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CHAPTER |
INTRODUCTION

In the present, plants are being used to treat several health concerns and
conditions, including arthritis, migraines, fatigue, skin infections, wounds, burns,
gastrointestinal and even cancer proving that is true that food is medicine. These
herbs are less expensive and have little side effects more than conventional
medications, which is why so many people are focus on the investigation of the

efficacy of plant in the traditional medicine.

Plants are rich in a variety of compounds. Many are secondary metabolites
and include aromatic substances, most of which are phenols or their oxygen-
substituted derivatives such as tannins [1, 2]. Many of these compounds have
antioxidant properties. About 200 years ago, the use of natural products as medicines
has been described throughout history in the form of traditional medicines,
remedies, potions and oils with many of these bioactive natural products still being
unidentified. The dominant source of knowledge of natural product uses from
medicinal plants is a result of man experimenting by trial and error for hundreds of
centuries through palatability trials or untimely deaths, searching for available foods
for the treatment of diseases [3, 4]. One example involves the plant genus Salvia
which grows throughout the southwestern region of the United States as well as
northwestern Mexico and which was used by Indian tribes of southern California as
an aid in childbirth [3]. Male newborn babies were “cooked” in the hot Salvia ashes
as it was believed that these babies consistently grew to be the strongest and
healthiest members of their respective tribes and are claimed to have been immune
from all respiratory ailments for life [3]. Moreover, traditional medicinal practices
have formed the basis of most of the early medicines followed by subsequent
clinical, pharmacological and chemical studies [5]. Probably the most famous and

well-known example to date would be the synthesis of the anti-inflammatory agent,



acetylsalicyclic acid (1) (aspirin) derived from the natural product, salicin (2) isolated
from the bark of the willow tree Salix alba L. [6]. Investigation of Papaver
somniferum L. (opium poppy) resulted in the isolation of several alkaloids including
morphine (3), a commercially important drug, first reported in 1803 (Figure 1.1). It
was in the 1870s that crude morphine derived from the plant P. somniferum, was
boiled in acetic anhydride to yield diacetylmorphine (heroin) and found to be readily
converted to codeine (painkiller). Historically, it is documented that the Sumerians
and Ancient Greeks used poppy extracts medicinally, whilst the Arabs described
opium to be addictive [6]. Digitalis purpurea L. (foxglove) had been traced back to
Europe in the 10th century but it was not until the 1700s that the active constituent
digitoxin (4), a cardiotonic glycoside was found to enhance cardiac conduction,
thereby improving the strength of cardiac contractibility. Digitoxin (4) and its
analogues have long been used in the management of congestive heart failure and
have possible long term detrimental effects and are being replaced by other
medicines in the treatment of “heart deficiency” [6]. The anti-malarial drug quinine
(5) approved by the United States FDA in 2004, isolated from the bark of Cinchona
succirubra Pav. ex Klotsch, had been used for centuries for the treatment of malaria,
fever, indigestion, mouth and throat diseases and cancer. Formal use of the bark to
treat malaria was established in the mid-1800s when the British began the worldwide
cultivation of the plant [6]. Pilocarpine (6) found in Pilocarpus jaborandi (Rutaceae) is
an L-histidine-derived alkaloid, which has been used as a clinical drug in the
treatment of chronic open-angle glaucoma and acute angle-closure glaucoma for
over 100 years. Also, more than 60% of cancer therapeutics on the market or in
testing are based on natural products. Of 177 drugs approved worldwide for
treatment of cancer, more than 70% are based on natural products or mimetics,
many of which are improved with combinatorial chemistry. Cancer therapeutics from
plants include paclitaxel, isolated from the Pacific yew tree; camptothecin, derived

from the Chinese “happy tree” Camptotheca acuminata and used to prepare



irinotecan and topotecan; and combretastatin, derived from the South African bush
willow [7]. It is also estimated that about 25% of the drugs prescribed worldwide are
derived from plants, and 121 such active compounds are in use [8]. Between 2005
and 2007, 13 drugs derived from natural products were approved in the United
States. More than 100 natural product-based drugs are in clinical studies [9], and of
the total 252 drugs in the World Health Organization’s (WHO) essential medicine list,

11% are exclusively of plant origin [8].

0
O)LCHa OH
o OH

1 2

H,CO

Figure 1.1 Natural products derived from plants



1.1 Xanthones: biosynthesis pathway and biological activities

Xanthones (IUPAC name 9H-Xanthen-9-one) are a kind of phenolic acid with a
three-ring skeleton, which are one of the biggest classes of compounds in natural
product chemistry. A number of xanthones have been isolated from natural sources
of higher plants, fungi, ferns, and lichens. These constituents display a vast range of
bioactivities, including anticancer, antioxidative, antimicrobial, antidiabetic, antiviral

and anti-inflammatory effects, and so on.
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Figure 1.2 Overview of major xanthones biosynthesis pathway in plants



Xanthones are mainly isolated from herbal medicines. Between 1988 and
2016, 168 species of herbal medicinal plant belonging to 58 genera, and 24 families
were found to be enriched in xanthones. Among them, the Calophyllum,
Cratoxylum, Cuddrania, Garcinia, Gentiana, Hypericum and Swertia genera are the

plant resource with the most development prospect [10].

Moreover, the genus Cratoxylum, belonging to the family Hypericaceae, which
is widely distributed in Southeast Asia. This genus has been shown to possess various
pharmacological activities including antioxidants, antimalarial, antibacterial, anti-HIV,
and cytotoxic activities. This genus has an abundant source of secondary

metabolites, especially xanthones, flavonoids, tocotrienols, and triterpenoids [11-13].

