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CHAPTER |

INTRODUCTION

1.1 Background

One of the goals in synthetic biology is to increase a cell’s production of certain
substances. It is involved with permuting gene activation patterns to investigate the effect of gcene
expression that yield the most desirable substances. This process can be done by the combination
of “metabolic engineering” and “genetic engineering” techniques in order to modify gene

patterns in bacterial DNA.

In general, a bacterial DNA has more than 500 genes. Hence, it is challenging to explore
all patterns of active/inactive genes, which delivers more than2  possible combinations. In
addition, This process is costly and time-consuming. Currently, since metabolic networks, the
seriers of biochemical reactions in a cell, are well known, it is possible to simulate a cell’s
mechanism in vitro in order to discover a small set of gene combinations that drives the cell to

attain the desirable amount of objective products.

Despite using computer simulation, it’s prohibitively expensive to try all possible
experiments. Even if we perform the simulation process with modern computing technology, it is
still impractical to be done with limited resources. From this point, a genetic algorithm (GA) plays
an important role to address this challenge. GA is inspired by the evolutionary theory that the
fittest will survive through generations. We apply this idea to generate, select, and inherit good
answers to the next better answers until the goal-satisfied answers are obtained. While in principle
effective, GA is challenging to trade-off between exploitation and exploration as it uses a binary
representation in a combinatorial optimization. Here, we apply a quantum-inspired genetic
algorithm (QGA) by substituting binary representations with quantum states and then study

advantages and disadvantages between these two methods.



1.2 Objectives

To study advantages and disadvantages between genetic algorithms and quantum-

inspired genetic algorithms in the combinatorial optimization problem.

1.3 Scope

® Optimize only acetate and biomass fluxes.

® (Consider only an E coli model.

1.4 Project Activities

N R LD

Study genetic algorithms (GA).

Study the concept of metabolic engineering and microbial model.

Study flux balance analysis and multi-objective optimization models.

Study non-domination sort genetic algorithm Il (NSGA-II).

Reproduce genetic Design through multi-objective optimization in Python.

Study the basics of quantum mechanics.

Study quantum-inspired genetic algorithms (QGA) via the combinatorial optimization
problems.

Implement quantum-inspired genetic algorithms in MATLAB.

Measure and compare performance and result given from QGA to GA.



Project Activities Gantt Chart

Processes 2021

1. Study genetic
algorithms (GA).

2. Study the concept of
metabolic engineering

and microbial model.

3. Study flux balance
analysis and  multi-
objective optimization

models.

4. Study non-domination
sort genetic algorithm |l

(NSGA-I).

5. Reproduce genetic
Design through multi-
objective optimization

in Python.

6. Study the basics of

guantum mechanics.

7. Study quantum-
inspired genetic
algorithms  (QGA) via
the combinatorial

optimization problems.

8.  Implement quantum-
inspired genetic

algorithms in MATLAB.




9.  Measure and compare
performance and
result given from QGA
to GA.

1.5 Benefits

a) Benefit for the implementor
1. Learn and practice about genetic algorithms, specifically NSGA-Il and QGA.
2. Be able to solve combinatorial optimization problems.

b) Benefit for users

1. Give information about computational methods in regard to comparing

performance between GA and QGA.

1.6 Report Outlines

This report consists of five chapters as follows. Chapter | includes background, objectives,
scope, project activities and benefits of this project are presented. Chapter Il includes the
theoretical background knowledge relating to the work in this project are reviewed. Chapter Ill
includes the methodology and the comparison pros and cons between models. Chapter IV

includes the results of our project. Chapter V includes discussion, conclusion, and future work.



CHAPTER I

THEORETICAL BACKGROUND

2.1.0ptimization
Optimization problem is a problem that needs an optimal objective value under a set of
predefined constraints to be a solution. The optimization problems often have common

components as follows.

® Objective function: An equation or a method to measure the goodness of a solution.

Different problems usually have different objective functions.

® Objective value: A value evaluated by the corresponding objective function. We need this
to be as much as maximum/minimum as possible.

® (onstraints: Criteria in which every solution must be satisfied such as a lowerbound and
an upperbound of each parameter. A criterion can be defined by equations or

inequations.

2.2.Single-Objective and Multi-Objective Optimization problem

We can superficially categorize optimization problems into two types, one is single-
objective and another one is multiple- or multi-objective function. The core of difference between
those is the conflict of objective function, objective for short, that we want to optimize. In single-
objective, objectives are non conflict but in multi-objective, objectives are conflict.

