CHAPTER IV

WDC ALGORITHM

This chapter presents a pattern characterization approach for the imputation of missing
samples of time-series data [23]. The main idea is the time-series data are divided into
separate subsequences of different sizes and, therefore, each subsequence can be viewed
as awindow. The imputation of missing samples is achieved by finding a complete sub-
sequence similar to the missing sample subsequence and imputing the missing samples
from this complete subsequence. Mackey-Glass chaotic time-series, the sunspots data,
the daily gauge height at Ban Luang gauging station, Mae Tun stream, Ping River,
Thailand and the air temperature at Nakhon Ratchasima province, Thailand, are used
for evaluating our approach. The experimental results showed that the imputation ac-
curacy of the proposed algorithm, namely varied window clustering (WDC) algorithm is
comparable or better than the others traditional methods such as: the spline interpola-
tion, the multiple imputation (M), and the optimal completion strategy fuzzy c-means

algorithm (OCSFCM) in case of the non-stationary time-series data.

4.1 Classifying the Characteristic of Incomplete Time-Series
D ata
The characteristic of incomplete time-series data can be described as a series of pat-

terns. Supposing that a time-series is periodic. The periodical time-series data may be
seasonal or cyclical. We denoted « to be the cycle of the time-series data. The data are
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partitioned and arranged in a time-series form with a window size of K. Each segment

of data is, then, stacked to form a matrix A as shown in equation (4.1).

X\ X2 XK
%K+ 1 Xk +2 %2K
% 2K+ X2K+2 %3K
_O%N-K+1 XN-K+2 --- XN

------ Pattern a

— - — Pattern b

l“\
’
TAM
e

Time-Series Data

L. A3/ F T 6 AR AD .coioidhoadesuinseriiie 151617
Time

Figure 4.1: The figure shows the two groups of time-series data. The directions of
subsequences of data in each circle of pattern a are similar. It is also true in each of

pattern b.

The time-series data are plotted and illustrated in Figure 4.1. The data can be
characterized as pattern a and pattern b. The gradient of pattern a is positive while
the gradient of pattern bis negative. Notice that the directions of all the data points in
each circle of pattern a are similar. It is also true in case of pattern b. All subsequences
of length K are lined up in forms of a matrix as shown in equation 4.2. Each row of

matrix A is of either pattern a or b.
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It is obvious that if there are some missing xm then xm must be in either pattern a or

pattern b. Suppose xm belongs to a subsequence, VT, of pattern a. This subsequence VT

will be called target subsequence. The other subsequences besides the target subsequence

will be called reference subsequence. The concept of imputing the value of xm is to

compare the target subsequence vr with all reference subsequences of pattern a in the

time-series data and to select the reference subsequence, vq, having the most similarity

with the target subsequence vr. The value of xm is, then, imputed from a subset of Xi

in reference subsequence vq. For example, Dat is a periodical time-series data, whose

segment size is four.

Dat = {X1,X2,X3,....X 24}

Data Format
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Suppose that £4, XJ and £12 are missing and are denoted by the symbol “?”. The

segmentation of Dat is formed by equation (4.2) and is represented as equation (4.4).

Each row is considered as a subsequence. There are six subsequences. Assume that



42

subsequence 1is of pattern a, subsequence 2 is of pattern b, subsequence 3 is of pattern
a, subsequence 4 is of pattern b, subsequence 5 is of pattern a, and subsequence 6 is of
pattern b. In equation 4.4, the missing «« and £12 appear in pattern a and missing «-
also appears in pattern b. Assuming that each period has four data. Thus, the pattern
data «{£2£2£3?} in row 1and the pattern data {£g£10£ 117} in row 3 periodically appears
again in row 5 as pattern data {£17£ 1sfiof 20}- Based on this ohservation, the missing
ea InTOW land £12 in row 3 can be estimated by using the data £20in row 5 and x7 in
row 2 can be estimated by using €15 in row 4 or £23 in row 6. In general, the real world
time-series data are non-periodic and non-stationary. Fixing the value of length A to a

constant may not be suitable in this situation.