1.2 Botanical aspect and distribution of Cratoxylum cochinchinense

Cratoxylum cochinchinense (Lour.) Blume (Figure 1.3) is a large to shrubby
tree belonging to the family Hypericaceae, which is widely distributed in Southeast
Asia. This tree is a large to shrub and tall 3-8 m with slender branches. Its bark is gray,
vrack and flaking in small irregular pieces. Its leaves have an elliptical shape with 2-4
cm width and 4-10 cm long. Its stalks have long lower than 3 cm. Their flowers have
crimson or dark red, which have five sepals and petals at end of twig and in axils of
mature leaves. Its fruit is elliptical shape, which 0.8-1.2 cm width, about 2/3 of fruit

covered by the persistent sepals [14].



whole plant stem

Flower fruit

Figure 1.3 The whole plant, stem, flower and fruit of Cratoxylum cochinchinense

Family : Hypericaceae

Genus : Cratoxylum

Species : Cratoxylum cochinchinense
Common name :Tui Kliang, Kheetui

Local name : Tui Kliang



1.3 Chemical constituents and phytochemical investigation of Cratoxylum

cochinchinense

In 2006, Mahabusarakum et al. [15] investigated the chemical constituents of
the roots of Cratoxylum cochinchinense. Four new xanthones, including
cochinchinone A, B, C, and D were isolated, along with eleven known compounds.
The structures were elucidated on the basis of spectroscopic data interpretation. In
addition, the isolated compounds were evaluated for DPPH radical scavenging
activity. Cochinchinone B exhibited the most potent radical scavenging activity with

ICso values of 9.4 uM.

cochinchinone C cochinchinone D

Figure 1.4 Chemical constituents from the roots of Cratoxylum

cochinchinense



Laphookhieo et al. [16] in 2006 succeeded in isolating seven compounds,
including one new as 5-O-methylcelebixanthone, along with six known compounds,
celebixanthone, 1,3,7-trihydroxy-2,4-di(3-methylbut-2-enyl) xanthone, cochinchinone
A, a-mangostin, 8-mangostin, and cochinchinone C. The structures were elucidated
on the basis of spectroscopic analysis. Moreover, all isolated compounds were

evaluated for their cytotoxicity against NCI-H187 cells and antimalarial.

O OH
H,CO
HO ‘ 0 ‘
OCH;

5-O-methylcelebixanthone

Figure 1.5 Chemical constituents from the roots of Cratoxylum

cochinchinense

In 2018, Peng et al. [17] successfully isolated two new xanthones;
cratoxanthone E and cratoxanthone F, along with ten known compounds from the
methanol extract of the bark of roots of Cratoxylum cochinchinense. Their structures
were characterized by spectroscopic methods. In addition, all isolated compounds
were evaluated for their Protein tyrosine phosphatase 1B (PTP1B) and a-glucosidase,

two new xanthones showed a potent for both bioactivities.



cratoxanthone E cratoxanthone F

Figure 1.6 Chemical constituents from the bark of roots of Cratoxylum

cochinchinense

In 2006 Phuwaprasirisan et al. [13] isolated a new xanthone,
cratoxylumxanthone A, together with five known xanthones, including
dulcisxanthone B, a-mangostin, 2-geranyl-1,3,7-trihydroxy-4-(3-methylbut-2-enyl), and
tectochrystin from the stem of Cratoxylum cochinchinense. The structure of isolated
compounds were elucidated on the basis of spectroscopic analysis and their
antioxidative on DPPH radical scavenging activity and lipid peroxidation.
dulcisxanthone showed significant DPPH radical scavenging activity and lipid

peroxidation with 1Cs, values of 0.39 and 0.024 mM.

cratoxylumxanthone A

Figure 1.7 Chemical constituents from the stem of Cratoxylum

cochinchinense
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In 2012 Udomchotphruet et al. [18] studied the chemical constituents of
the stem of Cratoxylum cochinchinense. Three new xanthones, cratoxylumxanthone
B, cratoxylumxanthone C, and cratoxylumxanthone D, were isolated together with 5
known compounds. All structures of the isolated compounds were determined by
spectroscopic methods. In addition, cratoxylumxanthone C showed significant DPPH

radical scavenging activity and lipid peroxidation.

OH

O OH
HO =
HO ‘ o) ‘ OCH,

cratoxylumxanthones B cratoxylumxanthones C

cratoxylumxanthones D

Figure 1.8 Chemical constituents from the stem of Cratoxylum

cochinchinense

In 2017 Ito et al. [19] reported the isolated of four new xanthones, including
cratoxanthone A, B, C, and D, along with six known compounds from the twigs and
branches of Cratoxylum cochinchinense. The structure elucidation of the isolated
compounds were achieved with the aid of extensive 1D and 2D NMR studies. The
isolated compounds were evaluated for their cytotoxicity against NALM-6 cell lines,
cratoxanthone A and B showed a potent cytotoxicity against NALM-6 cell lines with

ICs, values of 1.98 uM.
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cratoxanthone A cratoxanthone B
OCHLO OH OCH OH
H,CO l ! OCH, l l OCH,
HO (@] O
OH
cratoxanthone C cratoxanthone D

Figure 1.9 Chemical constituents from the twigs and branches of

Cratoxylum cochinchinense
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1.4 Cytotoxic activity against human cancer cell lines

Cancer is one of dangerous diseases caused by uncontrolled growth of cells.
The proliferation of cancer cells may invade the other tissues and organs, and disrupt
the metabolic pathways of normal cells. The discovery of anticancer agent from
natural products has been developed initially though a preliminary screening of drug
candidates. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide)
assay is one of initial methods to screen the cytotoxicity of substance indicated by
viability of the cells. The number of viable cells are determined through the
reduction of MTT reagent by mitochondrial dehydrogenase enzyme inside living cells
forming a formazan dye (Figure 1.10) which is measured then using colorimetric
method. The result of cytotoxic activity can be used for further investigation through
in vivo test using an animal model to assess the metabolism properties of a drug

candidate in a living organism [20].

\_2\/“
A
N —N
f \ Mitochondrial Reductase
N*§N
Br

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (E, 2)-5-(4,5-dimethylthiazol-2-yl)-1,3-diphenylformazan
(MTT) (Formazan)

Figure 1.10 MTT reduction in live cells by mitochondrial reductase resulting a

formation of insoluble formazan

From the literature review above showed a few reports on chemical
constituent and their biological activities from the roots of C. cochinchinense.
Therefore, those provide an insight to further investigation the bioactive compounds

from the roots of this plant.
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1.5 The objectives of this research

The main objectives in this investigation are as follows:

1. Toisolate and purify, the compound from the roots of C. cochinchinense

2. To elucidate structurally the isolated compounds by means of
spectroscopic analysis, including UV, IR, 1D and 2D NMR, and HRMS.