To illustrate what conflict and non conflict objective is, if you want to buy a car with a
low price and less luxury, this is considered to be single-objective because these objectives, price
and luxury, are going to the same way, decrease price, decrease luxury. On the other hand, if you
want to buy a car with low price but high luxury, this is considered to be a multi-objective because
these two objectives do not go the same way, if you want a luxury car, you have to pay high, but
you want to pay less, clearly conflict.

The solutions that come from multi-objective optimization are called tradeoff solutions

which mean if you want one objective more, you receive another one less.



Another important topic in multi-objective optimization is Pareto front. Pareto front is a
set containing solutions that cannot tell one better than another. We use the term ‘not dominate’
to describe a solution that cannot tell better than another while using ‘dominate’ for otherwise.

Note that the meaning of 'better' is different across different problems.

2.3.Flux balance analysis (FBA)

In a cell's metabolism, metabolite is a substance that made by organism and a process to
a turnover reactant(s) metabolite(s) to the product metabolite(s) is called reaction. We refer to
the action that reactants converted to products as a forward process and vice versa as a backward
process. A reaction can be either reversible or irreversible. The turnover rate of a reaction is
quantified and described as a reaction flux. A map of a complete set of reactions and metabolites
in a cell's metabolism is called a metabolic network.

When the total amount of any metabolite being produced must be equal to the amount
being consumed, the system is in a steady-state (Orth JD et al. 2010). One of the 22 main factors
influencing flux production is the presence or absence of a set of genes (Occhipinti et al. 2020).
For example, disabling gene A can cause decreasing metabolite B in reaction C whereas increasing
metabolite D in reaction E. In metabolic Engineering, we can benefit from the relationships
between genes and metabolic networks in a cell’s steady state by modifying certain genes in
order to obtain the maximum flux of desired metabolites. Such modification processes can be
done systematically in vitro by changing knockout status of each gene and then investigating the
consequence in the fluxes of desired metabolites until reaching the optimal amount.

FBA is an approach to find optimal fluxes in the steady-state based on all reactions, given

a metabolic network and a set of active genes.

2.4 Mathematical representation of a metabolic model
In order to represent the entire metabolic network mathematically, a stoichiometric
coefficient matrix (S) is used. Let m and n are a number of metabolites and reactions in a cell

respectively. S is an m x n matrix where represents the number of molecules of a metabolite



i used in the jth reaction. Moreover, this matrix also describes how metabolites are related to

each reaction as follows.

L] < , the metabolite i is involved in the reaction j as a reactant.
L = , the metabolite i is not used in the reaction j.
L] > | the metabolite i is involved in the reaction j as a product.

A set of genes is represented by a binary row vector (y) where 1 denotes that the gene is
deactivated or knockout and 0 otherwise.

As stated before, the existence of a set of genes has an effect on biochemical behavior of
a cell (Occhipinti et al. 2020). An L x n GPR mapping matrix (G) is used to describe such
relationships where L and n are a number of genes and reactions in the cell, respectively. Each
entry in the matrix can be either 0 if a reaction i has effect to a reaction j or 1 otherwise.

All of the reaction fluxes are denoted by a column vector v which has a number of
elements equal to the number of reactions in a cell’s metabolism (n). Notice that those elements
in v is a real number.

Figure 1.1 is illustrating a general form of an optimization problem used in FBA.

Objective function Constraints

T T

maximize (or minimize) f’v, [such that/Sy =0

L A Hncie
COBNVRIRFERSAFYL, - ...,

Figure 2.1 A general form of an optimization problem used in FBA

2.5.Classical algorithms for combinatorial optimization
Genetic algorithm (GA)
GA is a search heuristic that is inspired by the theory of natural evolution.
This algorithm is analogous to the process of natural selection where the fittest
individuals are selected for reproduction in order to produce offspring of the next

generation. Processes in GA are composed of



Population Initialization

We initialize a set of individuals, called population. The characteristics of
individuals depend on what problems you want to solve with. Each individual is
composed of genes, Each gene is embedded in binary (for this project), so, in some
contexts, people often call individuals by chromosome instead.

Fitness Value Calculation

Fitness value or fitness score show how an individual is fit quantitatively.
The fitness value is given by a fitness function that takes an individual as an input and
retumns a fitness value as an output.
Parent Selection

Parent selection is a process that uses fitness value to select individuals
with predefined numbers to use as a parent to generate offspring, called crossover.
Crossover

After parent is acquired, we do crossing over among these parent to obtain
offspring. Then, we add parent and offspring and set it to be individuals of next
generation.
Mutation

To increase diversity among the population in the generation, GA has a
mutation step to randomly change a gene value. Notice that changing gene value is
done under a little amount of genes.

