Since § # —2and f(z) # 0, we
must have 5 = 0 and so Fy(S) (x) =0.

We already have S = (. From (3.5), (3.6) and Jy(ny) = (), we obtain that
flzy™) = —f(x) forall n=1,...,4. (3.7)

We will prove that (3.7) also holds for all n. € Z*. It is only left to prove that Jy (:):y”) = 0 for all
n > 4. We will show this by contradiction. Suppose that .J,(zy™) # 0 forsomem > 4. We further

assume that 1 is the least number. Thus the alternatives in szgo) (:Cyz) foreachn =3,...,m—1
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give J, (xy") = 0, i.e.,
flxy'™) —2f(zy") + f(zy'™) =0 forall n=3,...,m — 1. (3.8)
From (3.8) and f(xy®) = f(zy*) = — f(2) in (3.7), we have
f(zy") = —f(x) foral n=1,...,m. (3.9)

The alternatives in 'Pféo)(:(:ym) and J,(zy™) # 0 give ngo)(:(:ym) = (. By Fy(o) (xy™) =0

and f(zy™ ') = —f(x) in 3.9), we get f(zy™ ) = f(x).
(a) Ifm = 2k for some k > 2, then f(xy?**1) = f(xy™!) = f(x). From Fy(o) () =0
and f(zy) = —f(z) in (3.9), we obtain that f(zy~') = f(z). Since2 < k < m,

f(xy*) = —f(z) by (3.9). The alternatives in szfgll (zy*) give f(x) = 0, a contradic-

tion.

(b) Ifm = 2k + 1 forsome k > 2, then f(zy?**?) = f(ay™) = f(z). Since 2 < k <

m, f(zy**) = —f(x) by (3.9). The alternatives in Pfﬁll (zy*t1) give f(x) = 0,
contradiction.
Thus f(zy") = —f(x) foralln € Z* as desired.
Since " (z) = 0,F%(z) = 0and f(zy) = f(zy?) = —f(x) in 3.7). we have

f(xy™2) = f(xy™') = f(x). We can repeat the above process to show that f(zy") = f(x) for

alln € Z~ by substituting x by xy72 and y by yil in the previous arguments. L]
Lemma3.14. Let f € AL andletz,y € G.

() E (zy™") =0, J,(x) # 0 and Y (zy) = 0, then 8 € {1,2}.

@) 1FFS (wy™) # 0and J,(x) # 0, then 3 # 2.

Proof. Suppose that all the assumptions in the lemma hold.
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(1) From Jy(x) # 0 and Pf;ﬁ) (x), we have Fy('B) (x) = 0. Therefore, f(x) # 0 by Lemma

3.1.1. Observing that Fy(ﬂ)(a:y_l) — ﬂFy(ﬂ)(ar) + Fy(ﬂ)(xy) = 0, which reduces to

flay™?) + (2= 6% f(z) + f(ay?) = 0. (3.10)

We will now consider each alternative in £ 5 (). The altemative f(zy~2) — 2f(x) +
f(zy?) = 0and (3.10) gives (4 — %) f (') = 0, while the alternative f (xy~2)+ 8 f () +
f(zy*) = 0 and (3.10) gives (2 — 8 — %) f(x) = 0. Since f(z) # Oand B # —2, we
must have 5 = 1 or § = 2.

(2) We will prove 3 # 2 by contradiction. Suppose that 3 = 2. From Fy2 (zy~1) # 0
and P £ (zy~1), we obtain J,(xy™') = 0. From J,(z) # 0 and P2 (1), we get
J,(z) = 0 and thus f(x) # 0 by Lemma 3.1.1. Since Fy*) (zy~!) # 0 and Fy>) (z) = 0,
Lemma 3.1.2 gives J,(zy~2) # 0. Thus by the alternatives in P f\* (xy~2), we have
Jy(zy™?) = 0. From J,(xy~') = 0and J,(z) # 0, Lemma 3.1.2 gives J,(zy) #
0. By the alternatives in P £y (), we obtain .J,(xy) = 0. Eliminating f(zy~") from
J,(zy~1) = 0and F\*) (z) = 0, we get

flxy™) +5f(x) + 2f (zy) = 0. (3.11)

Eliminating f (zy~2) and f(zy?) from Féz) (xy) = 0,(3.11) and each alternative in Pfy(? (x),
we obtain that

2f(z) + flzy) = 0 or f(z)+ f(zy) = 0. (3.12)

From J,(zy~%) = 0, J,(zy~") = Oand Fy(2) (z) = 0,wehave J, (zy~2)+2J, (zy 1)+
3Jy(x) = 0,1ie.,
f(ay™) +8f(x) + 3f(xy) = 0. (3.13)

Eliminating f(xy~>) from (3.13) and each alternatives in Pf;? (zy~1), we get

Af(x) + flay) + flzy™) = 0 or 4f(2) + fzy) — flay™') =0.  (.14)
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Solving Fy@) () = 0 and (3.14), we conclude that

f(z) =0 or 3f(x)+ f(zy) =0. (3.15)

Combining (3.12) and (3.15), we have f (37) = (), a contradiction. Therefore, we must get

[ = 2 as desired.
Hence we have the desired result. []

Lemma 3.1.5. Let f € AE?})H) andletx,y € G.

Iny(B)(my_l) # 0, Jy(x) # 0 and Fy(ﬂ)(rl,’y2) =0, then = 1 and
(1) (f(:cy”))nez = (@, —2a,a) forsomea € H, or

2) (f(:py"))nez = (—2a,a,...,a), a periodic sequence of an odd period p > b, for some
a€ H.

Proof. Suppose that all the assumptions in the lemma hold. Thus # # 2 by Lemma 3.1.4. From
Féﬂ)(xy_l) # 0 and Pféﬁ) (zy~1), we get J,(xy~') = 0. From J,(x) # 0 and 'Pfy(ﬁ) (x), we
have F\”) (z) = 0. Therefore, f(zy~') # 0and f(z) # 0 by Lemma 3.1.1. Since J, () # 0
and J,(zy~!) = 0, Lemma 3.1.2 gives J,(zy) # 0. By the alternatives in P f” (), we get
FP(zy) = 0. From FS” () = 0, J,(zy) # 0, Fy”(2y?) = 0 and § # 2, Lemma 3.1.4

gives 3 = 1. Eliminating f(xy ') from J,(zy~*) = O and Fy(l)(m) = 0, we obtain
flay™) +3f(x) + 2f(zy) = 0. (3.16)

Consider the alternatives in P £, (z) as follows: Solving J,2(z) = 0, Fy”(zy) = 0 and (3.16)
gives 2f(z) + f(xy) = 0, while solving F\3’(x) = 0, Fy" (zy) = 0 and (3.16) gives f(z) +
Flzy) = 0.1 f(2)+ f(zy) = 0, then £\ (z) = 0 simplifies to f(zy~') = 0, a contradiction.
Thus we must have 2f(z) + f(zy) = 0. Let f(x) = a. From Jy(zy ') = O,Fy(l)(a:) =
0, F\(zy) = 0, F{"(z?) = 0 and 2f (z) + f(xy) = 0, we conclude that