3. To evaluate the cytotoxicity of the isolated compounds against human

cancer cell lines.
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CHAPTER Il
EXPERIMENTAL

Figure 2.1 The roots of Cratoxylum cochinchinense

21 Plant material

The roots of C. cochinchinense were collected in Lumpang Province, northern
Thailand, in April 2018 and identified by Dr. Suttira Sedlak, a botanist at the Walai
Rukhavej Botanical Research Institute, Mahasarakham University and a specimen

retained as a reference (Khumkratok no. 01-18).
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2.2 General experiment procedures

NMR spectra were recorded on Bruker 400 AVANCE spectrometer and JEOL
RESONANCE 500 spectrometer. HRESIMS spectra were obtained using a Bruker
MICROTOF model mass spectrometer. The UV-Visible absorption spectra were
recorded on a UV-2550 UV-Vis spectrometer (Shimadzu, Kyoto, Japan). The IR
spectra were measured on a Nicolet 6700 FT-IR spectrometer using KBr discs. Silica
gel 60 Merck cat. Nos. 7734 and 7749 was used as absorbent for open column
chromatography (CC) and radial chromatography (Chromatotron®), respectively. Thin
layer chromatography (TLC) was performed on pre-coated Merck silica gel 60 F254

plates (0.25 mm thick layer) and visualized with 10% H,SO,~MeOH solution.

23 Extraction and isolation

The roots of C. cochinchinense (7.6 kg) were extracted with CH,Cl, (3 x 5 L) at
room temperature for 1 week. The combined extract was evaporated to give a
yellowish-brown gum (174.95 ¢) was subjected to silica gel CC using a system of
hexane (2 L), gradient of hexane-CH,Cl, 90, 80, 60, and 20% (5 L) and gradient of
CH,Cl,—MeOH 95, 90, 80, 60, and 40% (5 L) yielding eight fractions (A-G). Fraction A
(13 g) was subjected to silica gel CC using a system of 50 and 10% hexane—CH,Cl,
(800 mL) to provide two subfractions (A1-A2). Subfraction Al was applied to
Sephadex LH-20 CC, 50% of CH,Cl,-MeOH and further purified by chromatotron with
a system of 10% EtOAc-hexane (500 mL each) to yield 2 (1.7 mg) and 11 (2.0 mg).
Subfraction A2 was subjected to chromatotron with a system of 10% EtOAc-hexane
to give compounds 3 (1.0 mg).and 7 (3.0 mg). Fraction B (8.0 ¢) was purified over
silica gel CC using a system of 30% hexane-CH,Cl, and gradient of CH,Cl,-MeOH 100,
95, and 90% (1 L) to give two subfractions (B1-B2). Then subfraction B1 (3 g) was also
applied to a Sephadex LH-20 CC eluted with a system of 50% CH,Cl,-MeOH (900 mL
each) followed by preparative thin layer chromatography (PTLC) with a system of
10% hexane-EtOAc (500 mL each) to give 1 (1.1 mg) and 6 (7.8 mg). Compound 16

(6.67 mg) was obtained from subfraction B2 (1.5 ¢) by Sephadex LH-20 CC eluted
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with a system of 50% CH,Cl,-MeOH (500 mL each) and chromatotron with a system
of 10% EtOAc-hexane (100 mL). Fraction C (4.4 g) was separated by Sephadex LH-20
CC with a system of 50% CH,Cl,-MeOH (500 mL) and further applied to a
chromatotron with a system of 20% EtOAc-hexane (200 mL) to provide subfractions
(C1-C2). Subfraction C2 (2.0 g) was purified with PTLC using a system of 10% acetone-
hexane (100 mL each) to furnish 4 (1.0 mg), 5 (8.0 mg), and 20 (2.0 mg). Fraction D
(8.5 ¢) was purified by Sephadex LH-20 column eluted with 50% CH,Cl,-MeOH (2 L)
to give three subfractions (D1-D3). Then Subfraction D1 (3.2 g) was purified by
chromatotron with a system of 40% hexane-CH,Cl, (200 mL) to obtain compounds
12 (4.2 mg) and subfraction D2 (2.2 ¢) was applied to chromatotron with a system of
50% hexane-CH,Cl, (200 mL) to yield 9 (4.5 mg). Fraction E (3.0 ¢) was subjected to
Sephadex LH-20 CC eluted with a system of 50% CH,Cl,-MeOH (400 mL each) and it
was also purified by chromatotron with a system of 80% hexane-CH,Cl, (300 mL) to
afford three subfractions (E1-E3). Subfraction E2 was applied to chromatotron with a
system of 80% hexane-CH,Cl, (100 mL) to give compounds 8 (3.0 mg) and 13 (2.5
mg). Compound 18 (3.2 mg) was obtained from subfraction E3 by chromatotron with
a system of 50% hexane-CH,Cl, (100 mL). Fraction F (5.8 g) was separated by silica
gel CC using isocratic elution of 50% hexane-CH,Cl,

(1 L) and using a system of 100, 95, and 90%, CH,Cl,-MeOH (1 L) to give compounds
10 (3.64 mg) and 14 (2.5 mg). Then it was also applied to chromatotron with a
system of 80% hexane—CH,Cl, (300 mL) to obtain compound 19 (4.3 mg). Finally,
fraction G (2.2 g) was subjected to silica gel CC elution with 30% EtOAc-hexane (1L)
and further applied to a chromatotron with 10% EtOAc-hexane (200 mL) to yield

compounds 9 (3.7 mg), 15 (3.6 mg), and 17 (4.9 mg), respectively.
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The isolated compounds were identified by means of various spectroscopic
methods including MS, 1D and 2D NMR techniques as well as comparison with the

previous literature for known compounds.

