CHAPTER 3

A REVIEW OF GRANULATION PROCESS SIMULATION MODELS

this thesis, a good starting point is to review appropriate mathematical
models which can be used to simulate the fertilizer granulation process shown in
figure 1-2. The drum granulator is the key to particle size change and then the
screen and the crusher will be added to complete the simplest granulation circuit.
The suitable mathematical models for drum granulator, screen and crusher must

be tested to validate their suitability.

3.1 A Review of Drum Granulator Models

A review of the existing models will be carried out. The justification for the
suitability and limitation of the models will also be carried out. Several of the granulation
techniques found in the literature are applied to fluidized granulator, pan granulator and

spray granulator. The rotating drum granulator isthe one of interest here.

3.1.1 The drum granulator model

Lister’s Model and limitation

Lister et al. (1986), Lister and W aters (1988, 1990) and W ater et al (1989)
have developed a model for predicting the size distribution of product from a drum

granulator using data obtained from the batch granulation of a wide initial size

1AL
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distribution of iron ore sinter feed particles. Assuming that granule growth s
mainly via pseudo-layering (preferential coalescence), the iron ore pellets are
partitioned into layering and nuclei particles thereby neglecting the effect of
random coalescence. During granulation, a layer of fines is assumed to have

attached itself onto the nuclei particle to produce a granule of larger size.

There are some of the shortcomings associated with Lister’s model to limit the
model performance. Lister’s model gives no information as to the kinetics of the
granule size distribution. This is very important in fertilizer drum granulator
modeling. The model is based on the assumption that granule growth is mainly via
pseudo layering, thereby neglecting the effect of random coalescence which may

be important in the first stage of granulation.

view of these shortcomings, itis concluded that Lister’s model is not

so suitable for use in modeling the fertilizer drum granulator.

Sherrington's Model

Sherrington (1968) has developed a model that is capable of predicting
the kinetics of the median granule diameter. The model correlates the average

granule diameter with the solution phase ratio.

Sherrington (1968) postulates that for a well packed mass of particles,

the solution phase ratio, y, is related to the average granule diameter.

developing the model equation to describe the granule size diameter,

itisassumed that ;
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1) . the resulting granules are spherical and uniformly sized,

2) . the granule is composed of uniformly sized particles of average
radius and

3) . the outersurface of the granule is surface dry, i.e. the liquid iswithdrawn
by capillary suction, from the granule’s outer surface, to an average depth into its

interstices.

Limitations of the Sherrington’s Model

Adetayo (1993) explained that due to the complexities of the granulation
process the parameters the modified Sherrington’s model cannot be predicted
but must be determined from experimental data by a graphical method.

i) Solubility, other binder properties such as viscosity, surface tension,
deformability etc. also have a significant effect on the granulation process and can
not be neglected. These properties are not taken into account by the Sherrington
model. This results the establishment of different empirical correlations for each
material.

i) Sherringtion’s model assumes negligible effect of kinetics. It gives
no information as to the dynamics of the average granule diameter. The
correlation has to be validated for every case otherwise itonly gives information on
the median granule diameter at steady state.

iii) Sherrington’s approach only gives information about the average
granule diameter. Itsays nothing of the size distribution of the granules as a whole.

iv) The development of the model is based on the assumption of a
uniformly distributed initial feed material. For a wide initial granule size distribution

the choice of the "average diameter” is not clear.
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short, Sherrington’s model is not suitable for modeling the fertilizer drum

granulator which encounters the effect of wide size distribution of fertilizer particles.

Adetavo's Model

Adetayo et al. (1993) have developed a mathematical model by applying
the population balance model of Hounslow (1990) to the rotating drum granulator

at the laboratory scale.

The population balance model is applied to describe the drum granulation
of feed with bound initial size distribution (e.g. recycle fertilizer granules). The model
utilizes a sequential two-stage granulation kernel to describe the distribution of
output particles from the drum granulator. The model accurately predicts the shapes

of the granule size distributions over the full range of data.

the population balance model, itis assumed that

1) . Particles are present in sufficiently large concentration for
population density to be treated as a continuous function.
2) . Particles are present in sufficiently low concentration to ensure

collisions are binary in nature.

3) . The total volume oftwo agglomerating particles ina system isconserved.

Adetayo (1993) has shown that the model is suitable for use in the

dynamic simulation of the granulation circuit where both moisture content and

recycle size distribution may vary significantly with time,

the

all
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From their experimental results the model could accurately predict the
shape of the granule size distribution and also takes account of the effect of
kinetics on the equilibrium size distribution. Thus Adetayo’s model has been

adopted for this work.

The details of Adetayo’s model will be given in the next section of this

chapter.