(flzy™), flay™), f(@), flay), f(2y?), f(2y?) = (a.a,a,~2a,a,a).  (.17)
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if £V 2%) = 0, then by f(zy?) = f(zy®) = ain (3.17), we get f(xy*) = —2a. From
y

f(xy™2) = aand f(zy) = —2a in (3.17), the alternatives in Pf;;) (xy) give a = 0, a contradic-

tion. Therefore, Fy(l)(a?yB) # (. By the alternatives in Pfygl)(xy?’), we have J, (zy?) = 0, ie.,

f(xy*) = a. From the alternatives in P fél) (xy™) for each n > 4, we will consider two possible

cases as follows:

(1) Assume that J,, (xy™) = Oforalln > 4,ie.,

(@)

flay™™) — 2f (xy™) + f(ay"™) =0 forall n > 4. (3.18)
From (3.18), f(zy?) = a and f(xy*) = f(2y?) = ain (3.17), we conclude that
flzy™) = a forall n > 2. (3.19)

Next, we will show that (3.19) also holds forall . < 0. Itis only left to prove that f (zy") = a
foralln < —3. Letm < —3beaninteger. We will consider the alternatives in Pf;},},l (acy)
as follows: From f(zy) = —2a in (3.17) and f(xy7m+2) = @ in (3.19), the alternative
Fy(i)_l(my) = 0 and (3.19) gives f(zy™) = —ba, while the alternative Fy(rl,g_l($y) =0
and (3.19) gives f(xy™) = a. First, assume that f(zy™) = —5a. From f(z) = ain
(3.17)and f(xy~™) = ain (3.19), the alternatives in szflr? (x) give a = 0, a contradiction.
Thus we must have f (J:ym) = a. Therefore, we get that (3.19) holds for all n < 0 and so

(flay™), ., = (@ —2a,7).

Assume that there exists 1 > 4 such that J,(xy™) # 0. Thus we can further assume that m

is the least number. From the alternatives in P f 151) (:L‘y") foreach 3 < n < m — 1, we have

Jy(zy™) =0, e,

flzy™™ ) — 2f(xy™) + flay"™) =0 forall 3<n <m — 1. (3.20)
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Since (3.20) and f(zy?) = f(xy®) = a in (3.17), we obtain that
flzy™) = a forall 2 <n <m. (3.21)

From J,(zy™) # 0 and Pfél)(xym), we get Fy(l)(xym) = 0. Since f(zy™ ') =
f(zy™) = ain (3.21), Fél)(xym) = 0 reduces to f(zy™ ") = —2a. Next, we will
show that mm must be odd by contradiction. Suppose that m = 2k for some k € Z. We have
flay? ) = f(zy™™) = —2a. From f(zy) = —2ain 3.17) and f(zy* ™) = ain
(3.21), the alternatives in P f;i) (xy**1) give a = 0, a contradiction. Thus 7 must be odd.

Next, we will show that

(f(xy™2), flay™?), . flay®™), fay®™ ™)) = (a,a,...,a,—2a). (3.22)

Let p be an integer with 1 < p < m — 1. From f(zy™ P™) = ain (3.21) and
flzy™) = —2a, the alternatives in Pf;;)(xymﬂ) give f(axy™Ptl) = —5a or
f(zy™PT) = q. First, assume that f(xy™PT1) = —5a. Since0 < m —p —1 <
m — 2, by (3.17) and (3.21), we have f(zy™P~!) = —2a or f(zy™ P~!) = a. From
f(zy™) = ain (3.21), the alternatives in P f ;;ll (xy™) give a = 0, a contradiction. Thus
we must have f(zy™PT1) = a. Therefore, f(zy") = a forallm + 2 < n < 2m. Con-
sidering the alternatives in Pfél)(xyzm), we get f(zy*™ ) = aor f(zy?™ ™) = —2a.
First, assume that f(zy*™ ") = a. From f(zy) = f(zy™!) = —2a, the alter-

m+1) give a = 0 and therefore a contradiction. Thus we must have

natives in Pf;#) (xy
f(nyerl) = —%a.

Similarly, by repeating the process of (3.22), we obtain that

(fxy®™ ), flay®™ ), f(ay™), f(xy®™ ) = (a,a,. .. a,—2a)
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and so on. Eventually, we arrive that

(f(zy™*2), flay™ ), .., fay™D™), f(ay™m ) = (a,q,. .., a,—2a)

for all 2 > (. Moreover, we can similarly repeat the process of (3.22) for each f (J:yk) with
kE < —3to get (f(xy”))neZ = (—2a,a,...,a), aperiodic sequence of an odd period

p > b as desired.

The proof is now complete. []

3.2 Main Results and Some Examples

In this section, all lemmas in the previous section will be consolidated to provide three more lemmas,
which will eventually comprise our main theorem.
First, we will make the following crucial observations. Let f € AE? H) \j(g myandletz,y € G.

By the definition of AEQ H) and j(G, ), one of the following properties holds:
(1) Jy(zy™) # O foralln € Z.
(2) There exists m € Z such that
@2.1) Jy(zy™) # 0and J,(zy™ ') =0, or
2.2) J,(xy™) # 0and J,(zy™ ) = 0.
The above observation will be used in the proof of the lemmas and theorem as follows.

Lemma 3.2.1. Let f € AEOG) H)\j(G,H) andletx,y € G.
Then (f(xy”))nez = (—a,a) forsomea € H.

Proof. Suppose that all the assumptions in the lemma hold. By the above observation, we have the

following cases:

(1) Assume that J,,(zy") # O forall n € Z. The alternatives in ,Pfy(O) (zy~') and Pf;o) (xy)
give Fy(o)(xyfl) = (Oand F&O) (xy) = 0, respectively. From Fy(o)(xyfl) =0, Jy(x) #0
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and F, y(o) (xy) = 0, Lemma 3.1.4 gives a contradiction. Thus the solution does not exist in this

case.

(2) Assume that there exists m € Z such that J,(zy™) # 0 and J,(zy™ ') = 0, or

J,(xy™) # 0and J, (xy™" ') = 0. Therefore, each case implies that:

@.1) 1f J,(xy™) # 0and J,(zy™ 1) = 0, then the alternatives in P f\" (zy™) give
Fy(o) (zy™) = 0. From J,(xy™ ') = 0and J,(xy™) # 0, Lemma 3.1.2 gives
J,(xzy™*t) # 0. We will consider the alternatives in P féo)(xmerQ) as follows: If
F{ (zy™*2) = 0, then from J, (™) # Oand F” (zy™) = 0, we get a contra-
diction by Lemma 3.1.4. Thus we must have Fy(o) (zy™*?) # 0. From J, (zy™ 1) = 0,
Jy(xy™) # 0 and Fy(o) (zy™2) £ 0, we get

—f(zy™) i Z*
T R R
flxy™) if ne€Z”

by substituting by xy"™ in Lemma 3.1.3. Therefore,

(f(2y™), ey = (Flxy™), — f(zy™)).

2.2) If J,(zy™) # 0and J,(zy™"") = 0, then we conclude that (f(xy”))neZ =

(—f(xy™), f(zy™)) by substituting = by x4/*™ and 3y by y ! in the arguments in the

case 2.1.

