CHAPTER Il

APPLICATIONS OF INCOMPLETE TIME-SERIES
PREDICTION

In this chapter, we firstly describe the concept of incomplete time-series prediction.
Then, we describe the construction of both FI-GEM and RMD-FSE networks for im-
proving the prediction accuracy of incomplete time-series prediction.

In this work, we focus on periodic time-series data. The periodical time-series data
may be seasonal or cyclical. The data can be modelled as follows: Let xt be the value
of a system at time . The value of xt is given by xt = [ (x*_Ixt_2,... xt-k), where
k previous samples are used in the modelling. We denoted « to be the cycle of the
time-series data. The training data are partitioned and arranged in a time-series form
with a window size of k. Each set of data is, then, stacked to form an input matrix A

as shown in equation (3.1).

X\ X2 Xk
X2 X3 Xk+1

Training ‘3 ‘ Ykt 2 (3’1)
%N-k+1 XN-k+2 -1- XN

Suppose xt is a missing datum. Obviously, the number of xt can appear diagonally

from 1to Atimes. Let the number of appearances of xt in o be k.
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For example, there is a periodical time-series data, whose cycle is four.

pat= 05 03 1 06 07 02 11 05 04 04 12 04 (3.2)

We suppose that the data is missing at time ith. The index ith are fourth and sixth.
Symbol ”?”" denote the missing data. The inputs are partitioned to the training set as

follows:
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A training set and a target set are incomplete in equation (3.3) and (3.4). In general,
when we trained a neural network, the input and target should be completed. Thus,

filling in the estimating missing value is needed, we should not ignore those missing.
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Each xt is modeled as xt + e When we considered xt + ¢ which is like the noisy
data problem. The problem is to determine the technique that produces xt such that
(xt —xt)2 is minimized. Hence, we should consider a fill-in technique reducing the noise
effect of each xt.

We have proposed the applications of time-series prediction as follows

3.1 FI-GEM Network

We consider several standard techniques for filling in the missing data in our experiments.
We used cubic smoothing spline interpolation and the imputation based on EM algorithm
[3] inour preliminary solution. These techniques are applied to the same data set with
some missing data. We have to train the individual networks by supervised neural
networks multilayer perceptron(MLP) with extended Kalman filtering [25] by Singhal.
The ensemble construction [24] Perrone is used for the combination of the individual
networks. We name this type of network Fill-in - Generalized Ensemble Method (FI-

6 Em)networks. The structure of FI-GEM network is shown in Figure 3.1.
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Figure 3.1: FI-GEM Network Structure
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A. Training Neural Network : Let or he the output signal of jth neuron in the
gth layer induced by the presentation of an input pattern t, xt = (xtj1, xti2, e+,
and wjj the connection weight coming from the it neuron in the (¢ —1) layer to the
jth neuron in the gth layer. Assume that x is an augmented vector, i.e. Xq — 1. Then

0j = Xj, 021= ginet™), and

et = weror - ) (3'5)

when q¢_Lis the number of nodes in the (¢ — 1) layer. The activation functions used
in each neuron of the hidden layer and of the output layer are a sigmoidal function

g(a) = L., . and an identity function g(a) = a, respectively.

B. Learning Algorithm : Suppose there are m neurons in the output layer, 1 input
patterns, and q layers. Let "~ = [ 7] 2] ... 71j17 be the weight vector of neuron
jin the qth layer, aset of all wj, and yt = [y\,t 22f -.. VM,t]T the target of input
pattern xt. For a given training set {(x*yx), (x2,y2), ..., (xr,yx)}, In the preliminary
solution of this work, we use the extended Kalman filtering (EKF) algorithm [25] to

train the network by minimizing the sum-squared error.

Ew)=2 34)
The training process will stop if the mean square error (MSE) is less than or equal to

the specific tolerance.

Mmse = i#(W) (3.7)

¢. Neural Network Prediction A combination of many neural networks of the

same type significantly shows the improvement of the prediction performance. Ensemble
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networks consist of independently trained neural networks which are combined as a single
master network. The network is used as the second estimating step. The input to each

sub-network is the output from each missing data fill-in technique.

32 RMD-FSE Network

For this network, we still present an approach that uses several EM-based algorithms and
a smoothing spline interpolation to fill in the missing data values like FI-GEM network.
Each individual network, which is unlike FI-GEM network, is one that uses a Finite
Impulse Response (FIR) model [26] to perform the prediction. We denote this approach
as @ reconstructed missing data-finite impulse response selective ensemble (RMD-FSE)
network. The RMD-FSE network has two parts, the individual FIR networks and the

master network used to integrate the outputs.

