2548
ISBN 974-17-6750-1



INCOMPLETE TIME-SERIES DATA FORECASTING BASED ON CLUSTERING FILL-IN TECHNIQUE

AND ENSEMBLING NEURAL NETWORK MODEL

Mrs. Sirapat Chiewchanwattana

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Science
Department of Mathematics
Faculty of Science
Chulalongkorn University
Academic year 2005

ISBN 974-17-6750-1

481901



Thesis Title

By
Field of Stuay
Thesis Advisor

INCOMPLETE TIME-SERIES DATA FORECASTING BASED ON
CLUSTERING FILLAN TECHNIQUE AND ENSEMBLING NEURAL
NETWORK MODEL

Mrs. Sirapat Chiewchanwattana

Computer Science

Professor Chidchanok Lursinsap, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment

of the Requirements for the Doctor’s Degree

THESIS COMMITTEE

K Apury Dean of the Faculty of Science

(Professor Piamsak Menasveta, Ph.D.)

................... Why'C e ChRITMAN
(Associate Professor Jack Asavanant, Ph.D.)
.................................. /-..y%‘c + 17 s THESIS AdVISOT

(Professor Chidchanok Lursinsap, Ph.D.)

.................................................................... Member
(Associate Professor Boonserm Kijsirikul, Ph.D.)

kﬁh‘“‘ e Member
(Assistant Professor Rajalida Lipikorn, Ph.D.)

........... Member
(Chularat Tanprasert, Ph.D.)



(INCOMPLETE TIME-SERIES DATA FORECASTING BASED ON CLUSTERING FILL-
INTECHNIQUE AND ENSEMBLING NEURAL NETWORK MODEL). .
, 133 . ISBN 974-17-6750-1.

EM Spline
! MLP
Kalman Filtering
FI-GEM
FIR
genetic algorithm

RMD-FSE

WDC ! EM, M, OCSFCM  Spline

AR TANRR. ..ol RONS s

o o el ‘
ansdataatangemlinmn.. b Nz

2548



## 4373850523  :MAJOR COMPUTER SCIENCE

KEY WORD:  INCOMPLETE TIME-SERIES PREDICTION /MISSING DATA /CLUSTERING

FILL-IN. TECHNIOUE / ENSEMBLING NEURAL NETWORK.
SIRAPAT ~ CHIEWCHANWATTANA:  INCOMPLETE ~ TIME-SERIES ~ DATA
FORECASTING BASED ON CLUSTERING FILL-IN TECHNIQUE AND ENSEMBLING
NEURAL NETWORK MODEL. THESIS ADVISOR: PROF. CHIDCHANOK
LURSINSAP, Ph.D., 133 pp. ISBN 974-17-6750-1.

This dissertation demonstrates the problem of incomplete time-series prediction by

modelling the forecasting of several natural and social phenomena. The modeling consists
of two main steps. The first step is to estimate the collected incomplete data, which are
considered as missing data or missing values. The second step is to predict new data
based on the nature of the data obtained from the first step. Our solution is to develop a
new neural network model for forecasting incomplete time-series data and improving the
accuracy of prediction. Two neural network models are proposed. First, various versions of
EM-based algorithm and smoothing spline interpolation are used to preprocess the
incomplete data sets. The individual networks are trained by supervised multilayer
perceptron(MLP) with extended Kalman filtering. The ensemble construction is used for the
combination of the individual networks. We name this type of network Fill-In - Generalized
Ensemble Method (FI-GEM) networks. Second, each individual network uses a Finite
Impulse Response model to perform the prediction. The outputs of all individual neural
networks are combined by the genetic algorithm-based selective neural network ensemble
method (GASEN). We denote this network as a reconstructed missing data-finite impulse
response selective ensemble (RMD-FSE) network. Moreover, we proposed a new fill-in
technique that is improved for estimating missing values hased on clustering technique for
characterizing the pattern of incomplete time-series data. The main idea is the time-series
data are divided into separate subsequences of different sizes and, therefore, each
subsequence can be viewed as a window. The imputation of missing samples is achieved
by finding a complete subsequence similar to the missing sample subsequence and
imputing the missing samples from this complete subsequence.
The imputation accuracy of the proposed algorithm, namely varied window clustering
(WDC) algorithm is comparable or better than the others traditional methods such as: the
spline interpolation, the multiple imputation (MI), and the optimal completion strategy fuzzy
c-means algorithm (OCSFCM) in case of the non-stationary time-series data.
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