All the above consideration completes the proof. L]
Lemma 3.2.2. Let f € Aglg)’H)\j(G,H) andlet x,y € G. Then

(1) (f(xy"))nez = (a,b,—a — b) forsomea,b € H, or

(2) (f(x’yn))nez = (@, —2a,a) forsomea € H, or

(3) (f(xy"))nez = (—2a,a,...,a), aperiodic sequence of an odd period p > 5, for some
a€ H.
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Proof. Suppose that all the assumptions in the lemma hold. By the above observation, we have the

following cases:

(1) Assume that Jy(zy™) # O forall n € Z. Thus the alternatives in Pf;l)(xy") give
FY (zy™) = 0, iie.,

flay™™) + flay™) + flay™™) =0

for all n € Z. This implies the property (1).

(2) Assume that there exists m € Z such that Jy(a?ym) =% 0 and Jy(xymfl) = 0, or

J,(xy™) # 0and J, (xy™" ') = 0. Therefore, each case implies that:

(2.1) Suppose J,(zy™) # 0and J,(zy™ ) = 0. In the case when Fy(l)(xymfl) # 0,
we will consider the alternatives in P f, ?51) (zy™"2) as follows: If Fél) (xy™2) £ 0,
then Lemma 3.1.3 gives a contradiction. Therefore, Fy(l) (scym+2) = (. From
Fy(l) (zy™ 1) # 0, J,(xy™) # 0 and Fél) (xy™2) = 0, by substituting = by xy™
in Lemma 3.1.5, we get the property (2) and (3). Thus we will only consider the case when

1) are equivalent, i.e., we also get Fy(l)(:ﬂym_l) = 0.

the alternatives in P f;l) (xy~
Thus f(zy™ ') = 0 by Lemma 3.1.1. From J,(zy™ ') = 0 and J,(zy™) # 0,
we get J, (2™ 1) # 0 by Lemma 3.1.2. Thus the alternatives in P £\ (2™ ) give
F{(zy™) = 0. From J, (zy™) # 0 and P f3" (zy™), we have F" (zy™) =
0. Therefore, f(zy™) # 0 by Lemma 3.1.1. Let f(xy™) = a. From f(zy~') =0,

Fy(l) (zy™) = O and Fy(l) (xy™ 1) = 0, we conclude that

(f(y™ ), f(ay™), flxy™ ), f(xy™*?) = (0,0, —a,0).  (3.23)

By (3.23), the alternatives in Pfél)(xym+2), 'Pf;;)(xym‘ﬂ) and 'Pf;?(xym+2)
give

(f(-rym+3)a f(xym+4), f(xym+5)) = (a’ —a, O)'

Similarly, the alternatives in Pfél) (zy™*3), 'Pfy(; ) (zy™* ) and 'Pf;; ) (zy™*?) give
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(f(xy™C), f(xy™ "), f(zy™"®)) = (a, —a,0) and so on. Finally, we get
(fy™ ), Jay™ ), fay™2)) = (a, —a,0). (3.24)

for all & > (. On the other hand, the alternatives in Pf;l) (zy™ 1), 'Pf;;) (xy™ 1)

and P 13 (xy™ 1) give (f(xy™2), f(ay™ %), fley™ ) = (=a,a,0). Re-

peating the process similar to (3.24), we have

(f(y™ %), flay™ ), flay™ 7)) = (a,0,—a)

for all £ > 0. Therefore, we get the property (1) when b = —a.

2.2) If J,(xy™) # 0and J,(2y™*!) = 0, then we have the similar results as the case 2.1

by substituting 2 by zy*™ and y by y~*.
Hence we have the desired result. D

Lemma 3.2.3. Let f € A%’H)\j(g’g) andletx,y € G.
Then f(zy™) = (—1)"(f(x) —n(f(z) + f(xy))) Joralln € Z.

Proof. Suppose that all the assumptions in the lemma hold. Therefore, Jy (:Uym) = () for some
m € Z. By the alternatives in 'Pfy(Q) (xy™), we get Ff) (xy™) = 0. Consider the alternatives in
'sz,(,Q)(xymfl) as follows: If Féz) (xy™ ') # 0, then Lemma 3.1.4 gives a contradiction. Thus
we must have Fy@) (zy™ 1) = 0. Similarly, by Lemma 3.1.4, the alternatives in 77f352) (xy™th)
gives Ff)(xymﬂ) = 0. First, we will show that F352)(:L’ym+2) = 0 by contradiction. Sup-
pose Fy(z) (xy™*%) £ 0. The alternatives in PfZSQ)(J:ym+2) gives J, (zy™*?) = 0. Therefore,
f(xy™?) # 0 by Lemma 3.1.1. From Ff)(xymﬂ) = 0 and Fy(z) (xy™2) #£ 0, we get
Fy(2) (xy™"3) # 0 by Lemma3.1.2. Hence the alternatives in Pff) (zy™*3) give J, (zy™*3) = 0.

Eliminating f(xy™) from Fy(Q)(xym) = O and FZSQ) (zy™t) =0, we get

flay™ ™) = 3f(ay™*) = 2f (zy™*?) = 0. (3.25)
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Eliminating f(zy™ ') and f(zy™"?) from J, (xy™*?) = 0, (3.25) and each alternative in
Pf;? (xy™*1), we have

flzy™2) =0 or f(zy™™) + flay™?) =0. (3.26)
On the other hand, by .J, (zy™2) = 0 and J,(zy™**) = 0, we obtain that
2f (xy™ ) = 3f (xy™ ) + f(zy™) =0. (3.27)

Eliminating f(zy™) and f(zy™™*) from Fy@)(:pym“) = 0, (3.27) and each alternative in
Pfﬁ) (zy™2), we get

flay™™) =0 or flay™") = flzy™?) = 0. (3.28)

Combining (3.26) and (3.28), we conclude that f (:Cym+2) = (0, a contradiction. Therefore, we get

m+3)

Fy(Q) (xy™T2) = 0. We can repeat the above process to show Fy(Q) (xy = ( by substituting

by 2y and so on. Thus we obtain that
FP(zy™) =0 forall n > m + 2. (3.29)

Similarly, we can repeat the process of (3.29) for each n < m — 2 to get F; y(2) (zy™) = 0 for all
n € Z,ie.,

Flay™h) + flay™) = (=D(f(@y") + flzy"™)).
Therefore, f(zy") = (—=1)"(f(z) — n(f(z) + f(zy))) foralln € Z. []
Now we will prove the main theorem.

Theorem 3.2.4. If there exists a function f € Agg) H)\j(G,H), then 5 € {0,1,2}.

Moreover, if ¢,y € G, then one of the following properties must hold:

(1) B =0and (f(xy”))nez = (—a,a) forsomea € H\{0}.
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2) B=1and

(2.1) (f(:vy”))nez = (a,b, —a — b) for some a, b € H with (a,b) # (0,0), or
(2.2) (f(xy”))nez = (@, —2a, a) for some a € H\{0}, or

(2.3) (f(wyn))nez = (—2a,a,...,a), aperiodic sequence of an odd period p > b, for
some a. € H\{0}.