3.1.2 The Screen Model

Figure 1.2 illustrates the complete circuit of granulation in an actual
fertilizer plant which requires other unit operations to complete the recycle function

of the granulated fertilizer stream.

Due to the close interactions between the wunit operations in the
granulation circuit, development and validation of each unit operation model is an

essential prerequisite to developing a reliable simulation of the granulation circuit.

Adetayo et al, (1993) mentions that the dynamics of the granulation circuit
are controlled by the kinetics of the drier and the drum granulator. The kinetics of
the screen and crusher are relatively fast and therefore has insignificant effect on the

circuit dynamics. A steady state model of the screen and crusher is sufficient.

The screen model of Whiten (1972) is adopted by Adetayo (1993). The
model is based on the probability that a particle will pass through the aperture of
the screen. The present work has adopted the same model. For the sake of

brevity, a summary of the screen model is presented below.
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3.1.2.1 Screen model as applied to the granulation pro

(Adetayo et al, (1993))

Consider the size distribution of particles going through a screen of
aperture hS and mesh diameter s. The mass flowrate of particles in the i'h size
interval coming outas oversize materials, 0" is given by:

o, = F\ya (3.1)

Where Fj - mass flowrate of the particles in the ithsize interval entering
the screen as feed materials.
1 . .
0 = mass flowrate of the oversize material
ydi - probability that a particle in the ithsize interval will not pass

through the screen.

Here
d' x>hs
0.89-g(/,_))
i ar + - . d' x<hs and d'>hs (3.2)
yd ro(A -di-1 [>-H -
d, <hs

where d"is the top size of particles in the ithsize interval, and
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y, = r(hs-d1l (3.3)
h‘ Y (3.4)
0.124734
g(y.) = le~yldy = (3.5)
y y3- 0.4378805/ + 0.266982); + 0.138475
M isan adjustable constant, and:
Ko -k\
(3.6)
Ko ~K/-1]
Here we define mo parameter forthe oversize screen
mp parameter for the product screen

The screening unitiscomposed of two sets of screens; the oversize and
the product screen. The feed to the product screen is taken as the undersize of

the oversize screen.

3.1.3 The Crusher Model

Crusher and grinding mill models in the literature can bhe classified by
the modeling approaches into three groups: matrix model, kinetic model and

perfect mixing model.

Detailed analysis of each modeling approach is given elsewhere (Lynch,

1977). The crusher model adopted foruse in this work is a matrix model.
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The hammer crusher model is composed of the breakage and the

classification zones.

the breakage zone, particles selected for breakage are broken by the
hammers. The exit size distribution from the breakage zone enters the
classification zone where a certain fraction of it is retained in the crusher to mix
with incoming feed and thus re-enter the breakage zone. The rest comes out as
the crusher product. The proposed breakage event is given by Lynch (1997) as
follows :

ml q(

Figure 3.1 Schematic diagram of the crusher model

the hammer crusher model, the following assumptions are made ;

1). Single fracture breakage occurs.

2) . The breakage function is assumed to be time-invariant within a size
interval irrespective of whether the particle is selected for breakage early or later in
the grinding process.

3) . The system isassumed to be perfectly mixed.

An overall mass balance of the crusher over size interval ifor a steady

state breakage process is as follows :
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OUTLET = INLET +BIRTH - DEATH (3.7)

Output is the broken particles which should pass the classified zone to become

output.
Input means the feed of oversize particlestoundergo breaking inthe breakage zone.
Birth in the ith size interval, Bf occurs as a result of particles in the jthsize

interval (j = 1, to i-1)being broken into particles in the i'hsize interval.

B*=x B'jmjS] (3.8)

Breakage Function Bjj: The probability of particles in the jthsize fraction being

broken into particles less than the top size inthe ithsize interval.

Death in size interval z, z>c,occurs as a result of particles in that size function
being broken to particles less than the ithsize interval

Df = ml1 (3.9)

3.1.3.1  Crusher model as applied to the granulation process

the general model for the hammer crusher, the flow rate of particles in

the ith size fraction exiting the crusher is given by

Pii+- 1) = (3-10)

where f 1= feed flowrate of particles in the i*lsize fraction entering the crusher (kg/hr)
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Breakage Function

B1- Breakage function which defines the probability of a particle in the jlh
size fraction being broken into particles less than the top size in the

ithsize interval,

For fertilizer particles, the breakage function, should be a function that
emphasises the coarse size region of the distribution (Garside and Wildsmith,
1969). The Gaudin-Meloy function (Gaudin and Meloy, 1962) has heen found to
give a good fitto the data. This is consistent with the observation of Garside and

Wildsmith (1969). The Gaudin-Meloy equation is given by,

Bj = 1- 4 (3.11)

where Nb isthe fitting parameter for the breakage function
Selection Function

1= selection function representing the probability that a particle in the ilh

size interval is selected for breakage.

