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Abstract:

High-density lipoprotein (HDL) plays an important role not only in protecting
against atherosclerosis but also in innate immunity. Several lines of evidence
has shown that HDL could ameliorate the toxic effects of endotoxin or
lipopolysaccharide (LPS). In this study, we examined whether HDL could
inhibit LPS-induced leukocyte adhesion on endothelial cells. Normal HDL and
acute-phase HDL (AP-HDL) were purified from plasma of hamsters that
received normal saline and LPS injection, respectively. Wistar rats were given
LPS injection and the number of leukocytes adhered on endothelial cells of the
mesenteric venules were determined using intravital fluorescence microscopy.
Intravenous injection of LPS enhanced leukocyte adhesion to the mesenteric
venules. However, when LPS was preincubated with normal HDL, leukocyte
adhesion on endothelial cells in response to LPS was significantly attenuated in
a dose-dependent manner. AP-HDL was also able to significantly decrease
LPS-induced leukocyte adhesion on endothelial cells and appeared to be more
effective than normal HDL since lower concentrations were required. This
inhibitory effect of HDL was not due to HDL itself but it requires
preincubation of HDL with LPS. When HDL was separated into protein and
lipid fractions, it was found that lipid-free apoHDL was able to significantly
inhibit LPS-induced leukocyte adhesion, whereas lipid component of HDL had
no effect. In conclusion, our studies suggested that HDL, both normal and
acute-phase, could inhibit an inflammatory effect of LPS on endothelial cells in
vivo. AP-HDL was more potent than normal HDL in inhibiting LPS-induced
leukocyte adhesion, and this effect was attributed to the protein component of
HDL.

Keywords: High-density lipoproteins (HDL), endotoxin, leukocyte adhesion,
endothelial cells.
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1. Introduction

High-density lipoprotein (HDL) is a group of lipoprotein particles which
have the highest density in the circulation. HDL has several antiatherogenic
effects, including the ability to transport excess cellular cholesterol to the liver
for excretion, to protect low- density lipoprotein (LDL) against oxidation and
to inhibit platelet aggregation [1],

Besides its pivotal role in protecting against atherosclerosis,
accumulating evidence also suggests that HDL possesses anti-inflammatory
effects and plays an important role in innate immunity. A number of in vitro
and In vivo studies have demonstrated that HDL could bind endotoxin or
lipopolysaccharide (LPS) of gram-negative bacteria resulting in detoxification
of LPS [2-9]. In vitro, LPS hound to lipoprotein was 20- to 1,000-fold less
active than the unbound form in inducing monocytes and macrophages to
release cytokines [10]. In vivo, HDL also demonstrates anti-inflammatory
properties. Intravenous infusion of reconstituted HDL or HDL apoprotein
protected normal mice from the toxic effects of LPS [7]. When transgenic mice
with 2-fold elevation of plasma HDL levels were injected with LPS, they had
more LPS bound to HDL, lower plasma cytokine levels, and improved survival
rates compared with control mice [7]. Beside the effects on monocytes and
macrophages, LPS also activates endothelial cells. Infusion of reconstituted
HDL inhibited infiltration of neutrophils and the expression of adhesion
molecules on endothelial cells induced by a periarterial collar in rabbits [L1].
However, whether HDL could inhibit the effects of LPS on endothelial cells in
Vivo has not been studied.

During bacterial infection, a wide range of alterations in metabolism
occur. These are part of the body’s reaction known as the acute-phase response
(APR), which helps protect the host from further injury and facilitates the repair
process [12]. The APR also induces a variety of alterations in lipid and
lipoprotein metabolism [13]. HDL circulating during the APR, also called acute-
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phase HDL (AP-HDL), has been shown to have different lipid and protein
composition compared to that of normal HDL, which leads to alterations in
various functions of HDL [13]. In this study, we determined whether normal and
AP-HDL could inhibit LPS- induced leukocyte adhesion on endothelial cells in
vivo and examined the component of HDL responsible for its effect.