4.1.1 Pattern Characterization with Varied Window Sizes

The important concept of our work is to find the proper length, K, of the subsequences
that gives the maximum similarity between the target and reference subsequences. The
hypothesis is that time-series data that are manifestations of natural phenomena often
contain cycles within the series. Although all possible values of K must be in [1,N], it
can be quite difficult to determine an appropriate length K, especially when some of the
values are missing. We measure the similarity correlation in terms of cosine, denoted
by O, between VT and the other reference subsequences. The correlation value between
the two vector representations of the two subsequences is in the range [—1,1]. When
<0, the two subsequences are partially in opposite phases. We would have to correct
a reference subsequence before using it for estimating a missing value. Alternatively,
we could discard these subsequences by setting their similarity values to zero. In our
implementations, the sample values are normalized to the range [o,1], so that the cor-

relation value is in the range [0,1]. Accordingly, we define the distance hetween two
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subsequences, 3, in terms of O as

1-6 if0> o0
{ (4.5)

1 otherwise.

We illustrate the effect of the choice of K in Figure 4.2 by a scatter diagram of the
minimum similarity distance (3 as a function of the subsequence length. The 3 value
increases and falls sharply and has higher variance at the longer subsequence length.
Finding a good subsequence length by trying all possible lengths is computationally

costly and time consuming. Some statistical analysis and experiments must be investi-

gated to determine a feasitg\RRAVALA Sty me layAremmeLe
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Figure 4.2: The scatter plot of the minimum (3 values at various fixed subsequence

lengths of the air temperature data.

4.1.2  The Imputation of Missing Value

Let XmT>be the considered missing value at time m of the target subsequence VT and

Xm9lthe value at time m of the reference subsequence Vg. The subsequences VT and Vg
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are considered to have a very similar shape. Imputing the value of missing Xmr) with
respect to Xm9Linvolves four neighboring values x * -1, Xm+1, *m -1, and x{ . Any two
adjacent values of xtand Xt+1, for any t, of any subsequence are assumed to be connected
by a straight line. This assumption is valid by the following observation. If the limit of
the difference between two adjacent times t and t+ 1 approaches zero and two adjacent
values xt and Xt+i, for any t, is connected by a straight line then all these piecewise
linear lines form a continuous curve. Hence, the value of can be computed from

the value of either x*j\ or £ 1, and the difference between VT and Vg.
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Figure 4.3. The subsequences VT and Vg have a very similar shape. Since the value of
Xm™ is missing, both left and right differences are used to impute the value of im Tl The

circle denotes the missing value.

From Figure 4.3, the difference hetween x"f\ and xffU s called left difference,

denoted 9i\
g, =z — zvr) (4.6)
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and the difference between £21\ and £~+1is called right differencesdenoted 6r:
o= ;1 1. (4.7)

When the value of EmT"is missing, both left and right differences are used to impute the
value of xfnTA The estimated value of XmT\ denoted by XmT\ can be computed from 9i,

Or, and Xm@>as a linear combination:
2xh = 2xh-91- 9, (438)

From equations (4.6), (4.7), and (4.8),

1 Vv V.
) = o (P A0 ~ a8 (58 - <5R)), (49)
~(vs) (vq) L7 (v (vr) 1 (vq) (vr)
N = T 5 (‘IL‘m—l XL mm—l) = 5 (xm+l — Ty ) - (410)

The resulting equation is very similar to the classical k-NN imputation. The difference
is that the second and third terms of the right hand side of equation (4.10) are the
correction terms based on the shape of subsequence. A comparison of the imputing
values between the cubic spline interpolation and the linear interpolation from the similar
subsequence Vg is shown in Figure 4.4, The result of the proposed linear interpolation
from pattern characterization can be seen to be better than that of the cubic spline

interpolation.

