CHAPTER 7

SIMULATION STUDIES

In this chapter, simulation method is presented. The load models proposed in the previous chapters are used in the simulation studies to find load characteristics due to change in voltage and frequency. The proposed models are also compared with the models often used such as constant impedance model.

7.1 Computer simulation method

In order to represent load behaviors during various conditions, a computer programme is developed. The programme is written in FORTRAN on a VAX computer.

The calculation method can be described with a flowchart shown in figure 7.1

Figure 7.1 Flowchart

7.2 Simulation of exponential model

A simple three buses system with two generators are used to demonstrate the proposed exponential load model. The system is shown in Figure 7.2. Bus 3 is chosen to demonstrate load behavior under steady state and dynamic conditions.

Figure 7.2 Exponential model studied system

The load flow solutions of the system are obtained from SIMPOW, which is a power system simulation programme developed by ABB company, and used as initial conditions for the exponential load model. During disturbances the voltage and frequency at bus 3 are calculated by SIMPOW and used as inputs to the developed programme to derive active and reactive power of loads at bus 3.

There are some studied cases that used voltage and frequency variations provided in the developed programme.

The objective is to observe load characteristics against various disturbances that may occur in a real power system.

The results of the proposed model are also

compared with SIMPOW and some traditional used model such as constant impedance model.

Table 7.1 presents the simulation results shown in the figures in Appendix 4.

Table 7.1
Simulation results by exponential model

Load case	Description	Figure no.
1	rated condition V = 380 V.	A4.1-A4.8
	P = 940 kW Q = 600 kVAR	
	np = 2.0 nq = 1.4	
	mp = 1.0 mq = -2.0	
	Fig. A4.1-A4.2 show steady	
	state characteristics	
	Fig. A4.3 shows voltage	
	and frequency during gen.2	
	disconnected	
	Fig. A4.4-A4.5 show power	
	of load during gen.2	
	disconnected	
	Fig. A4.6 shows voltage	
	and frequency during load	
	bus 2 disconnected	
	Fig. A4.7-A4.8 show power	
	of load during load bus 2	
	disconnected	
2	rated condition $V = 380 V$.	A4.9-A4.20
	P = 1000 kW Q = 700 kVAR	
	30 % induction motor	
	np = 0.1 nq = 0.6	
	mp = 2.8 mq = 1.8	
	50 % fluorescent	

```
np = 1.2 \quad nq = 3.0
        mp = -1.0 \quad mq = -2.8
        20 % incandescent
        np = 1.6
        Fig. A4.9-A4.10 show steady
        state voltage characteristics
        used aggregate and constant
        impedance model respectively
        Fig. A4.11-A4.12 show steady
        state frequency characteristics
        used aggregate and constant
        impedance model respectively
        Fig. A4.13 shows voltage
        and frequency during gen.2
        disconnected
        Fig. A4.14-A4.15 show power
        of load during gen.2
        disconnected used SIMPOW and
        developed programme
        Fig. A4.16 shows power when
        used constant impedance model
        Fig. A4.17 shows voltage and
        frequency during load bus 2
        disconnected
        Fig. A4.18-A4.19 show power
        of load during load bus 2
        disconnected used SIMPOW and
        developed programme
        Fig. A4.20 shows power when
        used constant impedance model
3
        rated condition V = 380 V.
                                        A4.21-A4.28
        P = 3000 \text{ kW} \quad Q = 2400 \text{ kW}
        60 % air conditioner
```

 $np = 0.0883 \quad nq = 2.51$ $mp = 0.98 \qquad mq = -1.319$ 20 % fluorescent 20 % incandescent Fig. A4.21-A4.22 show steady state characteristics used aggregate model Fig. A4.23 shows voltage and frequency during frequency dip Fig. A4.24-A4.25 show power of load during frequency dip used aggregate and constant MVA model Fig. A4.26 shows voltage and frequency during voltage dip Fig. A4.27-A4.28 show power of load during voltage dip used aggregate and constant current model

7.3 Simulation of induction motor model

The system used for simulation of induction motor model are shown in Figure 7.3

Figure 7.3 Induction motor model studied system

Induction motors are connected at bus 4, voltage and frequency at bus 4 are calculated by SIMPOW as in the cases of exponential model.