2. Materials and Methods
2.1. Materials

Lipopolysaccharide (LPS, Escherichia coli 055:B5) was purchased from
Sigma (A). Centrifugal filter devices (molecular weight cutoff 10,000
Dalton) and 0.22 pm pore size filter units were from Millipore (Ireland).
Quick-seal polyallomer tubes were from Beckman Coulter (USA). A modified
Lowry assay kit was purchased from Pierce (USA). Various chemicals were
purchased from Asia Pacific Specialty Chemicals (Australia), Merck
(Germany), or Sigma (USA). Normal saline solution (NSS), and sterile water
were from General Hospital Product Public (Thailand).

2.2. 1solation of normal HDL and acute-phase HDL (AP-HDL)

Male Syrian hamsters, 6 -8 weeks of age, were purchased from the
National Animal Center, Mahidol University (Thailand). They were maintained
on standard laboratory chow and tap water ad libitum 5 -7 days before the
experiment.  Syrian hamsters were used in these experiments hbecause
lipoprotein metabolism of hamsters closely resembles that of human than other
rodents [14-16].

Hamsters were divided randomly into two groups ; one group received
100 pg of LPS/100 g body weight (BW) and the other received normal saline.
Because LPS can cause anorexia, food was withdrawn after the injection in
both groups. Sixteen hours after the injection, animals were anesthetized and
blood samples were collected in a sterile fashion. Normal HDL and AP-HDL
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were isolated by differential ultracentrifugation from pooled sera of hamsters
injected with normal saline and LPS, respectively, [17]. Potassium bromide
(KBr) was used to adjust for the desired density, and ultracentrifugation was
performed using a Beckman ultracentrifilge. Normal HDL and AP-HDL were
dialyzed against normal saline, filtered with sterile filters, and used within 2
weeks. Protein concentrations of HDL were determined by a modified Lowry
method, special precautions during isolation and handing of HDL were used to
avoid the contamination [16].

2.3. Extraction of apoHDL and lipid of HDL.

Removal of lipids from HDL in the process of delipidation results in
lipid-free protein component of HDL called apoHDL as briefly described
below. Purified HDL was extracted with 10 volume of 3:1 (vol/vol) cold
ethanol/diethyl ether and stored overnight at -20°c. Then, the solution was
centrifuged at -5°c and the apoHDL protein pellet, and the lipid phase were
separated. ApoHDL was washed with cold diethyl ether once. Both apoHDL
and the lipid phase were dried under N2 gas. ApoHDL was solubilized in
phosphate buffer solution, filtered with a 0.22 pm sterile filter and its protein
concentration was measured by a modified Lowry assay. Lipids were dissolved
in 2:1 (vol/vol) chloroform-methanol [18].

2.4. Leukocyte adhesion on endothelial cells of the the mesentery.

Male Wistar rats (200-300 g) were obtained from the National Animal
Center, Mahidol University (Thailand). They were maintained on standard
|aboratory chow and tap water ad libitum 5-7 days before the experiment.

After an overnight fast, rats were anesthetized with sodium pentobarbital
(60 mg/kg BW i.p.). The carotid artery and the jugular vein were cannulated for
measuring mean arterial blood pressure (MAP), and for agent administration,
respectively. A midline laparotomy was made and a loop of mesentery was
exteriorized and spreaded onto a Plexiglass chamber for microscopic
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observation. The mesentery was fixed with a 37°C-Krebs Ringer Solution (pH
1.4)-s0aked gauze and superfused continuously with 37°c Krebs Ringer
Solution (pH 7.4) to avoid dehydration throughout the experiment.

The animal was then placed under a fluorescence microscope. A
fluorescence videomicroscopic system (Nikon, Tokyo, Japan) were equipped
with a videocamera (MTI SIT68), a videorecorder (Sony GUM-1411QM) and
a videotimer (Sony, Japan). An objective lens (X20) was used, and video-
images were recorded on videocassettes for off-line analysis.