() B =2and f(xy") = (~1)"(f(x) = n(f(x) + f(2y))) forall n € Z.

Proof. Let f € Agg) H) \._7((;, myandletz,y € (5. By the above observation, we have the following

cases:

(1) Assume that .Jy,(xy") # O forall n € Z. The alternatives in Pflsﬁ) (zy~') and Pflsﬁ) (xy)
give F;ﬁ) (ry~') = Oand Féﬂ) (xy) = 0, respectively. From Fy(ﬁ) (xy™') =0,J,(z) #0
and Fy(ﬁ) (xy) =0, Lemma3.1.4 gives 3 = L or § = 2.

(2) Assume that there exists v € Z such that J,(zy™) # 0 and J,(zy™ ') = 0, or

Jy(xy™) # 0and J,(zy™+!) = 0. Therefore, each case implies that:

@.1) If J,(zy™) # 0and J,(zy™ ) = 0, then Lemma 3.1.2 gives J, (xy™!) # 0.
From J,,(zy™) # 0 and Pfy(ﬁ) (xy™), we get Fy(’B) (xy™) = 0. Consider the alter-
natives in P fi”) (zy™"2) as follows: If F” (zy™+2) # 0, then Lemma 3.1.3 gives
B =0. Iszfﬁ) (xy™2) = 0, then Lemma 3.1.4 gives 3 = L or 3 = 2.

2.2) If J,(xy™) # 0and J,(zy™"") = 0, then we get similar results in the case 2.1 by

1

substituting x by xy2m and y by ¥y~ in the previous arguments.

Thus we must have 5 € {0, 1,2}. According to Lemma 3.2.1, Lemma 3.2.2 and Lemma 3.2.3, we

have our results corresponding to the values of (3's. L]
Corollary 3.2.5. Let f € Alg) . If B ¢ {0,1,2}, then f € Jicm.

Proof. 1f B ¢ {0, 1,2}, then, from Theorem 3.2.4, AEZ)H)\‘T(QH) is empty. Hence we have the
desired result. []
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In other words, Corollary 3.2.5 states that when 3 ¢ {0, 1, 2}, the alternative Jensen’s functional
equation (WA) is equivalent to the Jensen’s functional equation (1.6) for the class of functions from
(G,-) to (H,+). On the other hand, when 8 € {0, 1,2}, (WA) is not necessarily equivalent to

(1.6) as the following three examples.
Example 3.2.6. Givena € H\{0}. Let f : R — H be a function such that
—a if x <0,

f(z) =

a if x> 0.

By choosing z = 0 and y = 1, we have

fle—y) =2f(2) + flz+y) = f(=1) = 2f(0) + f(1) = —2a.

From a # 0 and H is uniquely divisible, we get —2a # 0. Thus f & J(r m). Given z,y € R, if
x—y>0andx+y > 0,orz—y < Oandz+y < 0, then f(x—y)—2f(z)+ f(z+y) = 0;
otherwise, f(z — y) + f(z + y) = 0. Therefore, f € AE%{H)\j(R,H)'

Example 3.2.7. Givena € H\{0}. Let f : R — H be a function such that
—2a if x =0,

fx) =

a otherwise.

By choosing = 0 and y = 1, we obtain that

Fla—y) = 2f(0) + fa+y) = F(=1) = 2(0) + f(1) = ba.

Since @ % 0 and H is uniquely divisible, we have 6a # 0. Thus f ¢ J(r . Given x,y € R, if
(y#Oandz —y =0) or (y # Oandz = 0) or (y # Oand z + y = 0), then f will satisty
f(x —y) + f(z) + f(z +y) = 0; otherwise, we have f(z —y) — 2f(x) + f(x +y) = 0.
Thus f € ARy \ T,
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Example 3.2.8. Given a,b € H with a # —b. Let f : Z — H be a function such that
f(n)=(=1)"(a + nb) forall n € Z.

Note that f(0) — 2f(1) + f(2) = 4a + 4b. Since @ # —b and H is uniquely divisible, we
have 4a 4+ 4b # 0. Thus f ¢ Jzm). Givenn,m € Z. If m is odd, then we observe that
n — m and n + m have the same parity whereas 1 and n + m have the opposite. Therefore,
f(n—m)+2f(n)+ f(n+m) = 0. Otherwise, if m is even, then . — m, n, n + m all have

the same parity. Hence f(n —m) —2f(n) + f(n+m) = 0. Thus f € AEZ?H)\j(Z:H)'



CHAPTER IV
THE STRONG FORM OF ALTERNATIVE JENSEN FUNCTIONAL

EQUATIONS

In this chapter, we will give a criterion for the existence of the general solution for the functional
equation (SA) in chapter I. Let (G, ) be a group, ( H, —i—) be a uniquely divisible abelian group. Given

integers v, 3,7y as in (1.18) and a function f : G — H. For every pair of x, y € G, we will define

Fo89)(2) = af(ey™) + Bf(z) + 7 f(xy),

and

In addition, we denote the statement

,Pf;oz,ﬁ,“f) (l’) - (Jy<x) =0 or Fy(azﬁry) ((lj) = 0>

The set of solution to the statement 'Pf;a’ﬁm () will be denoted by Agg’%;), ie.,

A = Af 1 G = H | Pfe#(2) forall 2,y € G},

while the set of solution of .J,,(x) = 0 is denoted by

Jem ={f:G—=H| Jy(x)=0 forallz,y € G}.
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For the sake of convenience, we will refer the conditions of integers <, 3 and 7y as in the following
equation,
f=a+y
or f=0and v=a« (4.1)

or (8,7) = (@, a).
4.1 Auxiliary Lemmas

Lemma4.1.1. Let f € .AEZJBHV andx,y € G.

Ifdy(x) # 0, thena = yor f(xy™") = f(xy).

Proof. Assume that J,,(z) # 0. By the alternative in Pfy(a’ﬁ’y)( ) and Pf %B.) (x), we get

Fy(o"ﬁm (x) and Fﬁ’lﬂm(l‘), respectively. Therefore, Fy(a”g’v)(a:) — Fy(,’lﬁ ) (z) = 0,ie.,

(a =) (flzy™") = flay)) = 0.

Hence o = yor f(zy™!) = f(zy) as desired. []

In the following lemma, we will give a necessary condition for a function f € Aggﬁlﬁg).

060

Lemma 4.1.2. IffGA andx,yEG, then J,(z) = 0.

Proof. Assume that f € Aggﬁ 7y and J, y(x) # 0. If B = 0, then it is a contradiction to (1.18).
Hence we must have 3 # 0. From F(O A )( ) = 0, we get f(x) = 0. Next, we will consider the

,670)<

alternative in F, y Ty ) = (0 as follows.

(1) Assume that Fy(0,6,0)<xy_1) = 0. Wehave f(xy~!) = 0. By the alternative 1n77f (0:8,0) (xy),

we obtain that
f(xy?) = 2f(zy) = 0 or f(zy) = 0. (4.2)

OBO(

By the alternative in P f xy?), we get

flzy) = 2f(xy®) + f(zy®) = 0 or fzy®) = 0. (4.3)
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Combining (4.2) and (4.3), we obtain that

flxy®) = 3f(zy) =0 or fzy) =0. (4.4)
By f(zy ') = 0 and (4.4), the alternative in Pf;g’ﬁ’o)(a?y) gives f(zy) = 0. By calcula-
tion, we get .J, (z) = 0, a contradiction to the fact that .J,, (z) # 0.