A. Individual Networks : Each individual network is a layer-by-layer fully con-
nected feed-forward network modeled with tapped-delayed synapses. Suppose the linking

synapse bhetween node i of layer 1 and node j of layer 1 + 1 with a delay of 7i is
K'i(o) ai(l) *.. Ji(Ti)T,

and the input at time  with T;-delay is (x\{ ) xA\{ = 1) ... xA{ —Ti)]T. The FIR filter
forms a weighted sum of past values of its input. The neuron j of layer 1 + 1 receives

the filtered inputs Sjtl{ ) as

44V) = + - 1)
R TS ) 59)

and then passes §+l( ) through a sigmoidal nonlinear function / as

*m) =] (4H(M) (3.9)
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Neurons are arranged in layers to form a network in which all connections are made
with synaptic filters. During the training of the network, the value of each weight is
adjusted in order to minimize the specified squared error e(n) by using the temporal

backpropagation-type algorithm [26].

B. Master Network . The outputs of all individual neural networks are combined by
the genetic algorithm-based selective neural network ensemble method (GASEN) [27]:

Nema-fse
xrmd-fsefp) = 1 aixXh (),

where Nrmd-fse IS the number of individual networks, xb)( ) is the output value of

the ith network, and cq is the weighting parameter for the output from the '/til network.

The values of cq must satisfy the constraints of 0 < ¢cq < Land JT c¢q = 1. Choosing

the actual values of cq is an optimization problem because it cannot be known a priori

which network will produce a more reliable estimate. Let a be the vector such that cqg

is its ith element. The parameter vector a can be found by minimizing
Eo0 = arCa

where ¢ is the correlation matrix of the errors from the network predictors  and ad-d.

A genetic algorithm is used to search for a solution of € a by defining h(a) = A- as
the fitness function which is to be maximized. The components of a candidate solution
a may violate the constraints during its evolution. Therefore its elements cq should be

normalized to ai/v 2j a] at each generation. The networks which are associated with Qj

less than a threshold value A, which is zero, will be excluded.
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3.3 Extended RMD-FSE Network

We extended our work [21] to extended RMD-FSE network [22]. Six fill-in methods,
viz. cubic smoothing spline interpolation, k-segment principal curves, Expectation max-
imization (EM), regularized EM, average EM, and average regularized EM, are simul-
taneously employed in a first step for reconstructing the missing values of time-series
data. A set of complete data from each individual fill-in method is used to train a FIR
neural network to predict the time series like [21]. The outputs from individual networks
are combined by a selective ensemble method in the second step. Experimental results
show that the prediction made by the proposed method is more accurate than those
predicted by neural networks without a fill-in process or by a single fill-in process. The
improvement of performance of master network is explained as follows:

A. Master Network Suppose we use an ensemble of v networks to predict a sample
value frm 0 -Fse*)- The overall ensemble output can be any function of the individual
network outputs. The simplest such function is to combine the individual outputs as a

weighted sum:

N

%rmd—fsefi)= . ajxr( ), (3.10)
l=1

where () is the output value of the zth network, with an associated weighting pa-
rameter a1. Intuitively, the weights should satisfy 1Qj = 1 because each network
produces a prediction of the same sample x ( ). Additionally, since the predicted values
should have the same sign as the sample, it is reasonable to expect 0 < oii < 1, for all i.

The weight should be set so that if the jth network is more reliable, its associated
weight ctj should be larger. Choosing the actual values of Qj is an optimization problem
based on the observed mean square error of individual network. Let ¢ is the correlation

matrix of the errors from the network predictors and oh-b; the (itj)th element of ¢
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is given by

ANziriE ed’ eM (3-11)

| * feer

where r is the training set and e”\k) is the error of Network j produced in response to
the fcth input of the training set. The diagonal terms of ¢ are the mean square errors
of the individual networks while each off-diagonal term is a pairwise correlation of the
corresponding networks. In the following we write Cii as .. Since the ensemble output
should have a better performance than the individual networks, a criteria for finding a

Is to minimize the ensemble output mean square error:
Ea=aTCa, (3.12)

Some insight about the choice of the weights and the output mean square error can be
gained by considering the simple case when v = 2. The solution for a is to be found by
minimizing

cicn Qil

E2= Qi O (3.13)
C2 §2 a2

Since a2 — 1 —ai, we can differentiate € 2 with respect to Qi to solve for on as :