The isolation and purification of all isolated compounds from the roots of C.

cochinchinense were briefly summarized in Schemes 2.1, 2.2, 2.3, and 2.4.
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2.4 Cytotoxic activity against human cancer cell lines procedure

All isolated compounds (1-22) were applied to cytotoxic evaluation against
KB, Hela S-3, HT29, HepG2 cell lines employing the colorimetric method [21].
Doxorubicin was used as the reference substance which exhibits activity against five
human cancer cell lines. The 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium
bromide (Sigma Chemical Co., USA) was dissolved in saline to make a 5 mg/mL stock
solution. Cancer cells (3x103 cells) suspended in 100 pg/wells of MEM medium
containing 10% fetal calf serum FCS, Gibco BRL, Life Technologies, NY, USA) were
seeded onto a 96-well culture plate (Coster, Corning Incorporated, NY 14831, USA).
After 72 h pre-incubation at 37°C in a humidified atmosphere of 5% CO,/95% air to
allow cellular attachment, various concentrations of test solution (10 uL/well) were
added and these were then incubated for 48 h under the above conditions. At the
end of the incubation at 37°C for 4 h. The supernatant was decanted, and DMSO
(100 pL/well) was added to allow formosan solubilization. The optical density (OD) of
each well was detected using Microplate reader at 550 nm and for correction at 595
nm. Each determination represented the average mean of six replicates. The 50%

inhibition concentration (ICsy value) was determined by curve fitting.
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CHAPTER Il
RESULTS AND DISCUSSION

3.1 Properties and structural elucidation of isolated compounds

The roots C. cochinchinense were grounded and extracted with CH,Cl, at
room temperature for 2 weeks. The CH,Cl, crude extract was further subjected by
various chromatographic methods using silica gel and Sephadex LH-20 as stationary
phases to afford four new xanthones, cratochinone A-D (1-4) along with sixteen
known xanthones (5-20), including pancixanthone-A (5), neriifolone A (6),
macluraxanthone (7), 10-O-methyxlmacluraxanthone (8), pruniflorone G (9),
pruniflorone  H (10), 6-deoxyjacareubin (11), 9-hydroxycalabaxanthone (12),
cratoxylumxanthone A (13), formoxanthone B (14) cochinchinone J (15),
cochinchinone A (16), B-mangostin (17), 3,8-dihydroxy-1,2-dimethoxyxanthone (18),
1,5-dihydroxy-6-methoxyxanthone (19) and and 1,3,7-trihydroxyxanthone (20). The
structures of all isolated compounds were characterized using spectroscopic method
especially, NMR spectroscopies, as well as comparison with the previously reported

in the literature.

3.1.1 Cratochinone A (1)

Figure 3.1 The chemical structure of compound 1

Cratochinone A (1) was obtained as a yellow gum. Its molecular formula was
determined as CyHy,Og by HRESIMS data (m/z 379.1148 [M + Na]’, calcd. for
CooH200gNa, 379.1158). The UV spectrum displayed absorption bands at )\max 394,
315, and 244 nm. The IR spectrum showed phenolic hydroxyl groups and carbonyl

group at 3432 and 1642 cm™. The 'H NMR spectrum displayed a signal for aromatic
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proton at &y 6.40 (1H, s, H-2) and two ortho-coupled aromatic protons at &y 6.99 (1H,
d, J=8.8, H-7) and 6y 7.94 (1H, d, J = 8.8, H-8). In the HMBC spectrum (Table 3.1,
Figure. 3.1), three aromatic protons were located at C-2, C-7, and C-8 by the
correlation of 8, 6.40 to 6. 166.1 (C-1), 6. 162.8 (C-3), 6 114.2 (C-4), and &, 103.8 (C-
9a), &y 6.99 to &¢ 134.5 (C-5), 6¢ 155.4 (C-6) and &¢ 115.1 (C-8a), and &y 7.94 to C-6, b¢
181.29 (C-9), and &¢ 150.3 (C-10a), respectively. In addition, the splitting pattern and
coupling constants of three olefinic protons at &y 6.30 (dd, J = 17.2, 10.7 Hz, H-2),
4.85(d, J = 17.2 Hz, H-3"a), and 4.85 (d, J = 10.7 Hz, H-3'b) indicated the presence of a
terminal alkene as a part of a 1,1-dimethylallyl group which also displayed two
singlets for methyl groups at &y 1.70 (each 3H, s, H-4" and H-5'). The correlations of &
6.30 to C-4, two methyl protons at &4 1.70 to 6¢ 114.2 (C-4) and 6¢ 151.0 (C-2),
confirming that a 1,1-dimethylallyl group was connected at C-4 of ring A. The 'H and
C NMR spectroscopic data (Table 3.1) were shown to be similar to those of the
known xanthone, isocudraniaxanthone A [22], except that the hydroxyl groups at C-1
and C-5 of isocudraniaxanthone A were substituted by methoxy groups. On the basis
of HMBC cross peak of 1 (Figure. 3.2), the methoxy protons at &, 3.96 (3H, s, 1-OCHs)
and 3.84 (3H, s, 5-OCH;) showed a cross peak with C-1 of ring A and C-5 of ring B,

respectively. Thus, the completed assignment of cratochinone A was determined as

1.
O (OcHs
HO o) OH
OCH,

Figure 3.2 Selected HMBC (single headed arrow curves) and COSY (bold lines)

correlations of 1



Table 3.1 'H, *C and HMBC NMR data of 1 CDCl; (400 MHz for 'H, 100MHz for *C)

cratochinone A (1)