After the rats were stabilized for 20-30 minutes, a 25-45 pm diameter
postcapillary venule was chosen for observation. Acridine orange at the
concentration of 1.8 mg/ml was i.v. injected as a bolus (0.25 ml) through the
cannulated jugular vein. Twenty minutes after acridine orange injection,
baseline quantification of leukocyte adhesion was recorded. Then, LPS was
administered and leukocyte adhesion was recorded at time zero. In some
studies, LPS was preincubated with normal HDL, AP-HDL, apoHDL, or lipids
at 37°c for 3 hours before use [19]. Leukocytes which remain stationary for 30
seconds on endothelial cells were counted at 1, 3, 5, 10, 15, 30, 45, 60, 75, and
90 minutes [20-21],

2.5. Data analysis

All data were presented as mean t standard errors of the mean (mean &
SEM). Comparison among groups was performed by ANOVA and differences
in pairs of means among groups were defined by Bonferroni test. The p-value
of less than 0.05 indicates a significant difference between groups.

3. Results

3.1. Effects of LPS on leukocyte adhesion on endothelial cells of the
mesentery.
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LPS is known to induce leukocyte adhesion on endothelial cells. Figure
1 shows the dose response curve of LPS on leukocyte adhesion. Different
concentrations of LPS (0.1 pg/100 g BW, 1 pg/100 g BW and 10 pg/100 g
BW) could significantly induce leukocyte adhesion on endothelial cells of the
mesentery. Therefore, the lowest dose of LPS (0.1 pg/100 g BW) was chosen
for the next set of experiments.

3.2. Effects of normal HDL on LPS-induced leukocyte adhesion on
endothelial cells of the mesentery.

Next, we examined whether normal HDL could inhibit LPS-induced
leukocyte adhesion on endothelial cells. LPS was preincubated with normal
HDL at 37°c for 3 hours before administration. As shown in Figure 2,
preincubation of LPS with normal HDL could significantly inhibit LPS-
induced leukocyte adhesion on endothelial cells. We found that 10 pg of
normal HDL/0.1 pg of LPS/100 g BW was required to completely inhibit LPS-
induced leukocyte adhesion, whereas lower concentrations had no effect (Fig.
2).

3.3. Effects of AP-HDL on LPS-induced leukocyte adhesion on endothelial
cells of the mesentery.

AP-HDL, which occurs during infection and inflammation, has different
composition and function from normal HDL. We therefore tested whether AP-
HDL could inhibit LPS-induced leukocyte adhesion in a similar fashion as we
observed with normal HDL. The result showed that AP-HDL was able to
inhibit LPS-induced leukocyte adhesion (Fig. 3), but lower concentrations of
AP-HDL (5 pg of AP-HDL/0.1 pg of LPS/100 g BW) was required to
completely inhibit LPS-induced leukocyte adhesion (Fig. 3). A comparison
between different concentrations of normal HDL and AP-HDL that inhibit
LPS-induced leukocyte adhesion is shown in Fig. 4.
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3.4, Effects of HDL on LPS-induced leukocyte adhesion require incubation
with LPS.

Since HDL itself might affect the leukocyte adhesion on endothelial
cells, we therefore administered either normal HDL or AP-HDL without LPS
into the rats. Fig. 5 shows that either normal HDL or AD-HDL alone did not
have any effect in leukocyte adhesion on endothelial cells.

In addition, the inhibitory effect of HDL on LPS-induced leukocyte
adhesion requires incubation with LPS. When HDL was immediately mixed
with LPS without preincubation and administered, we found that HDL did not
inhibit LPS-induced leukocyte adhesion as shown in Fig. 6.

3.5. Effects of normal apoHDL, AP apoHDL, lipid of normal HDL and
lipid of AP-HDL on LPS-induced leukocyte adhesion on endothelial cells
of the mesentery.

In order to investigate whether the effect of HDL on inhibiting LPS-
induced leukocyte adhesion was due to lipid or protein component in HDL, we
isolated lipid-free apoHDL, and lipids from HDL. Fig. 7 shows that after
preincubation with LPS, both normal apoHDL and AP apoHDL could
significantly inhibit LPS-induced leukocyte adhesion on endothelial cells.
However, the lipid component of either normal HDL or AP-HDL did not have
any effect on LPS-induced leukocyte adhesion on endothelial cells as shown in
Fig. 8.