“1= . . ¢p2cl? (314
It follows that
Cl - ci2
3.15
- ddd- o 3.9
W ith this set of weights, the ensemble output has a mean square error of
e Tt o + 22i22C02
(3.16)

c)52~(c1}2

— cl+ 4-2cl2
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This set of weight illustrates that when Network 1 is realiable, i.e., ¢\ < c%, its output
is weighted more heavily since an > a2. In fact, if Network 1 makes no mistakes during
training, i.e., ¢\ = 0, the weight for the other network a2 is set to zero so that the output
of Network 1 is taken as the ensemble output. When the correlation of the errors by
the two networks are low, i.e., when they make mistakes at different input patterns, the

ensemble mean square error simpliflifies to

Suppose Network 1 has a better performance so that ¢\ = pc\, where p > L The

ensemble mean square error is then

(319)

p—F—1

which is less than the smaller of the mean square errors of the two individual net-
works. In this case, we can see that the improvement, in the mean square sense, of
having an ensemble network can be as high as a factor of 2, corresponding to the case
of p = 1, or when the two networks make equal amounts of mistakes in an uncorrelated
fashion.

Consider another scenario. Suppose the two networks make about the same amount
of mistakes in the training set and that the mistakes are of approximately the same
order. Further, suppose that their mistakes overlap, i.e., they make the same mistakes
for a subset of the training set. Tn this case, ¢\ = ¢\ and ci2 = pci, where p is the
amount of overlap of their mistakes, so that 0 < p < 1. The mean square error of the

out put is then
(3.19)

When the two networks makes the same set of mistakes, p = 1, and the output mean

square error is the same as that of each individual network. When the two networks
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make different mistakes, j3 approaches 0 so that the ensemble output is improved in the
mean square sense by a factor approaching 2.

In the general case when k > 2, a genetic algorithm-based selective neural network
ensemble method (GASEN) [27] can be used. A genetic algorithm is used to search
for a solution of Ea by defining h(a) = I/Ea as the fitness function which is to be
maximized. The components of a candidate solution a may violate the constraints
during its evolution, therefore its elements Qj should be normalized to oLijY2j«; at each
generation.

There are different strategies in using the weights found by the genetic algorithm.
In GASEN [27], the weight are used to eliminate networks rather than to be used in a
weighted average. We can exclude those networks which are associated worth weights
less than a threshold value A > 0; i.e., exclude Network i if ai < A After those
networks are discarded, the outputs of the remaining networks are averaged to form the
ensemble output. This is justified by observing that after eliminating those networks
that are particularly unreliable, the remaining individual networks have approximately
equal performance.

In our work, we set Ato zero and use the weights found by the genetic algorithm to
form a weighted average as the ensemble output. Empirically we found this method to
be more desirable than using a simple average with or without discarding networks with

particularly unrealiable outputs.

3.4 Results

Our preliminary results are published as below:
1. . Chiewchanwattana, and c. Lursinsap: “FI-GEM Network for Incomplete

Time-Series Prediction,” proceeding International Joint Conference on Neural Network,
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(1JCNN'02) IEEE World Congress on Computational Intelligence, Honolulu, USA, May

12-17, 2002, vol. 2, pp. 1757-1762.

2. . Chiewchanwattana, ¢. Lursinsap and ¢. H. Chu: “Time-Series Data Pre-
diction Based on Reconstruction of Missing Samples and Selective Ensembling of FIR
Neural Networks,” Proceedings of The 9th International Conference on Neural Informa-
tion Processing (1C O NIP%02), Singapore, November 18-22, 2002, p. 2152 -2156

3. . Chiewchanwattana, ¢. Lursinsap and ¢. H. Chu:“A Reconstructed Missing
Data-Finite Impulse Response Selective Ensemble (RMD-FSE) Network,” A chapter in
Neural Information Processing System : Research and Development (Series: Studies in
Fuzziness and Soft Computing), vol. 152, Springer, Rajapakse, Jagath c.; Wang, Lipo
(Eds.) 2004, ISBN:3-540-21123-3, p.113-127.