4.2 Proposed Algorithm Based on Similarity Measure

The concept of our proposed algorithm is as follows. First, all the given values Xi, for
| < i < N, are orderly partitioned into groups of equal size K. The value of K can

be viewed as the width of the partitioning window. These groups form subsequences
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Figure 4.4: A comparison of imputing values between the cubic spline interpolation and
the linear interpolation from the similar subsequence Vg. The result of the proposed
linear interpolation from characterization pattern is better than that of the cubic spline

interpolation.

including the target subsequence, VT, and reference subsequences. Then, a reference
subsequence Vg is selected with the maximum similarity to the target subsequence VT,
Once a subsequence Vg based on a fixed value of K is selected, the missing value of
xm is estimated. For different values of K, the corresponding estimated values of xm
are computed. Finally, all the estimated values of xm are averaged and set as the final
estimated value of X1L Figure 4.5 shows an example of the similarity measure with
different window partitions. The missing value, xm, is denoted by a circle. The width
of the target subsequences in Figures 4.5 (a) and (b) are different. The dashed lines
indicate the partitioning locations.

The detail of the proposed algorithm (Appendix B) is given in the following steps.

Let M be the set of all index values m of the missing values xm.
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Figure 4.5: An example of the similarity measure and different window partitions. The

circle denotes the missing value, (a) Partitioning with a width of K. (b) Partitioning

with a width of K + ¢, for some constant c.

Proposed Algorithm

L.

10.
11.
12.
13.
14.

All the time-series values are normalized to values in the range [0,1].
Initialize all missing values xm, m £ M, to random values in the range [0,1].
Let c he a counter variable and initialize it to 0.
Let a be a positive threshold variable and set it close to 0.
Repeat
For all missing values xm,m e M .
Initialize the width of partitioning window K.
Let xm be the estimated value of xm. Initialize xm to 0.
Let g be a counter variable and initialize it to 0.
Let temp be a variable and initialize it to 0.
Let sum be a variable that is initialized to 0.
Repeat
Create a target subsequence, VT, by including all values from xm_|*Kj to
Partition from xm_|*Xj+1 down to X\ into groups of equal size of K.

Partition from xm+yK~+1 up to XN into groups of equal size of K.
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15. Find a group, p, of reference subsequences, v9, with the least distance (Pj).
16. For each subsequence j in p,set a value of Xm to the imputed values of xm
computed from VT and all subsequence in group p using equation (10).

17, Settemp = Ej ((1 - Pj) X IEjC1- Pj) -

18. Compute sum = sum + temp.

19, Count the number of iterations by setting g = <+ L

20.  Increase the size of the partitioning window by setting K = K + 1,

21, Until the number of groups is equal to one.

sum

22.  Compute xm = )

23, Set Xm Xy
24, EndFor
25. Count the number of cycle by setting ¢ = ¢+ L

26, Until the maximum of all xm, such that XfF™" - xff <.

4.3 Experimental Results and Discussion

The four time-series data sets (see Appendix 5.1), (a) the synthetic Mackey-Glass chaotic
time-series data, (b) the monthly sunspots data from A.D. 1700 to A.D. 1994, (c) the
daily gauge height at Ban Luang gauging station, Mae Tun stream, Ping river, Thailand,
and (d) the daily air temperature at Nakhon Ratchasima province, Thailand, are used
inour experiments. The original data are normalized in the range [0,1]. The missing at
random (MAR) incomplete time series are created by randomly sampling the missing
time steps from the four data sets. The levels of missing values considered in both
of Mackey-Glass chaotic time-series and the air temperature data are set to 10%, 20%,

30%, 40%, 50%, 60%, and 70%. For monthly sunspots data and daily gauge height data,



49

the levels of missing are set to 10%, 20%, 30%, 40%, and 50%. At each level of missing,
the experiments are repeated 1o runs by randomly selecting the missing locations run
by run. The results of our experiment are explained in the following subsections. The
starting missing values of those four case studies before WDC algorithm process are
initialized with randomly values. K of those four case studies are initialized to 3. For
Mackey-Glass data, a is set to 0.00006. a is set to 0.0008 for the sunspots, gauge height

data and the air temperature data.

4.3.1 Mackey-Glass Chaotic Time-Series

This data set is selected because its behavior is almost periodic and almost stationary.
Each data point can be mathematically generated with a constant variance. There are
a total of 1,200 observations in our experiment. We can see from Table 4.1 that when
the levels of missing are above 50%, the WDC algorithm yields the lowest MSE among
all tested algorithms. The CORR value between missing value and the actual value is
also shown in Table 4.1. We can see that the WDC algorithm yields the highest CORR
at level of missing at 60% and 70%. The WDC algorithm also shows the highest CORR
at the higher level of missing.

