
C H A P T E R  I

I N T R O D U C T I O N

An important application of neural networks is in time-series data prediction. Its accu­

racy depends upon the choice of an appropriate network and on the completeness of the 

collected data. In practice, those missing data occur because of malfunctioned equip­

ment, human errors, or natural disasters. In this research, we focus on the technique of 

forecasting a time-series based on the data with missing values. The modeling consists 

of two main steps. The first step is to estimate the collected incomplete data, which 

are considered as m i s s i n g  d a t a  or m i s s i n g  v a l u e s .  The second step is to predict new 

data based on the statistical nature of the data obtained from the first step. The prob­

lem of estimating these missing data has recently become an extensive research topic. 

Managing incomplete data becomes an extensive research topic nowadays. Generally, 

the simple method is to ignore the missing data and to discard those incomplete cases 

from the data set. This approach can cause a serious problem for time-series predic­

tion. Typically, in time-series prediction, the currently predicted values of a system 

depends on the historical time data of the system and can be computed by a recur­

rence function x t  =  f ( x t - i , x t - 2,..., x t - k ) ,  where A: is a constant denoting the number 

of previously related values. Most of the current solutions, namely maximum likelihood 

(ML)algorithms [1], expectation and maximization (EM) algorithms [1], [2] and multiple 

imputation (MI) method [3] are based on the concept of statistical probabilistic estima­

tion. For nonlinear time-series data, k-step prediction stochastic simulation method [4]
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generated the sample missing values using the distribution. For time-series analysis ap­

proach, the works by [5], [6] estimated the missing values based on ARMA models. The 

report of some applications [7] show the better performances of neural network models 

compared to the ARMA models.

For most neural approaches, the incomplete data problem is viewed as the classifica­

tion problem, and is solved by supervised neural networks. Since training any supervised 

neural network requires both input and target data, the missing data can occur in three 

different aspects. The first aspect is the missing input data [8]. The second aspect is 

the missing target data [9]. Finally, the third aspect is both missing input and target 

data [10]. An example of Miller and Uver [11] introduced an RBF classifier to esti­

mate the missing data. Zoubin and Jordan [12] used the supervised learning and EM 

algorithm to improve the missing data estimation. Recently, pattern modeling and pat­

tern characterizing have been studied in several fields such as data mining and machine 

learning. Clustering technique is applied for estimating missing value. Hathaway and 

Bezdek [13] applied the fuzzy C-means clustering to estimate the missing data of real 

s-dimensional data by partitioning the data sets into fuzzy clusters and estimating their 

cluster centers. Timm, Doring and Kruse [14] developed an extension of the Gath and 

Geva algorithm for assigning incomplete data points to clusters.

1.1 Motivation
The forecasting of such natural and social phenomena as hydrological cycles and climate 

data are very important. Data collected in practice can often be incomplete in that 

some data points are missing. In time-series prediction, the currently predicted value 

of a system depends on the historical time data of the system and can be modeled 

as follows: Let x t  be the value of a system at time t .  The value of x t is given by
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X t  =  f ( x t - i , X t - 2, . ■ ■ , x t - k ) ,  where k  previous samples are used in the modeling. If a 

value x t - j ,  1 <  j  <  k ,  is missing, then the value of x t  may not be correctly computed by 

the time-series function. In this case, the estimated value of X t ,  denoted by X t ,  must be 

computed from the existing x t - j ,  1 < j  <  k .  We can model x t  as x t  + e. The problem 

is to determine the technique that produces X t  such that ( x t  —  X t ) 2 is minimized. Using 

a fill-in approach, those missing X t - j  must be estimated or filled-in first and then the 

functional approximation of these complete data are performed.

To achieve the best solution for this fill-in problem, several fill-in techniques must be 

considered. Correspondingly, an individual multilayer feedforward neural network , each 

of which handles one input stream, is considered. The set of complete data from each 

individual fill-in method is used to train a feedforward neural network to predict future 

values. The ensemble construction is used to combine the outputs of the individual 

networks to produce the best prediction output. We should show that the prediction 

ac- curacy can be significantly improved through ensembling a number of individual 

neural networks. Moreover, we propose a new fill-in technique that is improved for 

estimating missing values based on clustering technique for characterizing the pattern 

of incom- plete time-series data. The variation of time-series can be characterized as 

time-series pattern. The assumption is from the observation that nature phenomenon 

can repeat itself several times with similar characteristics. Hence, some missing data 

in a phenomenon can be imputed by searching and comparing with some other similar 

phenomena. This approach is appropriate for imputing the missing time-series data.