The selection function assumes that particles below a certain size, ds0w,
are not selected for breakage. For these particles, the selection function is taken
as zero. Above a bigger size, dsupp, all particles are assumed to be selected for

breakage, l.e. 1=1
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di —dUp
. NS
g - dlpp -4
) d'u’ﬁp d Row (3.12)
dj —dIw

where, 01 isthe average size of particles in the ithsize interval.

d s

particles bigger than the limiting size selected forbreakage (mm).

dhw = particles smallerthan the limiting size notselected forbreakage (mm).

AT isan empirical parameter in the selection function.

Classification function

where d[ﬂ)-

dbow -

N¢ -

Classification function representing the fraction of size (i) the
product from the breakage zone. The classification zone assumed
that some of the broken particles might have to pass through the
breakage zone more than once. This is because these particles are

too big to exitthe crusher due to material segregation in the crusher.

0.999 di > dfypp
" Ne
. ‘upp -al
Ci =
"]%pp~ l%w (3.13)
di ~dlow

upper critical size above which bigger particles are returned back
to the breakage zone.

lower critical size below which smaller particles are not returned
forre-breakage.

an empirical parameter for the classification function.

To avoid numerical problem, 0< C, <0.999
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3.2 Population Balance Model for Drum Granulator

The laboratory scale experiments were carried out by Adetayo(1993) to
understand the fundamental mechanisms of fertilizer granule formation. He then
carried out a review of the most commonly used modeling technigues for the
granulating system in order to establish a suitable model for use in modeling the

drum granulator.

He concludes that the population balance modeling technigue is the
most suitable of all the modeling techniques reviewed. The population balance
model has the ability of following the kinetics of the granulation process. After a
systematic comparison of the various numerical approximations to the
corresponding known analytical solutions of the population balance equation, the
Hounslow’s sectional mid-point model (Hounslow et al.,1988) is found to be
adequate for use in the development of a suitable model for the fertilizer drum

granulator.

3.2.1 The Population Balance Equation

For a particulate system, Hounslow (1990) defines the opopulation
balance as a statement of continuity that describes how the particle-size
distribution may change with time and position. A review of the various application

areas of the population balance is given by Ramkrisahna (1985).
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A general population balance equation (GPBE) is developed by carrying
out a balance over the population density in a fixed subregion of the particle-

phase space.

Accumulation = Input- Output + Birth + Death (3.17)

Randolph and Larson (1988) present the general form of the PBE as;

» + . ( )-B+D = o (3.18)

where isthe number density function , is the velocity vector of the particulates

phase, B and D are the birth and death terms, respectively.

The population balance for a well mixed system undergoing

coalescence alone and using the internal coordinate is given by

N e = A dp(\,, ) (On(v,t)du+— —, dp(v- ) (L o)n(v,t)du (3.19)
a N? 2N

where
n(v,t) = number density function given as the number of particles at

time tper unitvolume of system.

p coalescence rate kernel
A = total number of particle at time t
a = 0, where for free-in-space system (aerosol)

- Tlwhere for restricted-in-space system (granulation process)

,V - suitable internal coordinates
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Advantage of the population balance model.

Due to the dependence of the coalescence rate constants on the
process variables, the population balance model could be effectively used to
account for the effect of these variables on the process. The population balance

model also gives information on the dynamics of the system.

The solution to this integro-differential equation is not a trivial matter.
Known analytical solutions are only available for special forms of the coalescence
kernel with an assumed initial number density distribution (Ramkrishna., 1985).
Numerical solutions to this equation have been obtained by various methods
moment (Hulburt and Katz.,1964), discrete (Landgrebe and Pratsinis, 1989,1990),
sectional (Gelbard, Tambour and Seinfield.,1980) and sectional-midpoint (Hounslow

.,1988) method.

3.2.2 Hounslow Model

Hounslow et al. (1988) develop a population balance for batch
aggregation of particulate suspensions that is recast in a form that may be solved
simply and accurately. The transformed equation is deduced with the introduction
of only one additional parameter, which is found to be a constant for all case. The
transformed equation is tested by comparision with some analytical solutions, with
which itis found to be inexcellent agreement, particular, the equation is shown to
predict correctly the rate of change of the total particle number and volume.

Compatible descriptions of linear growth and nucléation have been developed with

similarsuccess.
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Hounslow et.al.(1988) using volume as the internal coordinate discretize

the system domain of interest into intervals in geometric series.

The following 4 mechanisms which affect the number of granules in the

ith size interval are considered.

1) . Birth of a particle in the ith interval occurs as a result of a particle in
the (i-1)th interval coalescing with another particle in one of the first
to (i-1)th intervals only when the resultant granule is larger than the
lower size limit of the ithinterval.