In Table 4.5, the simulation results show that, on the average, the minimum and
maximum Pimp are 1.55 x 10~5 and 3442.19 x 10~6, respectively. All Pimp values are
also greater than zero. In case of Mackey-Glass chaotic time-series data, those results
confirm that, on the average, WDC algorithm gives the better prediction performance
than those from the spline, MI method and OCSFCM algorithm.

A scatter plot of the true values and the estimated values of missing at 60% missing
are shown in Figure 4.8, The results of WDC algorithm are comparable to the spline

interpolation. The MSE of the reconstruction by the four methods at different levels of
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missing are shown in Figure 4.6(a). Because of the stationarity of the data, the OCSFCM
method has the worst performance while the other three methods are comparable to each

other at all levels of missing.

4.3.2  The monthly sunspots

This series represents the number of sunspots which has been recorded from the surface
ofthe . Thesetofdataisselected because itisareal world case study with a periodic
behavior. Its variances are not stable in each period and the signal is more complex than
the Mackey-Glass chaotic time series. There are a total of 1,070 observations used in
our experiments.

In Table 4.2, we noticed that the WDC algorithm yields the lowest MSE and the
highest CORR at every level of missing. This show WDC algorithm gives the best
estimation of missing performance.

Further, in Table 4.5, the simulation results show that the minimum and maximum
Pimp are 2.09 x 10-3 and 8.07 x 10-3, respectively. All Pimp values are also greater than
zero. Hence, WDC algorithm exhibit better performance than the spline, M| method
and OCSFCM algorithm in case of sunspots data.

A scatter plot of the true value and the estimated value of missing at 30% missing
are shown in Figure 4.9. The results of WDC algorithm show the best prediction of
missing values. The MSE of the reconstruction by the four methods at different levels
of missing are shown in Figure 4.6(b). The WDC algorithm has the best performance

among all methods at all levels of missing.
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4.3.3 The daily gauge height at Ban Luang gauging station,
Mae Tun stream, Ping river, Thailand

The samples of the scatter plot of the true value and the estimated value of missing at
50% missing are shown in Figure 4.10. The results of WDC algorithm show the best
prediction missing values.

This univariate time-series data is made available to us by the Royal Irrigation De-
partment of Thailand. It is selected because it is less structured than either the Mackey-
Glass chaotic time series or the monthly sunspots data. There are some high peaks at
some time steps and there are some parts of data that decrease gradually. There are a
total of 2,000 observations used in our experiments.

We can note from Table 4.3 that WDC algorithm vyields the lowest MSE for every
level of missing. This show WDC algorithm gives the better estimation of missing
performance than the spline interpolation, the M1 algorithm and OCSFCM algorithm.
The WDC algorithm gives the highest CORR at every level of missing. Thus, the WDC
algorithm gives the hest prediction missing value.

In Table 4.5, the experimental results show that the minimum and maximum Pimp
are 8.99 x 10-4 and 45.48 x 10-4, respectively. All Pimp values are also greater than zero.
Accordingly, for the gauge height data, the WDC algorithm gives the best imputation
performance of missing.

A scatter plot of the true value and the estimated value of missing at 50% missing are
shown in Figure 4.10. The results of WDC algorithm show the best prediction missing
values. The MSE of the reconstruction by the four methods at different levels of missing
are shown in Figure 4.7(a). The WDC algorithm has the best performance among all

methods at all levels of missing.
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4.3.4 The daily air temperature at Nakhon Ratchasima province,
Thailand

This real-world data set is provided to USby the Meteorological Department of Thailand.
It presents the most difficult problem in our case studies because of the sharp rises and
falls in the series. We used a total of 2,000 observations in our experiments.

In Table 4.4, we see that the WDC algorithm yields the lowest MSE for every level
of missing. This shows that WDC algorithm gives the better estimation of missing
performance than the spline interpolation, the MI method and OCSFCM algorithm.
The WDC algorithm gives the best prediction missing value, as indicated by the highest
CORR of the WDC algorithm at every level of missing.

In Table 4.5, the experimental results show that the minimum and maximum Pimp
are 1.41 X ICCs and 8.53 X 1CT3, respectively. All Pimp values are also greater than zero.
For the air temperature data, these results signify that WDC algorithm also gives the
best prediction missing value performance.