GA has many termination criteria. Here, we choose population
convergence, offspring do not produce much differences in objective value relative to

parents, to terminate algorithms.

2.6.Non-dominated sort genetic algorithm Il (NSGA-II)
NSGA-Il is the improved version of GA. It improves parent selection step by separate it to
two step Non-dominated sorting and crowding distance, how far within the solution.
This modification yields a diversity among individuals in each generation and reduces

sharing parameters from experimentally entered by the implementor (K. Deb et al. 2002).



2.7.Quantum-inspired algorithms for combinatorial optimization
Quantum Superposition
Quantum superposition is a principle of quantum mechanics. It states that any two
(or more) pure quantum states, a mathematical entity that provides a probability distribution for
the outcomes of each possible measurement on a system (Kuk-Hyun Han and Jong-Hwan Kim
2002), can be added together, called superposed, and the result will be another valid quantum
state, says, that every quantum state can be represented as a sum of two or more other distinct
states.
Quantum Computing
a) Quantum bit (Qubit)
Superposition is used as one of the quantum phenomena in quantum computing.
In quantum computing, the smallest unit of information stored in a two-state quantum computer
is called a quantum bit or qubit. A qubit may be in the “1” state, in the “0” state, or in any

superposition of the two (Zhang G 2011). The state of a qubit can be represented as:

W) = |0) + 5|1)
where O and B are complex numbers that amplify the probability amplitudes of the "0" state
and "1" state respectively. |G| gives the probability that the qubit will be found in the “0”

state and ”3' gives the probability that the qubit will be found in the “1” state. Normalization

of the state to unity guarantees

of? + 182 =1.

b) Quantum gcate (Qugate)
In the quantum circuit model of computation, a quantum logic gate (or qugate) is
a basic quantum circuit operating on a small number of qubits. They are the building
blocks of quantum circuits like classical logic gates are for conventional digital circuits.
There are many qugates used in the quantum computing domain, but, here, we are

considered only a rotation gate. The rotation gate can be exposition as:
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0=y miaty
where A is a rotation angle of each Q-bit toward either 0 or 1 state depending on
its sign. We use this rotation gate together with the lookup table, table that specify
angle rotate to, to escape a local optimum (A. Narayanan and M. Moore 1996).
Quantum-Inspired Genetic Algorithms (QGA)
QGA applies qugate and qubit to GA by modifies chromosome representation and

mutation as describes following:

1. It substitutes binary embedded by qubit embedded as an information unit in the

5]

Figure 2.2 A gene unit in the chromosome
X2

|:OC'1 Qo j|
/81 /82 ﬁ”fn

Figure 2.3 A chromosome m-length

chromosome.

..

2. It uses rotation by rotation gate to perform rotation instead of mutation.
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CHAPTER IlI

METHODOLOGY

3.1. An overview of process
In GA, we have 6 steps. There are initialization, selection, crossover, and mutation.
In the first generation, we generate population of chromosome in initialization. After the
first generation to the last generation(as predefined, 1500), we select parent chromosome
in selection, produce offspring from parent in crossover, variate the offspring in mutation,
and select the population for the next generation. In QGA, we have 6 steps from GA plus
1 step, rotation, between mutation and population selection.
3.2. Strategy of implementation in each step
a. Initialization
In GA, first, we generate 1000 chromosomes as a population. The
chromosome is a real-value vector. Each chromosome has 1041 genes plus 2
objective values, flux of acetate and biomass respectively. Second, we randomly
select 50 genes from 1041 genes to knockout by set it to 1. Finally, we evaluate

the objectives of each chromosome.

S
04 genes i >
¢} Q 1 1 1 le.3 | 8.4
1 0 1 ¢} ] 9
1000
1 0 1 ‘ 5 gy o | o5
I !
knotkowt gene active gene

Figure 3.1 Initialization of GA
In QGA, we generate 1000 qubits by randomly initiate probability of state

0, , and state 1, , under superposition constraint, + = 1. Second, we
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make chromosome by observing each qubit. There are 2 steps. First, we create
vector r with 1041 elements. The element , in ris a random value between 0
and 1. Then, If  greater than , we assign 1 into the chromosome at the index
i. otherwise, we assign 0.