The first and the second problems in section 2, were used to study in our publication
1 [17]. For publication 2 [21], we studied the the second and the third problems. Fur-
thermore, we extended [21] to publication 3 [22]. Our preliminary result are described

as follow:

3.4.1 Results of FI-GEM network [17]

Our solution is to develop a new neural network model for forcasting incomplete time-
series data and improve the accuracy of prediction. Mackey-Glass chaotic time-series
data and the annual sunspots are used to be the two case studies in our preliminary ex-
periment. Various versions of EM-based algorithm and smoothing spline interpolation
are used to preprocessing the incomplete data sets. We have to trained the individ-
ual networks by supervised neural networks multilayer perceptron(MLP) with extended

Kalman filtering [25] by Singhal. The ensemble construction [24]Perrone is used for the
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combination of the individual networks. We name this type of network rif-in - General-
ized Ensemble Method (FI-6 EM)networks. The experimental results are summarized as
follows. The missing at random (MAR) incomplete time-series are created by randomly
sampling the missing time steps from the training set of the both data sets. The levels
of missing values considered in our experiments are set to 2.5%, 5%, 7.5 10%, 12.5%,
and 15%.

The performance of prediction by an MLP are evaluated by measuring the difference
between the MSE of the desired networks and the reference networks explained in [17].

For Mackey-Glass chaotic time-series data, the input vector for predicting xt is
[Xt 6 Xi iz Xt-19 £i_24]T. The prediction performances are shown in Figure 3.2(a).
We found that some individual networks yield pd less than zero at some level of miss-
ing but they yield pd greater than zero at another level of missing. In Figure 3.2(a),
FI-GEM networks yield pd less than zero for every level of missing. This shows that
FI-GEM networks give the better prediction performance than the reference networks.
Furthermore, they yield the lowest pd also. pa>of six levels of missing: 2.5%, 5%, 7.5%
10%, 12.5%, and 15%, are shown in Table I. The experimental results show that all p dr
values are greater than zero. We can notice that the individual networks give the worse
prediction performance than FI-GEM networks in terms of both mean square error and
consistency.

For the sunspots data, the input vector for predicting Xt is WE-\ xt2 eee xenyTl
The prediction performance are shown in Figure 3.2(b). When we consider the results,
we found some individual networks yield pd less than zero at 7.5% and 10% missing
but FI-GEM networks yield pd less than zero for every level of missing. Furthermore,
FI-GEM networks yield the lowest pd- pd1 of six levels of missing: 2.5%, 5%, 7.5%
10%, 12.5%, and 15%, are shown in Table 3.1. All pdf values are also greater than zero.

Hence, FI-GEM networks exhibit better performance than the individual neworks.
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We have proposed FI-GEM network, which is the incorporation of fill-in techniques
and ensemble network for predicting the time-series data in the future. The performance
index which measures the accuracy of prediction for the desired network with respect
to the individual network using the complete data as the training set is evaluated.
Our experiments signify that FI-GEM outperforms each individual network when tested
with two most referred benchmarks, Mackey-Glass chaotic time-series and the annual

sunspots.

3.4.2 Results of RMD-FSE network [21]

For RMD-FSE network, the ensemble network therefore consists of independently trained
neural networks, each drawing an input stream from a fill-in method, which are then
combined as a single master network. Each individual network is one that uses a Finite
Impulse Response model [26] to perform the prediction. The outputs of all individual
neural networks are combined by the genetic algorithm-based selective neural network
ensemble method (GASEN) [27]: We denote this approach as a reconstructed missing
data-finite impulse response selective ensemble (RMD-FSE) network.

Two different data sets are used in our experiment. The first set is the sunspot data
and the second set is the daily gauge height. The experimental results of these two data
sets are concluded as follows.

For gauge hight data, we choose the first 2,000 days to be the training set and the
rest 495 days to be the test set. For sunspots data, we choose the first 245 days to be the
training set and the rest 50 years to be the test set. We create the missing at random
(MAR) and repeated the mumber of runs like [17].

The performance of prediction by FIR are evaluated by measuring the difference be-

tween the MSE of the desired networks and the reference networks. Those are explained
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in [17].

For the sunspots data, the weights assigned to each individual network of the ensem-
ble network are shown in Figure 3.3(a). We can see from Figure 3.3(a) that the weights
associated with some individual networks at 12.5% and 15% missing input were set to
zero by the genetic algorithm. The output of those networks were therefore essentially
discarded from the ensembling. The prediction performance is shown in Figure 3.4(a).
When we consider the results, we found some individual networks yield pd less than zero
at 2.5%, 5%, 7.5% and 12.5% missing data but RMD-FSE networks yield pd less than
zero for every percentage of missing data. Furthermore, RMD-FSE networks yield the
lowest pd and, consequently, give the better prediction performance than the reference
network. The experimental results in Table 2 show that, all p¢ values are also greater
than zero. Hence, RMD-FSE networks exhibit better performance than the individual
networks.