A scatter plot of the true value and the estimated value of missing at 50% missing
are shown in Figure 411, The WDC algorithm also gives the best prediction missing
value. The MSE of the reconstruction by the four methods at different levels of missing
are shown in Figure 4.7(b). The WDC algorithm has the best performance among all

methods at all levels of missing.

4.4 Discussion

4.4.1 Appropriate Partitioning Window Size

We see from the previous subsections that the WDC algorithm outperforms other es-

timation methods in the four test cases. The limitation of the WDC algorithm is the
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computation time required. The proposed algorithm may take a long time to impute
all missing xm when the amount of given data is large. This is because it must try all
possible partitioning window sizes to find the reference subsequence having maximum
similarity to the target subsequence.

Then, a solution for reducing time of the WDC algorithm is, an acceptable upper
limit of segment length is found from our experience. In our experiment, we tested with
the partitioning window size from 3 through 1000 for the gauge height data and the
air temperature, 3 through 600 for the mackey-glass data, and 3 through 535 for the
sunspot data. In fact, the actual values of the missing values do not exist. The estimated
missing values by spline interpolation are initially used as the virtual reference values for
computing the reference MSE value. From our experiments, the reference MSE value at
each window size of the four case studies: Mackey-Glass chaotic time-series, the monthly
sunspots data, the gauge height data and the air temperature are shown in Figure 4.13
- Figure 4.20, Figure 4.21 - Figure 4.28, Figure 4.29 - Figure 4.36, and Figure 4.37 -
Figure 4.44 respectively. The appropriate range of partitioning window size of the four
case studies: Mackey-Glass chaotic time-series, the monthly sunspots data, the gauge
height data and the air temperature are observed from those Figure 4.13 - Figure 4.44

and summarize in Table 4.6.

The Number of Most-Likely Subsequences

The number of most-likely subsequences of the four problem cases are also estimated by
using the virtual referenced M SE value of spline interpolation. The appropriate numbers
of most-likely subsequences of those case studies can be determined from Figures 4.12.
From our experiment, the appropriate numbers of most-likely subsequences of four case
studies: Mackey-Glass chaotic time-series, the monthly sunspots data, the gauge height

data and the air temperature are 14, 3, 11 and 19, respectively.
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A new methodology (the WDC algorithm) for the pattern characterization, and the
imputation of missing samples is presented. This methodology has been applied to
four cases studies such as: Mackey-Glass chaotic time-series, the sunspots data, the
daily gauge height at Ban Luang gauging station, Mae Tun stream, Ping River, Thai-
land and the air temperature at Nakhon Ratchasima province, Thailand. We evaluated
the accuracy of estimating missing values with an imputation performance index which
measures the accuracy of estimating missing values for the WDC algorithm and the
desired methods. Our experiments signify that the imputation accuracy of the varied
window clustering (WDC) algorithm can be comparable or better than the others tra-
ditional method such as: the spline interpolation, the multiple imputation (M), and
the optimal completion strateqy fuzzy c-means (OCSFCM) algorithm. In case of the
non-stationary time-series, especially the real-world problems, our results showed that

WDC outperforms its competitors.
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Figure 4.6: The MSE of (a) Mackey-Glass data and (b) the sunspots data for spline
interpolation, the MI method, the OCSFCM algorithm, and the WDC algorithm.
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Figure 4.7 The MSE of (a) gauge height data and (b) the air temperature for spline

interpolation, M1 method, the OCSFCM algorithm and the WDC algorithm.
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Table 4.1: The mean square error (MSE) and the Pearson’s correlation (CORR) of

Mackey-Glass data for the spline interpolation method, the MI method, the OCSFCM

algorithm, and the WDC algorithm.