Position
6y Uin Hz) 8¢ HMBC correlations
1 - 166.1 -
2 6.40, (s) 96.4 C-1, CG-3,C4, C-9a
3 - 162.8 -
a - 114.2 -
5 - 134.5 -
6 - 155.4 -
7 6.99, (d, 8.8) 113.5 C-5, C-6, C-8a
8 7.94, (d, 8.8) 122.7 C-6, C-9, C-10a
9 - 181.2 -
4a - 157.6 -
8a - 115.1 -
9a - 103.8 -
10a - 150.3 -
1’ - 41.7 -
2’ 6.30, (dd, 17.2, 10.7) 151.0 C-4, -3, C4, C-5
3’ 4.85, (d, 17.2) 108.0 C-1, 2
4.85, (d, 10.7) 108.0
4’ 1.70, (s) 30.4 4, C-1, C-2, G5
5 1.70, (s) 30.2 4, C-1, G2, Cc4
1-OCH, 3.96, (S) 56.0 C-1
3-OH - - -
5-OCHs 3.84, (S) 62.8 C-5

6-OH - - -
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3.1.2 Cratochinone B (2)

Figure 3.3 The chemical structure of compound 2

Cratochinone B (2) was obtained as a brown gum. A molecular formula of
CsoH360s was suggested by HRESIMS data (m/z = 493.2582 [M + H]*, calcd for
CsoH370¢, 493.2590). The UV spectrum displayed absorption bands at }\max at 369,
315, 269, and 245 nm. The IR data indicated the presence of a xanthone skeleton at
3431, 1639, and 1610 cm™L. The 'H NMR spectrum displayed two aromatic protons at
64 6.35 (1H, s, H-4) and &y 6.84 (1H, s, H-5). The presence of a prenyl group was
indicated by signals for an olefinic proton at &4 5.23 (1H, m, H-2'), methylene protons
at 6y 3.35 (2H, d, J = 7.2 Hz, H-1), and two methyl groups at &, 1.68 (3H, s, H-4') and
1.79 (3H, s, H-5). The correlation of &, 3.35 to 8¢ 163.9 (C-1), 6¢ 111.9 (C-2) and 6¢
159.3 (C-3) in the HMBC spectrum (Table 3.2, Figure. 3.3) established that the prenyl

unit was connected at C-2 of ring A.
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Figure 3.4 Selected HMBC (single headed arrow curves) and COSY (bold lines)

correlations of 2

Furthermore, a geranyl unit was identified from the resonances of two olefinic
protons at &, 5.26 (1H, m, H-2") and 5.10 (1H, m, H-6"), three methylene protons at
64 4.10 (2H, d, J = 7.2 Hz, H-17), 6y 2.03 (4H, m, H-4" and H-5"), and three methyl
groups at & 1.83 (3H, s, H-10"), 1.68 (3H, s, H-8"), and 1.67 (3H, s, H-9"), which were
also corroborated by the observed HMBC data (Figure. 3.4). The 'H and *C NMR
spectroscopic data (Table 3.2) were shown to be similar to those of the known
xanthone, norcowanin [23], except that the hydroxyl group at C-1 was replaced by a
methoxy group. In the HMBC correlations of 2 (Figure. 3.4), the methoxy proton at &
3.90 (3H, s, 1-OCHs) showed a cross peak with C-1. The remaining signals of methoxy
proton at &, 3.80 (3H, s, 7-OCHs), which were accommodated at 8¢ 143.0 (C-7) of ring
B were based on HMBC cross peak. From the above evidence, cratochinone B had

the structure 2.
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Table 3.2 'H, *C and HMBC NMR data of 2 CDCl; (400 MHz for *H, 100MHz for *C)

cratochinone B (2)

Position
6, UinHz) 6. HMBC correlations
1 - 163.9 -
2 - 111.9 -
3 - 159.3 -
4 6.35, (s) 89.2 C-2, C-3, C-4a, C-9a
5 6.84, (s) 101.9 C-6, C-7, C-8a, C-10a
6 - 155.4 -
7 - 143.0 -
8 - 137.8 -
9 - 183.2 -
43 - 155.7 -
8a - 112.2 -
9a - 103.3 -
10a - 154.9 -
i 3.35,(d, 7.2) 21.8 C-1,C-2,C-3,C-2,C-3
2’ 5.23,(m) 122.7 c-a, C-5
3’ - 131.6 -
a4 1.68, (s) 25.4 C-2,C5
5 1.79, (s) 18.6 C-2,Cc4
17 4.10, (d, 7.2) 26.2 C-7, C-8, C-8a, C-27, C-3”
2” 5.26,(m) 125.4 c-9”
3” = 135.7 -
4 2.03, (m) 32.3 C-37, C-57
5”7 2.03, (m) 27.2 C-3", C-5"
6” 5.10, (m) 123.6 C-57, C-87, C-107
7’ - 132.1 -
8” 1.83, (s) 23.4 c-6", C-7", C-10"
9” 1.68, (s) 14.5 Cc-27, C-37, C-4”
10” 1.67, (s) 18.6 c-6", C-7",C-8"
1-OCH,4 3.90, (s) 56.3 1
3-OH - - -
6-OH - - -
7-OCH,4 3.80, (s) 61.9 C-7
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3.1.3  Cratochinone C (3)

O  OCH,

Figure 3.5 The chemical structure of compound 3

Cratochinone C (3) was obtained as a brown gum. Its molecular formula was
deduced as CyoHs,04 by HRESIMS data (m/z = 477.2270 [M + HI", calcd for CyoHs50,
477.2232). The UV and IR spectrum displayed characteristic of xanthone skeleton.
The 'H NMR spectrum (Table 3.3) displayed signals of two ortho-coupled aromatic
protons at &y 7.73 (1H, d, J = 8.8 Hz, H-7) and 6.95 (1H, d, J = 8.8 Hz, H-7). The
occurrence of a chromene ring bearing a methyl group was inferred from signals at &
6.75 (1H, d, J = 10.0 Hz, H-17), 5.60 (1H, d, J = 10.0 Hz, H-2’), and two methyl group at
6y 1.64 (3H, s, H-10"). and the six-carbon was displayed signals for an olefinic proton
at & 5.11 (1H, m, H-6"), methylene protons at &, 2.02 (each 2H, d, J = 7.2 Hz, H-4’
and H5’), and two methyl groups at &, 1.64 (3H, s, H-9’) and 1.49 (3H, s, H-8’). The
location of a chromene ring was confirmed by HMBC (Table 3.3, Figure. 3.6), in
which the methine proton H-1" at 6, 6.75 was correlated with &- 157.2 (C-1), 159.3
(C-3) and 81.3 (C-3’), while the methine proton H-2" at &y 5.60 was correlated with &¢
105.6 (C-2) and 41.5 (C-4”).
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Figure 3.6 Selected HMBC (single headed arrow curves) and COSY (bold lines)