2) . Birth in the ithsize fraction is due to coalescence of two particles in
the (i-1)lhsize fraction.

3) . Death of a particle in the ithsize fraction is due to its coalescence
with another particle sufficiently large enough for the resultant
granule to be larger than the upper size limit of the ith interval.

4) . Death of a particle in the ith size fraction is due to coalescence

between that particle with another particle from that or a higher size

interval.

The total rate of change of the number of particles in the ithsize interval is given by;
ANL/dt = i2og+ if] - if] - 104 (3.20)

where r]l} = rate of change of particles in the ith interval due to the [/]/]?

mechanism

Nj = number of particles in the ith size interval

From the various rates, Hounslow showed that, for a restricted inspace system

(drum granulator) 1
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dNj . . . .
~dt1 P i-1jN 1 IH P J-NjN; I pjNj  (-21)
where P L) = collision rate function referred to here, as the coalescence kernel,

N’ number of particle in the ith size interval
Houslow's model accurately predicts the total number and conserves the

total volume (Hounslow, 1990)

3.3  Solution to the population balance equation

Adetayo (1993) has made a systematic comparison of the various
numerical solutions (i.e., moment method, discrete method, sectional method and
sectional-midpoint method) to known analytical solutions of the general population
balance equation. Houslow’s sectional model solution was found to bhe adequate

formodeling the fertilizer granulation process.

3.3.1 The Coalescence Kernel

The coalescence kernel p(a,b) plays an important role in the population
balance model. Itis a measure of the frequency of successful collision between
two particles of volume a and b to form a particles of volume @ +b.8astry (1975)

postulates that

# The coalescence kernel is symmetrical,

P(a,b) P(b,a)
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# The coalescence kernel ishomogeneous.
33(a,h) = bhOp(alb,b)
where : 6 - degree of homo geneity of the kernel (order of the kernel)
# The coalescence kernel can be divided into two parts
J3(a,b) = pdpla,b)
PO - coalescence rate constant that for determines the rate of

granulation ( other words, itcontrols the rate of change of the
mean of the granule size distribution)
P'{a,b) = coalescence kernel that determines the shape of the granule

size distribution

The population balance model is developed to describe the drum
granulation of a feed with a broad size distribution. The solution to the population
balance equation with coalescence kernel should predict the two-stage

mechanism which is found in lab-scale fertilizer granulation.

3.3.1.1 The two-stage coalescence kernel

Since two stages of granulation have been identified by Adetayo et
al.(1993), it is expected that a two-stage granulation kernel will be necessary to

model adequately the granule size distributions over a wide range of conditions.
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The first stage coalescence kernel.

the first stage or non-inertial regime of granulation, the probability of
successful coalescence following a collision is independent of the particle size
and collision velocity. When the rate of collisions is assumed to be independent of
particle size, the first stage mechanism becomes a random process with a size

independent coalescence kernel

(3.22)

The second stage coalescence kernel

During the second stage or inertial regime of granulation, the granule
size distribution begins to widen. Particle deformation is important and, therefore,
collisions involving large granules are favoured due to their increased inertia upon

impact. A size-dependent kernel isnecessary to treat this stage of granulation.

A first-order kernel is selected to predict the second stage regime as

follows (Adetayo, 1993):

[T = Mv,+V;) (3.23)

This equation is developed by Golovin (1968), where k2 describes the

rate constant for the Golovin kernel.

The first stage of granulation (non-inertial regime) is fast, relative to the
duration of Adetayo’s experiments. For experiments in which the second stage of
granulation does not occur, an equilibrium size distribution is quickly reached. For

the fertilizers studied by Adetayo, the second stage of granulation (inertial regime),
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which is slow, only occurs after coalescence in the non-inertial regime is
essentially complete. Due to the differing time scales in the two growth

mechanisms, he proposes a sequential kernel for both stages of granulation:

H r<l/,

t>
(3.24)

where PY] ar|d PY] are given by Eq.3.22 and Eq.3.23 lrespectively, Here rl

represents the time required to reach the final equilibrium size distribution of the
first non-inertial stage of granulation. When the second stage of granulation does
not occur, the population balance at r = [lgives the equilibrium granule size

distribution for coalescence in the non-inertial regime as the final result for > r,.

summary the two-stage granulation mechanism is given by:

o= Lk
] 172 (Vj+Vy) I>1, 3:25)

3.3.1.2 Estimation of the coalescence rate constants

The values of £land K. miust be estimated from available experimental
data, as Adetayo, (1993) has done . the present work, these estimates of k1and
Az will be used incomparing the resulting simulation results with his experimental

results in order to confirm the suitability of the coded computer model.

When additional experimental data are available, for example, from
National Fertilizer Company, the suitable parameteric values should bhe re-

gstimated for the case of NFC.
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