Methodology
Level of Missing
10 %

20 %

30 %

40 %

50 %

60 %

10 %

Spline

MSE xio-6 8.7

CORR xio-1 ~ 9.99905
MSE xi0-6 1271

CORR xio-1  9.99859
MSE xio-6 1213

CORR xio-1 9.99863
MSE xio-6 7761

CORR xio-1 999134
MSE xio-6 15312
CORR xio-1  9.98289
MSE xio-6 73091
CORR xio-1 991888
MSE xio-6  936.58
CORR x101 989363

MI

0.8
9.99992
4.69
9.99947
1383
9.99842
50.91
9.99420
140.59
9.98412
589.01
9.93367
1356.20
9.84686

OCSFCM

23740
9.32662
25122
9.25783
28351
9.1719%
32858
8.91467
42507
4.70478
44784
4.52367
44813
4.51896

WDC

92.56
9.8969
1418
9.984/
21.95
9.99690
58.71
9.99355
170.57
9.98115
555.65
9.93788
903.80
9.89907

«
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Table 4.2: The mean square error (MSE) and the Pearson’s correlation (CORR) of
the sunspots data for the spline interpolation method, the MI method, the OCSFCM
algorithm, and the WDC algorithm.

Methodology Spline Ml FCM WDC
Level of Missing

10 % MSE (xi0-3) 498 711 1262  4.25
CORR (xio-1) 945 915 845 948

20 % MSE (xi0-3) 559 755 1334 473
CORR (xio-1) 932 909 830 942

30 % MSE (xi0-3) 676 800 1319 501
CORR (xio-1) 919 ~ 904 834  9.38

40 % MSE (xi0-3) 167 823 1302 528
CORR (xio-1) 911 903 843 9.36

50 % MSE (xi0-3) 827 898 138 599
CORR (xio-1) 904 893 833 928

60 % MSE (xi0-3) 958 967 1479 7.5
CORR (xio-1) 890 88 821 9.15

10 % MSE (xio-3) 1253 1083 1646 8.42
CORR (xio-1) 863 873 816  9.00
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Table 4.3: The mean square error (MSE) and the Pearson’s correlation (CORR) of the

gauge height data for the spline interpolation method, the MI method, the OCSFCM

algorithm, and the WDC algorithm.

Methodology
Level of Missing

10 %

20 %

30 %

40 %

50 %

60 %

70 %

MSE (x10~3)
CORR (xi0-1)
MSE (xKT3)
CORR (xKT1)
MSE (xio-3)
CORR (xKTY)
MSE (xi0-3)
CORR (xi0-1)
MSE (xi0-3)
CORR (xi0-1)
MSE (xi0-3)
CORR (xi0-1)
MSE (xi0-3)
CORR (xi0-1)

Spline

2.94
9.02
2.62
9.15
3.31
8.94
411
8.71
4.92
8.46
5.25
8.55
1.47
1.65

MI

4,51
8.50
4.52
8.53
5.01
8.37
5.37
8.28
5.96
8.06
6.99
181
1.68
1.48

OCSFCM WDC
6.07 2.34
7.85 9.20
6.33 2.00
7.92 9.33
6.17 2.18
7.99 9.26
6.59 2.80
7.90 9.06
6.81 3.64
1.92 8.79
7.68 4.56
7.92 8.56
16.5 6.81
3.02 1.89
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Table 4.4: The mean square error (MSE) and the Pearson’s correlation (CORR) of the
air temperature data for the spline interpolation method, the MI method, the OCSFCM
algorithm, and the WDC algorithm.

Methodology Spline Ml OCSFCM WDC
Level of Missing

10 % MSE (xi0-3) 25 518 1143 2.33
CORR (xio-1) 947 893 130 9.50

20 % MSE (xi0-3) 288 5.6 12.21 2.55
CORR (xio-1) 943 888 1.24 9.48

30 % MSE (xi0-3) 34T 645 1251 2.99
CORR (xio-1) 930 871 114 9.38

40 % MSE (xi0-3) 41 1M 1241 3.44
CORR (xio-1) 917 851 1.15 9.29

50 % MSE (xi0-3) 570 886 12.10 4.15
CORR (xio-1) 888 822 110 9.14

60 % MSE (xio-3) 1401070 1276 5.24
CORR (xio-1) 85 786 1.08 8.89

0% MSE (xio-3) 1127 1326 1328 6.94
CORR (xio-1) 7% 734 6.99 8.52
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Figure 4.8: Scatter plots of reconstructed versus true values of the missing data for the
60% missing case using the Mackey-Glass data set. Missing values were initially set to
random values (top left) and filled-in by the WDC algorithm (top right). The WDC
output can be compared to the reconstructions by spline interpolation (lower left) and

by the M1 method (lower right).