4, Discussion

Our study shows that both normal HDL and AP-HDL are able to inhibit
LPS-induced leukocyte adhesion on endothelial cells in vivo, and that AP-HDL
is more effective than normal HDL because lower concentrations of AP-HDL
are required to completely inhibit LPS-induced leukocyte adhesion. This
inhibitory effect of HDL is not a direct effect on endothelium but it requires
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interaction between HDL and LPS. In addition, we identified that the protein,
not lipid, component of HDL was responsible for this effect,

LPS is a membrane lipid of Gram-negative bacteria that acts as a potent
inflammatory stimulus in humans and other mammals. In vitro, LPS can
stimulate adhesion molecule expression of endothelial cells by stimulating
cytokine and chemokine release from several cells types, including monocytes,
macrophages, and endothelial cells [22-29], In vivo, LPS is able to stimulate
endothelial adhesion molecule expression [30] and leukocyte adhesion on
endothelial cells [20, 31].

The inhibitory effects of HDL on cytokine-induced endothelial cell
adhesion molecule expression have been demonstrated in vitro [32-36], In
addition, elevating HDL in the circulation leads to decreased cytokine-induced
E-selectin expression by porcine microvascular endothelial cells [35]. Our
current study further shows that normal HDL can inhibit LPS-induced
leukocyte adhesion on endothelial cells in vivo. Moreover, AP-HDL is also
able to inhibit LPS-induced leukocyte adhesion on endothelial cells in vivo and
appears to be more effective than normal HDL.

However, hoth normal HDL and AP-HDL had no direct effect on
leukocyte adhesion. It has previously been reported that HDL could not
attenuate cellular adhesion molecules (CAMs) expression in arterial
endothelium by itself [1].

Our study shows that this inhibitory effect of HDL requires
preincubation of LPS with HDL which suggests the interaction between LPS
and HDL. HDL preincubated with LPS that forms complex with LPS can
render LPS less active in stimulating cytokine production from the
macrophages [10]. Brandenburg K. et al. studied the interaction of HDL with
LPS by a variety of physical techniques and biological assays and found that
the functional groups of LPS interacting with HDL were the phosphates and the
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diglucosamine backhone [37], Our study suggests that it may be the protein
component of HDL, not lipid, that interacts with LPS.

AP-HDL, which circulates during the APR, has different protein and
lipid components from normal HDL, which leads to alterations of its function
[13]. This study demonstrates that AP-HDL is more effective than normal HDL
in inhibiting LPS-induced leukocyte adhesion on endothelial cells. Although it
is known that there are changes in many HDL-associated proteins during the
APR, at this point, we cannot determine which protein(s) of HDL exhibits this
inhibitory effect. One of the protein candidates is lipopolysaccharide binding
protein (LBP) [13]. LBP is one of the HDL-associated protein which can bind
LPS and its level increases during the APR. Normally, LBP can hind and
transfer LPS not only to the receptor on the surface of macrophages and
monocytes but also to lipoproteins [38]. In vitro, addition of low concentrations
of LBP to macrophages enhanced LPS-induced TNF-a synthesis, but acute-
phase concentrations of LBP were found to block this effect. In addition, high
levels of LBP inhibited LPS-mediated cytokine release and reduced mortality
rate invivo [39]. High levels of LBP during the APR may increase LPS transfer
into AP-HDL, protecting against the toxic effect of LPS.

In conclusion, both normal HDL and AP-HDL can inhibit LPS-induced
leukocyte adhesion on endothelial cells but AP-HDL appears to be more
effective. Investigations into the active protein components of HDL that
interact with LPS and inhibit its effect may provide further insights and leads to
new protein target(s) to ameliorate the toxic effect of LPS.
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Fig. 2. Effects of normal HDL on LPS-in leukgcyte adhesion on endothelial cells. For NSS-
treated group, NSS was preineubated at??ge for J hours. LPS was preincubated with NSS for
LPS—treatg7 roup Qr different concentrations of normal HDL for LPS+normal HDL-treated
group at (% for V hours. After i.v. administration, leukocyte adhesion on endothelial cells of
the mesenteric venules was counted as described in materials and methods. *p<0.05, VS. NSS
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Fig. 3. Effects of AP-HDL on LPS-indu leukocyte adhesion on endothelial cells. For NSS-
treated group, NSS was preincubated at C for 3 hours. LPS was preincubated with NSS for
LPS-treated group or different concentrations of AP-HDL for LPS+AP-HDL-treated group at
37t for 3 hours. After i.v. administration, leukocyte adhesion on endothelial cells of the
mesenteric venules was counted as described in materials and methods. "p<0.05, VS. NSS group;
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APPENDIX I