(2) Assume that .J,, (ajy_l) =0, 1ie.,

flay™) = 2f(zy™") = 0. (4.5)

76»

By (4.5), the alternative in P f Y (:Ey_2) gives

flay™®) =3f(xy™) =0 or flzy™') =0. (4.6)

76»

By (4.6), the alternative in P f (:Ey_l) gives

- —1
flay™) + flzy) =0 or flzy™') =0.
If f(zy™) + f(zy) = 0, then we have J,(z) = 0, a contradiction. Hence we have
f(xy_l) = (0. By a similar argument in case (1), we get a contradiction.
Therefore, we must have J,(x) = 0 as desired. [
Corollary 4.1.3. Let f € Al and v,y € G. If J,(w) # 0, then 7 0.
Proof. The proof is complete by Lemma 4.1.2. L]

Lemma 4.1.4. Let f € Al ;" with o # v and .,y € G.

(1) If J,(xy™') # 0and J,(x) # O, then J,(xy) # 0.
) If Jy(xy™') = 0and J,(x) = 0, then J,(zy) = 0.

Proof. We will prove each property as follows.
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(1) Assume that J,(zy~ ') # 0,J,(x) # 0but J,(zy) = 0. From J,(zy~*) # 0 and

Jy(x) # 0, Lemma 4.1.1 gives

flay™?) = f(z) or flzy™) = f(ay). (4.7)

Eliminating f(xy) from J,(zy) = 0 and (4.7), we get

2f(xy™") — fx) — flay?) = 0. 4.8)

B57) (x)

We will consider the alternative in P f ?53

(a) Suppose Jy2(x) # 0. Then Lemma 4.1.1 gives

f(z) = flzy?). (4.9)

From (4.7) and (4.9), we get JyQ ({I}) = (), a contradiction.

(b) Suppose J,2(:) = 0. Eliminating f (xy~2) and f(2y?) from (4.7), (4.8)and J,2 (z) = 0,
yields

flzy™) = f(2). (4.10)
From (4.7) and (4.10), we obtain Jy ($) = (), a contradiction.
Thus we must have J, (xy) # 0.

(2) Assume that J,(zy~ ') = 0, J,(x) = 0but J,(xy) # 0. Eliminating f(zy~') from
Jy(xy™') = 0and J,(z) = 0, we get

flay™) = 3f(x) + 2f(xy) = 0. @.11)

From .J,, (zy) # 0, Lemma 4.1.1 gives

f(x) = fzy?). 4.12)
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Next, we will consider the alternative in 'Pf;?’ﬁ’w ().

(a) Suppose Jy2(x) # 0. By Lemma 4.1.1, we have

flay™?) = flzy?). 4.13)

By (4.12) and (4.13), we obtain that /2 () = 0, a contradiction.

(b) Suppose J,2 () = 0. Eliminating f(a:y_2) and f(a:y2) from (4.11), (4.12) and
J2(x) = 0, we have
f(z) = f(xy). (4.14)

By (4.12) and (4.14), we get Jy (J}y) = 0, a contradiction.

Therefore, we must have J,, (zy) = 0.

Lemma 4.1.5. Let | € AEZ‘BH? with o« # yand x,y € G.

(1) If J,(xy™') # 0and J,(x) = 0, then J,(zy) # 0.

) If Jy(xy™') = 0and J,(x) # O, then J,(zy) = 0.
Proof. We will apply Lemma 4.1.4 to prove this lemma as follows.

(1) Assumethat.J,(zy~t) # 0, J,(z) = Oand J,(2y) = 0. By J,(2) = Oand J,(zy) = 0,

Lemma 4.1.4 gives J, (zy ') = 0, a contradiction. Thus we must have J, (xy) # 0.

(2) Assume that J,(zy~') = 0,J,(z) # 0and J,(ay) # 0. From J,(z) # 0 and

J,(xy) # 0, we get J,(xy~"') # 0, a contradiction. Therefore, we must have .J, (zy) = 0.

[]

Lemma 4.1.6. Let f € Al ;" with o # v and .,y € G.

(1) 1f J,(xy™) # 0 and J,(x) # 0, then § = o + 7.
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) If Jy(xy™') = 0and J,(x) # 0, then (B,7) = (0, —cv).
Proof: We will prove each property as follows.

(1) Assume that J, (xy ') # 0, J,(x) # 0 and 8 # « + . By Lemma 4.1.1, we obtain that

flay™?) = f(x) and f(ay™') = fzy). 4.15)

From J,(zy ') # Oand J,(z) # 0, the alternative in Pf;a’ﬁ’w (zy~!)and Pféa’ﬁ’”) (x)
gives

a,B, -1y _ a,pB, —
Fy( MNay™) =0 and Fy( (x) =0, (4.16)
respectively. By (4.15) and (4.16), we get

(a+7)f(x)+ Bf(xy) =0 and Bf(x)+ (a +7)f(zy) = 0. 4.17)

Eliminating f(xy) from (4.9), we have

B—a—-7)(B+a+7)f(z)=0.

From (3 # o + 7y, we can conclude that f(z) =0or f = —a — 7.

(a) Suppose f(x) = (. By (4.17), we have

Bf(zy) =0 and (a+7)f(zy) = 0.

If f(zy) = 0, then f(zy™') = 0 by (4.15) and we can calculate J,(z) = 0, a
contradiction to the fact that J,(x) # 0. Thus we get (0 + ) = Oand f = 0, a

contradiction to the fact that 5 # « + 7.

(b) Suppose § = —a — 7. Substituting 5 = —« — -y in (4.17), we obtain that

(@ +7)(f(x) = fzy)) = 0.
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If « + v = 0, then § = 0 which contradicts 5 # « + <. Thus we must have
f(z) = f(zy). Since f(xy™') = f(zy) in (4.15), we get J,(x) = 0, a contradic-
tion to the fact that J, (x) # 0.

Hence f = a + 7.