Table 45: Average imputation performance index Pimp for Mackey-Glass data, sunspots
data, gauge height data and and air temperature data. We found that all values of Pimp

are greater than zero.

Fill-In Mackey-Glass Sunspots Gauge Height Air Temperature
Methodology Xio-5 x10“3 xI0~4 x10~3
Spline 155 2.09 8.99 141
MI 4.75 2.80 22.45 4.21

OCSFCM 3442.19 8.07 45.48 8.53
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Figure 4.9: Scatter plots of reconstructed versus true values of the missing data for the
30% missing case using the sunspot data set. Missing values were initially set to random
values (top left) and filled-in by the WDC algorithm (top right). The WDC output can
be compared to the reconstructions by spline interpolation (lower left) and by the MI

method (lower right).
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Figure 4.10: Scatter plots of reconstructed versus true values of the missing data for
the 50% missing case using the gauge height data set. Missing values were initially set
to random values (top left) and filled-in by the WDC algorithm (top right). The WDC

output can be compared to the reconstructions by spline interpolation (lower left) and

by the M1 method (lower right).
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Figure 4.11: Scatter plots of reconstructed versus true values of the missing data for the
50% missing case using the air temperature data set. Missing values were initially set
to random values (top left) and filled-in by the WDC algorithm (top right). The WDC
output can be compared to the reconstructions by spline interpolation (lower left) and

by the M1 method (lower right).



64

Mackey-Glass x lo4 Sunspots
0.015 = - - 22 -
2 |
|
18} |
w [
7] 7] |
= 001 H ]
s 8 16 |
c c
H g
$ £ 14
'g "
£ £ ik
> B
@ 0005 Mininum value at 14 é
-
1 4 Mininum value at 3
3 0.8
0 - - - - v 0.6 4 + + - x
0 5 10 15 20 25 30 0 5 10 15 20 25 30
The number of most-likely subsequences The number of most-likely subsequences
(a) (b)
Gauge Height Air Temperature
0.09 T 0.04 T T
0.08 0.0351
0.07} 1
w w 0.03F
& 7]
= 0,06} =
bss 8 0.025f
= c
2 005f 1 $
2 s 002}
= 004} 5
= g 0.015
= o3} e
= " 0.01} Mininum value at 19
0.02 Mininum value at 11 ;
0.01 0.005
0 : L 0 . L . A )
0 5 10 15 20 25 3c 0 5 10 15 20 25 30
The number of most-likely subsequences The number of most-likely subsequences

©) (d)
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Figure 4.13: Scatter plots of the reference MSE values versus segment length for all

levels of missing of the Mackey-glass data set.
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Figure 4.15: Scatter plots of the reference MSE values versus segment length at 20%

missing of the

Mackey-glass data set.
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Figure 4.16. Scatter plots of the reference MSE values versus segment length at 30%
missing of the Mackey-glass data set.
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Figure 4.17: Scatter plots of the reference MSE values versus segment length at 40%

missing of the Mackey-glass data set.
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Figure 4.18: Scatter plots of the reference MSE values versus segment length at 50%
missing of the Mackey-glass data set.
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Figure 4.19: Scatter plots of the reference MSE values versus segment length at 60%
missing of the Mackey-glass data set.
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Figure 4.20: Scatter plots of the reference MSE values versus segment length at 70%
missing of the Mackey-glass data set.
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levels of missing of the sunspots data set.
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Figure 4.22: Scatter plots of the reference MSE values versus segment length at 10%
missing of the sunspots data set.
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Figure 4.23: Scatter plots of the reference MSE values versus segment length at 20%

missing of the Sunspots data set.



The MSE of sunspots of 30
0.024 |

I I I I I I T T I -

¥ % 30% Missing
-4 —— smoothing line
".