RAW DATA

Table 6  Effects of HDL on the growth ofK coli.
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Table 7 Effects of various concentrations of HDL on the growth of E. coli at
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Table 8 Effects of HDL on the growth of . epidermidis.
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Table 9 Effects of various concentrations of HDL on the growth of .
epidermidis at 6 hours.
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Table 10 Effects of NSS on leukocyte adhesion on endothelial cells.
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4 2 2 2 b= 25 5 4 a4 4 4 a
5 2 2 2 2 3 35 35 35 35 35 35
S 2 2 p=.53 25 25 25 2 3 3 3 3
MEAN 15 1@ 2I7 2B 267 222 30D 3B 3B =3B =28
S =7 a3 o2 8 OB O 2 05 =2 =1 = =
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Table 11 Effects of 10 [ig/100 g BW of LPS on leukocyte adhesion on
endothelial cells.
La kapteadtesion(@is/ A

Feho onm Inn 3nin Snin Onin Bnin Dnin Snin Onin Snin 9Onin
i 2 5 (S 6 6 6 7 7 7 7 7
2 2 2 3 4 5 5 5 8 8 8 8
3 a 3 4 4 4 4 7 7 o o o
4 (@] O O (O] a i 5 o o o o
5 O O O 2 2 2 2 2 5 5 5
(S i 2 2 2 4 4 6 6 7 7 7

MEAN 1 20 208 3™ 3 I 58 60 TS T T
S = \V7 | Qr Q777 OB OB OB OB OB O & & e

Table 12 Effects of 1(i ﬂ/lOO g BW of LPS on leukocyte adhesion on
endothelial cells

o La konje adreson @i A frd
oNnin  Inin 3nin 5nin | Dnin Bnin 20nin Bnin 6nin Anin 9nin
1 1 2 3 3 a a 6 6 6 6 6
2 o 2 2 3 a S 5 6 (S 6 6
3 1 2 3 a 5 5 7 7 7 7 7
a 1 1 2 3 5 6 7 7 7 7 7
S 2 3 a 6 6 7 7 7 7 7 7
6 1 2 a a a a 5 5 5 S 5
MEAN 1D 20D 3 38 A7 517 617
=M aBs aB axF aos B OO aB a8 OB

Table 13 Effects 0f 0.1 ||g/100 g BW of LPS on leukocyte adhesion on
endothelial cells

NG La konjeadheson @is/10D jurn

0NN dnin 3nin Snin Onin Bnin 3nin Anin @nin Snin. 9nin
1 1 1 3 3 3 a (S s s s s
2> 2> 2 2 3 3 3 a 6 6 6 6
3 2 3 S 5 5 6 7 7 7 7 7
a 2> 3 3 a a a 5 6 6 6 (S
5 o o 1 2 2 a a a a a a
6 2 a 5 5 5 7 7 7 7 7 7
MEAN 150 217 317 3& 2 3IF a7 5D
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rotein of normal HDL on 0.1 pg /100 g BW of

ocyte adhesion on endothelial cells
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o rnm
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3 1 2 2 2 =2 2
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4 a4
2 2
3 3
4 4
4 4
4 4

MEAN 1% 2 27 267 2&6¢ 2B 37 3B 3D D 3D
SM G2 OB O O O OB OB 000 2 oz oz

Table 16 Effects of 5 pg protein of normal HDL on 0.1 pg /100 g BW of LPS-

induced leukocyte adnhesion on endothelial cells
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Table 17 Effects of L pg protein ofnormal HDL on 0.1 pg /100 ¢ BW of LPS-

induced leukocyte adhesion on endothelial cells

La kapjteadreson(@lis/1AD junn

4 5
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Table 18 Effects of 10 pg protein of AP-HDL on 0.1
induced leukocyte adhesion on endothelial ce
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Table 19 Effects of 5 pg protein of AP-HDL on 0.1 pg