1 .2  O b j e c t i v e s

In this dissertation, our objectives are as follows:

1. To propose the new fill-in technique based on the characteristics of the data;
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2. To develop a neural network model for forecasting incomplete time-series data.

1 .3  A r e a  o f  i n t e r e s t

The scope of our work are as follows:

1. This research focuses on periodic time-series data.

2. A univariate time-series X is an ordered sequence of observations at equally spaced 

time intervals.

X  =  { x t , t  =  l , . . . , N } ,  (1.1)

where t  is a time step, N  is the number of the observed data. Some time steps of data 

are missing.

3. We consider both of the synthetic time-series data and various real world time- 

series data as follows:

3.1. Mackey-Glass chaotic time-series

This data set is available from the Internet [15] (see Figure 5.1(a)). Each data point 

can be mathematically generated with a constant variance (Appendix A). We can predict 

x ( t  + 6) from the past values of this time series, that is, x ( t  — 18),rr(t — 12) , x ( t  — 6), 

and x ( t ) .  This data set is selected because this series has almost periodical behavior. 

The period of this series is 24 time steps. Its signal is almost stationary. This series 

has a constant location and variance. There are a total of 1,200 observations in our 

experimentation.

3.2. The annual sunspots from A.D. 1700 to A.D. 1994

This series is obtained from the Internet [16]. and represents the number of sunspots 

which has been recorded from the surface of the รนท (see Figure 5.1(b)). The period of 

this series is 12 years. This univariate time-series data is selected because it is a real 

world case study and its signal also shows periodical behavior. Its variances are not
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stable in each period. Its signal is more difficult than Mackey-Glass chaotic time series. 

There are a total of 1,070 observations in our experimentation.

3.3 The daily gauge height at Ban Luang gauging station, Mae Tun stream, Ping 

river, Thailand

This univariate time-series data is made available to us by the Royal Irrigation De­

partment of Thailand. The gauge height data is measured at every 3 hours in a day.

In our experiment, we prepared this data set to the daily gauge height data set. It is 

selected because it is less structured than either the Mackey-Glass chaotic time series or 

the monthly sunspots data (see Figure 5.1(c)). There are some high peaks at some time 

steps and there are some parts of data decrease gradually. There are a total of 2,000 

observations in our experimentation.

3.4. The daily air temperature at Nakhon Ratchasima province, Thailand 

This real-world data set is provided to US by the Meteorological Department of Thai­

land. It presents the most difficult problem in our case studies because of the sharp rises 

and falls in the series (see Figure 5.1(d)). We used a total of 2,000 observations in our 

experiments.

4. A feedforward neural network structure is used for prediction of time-series data.

5. A clustering technique is used for characterizing the repeated patterns of a time- 

series data.

1 .4  P e r f o r m a n c e  M e a s u r e

In our dissertation, we used two kinds of performance indexes. First, the prediction 

performance indexes are used for evaluating the prediction accuracy of incomplete time- 

series data. Second, the estimating missing value is evaluated by the imputation perfor­

mance index.
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1 .4 .1  P r e d i c t i o n  P e r f o r m a n c e  I n d e x

The prediction performance of a network is evaluated by measuring the difference be­

tween the mean square error of the test networks and the reference network. We choose 

a network, which is trained by the complete training set with no missing data as the ref­

erence network. Because the occurrence of data sample dropouts is stochastic in nature, 

we make several runs for each fill-in method. The performance index is defined as

where E f  denotes the mean square error of the tested network, E j i N  denotes the mean 

square error of the reference network, and R  denotes the number of runs per fill-in 

method. The parameter R  is twenty-five in our experiments. The interpretation of P d  is 

that if the prediction performance of the reference network is worse than that of the test 

network, then P d  is less than zero, and the lower value shows the better performance. 

If the prediction performance of the reference network is better than that of the test 

network, then P d  is greater than zero. Otherwise P d  is zero.

In case we focus on the average performance index, then, the performance index is 

defined as

where L  denotes the number of different percentage of missing data, and E F F  denotes 

the mean square error of the proposed network. The meaning of P d is that if the average 

prediction performance of the proposed network is worse than that of an individual 

network, then P 'd is less than zero. If the average of prediction performance of proposed 

network is better than that of the individual network, then P d  is greater than zero. 