0.0221- | 1
i
| w
g
x

(17 S % .
|
#
’\lg .
!! v %

0.018 \ * f \ * 3

\ Floe”

3 *.‘ ﬁ'* f ‘\\ A\
Fe # S
WS A | A\

0016 L4 * SRR PRV
! e [}
L LAY [ :
\ % A \ \
o \ : # . ‘S/," % €] i
"\ % \ oy
- B\ * * YUY 2 S i
0.014 g:\ S A J§ 3 i B
# Y A o e
LIRS A 7 N i L SN *
e *® JEEN J.d % %
% o) G ¥/ B oax BLax
0.012f % % E
4 % %
LI N Lo &
£ Ad 43, *

001 1 1 1 1 I 1 I l !

0 20 40 60 80 100 120 140 160 180 200
Segment Length

Figure 4.24: Scatter plots of the reference MSE values versus segment length at 30%
missing of the sunspots data set.
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Figure 4.25: Scatter plots of the reference MSE values versus segment length at 40%
missing of the Sunspots data set.
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Figure 4.26: Scatter plots of the reference MSE values versus segment length at 50%
missing of the sunspots data set.
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Figure 4.27: Scatter plots of the reference MSE values versus segment length at 60%
missing of the sunspots data set.
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Figure 4.28: Scatter plots of the reference MSE values versus segment length at 70%
missing of the Sunspots data set.
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Figure 4.29: Scatter plots of the reference MSE values versus segment length for all
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Figure 4.30: Scatter plots of the reference MSE values versus segment length at 10%
missing of the gauge height data set.
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Figure 4.31: Scatter plots of the reference MSE values versus segment length at 20%
missing of the gauge height data set.
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Figure 4.32: Scatter plots of the reference MSE values versus segment length at 30%
missing of the gauge height data set.
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Figure 4.33: Scatter plots of the reference MSE values versus segment length at 40%
missing of the gauge height data set.
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Figure 4.35: Scatter plots of the reference MSE values versus segment length at 60%

missing of the gauge height data set.
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Figure 4.36: Scatter plots of the reference MSE values versus segment length at 70%
missing of the gauge height data set.
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Table 4.6: The appropriate range of partitioning window size of the four case studies:

Mackey-Glass chaotic time-series, the monthly sunspots data, the gauge height data and

the air temperature.

Study Case
Level of Missing
10 %

20 %

30 %

40 %

50 %

60 %

10 %

Mackey-glass

10-50
23-50
24-50
30-50
35-54
35-56
30-60

Sunspots

20-50, 70-110
30-52, 70-100
40-100
42-100
39-90
39-85
40-120

Gauge Height Air Temp.

60-120
60-140
53-120
67-125
58-120
55-123
55-120

60-120
60-130
65-120
10-120
60-120
60-150
10-110
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Figure 4.37: Scatter plots of the reference MSE values versus segment length for all
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Figure 4.38: Scatter plots of the reference MSE values versus segment length at 10%
missing of the air temperature data set,

91



6.5

55

35

25

Xx-0"3 The MSE of airtemp 0f 20
1 T T T T T T T | ENNUS [N I T T T  E——
i x 20% Missing
t smoothing line
| 2l
|
|
|
|
1 X
f X
|
- X -
|
! X
- t)&x -
i X X x %
|I/)()""\X\xx X X & i X X,({xxx )(‘x
n x)}‘x X'x /\x x XX 0o X ‘xxxxx X x )(\xxxx /<x X xﬁ
\ ~ X X /
R I R e R
X
»)8 y X x,s(xx 1xxx ,&x xxxx 5 X X * %
X X x X X X
! ! l | 1 hRESp sl THl Il FYT 1 Tl ] 1 ] 1 1
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 20C

Segment Length

92

Figure 4.39: Scatter plots of the reference MSE values versus segment length at 20%

missing of the air temperature data set.
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Figure 4.40: Scatter plots of the reference MSE values versus segment length at 30%

missing of the air temperature data set.
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Figure 4.41: Scatter plots of the reference MSE values versus segment length at 40%

missing of the air temperature data set.
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Figure 4.42: Scatter plots of the reference MSE values versus segment length at 50%

missing of the air temperature data set.
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Figure 4.43. Scatter plots of the

reference MSE values versus segment length at 60%

missing of the air temperature data set.
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Figure 4.44: Scatter plots of the reference MSE values versus segment length at 70%

missing of the air temperature data set.
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