correlations of 3

In addition, the splitting pattern and coupling constants of three olefinic
protons at &, 6.64 (1H, d, J = 17.4, 11.0 Hz, H-2”), 5.17 (1H, d, J = 17.4 Hz, H-3”a) and
5.03 (1H, d, J = 11.0 Hz, H-3”b) indicated the presence of terminal alkene as a part of
1,1-dimethylallyl group which also displayed signals of two methyl group at & 1.64
(each 3H, s, H-4” and H-5”). The correlation of & 6.64 to 6. 114.4 (C-4) and 104.8 (C-
3”) in the HMBC spectrum (Table 3.3, Figure. 3.6) established that the 1,1-
dimethylallyl group was connected at C-4 of ring A. The 'H and C NMR
spectroscopic data (Table 3.2) were shown to be similar to those of the known
xanthone, pruniflorone H [24], except that the hydroxyl group at C-1 was replaced by
a methoxy group. In the HMBC correlations of 3 (Figure. 3.6), the methoxy proton at
64 3.90 (3H, s, 1-OCHs;) showed a cross peak with C-1. From this data, the structure of

3 suggested that compound 3 was cratochinone C.
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Table 3.3 'H, *C and HMBC NMR data of 3 CDCl; (400 MHz for *H, 100MHz for *C)

cratochinone C (3)

Position
6, UinHz) 6. HMBC correlations
1 - 157.2 -
2 - 105.6 -
3 - 159.3 -
4 - 114.4 -
5 - 133.7 -
6 - 151.6 -
7 6.95, (d, 8.8) 108.6 C-5, C-8a
8 7.73, (d, 8.8) 116.9 C-6, C-9, C-10a
9 - 181.1 -
da - 154.6 -
8a - 113.5 -
9a - 108.7
10a - 144.5 -
N 6.75, (d, 10) 116.3 C-1,C3,C-%
2’ 5.60, (d, 10) 127.3 C-2,C1,C3, C4
3’ - 81.3 -
iy 2.02, (m) 41.5 C-2,C5
5 2.02, (m) 24.2 C-3,C-7
6’ 5.11,(m) 125.7 a4, C-5,C8, CY
7 - 130.5 -
8’ 1.49, (s) 18.1 C-6,C-1, 9
9’ 1.49, (s) 29.8 C-6,C-7,C8
10’ 1.64, (s) 258 Cc-2,Cc¢
17 - 41.6 -
2” 6.64 (dd, 17.6, 10.6) 155.1 C-4, C-17, C-3"
3” 5.17,(d, 17.6) 104.9 C-27, C-4", C-5"
5.03, (d, 17.6)
4” 1.66, (s) 28.6 c-4, C-5"
57 1.66, (s) 28.0 c-47, C-4”
1-OCH34 4.01, (s) 62.44 C-1
5-OH - - -

6-OH
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3.1.4 Cratochinone D (4)

OH O OCH;
7 8a_H 9a 1 OH
LK
6 1020 4a OCHs
Figure 3.7 The chemical structure of compound 4

Cratochinone D (4) was obtained as a yellow powder. Its molecular formula
was determined as C;sH;,06 by HRESIMS measurement through the molecular ion
peak at m/z 311.0542 [M + Nal]" (calcd for Cy5H,,0¢Na, 311.0542). The UV spectrum
displayed absorption bands at Ao 312, 265 and 245 nm, which is typical of
xanthone chromophore. The IR spectrum showed O-H and C=0O stretching bands at
3208 and 1678 cm™. The 1H NMR spectrum displayed signals for a chelated hydroxy
proton at &4 13.12 (1H, s, H-8) and aromatic proton singlet at &, 6.78 (1H, s, H-4).
Moreover, the splitting pattern and coupling constants of a 1,2,3-trisubstituted
benzene moiety in ring B were observed at &, 7.50 (1H, t, J = 8.0 Hz, H-6), 6.83, (1H,
dd, J = 8.0, 2.0 Hz, H-5) and 6.75, (1H, dd, J = 8.0, 2.0 Hz, H-7). The methoxy protons
at 6y 3.96 (3H, s, 1-OCHs) and 3.84 (3H, s, 5-OCHs) showed a cross peak with C-1 of
ring A and C-5 of ring B, respectively (Figure 3.8). Thus, the structure of cratochinone

D was assigned as 4.

OH O OCH;

{ < _OH
eIk
h" o) ?CH3

Figure 3.8 Selected HMBC (single headed arrow curves) and COSY (bold lines)

correlations of 4
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*C and HMBC NMR data of 4 CDCl; (400 MHz for *H, 100MHz for **C)

cratochinone D (4)

Position
6y Uin Hz) 0. HMBC correlations
1 - 152.3 -
2 - 137.5 C-1, C-3,C4, C-9a
3 - 155.9 -
il 6.78, (s) 99.1 -
5 6.83, (dd, 8.0, 2.0) 106.3 -
6 7.50, (t, 8.0) 136.0 -
7 6.75, (dd, 8.0, 2.0) 108.8 C-5, C-6, C-8a
8 - 162.1 C-6, C-9, C-10a
9 ; 1815 -
43 - 154.7 -
8a - 110.7 -
9a - 109.3 -
10a - 155.6 -
1-OCH,4 4.01, (s) 61.8 C-1
2-OH - - -
3-OCH, 4.03, (s) 56.3 C3
8-OH 13.12, (s) - C-7,C-8, C-8a
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3.1.5 Pancixanthone-A (5)
SO
OH

Figure 3.9 The chemical structure of compound 5

Pancixanthone-A (5) (Figure 3.9) The structure of compound 5 was
determined and confirmed by comparison of the physical and spectroscopic data

with a previous report [25].