/100 g BW 0f LPS-

induced leukocyte adhesion on endothelial cells
La kapte adhesion @i/ 1AD [im

REtNb )
0 nm
1 2 s 25 25
2 3 3 3 3
3 1 1 1 1
a 1 1 1 15
5 3 a as 5
6 1 1 1 2
7 2 2 2 2

MEAN 186 20r 2114 28
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Table 20 Effects of 1 pg protein of AP-HDL on 0.1 pg /100 g BW of LPS-

induced leukocyte adnhesion on endothelial cells

0 rvm
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2 i
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=3 s
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Table 21 Effects of 10 p% protein of normal HDL/100 g BW on leukocyte

adhesion on en

Rt NO )
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1 1
2 2
3 1
4 o
5 2
MEAN 12

Table 22 Effects of 10 p% protein of AP-HDL/100 g BW on leukocyte
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Table 23 Effects of incubation between 0.1 FJ.g/lOO ? BW of LPS and 10 p?_
protein of AP-HDL/100 g BW on leukocyte adhesion on endothelial

cells
tre La kapte adhesion @i/ 10D @on
onm InNnm 3nm 5Snin DOnin Bnin DOoNnm Snm nim Snim 9DNin
1 2 g 45 as es) IS ) o oS 0 o) 0
2 a1 2 25 25 35 35 5 5 5 5 5
3 2 25 35 5 5 5 (S3 as as as 7
g 2 25 35 45 5 (S (S (S (S (S (S
5 2 g9 a45 945 5 (S3 (S 7 i) 8 8
NMEAN 18 3 37 46 = =8 [S% 8 as 7 71 =4

SM OO 2 O &1 &1 2 a8 05 s & o

Table 24 Effects of 10 pg normal apoHDL on 0.1 pg/100 g BW of LPS
induced leukocyte adhesion on endothelial cells

o La konjeadreson @is/10D urn
o NN 1nin 3NN Snin Onin Bhin 3Dnin Bnin @nin ASnin. 9Dnir
1 1 s 25 3 3 3 'S a a a a
2 as 1 1 15 2 2 s o5 25 2m 25
3 s 15 2 2 2 2 2 > 25 3 3
a s o o 1 1 s 15 2 2 2 2
5 15 15 25 B 25 35 a a5 a5 a5 as
6 15 2 s o5 3 3B 3B> a5 a5 a5 a5
MEAN 1B 138 188 208 225 283 288 3IB B I 3P
SM oD 2 B 0D B oGBS oD oB OB oM amn

Table 25 Effects of 10 pg AP-apoHDL on 0.1 pg/100 g BW of LPS-induced
leukocyte adhesion on endothelial cells
Y - - b ( R m -

g
6

o NN Inin 3nin
i s 2 2 2 b= 35 35 35 35 35 35

2 s 25 3 3 3 3 3 3 3 35 4

3 i s 2 2 25 3 3 3 3 3 3

4 2 3 4 4 5 5 (S 6 6 (S (S

5 i i 2 2 25 25 3 3 3 3 3

(S i s 2 25 3 3 3 3 3 3 3
MEAN 138 12 20 288 3B 33 38 3 3B 3y IS5
S = \V7 | Qry OO O B OO 55 020 O O OB OB
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Table 26 Effects ofliﬁids of normal HDL on 0.1 pg/100 g BW of LPS-

induced leukocyte adhesion on endothelial cells
La kapteadreson (cdls” M @n)
Fetho onm Inmn 3nin 5nin Onin Bnin Dnin Snin Onin Snin 9Dnin

a 2 3 35 as 5 5 6 as as as as
2 3 35 as 5 55 as 7 8 8 85 85
3 25 35 4 4 5 5 5 55 5 5 55
4 s 2 4 5 S S 5 (S S 6 6 (S
5 s 3 35 (S 5 6 as s yis s s
S i 2 2 35 5 5 7 7 s 85 a5
MEAN 122 2883 3B 4B 55 5% a5 (SY-S) 7B 7B