(2) Assume that J,(zy~') = O and J,(2) # 0. From J,(x) # 0, by Lemma 4.1.1, we have

flay™) = flay). (4.18)

By J,(x) # 0 again, the alternative in Pféa’ﬁ’v) (x) gives Féa’ﬁ’y) (x) = 0. Substituting
f(xy™') from (4.18) in Fy(a’ﬁ’v) () = 0, we obtain that

Bf(x)+ (a+~)f(zy) = 0. (4.19)

On the other hand, we substituting f(acy_l) from (4.18) in Jy(:vy_l) = 0 to get

fley™®) = 2f(zy) + f(x) = 0. (4.20)

Since J,(zy~') = 0 and J, () # 0, Lemma 4.1.5 give J, (zy~2) # 0. By Lemma 4.1.1

and (4.18), we have

flay™) = flay). 421

From J,(zy~%) # 0, the alternative in Pfgga’ﬁﬁ) (xy~2) gives Fy(a’ﬁ’v) (ry=2) = 0. By

(4.18), (4.21) and F\*" (zy~2) = 0, we get

(a+2B8+7)f(vy) — Bf(x) = 0. (4.22)

By (4.19), (4.22) and simplifying, we obtain that

B(f(x) = flzy)) = 0.
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If f(x) — f(zy) = 0, then by (4.18), we have J, () = 0, a contradiction to the fact that

Jy(x) # 0. Hence we must get = 0. Thus (4.22) gives

(a+7)f(zy) = 0. (4.23)

Suppose in a contrary that o + y # 0. Thus f(2y) = O and sois f(zy ') by (4.18). By

(4.20), we obtain that

fley™) + f(x) =0. (4.24)
From Jy(l‘y—l) = Oand J,(z) # 0, Lemma 4.1.5 give J,(zy) = 0, i.e.,
f(x) + fzy?) = 0. (4.25)

Thus by (4.24), (4.25) and o + v # 0, the alternative in Pfﬁ@ﬁ)@) give f(x) = 0.
Then Jy () = 0, a contradiction. Therefore, we must get @ +y = 0 and so (v, 5,7) =

(r,0, —).

[]

Main Results and Some Examples

Before proving the theorem, we will provide the following two lemmas which will eventually be

used in our main theorem.

Lemmad4.2.1. If f € Agg’@?)\ﬂgﬂ) and x,1y € G, then one of the following properties holds:

(1) B =0and (f(xy”))nez = (—a,a) for some a € H.

2) B = aand

2.1 (f(xy™))nez = (a,b, —a — b) for some a,b € H, or

2.2) (f(xy™))nez = (a, —2a,a) forsomea € H, or
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2.3) (f(xy™))nez = (—2a,a,...,a), a periodic sequence of an odd period p > 5, for
somea € H.
(3) B =2aand f(xy™) = (—1)”(f(x) —n(f(z)+ f(xy))) forallmn € 7.

Proof. Assume that the assumption in the lemma holds. From Corollary 4.1.3, we must have o # 0.
L2 ,
By direct substitution, we get AE%@?)\:](G,H) = AEGC}{))\j(G,H)- Thus Theorem 3.2.4 gives

B € {0, a,2a}, and f satisfies one of the properties in the lemma. L]

Lemma 4.2.2. If f € Agg’i};)\ﬂgﬂ) withw # v and v,y € G, then f = o + y and one of

the following properties holds:

() f(xy™) = (=1)"a foralln € Z and for some a € H, or

2) B=0and

2.1 (f(xy™))nez = (a,b) forsomea,b € H, or
2.2) (f(zy"))nez = (2a — b,a,b,a) forsomea,b € H.
By

Proof. Assume that the assumption in the lemma holds. By the definition of ‘AgG, H)) and j(G, H)»

one of the following properties holds:
(1) Jy(xy™) #0 foralln € Z.
(2) There exists m € 7Z such that

Q@.1) Jy(xy™) # 0and J,(zy™ ') =0, 0r

2.2) J,(xy™) # 0and J,(zy™ ) = 0.

(1) Assume that J,(xy™) # 0 foralln € Z. Lemma4.1.6 gives § = ov+. By Lemma4.1.1,
we get

flxy™™ ) = fzy™) forall n € Z. (4.26)

From .J,, () # 0, the alternative in szga’wr%w (x) gives Féa,aﬁ-v,v) () = 0; that is,

af(ry™) + (a+7)f(z) +vf(zy) = 0. (4.27)
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By (4.26) with n = 0 and (4.27), we get

(a+7)(f(x) + f(xy)) = 0. (4.28)

(1.1) Suppose f(x) + f(zy) = 0. Let f(x) = a. We have f(zy) = —a. By (4.26), we
conclude that

a if n is even
n b
flay™) =

—a if n isodd.
Hence we get f(zy"™) = (—1)"a foralln € Z.

(1.2) Suppose & + v = 0. Thatis § = 0. Let f(x) = a and f(zy) = b. Therefore, by

(4.26), we obtain that

. a if n iseven,
flay") =
b if n isodd.

Thus we have (f(zy™))nez = (a, b).

(2) Assume that there exists m € Z suchthat J, (xy™) # Oand J,(zy™ ) = Oor J,(zy™) # 0

and J,, (zy™!') = 0. Thus Lemma 4.1.6 gives (3,7) = (0, —«)

(2.1) Suppose Jy(l’ym) # (0 and Jy(xym_l) = 0. Letf(a:ym_l) = aand f(zy™) = 0.
From J, (zy™) # 0,Lemmad.1.1 gives f(zy™ ) = f(zy™!),ie, f(zy™!) = a.

From J, (zy™ ') = 0, we get f(2y™ ?) = 2a — b. Now we have
(fay™2), flay™ ), f(zy™), fay™ ) = (2a = b,a,b,a). (429
From J,(zy™ ') = 0 and J,(zy™) # 0, Lemma 4.1.5 gives J, (zy™ ) = 0; that

1s,

flay™) = 2f (zy™ ) + flay™?) = 0. (4.30)
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By (4.29) and (4.30), we obtain that f(zy™"2?) = 2a — b. Since J,(zy™) # 0
and J, (zy™ ) = 0, Lemma 4.1.5 gives .J, (zy™2) # 0. By Lemma 4.1.1, we get
f(zy™*3) = a. From J,(zy™™) = 0 and J,(xy™"?) # 0, Lemma 4.1.5 gives
Jy(xy™3) = 0andso f(zy™**) = b. As J,(zy™"?) # 0and J, (zy™"3) = 0,
we have J,, (zy™) # 0 by Lemma 4.1.5. Lemma 4.1.1 gives f(2y™") = a. Thus

we obtain that

(f(zy™2), flay™ ), f(y™), fay™)) = (2a — b,a,b,a).  (431)

Similarly, by repeating the process of (4.31), we get

(f(xy™0), flay™ ), f(y™™®), f(zy™)) = (2a — b, a,b,a)

and so on. Eventually, we arrive that

(f(xy™ 205, flay™ ), flay™ ), f(ay™ )

= (2a — b,a,b,a) (4.32)

for all 2 > 0. Moreover, we can similarly repeat the process of (4.32) for each f (:Eyk)

with k < m — 3to get (f(2y"))nez = (2a — b, a, b, a).

(2.2) Suppose J,(zy™) # 0and J,(xy™) = 0. By substituting 2 by 2y*™ and y by

y_l in the arguments in the case (2.1), we have similar results.

Now we are ready to prove the main theorem.
Theorem 4.2.3. If f € Agg’i}’;)\j(gﬂ), then (4.1) holds. Moreover, if x,y € G, then one of the

following properties holds:

(1) B=a+vyand
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(1.1) f(xy™) = (—=1)"a foralln € Z and for some a € H, or
(1.2) B=0and
(1.2.1) (f(xy™))nez = (a,b) forsomea,b € H, or
(1.2.2) (f(xy"))nez = (2a — b, a,b,a) forsomea,b € H, or
(1.3) B =2aand f(zy") = (=1)"(f(z) — n(f(z) + f(zy))) foralin € Z.
2 (B,7) = (0,) and (f(2y"))nez = (—a, @) forsomea € H.
3) (8,7) = (a, @) and
3.1) (f(xy™))nez = (a,b,—a —b) forsomea,b € H, or
3.2) (f(zy"))nez = (a, —2a,a) forsomea € H, or
(3.3) (f(2y™))nez = (—2a,a,...,a), a periodic sequence of an odd period p > 5, for

some a € H.