3.1.6 Neriifolone A (6)
(@] OH
JOCL),
OCHs

Figure 3.10 The chemical structure of compound 6

Neriifolone A (6) (Figure 3.9) The structure of compound 6 was determined
and confirmed by comparison of the physical and spectroscopic data with those of

neriifolone A reported in the literature [26].
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3.1.7 Macluraxanthone (7)
(0] OH
o6
HO (@) O
OH

Figure 3.11 The chemical structure of compound 7

Macluraxanthone (7) (Figure 3.11) The structure of compound 6 was
determined and confirmed by comparison the physical and the 'H and >C NMR data

of compound 6 with those of macluraxanthone reported in the literature [27].

3.1.8 10-O-methyxlmacluraxanthone (8)
(@) OH
6
H,CO 0 0
OH
Figure 3.12 The chemical structure of compound 8
10-O-methyximacluraxanthone (8) (Figure 3.12) The 'H and >C NMR data of

compound 8 was identical to 10-O-methyxlmacluraxanthone by comparison of the

physical and spectroscopic data with previous reported in the literature [28].



36

3.1.9 Pruniflorone G (9)

Figure 3.13 The chemical structure of compound 9

Pruniflorone G (9) (Figure 3.13) The structure of compound 9 was determined
and confirmed by comparison of the physical and spectroscopic data with a previous

report [24].

3.1.10 Pruniflorone H (10)

H,CO

Figure 3.14 The chemical structure of compound 10

Pruniflorone H (10) (Figure 3.14) The structure of compound 10 was
determined and confirmed by comparison the physical and the 'H and *C NMR data

of compound 10 with those of pruniflorone H reported in the literature [24].



37

3.1.11 6-deoxyjacareubin (11)
0] OH
L
@) @)
OH
Figure 3.15 The chemical structure of compound 11

6-deoxyjacareubin (11) (Figure 3.14) The 'H and >C NMR data of compound 8
was identical to 6-deoxyjacareubin by comparison of the physical and spectroscopic

data with previous reported in the literature [29].

3.1.12 9-hydroxycalabaxanthone (12)

Figure 3. 16 The chemical structure of compound 12

9-hydroxycalabaxanthone (12) (Figure 3.16) The structure of compound 12
was determined and confirmed by comparison the physical and the 'H and >C NMR
data of compound 12 with those of 9-hydroxycalabaxanthone reported in the

literature [30].
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3.1.13 Cratoxylumxanthone A (13)

Figure 3.17 The chemical structure of compound 13

Cratoxylumxanthone A (13) (Figure 3.17) The 'H and *C NMR data of
compound 13 was identical to cratoxylumxanthone A by comparison of the physical

and spectroscopic data with previous reported in the literature [13].

3.1.14 Formoxanthone B (14)

Figure 3. 18 The chemical structure of compound 14

Formoxanthone B (14) (Figure 3.18) The structure of compound 14 was
determined and confirmed by comparison the physical and the 'H and *C NMR data

of compound 14 with those of formoxanthone B reported in the literature [31].



39

3.1.15 Cochinchinone J (15)

Figure 3.19 The chemical structure of compound 15

Cochinchinone J (15) (Figure 3.18) The 'H and "°C NMR data of compound 15
was identical to cochinchinone J by comparison of the physical and spectroscopic

data with previous reported in the literature [32].

3.1.16 Cochinchinone A (16)

Figure 3.20 The chemical structure of compound 16

Cochinchinone A (16) (Figure 3.18) The 'H and *C NMR data of compound 16
was identical to cochinchinone A by comparison of the physical and spectroscopic

data with previous reported in the literature [15].
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3.1.17 8-mangostin (17)

Figure 3.21 The chemical structure of compound 17

B-mangostin (17) (Figure 3.20) The 'H and >C NMR data of compound 17 was
identical to B-mangostin by comparison of the physical and spectroscopic data with

previous reported in the literature [33].

3.1.18 3,8-dihydroxy-1,2-dimethoxyxanthone (18)
OCHLO OH

HO (0]

Figure 3.22 The chemical structure of compound 18

3,8-dihydroxy-1,2-dimethoxyxanthone (18) (Figure 3.21) The 'H and >C NMR
data of compound 16 was identical to 3,8-dihydroxy-1,2-dimethoxyxanthone by
comparison of the physical and spectroscopic data with previous reported in the

literature [34].
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3.1.19 1,5-dihydroxy-6-methoxyxanthone (19)
O OH

H,CO ‘ o) ‘

OH

Figure 3.23 The chemical structure of compound 19

1,5-dihydroxy-6-methoxyxanthone (19) (Figure 3.22) The 'H and *C NMR
data of compound 19 was identical to 1,5-dihydroxy-6-methoxyxanthone by
comparison of the physical and spectroscopic data with previous reported in the

literature [35].

3.1.20 1,3,7-trihydroxyxanthone (20)
(@) OH
TR,
(0] OH

Figure 3.24 The chemical structure of compound 20

1,3,7-trihydroxyxanthone (20) (Figure 3.21) The 'H and >C NMR data of
compound 20 was identical to 3,8-dihydroxy-1,2-dimethoxyxanthone by comparison

of the physical and spectroscopic data with previous reported in the literature [36].
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3.2 Cytotoxicity of isolated compounds (1-31) against human cancer cell
lines

all isolated xanthones (1-18) were first evaluated in vitro for their cytotoxicity
against KB and Hela S-3 cells. The active compounds (2, 7, 9, 12, and 14) with ICs
values lower than 10 uM toward these two cancer cell lines were further evaluated
against three cell lines, including HT-29, MCF-7, and Hep G2 cells. The results of
cytotoxicity were shown in Table 3.5. Most of the tested compounds showed
moderate to weak cytotoxicity, except 2, 7, and 9, which showed significant cytotoxic
activities against five human cancer cell lines with ICsy values in the range of 0.91-
9.93 uM. Compound 12 exhibited potent cytotoxicity toward KB, Hela S-3, and HT-29
cells with 1Cs5 values of 7.39, 6.07, and 8.11 uM, respectively. Whereas 14 showed
good cytotoxicity toward both KB and Hela S-3 cells with IC5, values of 7.28 and 9.84
pM. Compounds 5, 18, 19, and 20 showed inactive cytotoxicity toward both KB and
Hela S-3 cells with ICs5y values more than 100 uM. In addition, two new xanthones,
compound 3 and 4 were not tested on cytotoxic activities against five human cancer
cell lines because limitation of the amount of substance. The SAR studied data
(Figure. 4.1; Table 3.5) of xanthones suggest that the geranyl group at C-8 [37], the
ortho hydroxy group at C-5 and C-6, and the 1,1-dimethylallyl group at C-4 [38],
might improve the cytotoxicity as inferred from the comparison of their cytotoxicity

of xanthones 1-20.
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Table 3.5 Cytotoxicity of isolated compounds (1-20) from C. cochinchinense roots

Compounds ICso (M) £ SD
KB Hela S-3 HT-29 MCF-7 Hep G2
1 4217 + 2.83 58.41 + 0.51 N.T. N.T. N.T.
2 1.54 + 0.02 091 +0.21 7.04 +0.83 1.76 £ 0.06 1.72 + 0.10
3 N.T. N.T. N.T. N.T. N.T.
4 N.T. N.T. N.T. N.T. N.T.
5 > 100 > 100 N.T. N.T. N.T.
6 10.14 £ 0.10 12.62 + 0.85 N.T. N.T. N.T.
7 1.60 + 0.02 1.85+ 0.19 8.58 + 0.14 1.18 £ 0.04 9.57 +0.74
8 53.01 + 4.88 35.12 + 2.63 N.T. N.T. N.T.
9 2.04 + 0.04 2.681 +0.10 9.93 + 0.52 254 +0.22 4.43 + 0.56
10 46.11 + 1.17 40.32 + 2.62 N.T. N.T. N.T.
11 28.01 + 0.84 13.42 + 0.91 N.T. N.T. N.T.
12 739 £0.15 6.07 + 0.59 8.11 +0.43 13.67 + 0.31 27.72 + 0.61
13 26.44 + 2.61 10.50 + 0.86 N.T. N.T. N.T.
14 7.28 £ 0.56 9.84 + 0.45 24.14 + 0.7 19.63 + 1.43 19.96 + 0.94
15 42.18 + 1.60 59.25 £ 0.14 N.T. N.T. N.T.
16 28.96 + 0.10 20.54 + 0.83 N.T. N.T. N.T.
17 24.99 + 3.16 14.383 + 2.67 N.T. N.T. N.T.
18 > 100 > 100 N.T. N.T. N.T.
19 > 100 > 100 N.T. N.T. N.T.
20 > 100 > 100 N.T. N.T. N.T.
Doxorubicin 0.22 + 0.01 0.15 + 0.05 0.59 + 0.03 1.29 + 0.02 0.99 + 0.17

Note: ICso < 10 MM = good activity, 10 UM < ICsy < 30 MM = moderate activity, 30 M < ICso < 100 M = weak

activity, ICso > 100 MM = inactive.

N.T.; the compounds were not tested.
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CHAPTER IV
CONCLUSION

In conclusion, compounds 1-20 were successfully isolated and purified from
dichloromethane extracts of C. cochinchinense roots, which was fractionated through
various chromatographic methods to afford four new xanthone derivatives, named
cratochinone A (1) and cratochinone B (2), cratochinone C (3), cratochinone D (4),
along with 16 known xanthones (Figure. 4.1), including pancixanthone-A (5),
neriifolone A (6), macluraxanthone (7), 10-O-methyxlimacluraxanthone (8),
pruniflorone G (9), pruniflorone H (10), 6-deoxyjacareubin  (11), 9-
hydroxycalabaxanthone (12), cratoxylumxanthone A (13), formoxanthone B (14)
cochinchinone J (15), cochinchinone A (16), B-mangostin (17), 3,8-dihydroxy-1,2-
dimethoxyxanthone (18), 1,5-dihydroxy-6-methoxyxanthone (19) and and 1,3,7-
trihydroxyxanthone (20). The structures of all isolated compounds were
characterized using spectroscopic method especially, 1D and 2D NMR as well as
comparison of the 'H and C NMR with the previously reported in the literature.
Moreover, the cytotoxic activity against KB and Hela S-3 cancer cell lines were

performed to evaluate the bioactivity of all isolated compounds.

The cytotoxicity of all isolated compounds (1-20) were first evaluated in vitro
for their cytotoxicity against KB and Hela S-3 cells. The active compounds (2, 7, 9,
12, and 14) with ICsy values lower than 10 uM toward these two cancer cell lines
were further evaluated against three cell lines, including HT-29, MCF-7, and Hep G2
cells. Most of the tested compounds showed moderate to weak cytotoxicity, except
2, 7, and 9, which showed significant cytotoxic activities against five human cancer
cell lines with ICsy values in the range of 0.91-9.93 uM. Compound 12 exhibited
potent cytotoxicity toward KB, Hela S-3, and HT-29 cells with ICs5, values of 7.39,
6.07, and 8.11 pM, respectively. Whereas 14 showed good cytotoxicity toward both

KB and Hela S-3 cells with ICsq values of 7.28 and 9.84 uM. Compounds 5, 18, 19,
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and 20 showed inactive cytotoxicity toward both KB and Hela S-3 cells with ICs,
values more than 100 uM. In addition, two new xanthones, compound 3 and 4 were
not tested on cytotoxic activities against five human cancer cell lines because

limitation of the amount of substance.

OCHLO  OH O OH

L2
HO O H5CO (0]
18 OH 19

Figure 4.1 Structures of xanthones 1-20 from the roots of C. cochinchinense
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The future works may involve the modification and synthesis of active
compounds for a new potent drug. In addition, these results might provide basic
knowledge to study the mechanism of active compounds toward disease for the

drug improvement.
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