For the daily gauge height at Ban Luang gauging station, Mae Tun stream, Ping river
data, the weights assigned to each individual network of the ensemble network are shown
in 3.3(h). Some individual network are discarded from the ensembling at 2.5 %, 7.5 %
and 15 % missing. The prediction performances are shown in Figure 3.4(b). The pd of the
RMD-FSE networks are less than zero at 2.5%, 5%, 7.5%, 10% and 12.5% missing data,
while at 15% missing data, it is greater than zero. This shows that RMD-FSE networks
can work as well as the network which is trained with no missing data. They yield lower
pd than the individual networks at every level of missing data. These results signify
that RMD-FSE networks also give better prediction performance than the individual
networks. The experimental results in Table 3.2 show that, all pd values are greater
than zero. We note that the individual networks give worse prediction performance
than RMD-FSE networks in terms of both mean square error and consistency.

A novel RMD-FSE network model which is the incorporation of fill-in techniques
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and the GA-based selective ensembling of FIR networks is proposed for highly accurate
incomplete time-series prediction. In most cases, RMD-FSE network gave the best pre-
diction performance in our experiments. However, when we compare RMD-FSE network
and the network which was trained by complete data in the gauge high problem, the dif-
ference of prediction performance computed from (Ensemble —Complete)/Complete X
100, is less than 0.5% on average. Hence, in the worst case RMD-FSE network can
still work in the same degrees of comparison as the network which was trained from the
complete data.

We can conclude that the more correctly estimated missing value, the better predic-
tion accuracy is. To enhance the prediction accuracy of the whole ensemble network,
the importance of each individual network must be weighted proportionally to its MSE

value.

3.4.3 Results of extended RMD-FSE network [22]

Two different data sets are used in our experiment. The first set is the sunspot data and
the second set is the daily gauge height. The prediction results of individual networks
and the results of the averaging ensemble network, whose the outputs are averaged from
those individual networks, are compared with the results of RMD-FSE network. The
experimental results of these two data sets are concluded as follows.

For the sunspot data, the weights assigned to each individual network of the ensemble
network are shown in 3.5(a). We can see from Figure 3.5(a) that the weights associated
with some individual networks at every percentage of missing input were set to zero by
the genetic algorithm. The output of those networks were therefore essentially discarded
from the ensembling. The prediction performance is shown in Figure 3.6(a). When we

consider the results, we found some individual networks yield pq less than zero at 2.5%,
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1.5%, 10%, 12.5% and 15% missing data but the averaging ensemble network and RMD-
FSE networks yield pa less than zero for every percentage of missing data. Furthermore,
RMD-FSE networks yield the lowest pd and, consequently, give the better prediction
performance than both of the reference network and the averaging ensemble network.
We note that when the percentage of missing data is high, viz. at 10%, 12.5% and 15%,
the network with the average EM selection gives the better result than the network with
the random EM selection. The experimental results in Table 1 show that the minimum
and maximum pq are 1.025 x 10-4 and 8.686 x 10-4, respectively. Once the complete
data are used as the training set of the FIR network, puis 3.330 x 10-4. All pd values
are also greater than zero. Hence, RMD-FSE networks exhibit better performance than
the individual networks.

For the daily gauge height at Ban Luang gauging station, Mae Tun stream, Ping river,
the weights assigned to each individual network of the ensemble network are shown in
Figure 3.5(b). Some individual network are discarded from the ensembling at 7.5 %,
10%, 12.5% and 15 % missing. The prediction performances are shown in Figure 3.6(b).
Some individual networks yield pd less than zero at 2.5% and 7.5%missing data. The pd
of the averaging ensemble networks are less than zero at 2.5% and 7.5% missing data,
while at 10%, 12.5% and 15% missing data, they are greater than zero. But RMD-FSE
networks yield pd less than zero for every percentage of missing data. Furthermore,
RMD-FSE networks yield the lowest pd and, consequently, give the better prediction
performance than both of the reference network and the averaging ensemble network.
These results signify that RMD-FSE networks also give better prediction performance
than the individual networks. The experimental results in Table 3.3 show that the
minimum and maximum pa are 1.578 x 10-5 and 22.730 x 10-5, respectively. When the
complete data are used as the training set of the FIR network, pd is 1.578 x 10-5. All

pd values are greater than zero.
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Considering the results of both studies in the experiments, it can be seen that using
only one fill-in technique will not achieve desirable performance. Thus, we combine
several EM-based estimation methods and spline interpolation for filling in the missing
data and ensemble network prediction. RMD-FSE network gave the best prediction
performance in our experiments. However, when we compare RMD-FSE network and
the averaging ensemble network which was averaged from the individual networks in
two problems, the prediction performance of RMD-FSE is better than the averaging

ensemble network.