o o2 o=

SM Q3O OB OGS OO oo a2 s a3

Table 27 Effects of lipids of AP-HDL on 0.1 p?/100 g BW of LPS-induced
leukocyte adhesion on endothelial cells

o La konjteadreson @is/ A o
oNnn  Inin 3nin 5nin Dnin Bhin 30nin Snin @nin ASnin 9Dnin
1 s 3 e S a a a a a a a a
2 25 as IS (SIS ST = s s 8 8 s
3 s o 1 o5 a a a a S S S
a 25 a as 6 6 S 6 & e a5 65
S 15 2 5 3I;®\ 3IBWB 3B 3IJ/B> 445 a5 a5 a5
S s 25 S S 65 e 65 6 65 65 265

MEAN 1& 25 3B 45 5838 585 5B 5 5

IS = \V| Q3L o> Qs Qs (0 57 Qs a3 aQAa Qa3 Qe Qe
Table 28 Effects of lipid solvent on leukocyte adhesion on endothelial cells
NG La kapte adhesion (Galls/ 1 junn
onn Inn 3nn Snin Dnin Bnin Onin Snin @Onin Anin 9Dnin
1 a1 1 s 2 2 2 p=<3 25 25 25 25
2 s 2 25 3 a4 4 4 a4 a4 a4 a4
3 a1 a1 a1 s 2 25 25 3 3 3 3
a4 as as s as s 2 2 2 2 2 2
5 s s 25 25 25 25 35 35 35 g a4
MEAN 1710 10 10 19 20 20 29D 3 3 310 310
= (@ =] as QD Qa3 (@223 (ec4 (ec’4 (@ € 53 (@ € 5 QD QD
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Table 29 Effects of 10 pg apo A-Ion 0.1 |ug/100 g BW of LPS-induced

@@U‘Ibwl\)p g

leukocyte adhesion on endothelial cells
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Table 30 Effects of 5 pg apo A-l on 0.1
leukocyte adhesion on endothe
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Table 31 Effects of 2.5 pg apo A-I'on 0.1 pg/100 g BW of LPS-induced

%émmbwwp g

leukocyte adhesion on endothelial cells
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Table 32 Effects of 5 |i? /100 g BW ofapo A-lon leukocyte adhesion on

endothelial cells
La kapteadheson (s D fim

Fno onim 1N 3nn 5S5nin 10 nin Bnin Dnin Snin ©Onn SN Sonin
1 2 25 > > 25 25 25 25 p=.53 p=.53 p= S

2 s s 2 2 2 25 25 25 25 p=.53 25
3 IS 2 2 25 3 35 a a5 a5 a5 a5
a 1 s 2 =53 25 p=.53 > 25 > p=.53 p=.53
5 3 3 a a5 a5 5 5 5 5 5 5
6 2 3 35 a a a a a a4 a4 a4

MEAN 188 25 268 23 3B 3B 322 3D 3 O 2D
SM OB OB GG (4 09O 2 1 &7 a7 Qa7 a7

Table 33 Effects of incubation between 0.1 pg/100 g BW of LPS and 5 pg/100
g BW of apo A-1 on leukocyte adhesion on endothelial cells

NG Le kapteadreson(@lisZ 10D irm

oniNn 1NN 3nin 5nin 10 Nnin Bnin 3DnNin Snin @Onin Snin. 9Dnin

1 3 3 3 4 5 5 5 5 6 6 as

2 25 35 as 5 5 6 s S 53 a5 o o
3 2 4 55 5 6 (S 53 (S 53 as a5 a5 as
a4 2 p=.53 35 35 35 4 a5 a5 as a5 as
5 3 as 6 6 (S 7 8 8 a5 a5 a5

6 2 3 as 6 asS as 7 7 7 7 7
a2 T7m®

MEAN 24 3 40 58 50 == (724 (ss4
M 0.20 (@€ 3] Q4ars (@72} Q4ar (@ 53 (0 54 QAL (@ &3] 0.68 0.66
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