Otherwise, P 'd  is zero.
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1 .4 .2  I m p u t a t i o n  P e r f o r m a n c e  I n d e x

We measure the error of estimating missing values between the actual values X  and the 

prediction values X  by using the mean squared error (MSE)

m s e = b T m ^ E < 3:« - $ « )2 <1 4 )
where M  is the the number of missing value, and R  denotes the number of runs per 

fill-in method. We set R  to 30 in our experiments to average out variations due to the 

stochastic nature of choosing which values to be considered missing. The lower MSE 

shows the better prediction of missing value.

Another performance measure is Pearson’s correlation (CORR) between the actual 

values and the estimated values:
/ 7y A c tu a l  v  AT P r  e d ic t  \
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and

A jP r e d i c t
i y i j

1
R  X M £ X > . (1.7)

i = 1  j = 1

are the normalized zero mean of the actual values and the estimated values. The co­

efficient CORR measures the degree of similarity between the actual values and the 

estimated values.

The average imputation performance index P i m p  by the varied window clustering 

(WDC) algorithm are evaluated by measuring the difference between the MSE of the 

WDC algorithm and that of a reference method to which we are comparing the WDC. 

This performance index is adopted from our previous work [17] and is defined as

f t ™p = -  I > r c )  (1-8)
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w h ere L  d en o tes  th e  nu m ber o f d ifferent p ercen ta g e  o f m iss in g  d a ta , E ^ D C  d en o tes  th e  

m ean  sq u are error o f  th e  W D C  a lg o r ith m , E ^ M  d en o tes  th e  m ean  sq u are  error o f th e  

reference m eth o d . T h e  in terp reta tio n  o f  P i m p  is su ch  th a t  if  th e  im p u ta tio n  p erform an ce  

in d ex  o f  th e  W D C  a lgo r ith m  is w orse th a n  th a t  o f  th e  reference m eth o d , th en  P i m p  is 

less th a n  zero. If th e  average im p u ta tio n  p erform an ce o f  th e  W D C  a lg o r ith m  is b e tter  

th a n  th a t  o f  th e  reference m eth o d , th e n  P i m p  is greater  th a n  zero. O th erw ise  P i m p  is 

zero.

1 .5  C o n t r i b u t i o n s  o f  t h e  D i s s e r t a t i o n

In th is  d isser ta tio n  w e in s ta n tia te  th e  so lu tio n s  o f  th e  ab ove o b je c tiv e s  in  a  n ovel m eth o d  

for a fill-in  tech n iq u e  and d eve lop  th e  n ew  m o d e l o f  th e  neural n etw ork  o f  in co m p lete  

t im e-ser ies  p red iction .

T h e  p rop o sed  fill-in  tech n iq u e  h as severa l in terestin g  features:

•  th is  co n cep t is ea sy  to  im p lem en t;

•  w e n eed  n o t to  require th e  d is tr ib u tio n  o f tim e-ser ies  d ata; an d

•  it  can  b e  u sed  w ith  n o n -sta t io n a ry  tim e-ser ies  d ata .

A n d  w e p rop o sed  a n ew  m o d e l o f  th e  neu ral n etw ork  for fo reca stin g  in co m p le te  tim e-  

series d a ta . F u rth erm ore, th e  p rop o sed  n eu ra l n etw ork  m o d e l is a  so lu tio n  for im p rovin g  

th e  p red ic tio n  accuracy.

1 .6  D i s s e r t a t i o n  O r g a n i z a t i o n

T h e  rest o f  th e  d isser ta tio n  is org an ized  in to  four a d d itio n a l ch ap ters. In C h a p ter  2, 

w e rev iew  th e  m a n a g in g  in co m p le te  d a ta  an d  tim e-ser ies  p red iction . In C h a p ter  3, w e  

p resen t b o th  o f F I-G E M  n etw ork  an d  R M D -F S E  n etw ork  for in co m p le te  tim e-ser ies
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p red ic tion . In C h a p ter  4 , w e p resen t a  n ew  im p u ta tio n  o f m iss in g  va lu e , n a m ely  varied  

w in d o w  c lu ster in g  (W D C ) a lg o r ith m  an d  th e  ex p er im en ta l resu lts . In C h ap ter 5, w e 

d iscu ss  an d  co n c lu d e  th e  d isserta tio n .
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