3.5 Summary

Incomplete data sets can be problematic when a neural network is used for time-series
prediction. We use a variety of fill-in techniques to generate multiple input streams
for an ensemble of MLP or FIR neural network. The new network models, refered to
as the FI-GEM and RMD-FSE networks are the ensembling of the outputs of these
individual networks. We evaluated the accuracy of prediction with a performance index
which measures the accuracy of prediction for the desired network with respect to the
individual networks. We conducted our experiments using Mackey-Glass chaotic time-
series, the annual sunspot and the daily gauge height data collected at the Ban Luang
gauging station, Mae Tun stream, Ping river, Thailand. Our results show that both
of FI-GEM and RMD-FSE outperform each individual network, and both of them are

proposed for highly accurate incomplete time-series prediction.

3.5.1 Cited Reference

The publication [17] have been used as the applications to the atmospheric sciences [28].

Our work was cited for the reference of the methods for imputation of missing values in
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air quality data sets.

3.5.2 Limitation

There are some limitations of both of FI-GEM and RMD-FSE network. First, using
an ensemble of networks increase the computational resources needed. Secondly, while
the quality of the ensemble output is better than that of the individual networks, it can
only be improved by having better individual networks. We have the further work for

improving the accuracy of the imputation of incomplete data in the next chapter.

Table 3.1: Average performance index pd for Mackey-Glass chaotic time-series and
sunspots data. There are six types of individual networks, which are used to compare

with FI-GEM networks. We found that all values of pd are greater than zero.

Fill-In Mackey-Glass Sunspots
Methodology xicrd Xi0-2
Spline 0.94 0.70
EM(random) 0.60 0.39
Reg EM(random) 3.14 0.93
EM(average) 0.75 1.36
Reg EM(average) 324 0.46

Complete Data 0.89 0.22
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Table 3.2: Average performance index p'j for sunspots data and the daily gauge height

data. We found that all values of 'j are greater than zero.

Fill-In
Methodology
Spline

EM (random)
Reg EM(random)
EM (average)

Reg EM (average)
Complete Data

sunspots

X10-4
6.616
1.286
5.499
1.025
6.978
4.715

Gauge Height

Xi0-5
4,825
8.490
22.210
3.893
19.843
1.059

Table 3.3: Average performance index pj for sunspots data and the daily gauge height

data. We found that all values of  are greater than zero.

Fill-In
Methodology
Spline

EM(random)

Reg EM (random)
EM (average)

Reg EM(average)
Principal Component
Averaging Ensemble
Complete Data

sunspots

X10-4
2.928
8,686
4.487
5.129
3.076
5.135
1.025
3.330

Gauge Height

Xi0-5
5.345
9.009
22.730
4.412
20.362
2.505
2.226
1578
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Figure 3.2: Prediction performance index for (a) Mackey-Glass, and (b) sunspots. There
are six groups of bars for 2.5%, 5%, 7.5%, 10%, 12.5% and 15% missing as shown on
the x-axis. Each Group has five individual networks and FI-GEM networks. From left
to right, the first bar is for MLP for cubic smoothing spline, the second bar is for MLP
for EM with random selection, the third bar is for MLP for the regularized EM with
random selection, the fourth bar is for MLP for EM with average selection, the fifth bar
is for MLP for the regularized EM with average selection, and the last bar is for Fl-
GEM network. Prediction performance index pd is shown on the y-axis. The prediction

performance of our proposed are the lowest at all levels of missing.
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Figure 3.3: Weight in the selective ensemble network assigned to different FIR networks

for the (a) sunspots and (b) gauge height data sets. They differ depending on the amount

of data points missing.
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Figure 3.5: Weight in the selective ensemble network assigned to different FIR networks

for the (a) sunspots and (b) gauge height data sets. They differ depending on the amount

of data points missing.
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Figure 3.6: Prediction performance index for the (a) sunspots and (b) gauge height data

sets.
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