Proof. Assume that all assumptions in the theorem hold. We will consider the case of an integer «v as

follows:
(1) If &« = ~y, then Lemma 4.2.1 gives 3 € {0, Q, 204} and the properties (1.3), (2) and (3).

(2) If a # 7y, then Lemma 4.2.2 gives 3 = « + < and the properties (1.1) and (1.2).

Corollary 4.2.4. Let f € AP 1r04.1) does not hold, then f € T .
(G.H) (G, H)

Proof. If (4.1) does not hold, then, from Theorem 4.2.3, Aggi[’;)\ﬂg H) is empty. Hence we have

the desired result. D

In other words, Corollary 4.2.4 states that when (4.1) does not hold, the alternative Jensen’s func-
tional equation (SA) is equivalent to the Jensen’s functional equation (1.6) for the class of functions
from (G, ) to (H, +). On the other hand, when (4.1) actually holds, (SA) in chapter I is not neces-

(a,00,0x)

sarily equivalent to (1.6). As in Example 3.2.7, we also get f € A(Z H) \j(z, H)- We will give the
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following two more examples when (SA) is not necessarily equivalent to (1.6) with 5 = « + 7 or
(8,7) = (0, ).

Example 4.2.5. Givena € H\{0}. Let f : Z — H be a function such that
f(n) = (=1)"a forall n € Z.

Note that

F0) =2f(1) + f(2) = 4a.

From a # 0 and H is uniquely divisible, we get 4a # 0. Thus f ¢ J(z my. Givenn,m € Z. If
m is odd, then we observe that 7 — m and . + m have the same parity whereas 1 and n + m have

the opposite. Therefore,
af(n—m)+(a+7)f(n)+7f(n+m)=0.
Otherwise, if T is even, then n — m, n, n + M all have the same parity. Hence
f(n—=m)—=2f(n)+ f(n+m)=0.

Therefore, f € AE%:Z}MW)\\ﬂZ,H)-

Example 4.2.6. Given a,b € H with a # b. Let f : Z — H be a function such that

a if niseven,
f(n) =

b if nisodd.

Note that

£(0) = 2F(1) + £(2) = 2a — 2b.

Since @ # b and H is uniquely divisible, we have 2a — 2b # 0. Thus [ ¢ Jz ). If m is odd,
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then we observe that n — m and n + m have the same parity. Therefore,
af(n—m)—af(n+m)=0.
Otherwise, if ™ is even, then n — m, n, 1 + m all have the same parity. Hence
f(n—m)—=2f(n)+ f(n+m)=0.

Thus f € AE%:?{’)_OC)\\Y(ZH).

4.3  General Solution on cyclic groups

In this section, we will give the general solution of the alternative Jensen functional equation (SA)
in chapter I on an infinite cyclic group and a finite cyclic group. There are mainly the applications of
Theorem 4.2.3.

First, we will find all solutions of an infinite cyclic group as in the following theorem.

Theorem 4.3.1. Let (G, ) be an infinite cyclic group with G = <g>

fe AEaG’ﬁI_’[’)Y) ifand only if f € \7(G’H) or one of the following properties must hold:

(1) B=a+and

(1.) f(g") = (=1)"a foralln € Z and for some a € H, or
(1.2) B =0and

(1.2.1) (f(g"))nez = (a,b) forsomea,b € H, or
(1.2.2) (f(g"))nez = (2a — b,a,b,a) forsomea,b € H, or

(1.3) B =2cand f(g") = (—1)"(& + nb) forall n € 7 and for some a,b € H.

2) (BfY) = (0, Oé) and (f(g”))nez; = (—a,ﬁ) for somea € H.

3) (B,7) = (o, ) and
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3.1) (f(g"))nez = (a,b,—a — b) forsomea,b € H, or
3.2) (f(9"))nez = (@, —2a,a) forsomea € H, or

3.3) (f(9"))nez = (—2a,a,...,a), a periodic sequence of an odd period p > 5, for

somea € H.

Proof. Assume that f € .A i 7 Iff ¢ J(c,m), then setting 7 = e and yy = g in Theorem 4.2.3,

we get that one of the properties (1), (2), and (3) must hold. The converse can be directly verified. []
Next, we will give the general solution of a finite cyclic group as in the following theorem.

Theorem 4.3.2. Let (G, -) be a finite cyclic group of order m > 2 with G = (g).

fe AEg’BH’Y ifand only if f € .7(@ ) or one of the following properties must hold:

1) f=a+7
(1.1) 2 | mand f(g") = (—=1)"a foralln € Z and for some a € H, or

(1.2) =0,

(1.2.1) 2 | mand (f(g"))nez = (a,b) forsomea,b € H, or

(1.2.2) 4 | mand (f(9"))nez = (2a — b,a,b,a) for some a,b € H, or
2 (8,7) = (2, ),

(3.1) 3| mand (f(g"))nez = (a,b,—a — b) forsomea,b € H, or

3.2) (f(g"))nez = (—2a,a,...,a), a periodic sequence of an odd period p > 5 with

p | m, for somea € H.

Proof. Given one of the above properties, we can directly verify that f € Agg’iﬂ Conversely,

assume that f € AEZ i[v \j G,H)- By setting x = e and y = g in Theorem 4.2.3, we have the
possibilities in Theorem 4.3.1.

However, all the above possibilities are not admissible. Some cases are redundant and some cases

are admissible with some additional conditions.
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(1) Assume that f = « + 7.

(1.1) Suppose that f(g™) = (—1)"a forall n € Z, for some @ € H and m is odd. We get

a= f(e) and f(g") = —a.

Since g™ = e, therefore a = 0 and so f € J(q, i), a contradiction. Thus 172 must be

cven.

(1.2) Suppose that (f(g"))nez = (a,b) for some a,b € H and m is odd. Without loss
of generality, we let f(e) = a. Then f(¢g™) = b. Since g™ = e, @ = b and thus

fe j(q H), 2 contradiction. Hence 1 must be even.

(1.3) Suppose that (f(g"))nez = (2a — b, a, b, a) for some a,b € H and 4 ¥ m. Then
there exists k € Z such that f(g*) = 2a — b. Since 4 ¥ m, f(g*™™) € {a,b}.

From m is the order of the group (G, we have gk = g]”m. Hence
2a —b=a or 2a — b= b,

which gives a = b. Thus f € J( m), a contradiction. Therefore, we must get 4 | m.

(1.4) Suppose that f(g") = (—1)"(a+nb) foralln € Z and forsome a,b € H. Since

a=(—1)"(a+mb) = (—1)*"(a + 2mb)

which implies that b = 0 and m is even.

(2) Assume that (3,7) = (0, ) and (f(9"))nez = (—a,a) forsome a € H. Thus there
exists k € Z such that

—a if n <k,
flg") =

a if n>k.