Simulation results based on aggregate induction motor model are compared with that based on individual representation. The proposed induction motor model is also compared with the usually used load model (e.g. constant impedance, constant power, etc.)

Table 7.2 presents the simulation results shown in the figures in Appendix 4.

Table 7.2 Simulation results by induction motor model

Load case	Description	Figure no.
1	MOT1 250 kW 380 V.	A4.29 - A4.42
	H = 1.5348 $Tm = 1.0$	
	Rs = .0414 Xs = .0794	
	Rr = .0169 Xr = .0794	
	Xm = 2.8019	
	MOT2 200 kW 380 V.	
	$H = 1.5424$ $Tm = 0.75*w_r$	
	Rs = .0474 Xs = .0926	
	Rr = .0204 Xr = .0926	
	Xm = 2.5818	
	MOT3 400 kW 380 V.	
	$H = .7846 Tm = 0.8*w_r **$	2
	$Rs = .0311 \ Xs = .0781$	
	$Rr = .0110 \ Xr = .0781$	
	Xm = 2.0309	
	Fig. A4.29-A4.32 show st	eady
	state characteristics	used
	aggregate and individu	al
~	induction motor model	
	Fig. A4.33 shows voltage	
	and frequency during 3	
	phase fault at bus 3	
	Fig. A4.34-A4.35 show po	wer
	of load during 3 phase f	ault
	used aggregate and indiv	idual
	induction motor model	

!	Fig. A4.36-A4.38 show load	Į.
1	characteristics when used	1
1	constant impedance model	1
[Fig. A4.39 shows voltage	1
!	and frequency during gen.2	1
1	disconnected	1
t ;	Fig. A4.40-A4.42 show power	1
1	of load when used aggregate	ŧ
1	and individual motor model	!
I 1	and constant current model	!
2	3 motors as case 1 and A4.43 - A4.50	i
1	MOT4 355 kW 380 V.	1
1	H = 2.0392 Tm = 0.8	ŀ
1	Rs = .0330 Xs = .0729	1
1 !	Rr = .0104 Xr = .0610	!
1 1	Xm = 2.2189	1
1	MOT5 90 kW 380 V.	ı
1	$H = .7228 Tm = 0.9*w_r **2$	i
1	Rs = .0505 Xs = .0701	ŀ
1	Rr = .0160 Xr = .0904	ı
1	Xm = 2.1968	1
1	Fig. A4.43-A4.46 show steady	1
1	state characteristics used	1
1	aggregate motor model and	1
1	constant impedance model	!
I I	Fig. A4.47 shows voltage	r r
1	and frequency when gen.1	;
1	disconnected	1
1	Fig. A4.48-A4.50 show power	;
1	of load used aggregate and	1
1	individual motor model and	í
f 1	constant impedance model	1
!		į,

7.4 Simulation of composite load

The system used is the same as in figure 7.3, loads are connected at bus 4.

Simulation results based on proposed composite load model are compared with the conventional model (e.g. constant power, etc.)

Table 7.3 presents the simulation results shown in the figures in Appendix 4.

Table 7.3 Simulation results of composite load

;	oad case	Description Figure no.	- ; ;
1	1	MOT1, MOT2, MOT3 A4.51 - A4.57	į
1		P = 200 kW Q = 150 kVAR	1
!	-	np = 1.2 nq = 3.0	1
1		mp = -1.0 mq = -2.8	!
1		Fig. A4.51-A4.54 show steady	1
1		state characteristics used	1
i		composite and conventional	1
l i		model	1
1		Fig. A4.55 shows voltage	ļ
1		and frequency during gen.2	1
†		disconnected	;
;		Fig. A4.56-A4.57 show power	1
!		of load used composite and	1
1		conventional model	1
;	2	the same as case 1 and A4.58 - A4.60	!
!		P = 100 kW Q = 300 kVAR	
1		np = 1.6	1
i i		Fig. A4.58 shows voltage	
1		and frequency during 3	

1	phase fault at bus 3	į
1	Fig. A4.59-A4.60 show power	1
1	of load used composite and	1
!	conventional model	1
ļ.	 	: