

โครงการ

การเรียนการสอนเพื่อเสริมประสบการณ์

ชื่อโครงการ การเปรียบเทียบอัลกอริทึมเชิงวิวัฒนาการแบบดั้งเดิมกับอัลกอริทึม

 เชิงวิวัฒนาการแบบควอนตัมในการออกแบบพันธุกรรมผ่านการปรับ

 ความเหมาะสมแบบหลายวัตถุประสงค์

 Comparison between Conventional GA and Quantum-inspired GA on

 Genetics Design through Multi-Objective Optimization.

ชื่อนิสิต นายภัทรพล ค ามูล 603 36466 23

ภาควิชา คณิตศาสตร์และวิทยาการคอมพิวเตอร์

 สาขาวิชา วิทยาการคอมพิวเตอร์

ปีการศึกษา 2563

คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ก

การเปรียบเทียบอัลกอริทึมเชิงวิวัฒนาการแบบดั้งเดิมกับอัลกอริทึมเชิงวิวัฒนาการแบบควอนตัมใน

การออกแบบพันธุกรรมผานการปรับความเหมาะสมแบบหลายวัตถุประสงค

นายภัทรพล คํามูล

โครงงานนี้เปนสวนหนึ่งของการศึกษาตามหลักสูตรวิทยาศาสตรบัณฑิต

สาขาวิชาวิทยาการคอมพิวเตอร ภาควิชาคณติศาสตรและวิทยาการคอมพิวเตอร

คณะวิทยาศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2563

ลิขสิทธิ์ของจุฬาลงกรณมหาวิทยาลัย

ข

Comparison between Conventional GA and Quantum-inspired GA on Genetics Design

through Multi-Objective Optimization.

Phattharaphon Khammun

A Project Submitted in Partial Fulfillment of the Requirements

For the Degree of Bachelor of Science Program in Computer Science

Department of Mathematics and Computer Science

Faculty of Science

Chulalongkorn University

Academic Year 2020

Copyright of Chulalongkorn University

ค

ĀัüขšĂโครงงาน การเปรียบเทียบĂัลกĂริทึมเชิงüิüัฒนาการแบบด้ังเดิมกับĂัลกĂริทึม
 เชิงüิüัฒนาการแบบคüĂนตัมในการĂĂกแบบพันธกุรรมผŠานการปรับ
 คüามเĀมาะÿมแบบĀลายüัตถุประÿงคŤ

โดย นายภัทรพล คĞามูล

ÿาขาüิชา üิทยาการคĂมพüิเตĂรŤ

ĂาจารยŤที่ปรกึþาโครงงานĀลัก ĂาจารยŤ ดร.นฤมล ประทานüณิช

 ภาคüิชาคณิตýาÿตรŤและüิทยาการคĂมพüิเตĂรŤ คณะüิทยาýาÿตรŤ จāุาลงกรณŤมĀาüิทยาลัย ĂนุมตัิใĀšนับ
โครงงานน้ีเป็นÿŠüนĀน่ึงขĂงการýึกþาตามĀลักÿูตรปริญญาบัณฑิต ในรายüิชา 2301499 โครงงานüิทยาýาÿตรŤ
(Senior Project)

 …………………………………………………… ĀัüĀนšาภาคüิชาคณิตýาÿตรŤ

 (ýาÿตราจารยŤ ดร. กฤþณะ เนียมมณี) และüิทยาการคĂมพิüเตĂรŤ

คณะกรรมการÿĂบโครงงาน

 …………………………………………………… ĂาจารยŤที่ปรกึþาโครงงานĀลัก

 (ĂาจารยŤ ดร.นฤมล ประทานüณิช)

 …………………………………………………… กรรมการ

 (ผูšชŠüยýาÿตราจารยŤ ýýิภา พันธุüดีธร)

 …………………………………………………… กรรมการ

 (ผูšชŠüยýาÿตราจารยŤ ดร. กิตพิร พลายมาý)

ง

 นายภัทรพล คĞามูล: การเปรียบเทียบĂัลกĂริทึมเชิงüิüัฒนาการแบบด้ังเดมิกับĂัลกĂริทึมเชิงüิüัฒนาการ
แบบคüĂนตัมในการĂĂกแบบพันธกุรรมผŠานการปรับคüามเĀมาะÿมแบบĀลายüัตถุประÿงคŤ. (Comparison

between Conventional GA and Quantum-inspired GA on Genetics Design through Multi-Objective

Optimization) Ă.ที่ปรึกþาโครงงานĀลัก: ĂาจารยŤ ดร. นฤมล ประทานüณิช, 35 Āนšา

 โครงงานเรืĂ่ง “การเปรียบเทียบĂัลกĂริทึมเชิงüิüัฒนาการแบบด้ังเดิมกับĂัลกĂริทึมเชิงüิüัฒนาการแบบ
คüĂนตมัในการĂĂกแบบพันธุกรรมผŠานการปรับคüามเĀมาะÿมแบบĀลายüัตถุประÿงคŤ” เป็นโครงงานท่ีจดัทĞาขึ้น
เพื่ĂýึกþาขšĂไดšเปรียบเÿียเปรียบ (trade-off) ระĀü ŠางการปรับปรุงÿายพันธŤจ ุล ินทรีย ŤโดยใชšĂัลกĂริทึมเชิง
üิüัฒนาการแบบด้ังเดิมกับĂัลกĂริทึมเชิงüิüัฒนาการแบบคüĂนตมั ข้ันตĂนการพัฒนาประกĂบไปดšüย 3 ÿŠüนĀลัก
คืĂÿรšางโมเดลจากĂัลกĂริทึมเชิงüิüัฒนาการแบบดั้งเดิม, ÿรšางโมเดลจากĂัลกĂริทึมเชิงüิüัฒนาการแบบคüĂนตัม
และýึกþาขšĂไดšเปรียบเÿียเปรียบขĂงทั้งÿĂงüิธีการ เมื่ĂýึกþาขšĂไดšเปรียบเÿียเปรียบขĂงท้ังÿĂงüิธีการเรียบรšĂย
แลšü ไดšขšĂÿรุปüŠา ĂัลกĂริทึมเชิงüิüัฒนาการÿามารถใĀšคĞาตĂบที่เĀมาะÿม(optimal solution) ไดšเชŠนเดียüกับ
ĂัลกĂริทึมเชงิüิüัฒนาการแบบดั้งเดิมและÿามารถเพิ ่มคüามĀลายĀลายใĀšกับคĞาตĂบไดš แตŠüิธีที่ใชšในการÿรšาง
โมเดล (implementation) ยังจĞาเป็นตšĂงไดšร ับการปรับปรุงโดยการเพิ ่มüิธีที่จะทĞาใĀšคĞาตĂบที่ถูกครĂบงĞา
(dominated solution) กลายเป็นคĞาตĂบท่ีไมŠถูกครĂบงĞา (nondominated solution)

ภาคüิชา คณิตýาÿตรŤและüิทยาการคĂมพิüเตĂรŤ ลายมืĂชื่Ăนิÿิต...

ÿาขาüิชา üิทยาการคĂมพüิเตĂรŤ ลายมืĂชื่ĂĂาจารยŤท่ีปรึกþาโครงงานĀลัก.............................. .

ปŘการýึกþา 2563

จ

##6033646623: MAJOR COMPUTER SCIENCE

KEYWORD: GENETIC ALGORITHMS, QUANTUM-INSPIRED GENETIC ALGORITHMS, OPTIMIZATION,

FLUX BALANCE ANALYSIS

PHATTHARAPHON KHAMMUN: COMPARISION BETWEEN CONVENTIONAL GA AND QUANTUM-

INSPIRED GA ON GENETICS DESIGN THROUGH MULTI-OBJECTIVE OPTIMIZATION. ADVISOR: PROF.

NARUEMON PRATANWANICH, Ph.D., 35 pp.

 The objective of this project is to study trade-off between conventional genetic algorithms

(GA) and quantum-inspired genetic algorithms (QGA) on genetic design through multi-objective

optimization. First, we implemented a GA model based on a previous work. Second, we

developed a QGA model for multi-objective optimization using the same strategies as in the GA

model. We finally compared and analyzed the results obtained from both models. We conclude

that the QGA approach can find optimal solutions as well as GA. Although the QGA solutions were

more diverse, most of them were dominated. Therefore, the strategies used in the QGA method

are still needed to be improved by adding some mechanisms to generate more nondominated

solutions.

Department: Mathematics and Computer Science Student’s Signature…………………………………………

Field of Study: Computer Science Advisor’s Signature…………………………………………

Academic Year: 2020

ฉ

ACKNOWLEDGEMENTS

 I would like to express my sincere thanks to my advisor, Professor Naruemon

Pratanwanich for her invaluable help and constant encouragement throughout the planning and

development of this project. I am most grateful for her teaching and advice.

 In addition, I most gratefully acknowledge my parent for all their support throughout the

period of this project.

ช

CONTENTS

 Page

ABSTRACT IN THAI ง

ABSTRACT IN ENGLISH จ

ACKNOWLEDGEMENTS ฉ

CONTENTS ช

LIST OF TABLES ฌ

LIST OF FIGURES ญ

CHAPTER I INTRODUCTION 1

 1.1 Background 1

 1.2 Objectives 2

 1.3 Scope 2

 1.4 Project Activities 2

 1.5 Benefits 4

 1.5 Report outlines 4

CHAPTER II THEORETICAL BACKGROUND 5

 2.1 Optimization 5

 2.2 Single-objective and multi-objective optimization problem 5

 2.3 Flux Balance Analysis (FBA) 6

ซ

 2.4 Mathematical representation of a metabolic model 6

 2.5 Classical algorithms for combinatorial optimization 7

 2.6 Non-domination sort genetic algorithm II (NSGA-II) 8

 2.7 Quantum-inspired algorithms for combinatorial optimization 9

CHAPTER III METHODOLOGY 11

 3.1 An overview of process 11

 3.2 Strategy of implementation in each step 11

CHAPTER IV RESULTS 16

 4.1 Result from the last generation 16

 4.2 Result along the evolution 18

CHAPTER 5 DISCUSSION 21

REFERENCES 22

APPENDIX 24

BIOGRAPHY 25

ฌ

LIST OF TABLES

 Page

Table 3.1 Lookup table 15

Table 4.1 The average time using per generation. 20

ญ

LIST OF FIGURES

 Page

Figure 2.1 A general form of an optimization problem used in FBA 7

Figure 2.2 A gene unit in the chromosome 10

Figure 2.3 A chromosome m-length 10

Figure 3.1 Initialization of GA 11

Figure 3.2 Initialization of QGA 12

Figure 3.3 Parent selection 13

Figure 3.4 Crossover of GA 13

Figure 3.5 Crossover of QGA 14

Figure 4.1 The final solution of all fronts. 16

Figure 4.2 Number of unique solutions in all front of the 1500th generation. 17

Figure 4.3 The most selected knockout gene in GA and QGA 17

Figure 4.4 The number of knockout gene 18

Figure 4.5 The number of unique solutions in the first front of each generation 19

Figure 4.6 the first front and the number of unique solutions 19

1

CHAPTER I

INTRODUCTION

1.1 Background

One of the goals in synthetic biology is to increase a cell’s production of certain

substances. It is involved with permuting gene activation patterns to investigate the effect of gene

expression that yield the most desirable substances. This process can be done by the combination

of “metabolic engineering” and “genetic engineering” techniques in order to modify gene

patterns in bacterial DNA.

In general, a bacterial DNA has more than 500 genes. Hence, it is challenging to explore

all patterns of active/inactive genes, which delivers more than 2ହ଴଴ possible combinations. In

addition, This process is costly and time-consuming. Currently, since metabolic networks, the

seriers of biochemical reactions in a cell, are well known, it is possible to simulate a cell’s
mechanism in vitro in order to discover a small set of gene combinations that drives the cell to

attain the desirable amount of objective products.

Despite using computer simulation, it’s prohibitively expensive to try all possible

experiments. Even if we perform the simulation process with modern computing technology, it is

still impractical to be done with limited resources. From this point, a genetic algorithm (GA) plays

an important role to address this challenge. GA is inspired by the evolutionary theory that the

fittest will survive through generations. We apply this idea to generate, select, and inherit good

answers to the next better answers until the goal-satisfied answers are obtained. While in principle

effective, GA is challenging to trade-off between exploitation and exploration as it uses a binary

representation in a combinatorial optimization. Here, we apply a quantum-inspired genetic

algorithm (QGA) by substituting binary representations with quantum states and then study

advantages and disadvantages between these two methods.

2

1.2 Objectives

To study advantages and disadvantages between genetic algorithms and quantum-

inspired genetic algorithms in the combinatorial optimization problem.

1.3 Scope

• Optimize only acetate and biomass fluxes.

• Consider only an E coli model.

1.4 Project Activities

1. Study genetic algorithms (GA).

2. Study the concept of metabolic engineering and microbial model.

3. Study flux balance analysis and multi-objective optimization models.

4. Study non-domination sort genetic algorithm II (NSGA-II).

5. Reproduce genetic Design through multi-objective optimization in Python.

6. Study the basics of quantum mechanics.

7. Study quantum-inspired genetic algorithms (QGA) via the combinatorial optimization

problems.

8. Implement quantum-inspired genetic algorithms in MATLAB.

9. Measure and compare performance and result given from QGA to GA.

3

Project Activities Gantt Chart

Processes 2021

Jan Feb Mar Apr May Jun Jul Sep Oct Nov Dec

1. Study genetic

algorithms (GA).

2. Study the concept of

metabolic engineering

and microbial model.

3. Study flux balance

analysis and multi-

objective optimization

models.

4. Study non-domination

sort genetic algorithm II

(NSGA-II).

5. Reproduce genetic

Design through multi-

objective optimization

in Python.

6. Study the basics of

quantum mechanics.

7. Study quantum-

inspired genetic

algorithms (QGA) via

the combinatorial

optimization problems.

8. Implement quantum-

inspired genetic

algorithms in MATLAB.

4

9. Measure and compare

performance and

result given from QGA

to GA.

1.5 Benefits

a) Benefit for the implementor

1. Learn and practice about genetic algorithms, specifically NSGA-II and QGA.

2. Be able to solve combinatorial optimization problems.

b) Benefit for users

1. Give information about computational methods in regard to comparing

performance between GA and QGA.

1.6 Report Outlines

 This report consists of five chapters as follows. Chapter I includes background, objectives,

scope, project activities and benefits of this project are presented. Chapter II includes the

theoretical background knowledge relating to the work in this project are reviewed. Chapter III

includes the methodology and the comparison pros and cons between models. Chapter IV

includes the results of our project. Chapter V includes discussion, conclusion, and future work.

5

CHAPTER II

THEORETICAL BACKGROUND

2.1. Optimization

 Optimization problem is a problem that needs an optimal objective value under a set of

predefined constraints to be a solution. The optimization problems often have common

components as follows.

• Objective function: An equation or a method to measure the goodness of a solution.

Different problems usually have different objective functions.

• Objective value: A value evaluated by the corresponding objective function. We need this

to be as much as maximum/minimum as possible.

• Constraints: Criteria in which every solution must be satisfied such as a lowerbound and

an upperbound of each parameter. A criterion can be defined by equations or

inequations.

2.2. Single-Objective and Multi-Objective Optimization problem

 We can superficially categorize optimization problems into two types, one is single-

objective and another one is multiple- or multi-objective function. The core of difference between

those is the conflict of objective function, objective for short, that we want to optimize. In single-

objective, objectives are non conflict but in multi-objective, objectives are conflict.

 To illustrate what conflict and non conflict objective is, if you want to buy a car with a

low price and less luxury, this is considered to be single-objective because these objectives, price

and luxury, are going to the same way, decrease price, decrease luxury. On the other hand, if you

want to buy a car with low price but high luxury, this is considered to be a multi-objective because

these two objectives do not go the same way, if you want a luxury car, you have to pay high, but

you want to pay less, clearly conflict.

 The solutions that come from multi-objective optimization are called tradeoff solutions

which mean if you want one objective more, you receive another one less.

6

 Another important topic in multi-objective optimization is Pareto front. Pareto front is a

set containing solutions that cannot tell one better than another. We use the term ‘not dominate’
to describe a solution that cannot tell better than another while using ‘dominate’ for otherwise.
Note that the meaning of 'better' is different across different problems.

2.3. Flux balance analysis (FBA)

 In a cell's metabolism, metabolite is a substance that made by organism and a process to

a turnover reactant(s) metabolite(s) to the product metabolite(s) is called reaction. We refer to

the action that reactants converted to products as a forward process and vice versa as a backward

process. A reaction can be either reversible or irreversible. The turnover rate of a reaction is

quantified and described as a reaction flux. A map of a complete set of reactions and metabolites

in a cell's metabolism is called a metabolic network.

 When the total amount of any metabolite being produced must be equal to the amount

being consumed, the system is in a steady-state (Orth JD et al. 2010). One of the 22 main factors

influencing flux production is the presence or absence of a set of genes (Occhipinti et al. 2020).

For example, disabling gene A can cause decreasing metabolite B in reaction C whereas increasing

metabolite D in reaction E. In metabolic Engineering, we can benefit from the relationships

between genes and metabolic networks in a cell’s steady state by modifying certain genes in

order to obtain the maximum flux of desired metabolites. Such modification processes can be

done systematically in vitro by changing knockout status of each gene and then investigating the

consequence in the fluxes of desired metabolites until reaching the optimal amount.

 FBA is an approach to find optimal fluxes in the steady-state based on all reactions, given

a metabolic network and a set of active genes.

2.4. Mathematical representation of a metabolic model

 In order to represent the entire metabolic network mathematically, a stoichiometric

coefficient matrix (S) is used. Let m and n are a number of metabolites and reactions in a cell

respectively. S is an m x n matrix where ࢐࢏ࡿ represents the number of molecules of a metabolite

7

i used in the jth reaction. Moreover, this matrix also describes how metabolites are related to

each reaction as follows.

࢐࢏ࡿ • < ૙, the metabolite i is involved in the reaction j as a reactant.

࢐࢏ࡿ • = ૙, the metabolite i is not used in the reaction j.

࢐࢏ࡿ • > ૙, the metabolite i is involved in the reaction j as a product.

 A set of genes is represented by a binary row vector (y) where 1 denotes that the gene is

deactivated or knockout and 0 otherwise.

 As stated before, the existence of a set of genes has an effect on biochemical behavior of

a cell (Occhipinti et al. 2020). An L x n GPR mapping matrix (G) is used to describe such

relationships where L and n are a number of genes and reactions in the cell, respectively. Each

entry ࢐࢏ࡳ in the matrix can be either 0 if a reaction i has effect to a reaction j or 1 otherwise.

 All of the reaction fluxes are denoted by a column vector v which has a number of

elements equal to the number of reactions in a cell’s metabolism (n). Notice that those elements

in v is a real number.

Figure 1.1 is illustrating a general form of an optimization problem used in FBA.

Figure 2.1 A general form of an optimization problem used in FBA

2.5. Classical algorithms for combinatorial optimization

Genetic algorithm (GA)

 GA is a search heuristic that is inspired by the theory of natural evolution.

This algorithm is analogous to the process of natural selection where the fittest

individuals are selected for reproduction in order to produce offspring of the next

generation. Processes in GA are composed of

8

Population Initialization

 We initialize a set of individuals, called population. The characteristics of

individuals depend on what problems you want to solve with. Each individual is

composed of genes, Each gene is embedded in binary (for this project), so, in some

contexts, people often call individuals by chromosome instead.

Fitness Value Calculation

 Fitness value or fitness score show how an individual is fit quantitatively.

The fitness value is given by a fitness function that takes an individual as an input and

returns a fitness value as an output.

Parent Selection

 Parent selection is a process that uses fitness value to select individuals

with predefined numbers to use as a parent to generate offspring, called crossover.

Crossover

 After parent is acquired, we do crossing over among these parent to obtain

offspring. Then, we add parent and offspring and set it to be individuals of next

generation.

Mutation

 To increase diversity among the population in the generation, GA has a

mutation step to randomly change a gene value. Notice that changing gene value is

done under a little amount of genes.

 GA has many termination criteria. Here, we choose population

convergence, offspring do not produce much differences in objective value relative to

parents, to terminate algorithms.

2.6. Non-dominated sort genetic algorithm II (NSGA-II)

 NSGA-II is the improved version of GA. It improves parent selection step by separate it to

two step Non-dominated sorting and crowding distance, how far within the solution.

 This modification yields a diversity among individuals in each generation and reduces

sharing parameters from experimentally entered by the implementor (K. Deb et al. 2002).

9

2.7. Quantum-inspired algorithms for combinatorial optimization

 Quantum Superposition

 Quantum superposition is a principle of quantum mechanics. It states that any two

(or more) pure quantum states, a mathematical entity that provides a probability distribution for

the outcomes of each possible measurement on a system (Kuk-Hyun Han and Jong-Hwan Kim

2002), can be added together, called superposed, and the result will be another valid quantum

state, says, that every quantum state can be represented as a sum of two or more other distinct

states.

 Quantum Computing

a) Quantum bit (Qubit)

 Superposition is used as one of the quantum phenomena in quantum computing.

In quantum computing, the smallest unit of information stored in a two-state quantum computer

is called a quantum bit or qubit. A qubit may be in the “1” state, in the “0” state, or in any
superposition of the two (Zhang G 2011). The state of a qubit can be represented as:

where α and β are complex numbers that amplify the probability amplitudes of the "0" state

and "1" state respectively. |α|ଶ gives the probability that the qubit will be found in the “0”
state and |β|ଶ gives the probability that the qubit will be found in the “1” state. Normalization

of the state to unity guarantees

b) Quantum gate (Qugate)

 In the quantum circuit model of computation, a quantum logic gate (or qugate) is

a basic quantum circuit operating on a small number of qubits. They are the building

blocks of quantum circuits like classical logic gates are for conventional digital circuits.

There are many qugates used in the quantum computing domain, but, here, we are

considered only a rotation gate. The rotation gate can be exposition as:

10

where Δߠ௜ is a rotation angle of each Q-bit toward either 0 or 1 state depending on

its sign. We use this rotation gate together with the lookup table, table that specify

angle rotate to, to escape a local optimum (A. Narayanan and M. Moore 1996).

 Quantum-Inspired Genetic Algorithms (QGA)

 QGA applies qugate and qubit to GA by modifies chromosome representation and

mutation as describes following:

1. It substitutes binary embedded by qubit embedded as an information unit in the

chromosome.

 Figure 2.2 A gene unit in the chromosome

 Figure 2.3 A chromosome m-length

2. It uses rotation by rotation gate to perform rotation instead of mutation.

11

CHAPTER III

METHODOLOGY

3.1. An overview of process

 In GA, we have 6 steps. There are initialization, selection, crossover, and mutation.

In the first generation, we generate population of chromosome in initialization. After the

first generation to the last generation(as predefined, 1500), we select parent chromosome

in selection, produce offspring from parent in crossover, variate the offspring in mutation,

and select the population for the next generation. In QGA, we have 6 steps from GA plus

1 step, rotation, between mutation and population selection.

3.2. Strategy of implementation in each step

a. Initialization

 In GA, first, we generate 1000 chromosomes as a population. The

chromosome is a real-value vector. Each chromosome has 1041 genes plus 2

objective values, flux of acetate and biomass respectively. Second, we randomly

select 50 genes from 1041 genes to knockout by set it to 1. Finally, we evaluate

the objectives of each chromosome.

Figure 3.1 Initialization of GA

 In QGA, we generate 1000 qubits by randomly initiate probability of state

ଶߙ ,under superposition constraint ,ߚ ,and state 1 ,ߙ ,0 + ଶߚ = 1. Second, we

12

make chromosome by observing each qubit. There are 2 steps. First, we create

vector r with 1041 elements. The element ݎ௜, in r is a random value between 0

and 1. Then, If ݎ௜ greater than ߙ௜
ଶ, we assign 1 into the chromosome at the index

i. otherwise, we assign 0.

 To obtain objective value of each chromosome, we use the same step as

used in GA.

Figure 3.2 Initialization of QGA

b. Parent Selection

 This step performs similarly both GA and QGA. We use tournament

selection strategy to select the parent chromosome. In this project, we use half of

population, 500 chromosomes, to be parents. Tournament selection is 2-nested

loop. First loop is using for pooling chromosome. We pool chromosomes by

randomly select 2 chromosomes from the population. After that, we select a

chromosome which dominate each other (If chromosomes nondominated to each

other, we select the one which have minimum rank, maximum distance, or random

sequentially) in Inner loop.

13

Figure 3.3 Parent selection

 In QGA, we return index of parents along with chromosomes to using in

select qubit population.

c. Crossover

 This step performs almost similar in both GA and QGA. We use element-

wise crossover method to produce offspring. This method is composed of 3 steps.

First, we randomly select 1 pair of chromosomes from parent set from previous

step, called dad and mom. Second, we generate vector r which element have a

value given by random 0 to 1. If ݎ௜ is greater than 0.5, select bit i from dad, else

select bit from mom. We repeat step 1 and 2 until we retrieve 500 offspring. Finally,

we calculate acetate and biomass of offspring.

Figure 3.4 Crossover of GA

14

Figure 3.5 Crossover of QGA

d. Mutation

 Mutation step create vector r with 1041 elements. The element ݎ௜, in r is a

random value between 0 and 1. Then, if ݎ௜ is less than mutation rate, which we

set it to 0.2, we inverse knockout state of gene i. In GA, we inverse ith bit. In QGA,

we switch probability of state-0 and state-1.

e. Rotation

 This step performs only QGA. We rotate qubit with rotation rate 0.2. The

rotation is defined by perform following operation:

 The Δߠ is defined by following lookup table from Bin-Bin Li,2002:

15

Table 3.1 Lookup table

 In this table, ݎ௜ is the binary bit observed from qubit at index i. ܾ௜ is the

best bit, the first chromosome of the first rank from previous generation.

,(ݎ)݂ ݂(ܾ) is the objective value of r and b respectively.

f. Population selection

 This last step combining 1000 current population and 500 offspring from

crossover. After that, perform nondomination sort to combined population, select

only the first 1000 chromosomes to be the parent of next generation (iteration).

16

CHAPTER IV

RESULTS

In this chapter, we will describe the results obtained from the last generation used as final

solutions and the results across generations in order to see how population was evolved across

generations.

4.1 Results from the last generation

a. Solutions at the Pareto-front of the 1500th generation

Figure 4.1 The entire population generated by GA and QGA (left). The final solutions at the

first front of the last generation (right).

The results show that GA and QGA have exactly the same solution set in

the first front. Unfortunately, QGA have many dominated solutions around 15-

30 mmolgD/hW of acetate. Another point that is worth to mention

is that even though GA does not have any dominated solutions, it

contains fewer unique solutions (in here, unique solutions are referred to the

solutions that produce the different amount of acetate and biomass) as

illustrated in Figure 4.2. GA had only 74 unique solutions out of 1,000 (population

size per generation). In addition, even though QGA produced more unique

solutions than GA, most of them (1000-131 = 869) were dominated by others,

resulting in not sitting at the first front.

17

Figure 4.2 Number of unique solutions among the entire population in the 1500th generation.

b. Top 15 most knockout genes

Figure 4.3 The most selected knockout genes in GA (left) and QGA (right).

First, there are the genes that GA and QGA tend to prioritize to be knocked

out, such as Gene ID 4, 385, 524, and 197. Second, there are some

genes that both GA and QGA selected to knockout, but with

different frequency, as shown below in the rank after Gene ID 197. Finally, if

we look at all genes, as illustrated in figure 4.4, we found that GA never

picked the other 901 genes to knockout while QGA explored all genes despite by

fewer individuals. In my point of view, this may cause GA to get stuck at local

optima because GA had more redundant solutions, the solution that produce

exactly the same objective values regardless knockout patterns, than QGA. I

18

assume that this characteristics of QGA may come from the uncertainty of qubit

state and the rotation operations.

Figure 4.4 The number of knockout genes from GA (left) and QGA (right).

4.2 Results across generations

a. Number of unique solutions at the first front in each generation

 Figure 4.5 illustrates the number of unique solutions in the generation 1,

100, 200, 300, 400, 500, 1000, and 1500. We can see that the number of unique

solutions of GA and QGA is close to each other at the first 100th generations, then

significantly increases from the 100th generation to the 500th generation, and finally

reaching a plateau after 1000 generations

19

Figure 4.5 The number of unique solutions sitting at the first front of each generation.

According to Figure 4.6, the pareto fronts from the 500th generation

and those from the 1000th generation are almost the same. Hence, we can stop

the model in at the 500th generation around to save more computational cost.

Figure 4.6 (left) the first front of unique solution in generation 500 and 1500. (right) the number of

unique solutions in first front of gen 500 and 1500.

b. Run time per generation

We changed the strategies of GA implementation from Costanza, 2012 due

to the limitation of run time. The details can be found in the appendix at the end

of the report. As Table 4.1 shows, QGA spent as twice as GA per one generation,

20

partly because of the rotation operation, which called an additional GLPK, a linear

optimization solver. In total, the optimization solver was called twice before and

after the rotation operation was performed in QGA, compared to only once in GA.

Approach Average run time per generation (second)

GA (Costanza, 2012) 1,588.35

QGA 125.336

GA 58.69
Table 4.1 The average run time per generation spent by different approaches.

21

CHAPTER V

DISCUSSION

5.1 Discussion

 We have three topics to discuss here. First, we found that not many genes directly affect

the objective values. So, it is better if we have a preprocessing method to weighting relationship

between genes and objective values. Second, the strategies implemented here do not give as

good final results as those proposed in Costanza, 2012, in terms of the production of diverse and

nondominated offspring. However, the computational time and resources are more expensive.

Finally, QGA can increase variations as we expected, but most of them are dominated by the

solutions which are similar to those generated by GA.

5.2 Conclusion

 The QGA approach can find optimal solutions as well as GA and also improve diversity

among the solutions. Unfortunately, the strategies used in QGA still need to be improved by

adding some mechanisms to enhance them to be nondominated solutions.

5.3 Future work

 The future work includes the implementation of GA with redundant solutions handler,

implementation QGA with mechanism that enhance solutions to be nondominated and

performing more experiments with different population size and number of generations.

22

REFERENCES

A. Narayanan and M. Moore, "Quantum-inspired genetic algorithms," Proceedings of IEEE

 International Conference on Evolutionary Computation, Nagoya, Japan, 1996, pp. 61-66,

 doi: 10.1109/ICEC.1996.542334.

Costanza J, Carapezza G, Angione C, Lió P, Nicosia G. “Robust design of microbial

 strains”. Bioinformatics. 2012 Dec 1;28(23):3097-104. doi: 10.1093/bioinformatics/bts590.

 Epub 2012 Oct 7. PMID: 23044547.

K. Deb, A. Pratap, S. Agarwal and T. Meyarivan, "A fast and elitist multiobjective genetic

 algorithm: NSGA-II," in IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp.

 182-197, April 2002, doi: 10.1109/4235.996017.

Kuk-Hyun Han and Jong-Hwan Kim, "Quantum-inspired evolutionary algorithm for a

 class of combinatorial optimization," in IEEE Transactions on Evolutionary

 Computation, vol. 6, no. 6, pp. 580-593, Dec. 2002, doi:10.1109/TEVC.2002.804320.

Occhipinti, A., Hamadi, Y., Kugler, H., Wintersteiger, C., Yordanov, B., & Angione, C. (2020).

 Discovering Essential Multiple Gene Effects through Large Scale Optimization: an

 Application to Human Cancer Metabolism. IEEE/ACM Transactions on Computational

 Biology and Bioinformatics. https://ieeexplore.ieee.org/document/9055142

Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010 Mar;28(3):245-

 8. doi: 10.1038/nbt.1614. PMID: 20212490; PMCID: PMC3108565.

Satvik Tiwari. (2019). Genetic Algorithm: Part 1 -Intuition. access 19 February 2020,

 https://medium.com/koderunners/genetic-algorithm-part-1-intuition-fde1b75b

 d3f9

Satvik Tiwari. (2019). Genetic Algorithm: Part 2 — Implementation. access 11 March

 2020,https://medium.com/koderunners/genetic-algorithm-part-2-implementat

 ion-69d77cf668bf

Satvik Tiwari. (2019). Genetic Algorithm: Part 3 — Knapsack Problem.

 access 11 March 2020, https://medium.com/koderunners/

 genetic-algorithm-part-3-knapsack-problem-b59035ddd1d6

23

Zhang, G. Quantum-inspired evolutionary algorithms: a survey and empirical study. J

 Heuristics 17, 303–351 (2011). https://doi.org/10.1007/s10732-010-9136-0

24

APPENDIX

Strategy of implementation of Costanza, 2012

 Costanza, 2012 use different crossover and mutation strategy and add redundant

handling to the GA process

a) Genetic operator (Crossover and Mutation)

 This step is composed of 3-leveled nested loop. The outmost for-loop loop

through every individual to use it as a parent. The first inner-loop is while-loop which

iterating to generate 10 candidate offspring by which randomly switch binary state 1

position. The second inner-lop is while-loop that iterating to ensure whether no

chromosome has knocked out exceed limit. if so, randomky un-knockout it.

 After finish inner-loop, we have 10 candidate offspring. So, they measure the

objective values of every offspring. Then, they nondomination sort them and append the

offspring that is at the first individual at the first rank to the offspring set.

b) Delete redundant

 This step iterates through offspring and randomly un-knockout 1 position. Then

evaluating objective values and compare to the offspring before un-knockout. If the

difference of acetate is less than 10ିଵ଴, unknockout.

25

BIOGRAPHY

Mr. Phattharaphon Khammun

Department of Mathematics and Computer Science

Faculty of Science, Chulalongkorn University

Email: k.pattara@outlook.com

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	ACKNOWLEDGEMENTS
	CONTENTS
	CHAPTER I INTRODUCTION
	CHAPTER II THEORETICAL BACKGROUND
	CHAPTER III METHODOLOGY
	CHAPTER IV RESULTS
	CHAPTER V DISCUSSION
	REFERENCES
	APPENDIX
	BIOGRAPHY