Hence f(g*™1) = —aand f(g**™ 1) = a. Since m is the order of the group G, we have
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g" 1 = "™ Thus we must geta = O andso f € J(G,m)» a contradiction. Therefore,

this case will not occur.
(3) Assume that (/3,7) = («, @).

(3.1) Suppose that (f(9"))nez = (a,b,—a —b) for some a,b € H and 3 ¥ m. Then

{0, m, 2m} is a complete residue modulo 3. Therefore

{f(e). f(g™), F(g"™)} = {a,b,—a — b}.

Since m is the order of G, thus g™ = ¢™ = e. Therefore, @ = b = —a — b, which

givesa = b = 0 and, in turn, f € J(q,#), a contradiction. Hence 3 | m.

(3.2) (f(¢™))nez = (@, —2a,a) forsome a € H. Then there exists k& € Z such that

. —2a ifn=k,
flg") =
a otherwise.
Hence f(g*) = —2a and f(g**™) = a. Since m is the order of the group G, we

have g = ¢*t™. Thus we must have @ = O and so f € Jic.m), a contradiction.
g g (G,H)

Therefore, this case does not occur.

(3.3) Suppose that (f(¢"))nez = (—2a,a,...,a), a periodic sequence of an odd period

p > 5, forsome @ € H and p { m. Thus there is k € 7Z such that

Since ( f (g”))neZ is periodic sequence of a period p with p { m, we must have
f(g**™) = a. But m is the order of G, thus g**™ = g¢*. Therefore, —2a = a,

which gives a = 0, and, in turn, f € j(G, H)» a contradiction. Hence p | m.

By all of the above considerations, we are done. []



REFERENCES
[1] T. Aoki, On the Stability of the linear transformation in Banach spaces. Journal of the Mathemat-
ical Society of Japan, 2 (1950), 64—66.

[2] D.G. Bourgin, Classes of transformations and bordering transformations, Bull. American Math-
ematical Society, 57 (1951), 223-237.

[3] A.L.Cauchy, Course d’ analyse de I’ Ecocle Polytechnique. . Analyse Algébrique, V. Paris, 1821.

[4] S. Czerwik, Functional Equations and Inequalities in Several Variables. World Scientific, Singa-
pore, 2002.

[5] GL. Forti, La soluzione generale dell’equazione funzionale

{cf(x + y) — af(x) - bf(y) — d}{f(l’—i—y) —f(l’) —f(y)} = 0. Matematiche (Cata-
nia) 34 (1979), 219-42.

[6] R. Ger, On an alternative functional equation. Aequationes Mathematicae 15 (1977), 145-162.

[7] G. Hamel, Einer basis aller Zahlen und die unstertigen L-sungen der Funktionalgleichung
flx+y) = f(z) + f(y). Mathematische Annalen 60 (1905), 459-472.

[8] E. Hewitt, H.S. Zukerman, Remarks on the Functional Equation f(z + y) = f(x) + f(y).
Mathematics Magazine 42 (1970), 121-123.

[9] D.H. Hyers, On the Stability of the Linear Functional Equations. Proceedings of the National
Academy of Sciences 27 (1941), 222-224.

[10] PL.Kannappan and M. Kuczma, On a functional equation related to the Cauchy equation. Annales
Polonici Mathematici 30 (1974), 49-55.

[11] M. Kuczma, On Some Alternative Functional Equations. Aequationes Mathematicae 2 (1978),
182-98.

[12] C.-T.Le, T.-H. Thai, Jensen’s functional equation on the symmetric group S,,. Aequationes Math-
ematicae 82 (2011), 269-276.

[13] P.Nakmahachalasint, An alternative Jensen’s functional equation on semigroups. ScienceAsia 38
(2012), 408-13.

[14] C.T. Ng, Jensen’s Functional Equation on Groups. dequationes Mathematicae 39 (1990), 85-99.

[15] C.T.Ng, A Pexider—Jensen functional equation on groups. Aequationes Mathematicae 70 (2005),
131-153.

[16] J.C. Parnami and H.L. Vasudeva, On Jensen’s Functional Equation. Aequationes Mathematicae
43 (1992), 211-8.



[17]

[18]

[19]

[20]

(21]

54

Th.M. Rassias, On the stability of the linear mapping in Banach spaces. Proceedings of the Amer-
ican Mathematical Society 72 (2) (1978), 297-300.

C. Srisawat, N. Kitisin, P. Nakmahachalasint, An alternative functional equation of Jensen type
on groups. Sciencedsia 41 (2015), 280288

H. Stetker, On Jensen’s functional equation on groups. Aequationes Mathematicae 66 (2003),
100-118.

J. Tipyan, C. Srisawat, P. Udomkavanich and P. Nakmahachalasint, The Generalized Stability
of an n-Dimensional Jensen Type Functional Equation. Thai Journal of Mathematics 12 (2014),
265-274

S.M. Ulam, Problems in Modern Mathematics, Chapter 6, John Wiley & Sons. New York, NY,
USA, 1964.



Name
Date of Birth
Place of Birth

Education

Scholarship

Publication

55

VITA

Acting 2, Lt. Choodech Srisawat

3 April 1986

Khon Kaen, Thailand

e B.Sc. in Mathematics (Second Class Honours),
Department of Mathematics, Faculty of Science,
Khon Kaen University, 2009

e M.Sc. in Applied Mathematics and Computational Science,
Department of Mathematics and Computer Science, Faculty of Science,
Chulalongkorn University, 2011

e Science Achievement Scholarship of Thailand

e Choodech Srisawat and Paisan Nakmahachalasint, On some extensions
of Haruki’s lemma. Proceedings of the 16th Annual Meeting in Mathematics,
(2011), 209-214

e Jenjira Tipyan, Choodech Srisawat, Patanee Udomkavanich and Paisan
Nakmahachalasint, The Generalized Stability of an n-Dimensional
Jensen Type Functional Equation. Thai Journal of Mathematics 12 (2014),
265-274

e Choodech Srisawat, Nataphan Kitisin, and Paisan Nakmahachalasint,

An Alternative Functional Equation of Jensen Type on Groups. ScienceAsia 41

(2015), 280288

e Choodech Srisawat, Nataphan Kitisin, and Paisan Nakmahachalasint,

On an alternative functional equation related to the Jensen’s functional equation.

Asian-European Journal of Mathematics, submitted



	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	1.1 Functional Equations
	1.2 Cauchy and Jensen Functional Equation
	1.3 Alternative Functional Equations
	1.4 Proposed Problem
	1.5 Notations

	CHAPTER II THE n-DIMENSIONAL FUNCTIONAL EQUATION OF JENSEN TYPE
	2.1 GeneralSolutiononann-DimensionalFunctionalEquationofJensenType
	2.2 Generalized Stability on an n-Dimensional Functional Equation of JensenType

	CHAPTER III THE WEAK FORM OF ALTERNATIVE JENSEN FUNCTIONALEQUATIONS
	CHAPTER IV THE STRONG FORM OF ALTERNATIVE JENSEN FUNCTIONALEQUATIONS
	REFERENCES
	VITA