To obtain objective value of each chromosome, we use the same step as

used in GA.
b; poplation
L{Ln:f Pa'n'_-[ﬂ.'l)h l""‘m‘f L+ populetion oo
T e, ot \00"“"5
= B abserve, N s
©. =084 ~0.% : 0.42 g [ [Py [ e e el s
3} 0.55 0.9 . . . 0.39
observe,
0.40 o0.05 . . . -0.15
041  0.30 | s, AR A YA R 1000
1000 ; . : S \
observe,
0.2 -3.51 5 g v L
D;: :ﬁ :';; SR 7 50 R R (R < O 1 0
i O ;——)—\f-“_x//
\/———4""_/
[og | 104y

Figure 3.2 Initialization of QGA

Parent Selection

This step performs similarly both GA and QGA. We use tournament
selection strategy to select the parent chromosome. In this project, we use half of
population, 500 chromosomes, to be parents. Tournament selection is 2-nested
loop. First loop is using for pooling chromosome. We pool chromosomes by
randomly select 2 chromosomes from the population. After that, we select a
chromosome which dominate each other (If chromosomes nondominated to each
other, we select the one which have minimum rank, maximum distance, or random

sequentially) in Inner loop.
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Figure 3.3 Parent selection

In QGA, we return index of parents along with chromosomes to using in
select qubit population.
Crossover

This step performs almost similar in both GA and QGA. We use element-
wise crossover method to produce offspring. This method is composed of 3 steps.
First, we randomly select 1 pair of chromosomes from parent set from previous
step, called dad and mom. Second, we generate vector r which element have a
value given by random 0 to 1. If is greater than 0.5, select bit i from dad, else
select bit from mom. We repeat step 1 and 2 until we retrieve 500 offspring. Finally,

we calculate acetate and biomass of offspring.

T
. S R W ob o4 « « - 07 0¢
1 0 1 1 ik
1513
Fandom L8 16 IR SO G i B 4
S : Prek it —_— L I 2 B R R |
L R 1515 z
0|0 [ | 0 |17 50 n;ﬁ‘gpr;wq
1 0 1 (2518
parent
L
re peat

Figure 3.4 Crossover of GA
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Figure 3.5 Crossover of QGA

d. Mutation
Mutation step create vector r with 1041 elements. The element ,inris a
random value between 0 and 1. Then, if is less than mutation rate, which we
set it to 0.2, we inverse knockout state of gene i. In GA, we inverse ith bit. In QGA,
we switch probability of state-0 and state-1.
e. Rotation
This step performs only QGA. We rotate qubit with rotation rate 0.2. The

rotation is defined by perform following operation:

cos(AQ) sin(—Af)
R(a0) = [sin(Ae) cos(AB) ]

The A is defined by following lookup table from Bin-Bin Li,2002:



TABLE 1
LookuP TABLE OF ROTATION ANGLE
nob fO<SB) 86 Aoue
a;fB:>0 af;<0 ;=0 B:=0

0 0 false 0 0 0 0 0
0 0 true 0 0 0 0 0
0 1 false 0 0 0 0 0
0 1 true 0.057 -1 +1 mcd | 0
1 0 false 0.01x -1 +1 t1 0
1 0 true 0.025x +1 =1 0 +1
1 1 false 0.0057 +1 -1 0 ol |
1 1 true 0.0257% +1 -1 0 1

In this table, is the binary bit observed from qubit at index i.

Table 3.1 Lookup table

15

is the

best bit, the first chromosome of the first rank from previous generation.

(), ()is the objective value of r and b respectively.

Population selection

This last step combining 1000 current population and 500 offspring from

crossover. After that, perform nondomination sort to combined population, select

only the first 1000 chromosomes to be the parent of next generation (iteration).
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CHAPTER IV
RESULTS

In this chapter, we will describe the results obtained from the last generation used as final

solutions and the results across generations in order to see how population was evolved across

generations.

4.1 Results from the last generation

a.

Solutions at the Pareto-front of the 1500" generation

Pareto front of 1500th population of GA union QGA
T T T T

12

. 1Pzareto front of 1500th non-domination population of GA union QGA
g T i T T ' T
¥ GA
L ¢ GA
2 | == [Q6A + QGA
1 ’Oﬁq ] 1 ) ﬁ‘ il
208 =08
= *a Z 0 ®
5 " 3 *
[ B
E
E U8 o6l
E £
S04 16 04
b X L)
0.2 02
0 . ", Lty W h 0 . . . @ . o
o 5 10 15 20 25 30 0 5 10 15 20 25 30
acetate [mmolgD/hW] acetate [mmolgD/hW]

Figure 4.1 The entire population generated by GA and QGA (left). The final solutions at the
first front of the last generation (right).

The results show that GA and QGA have exactly the same solution set in
the first front. Unfortunately, QGA have many dominated solutions around 15-
30 mmolgD/hW of acetate. Another point that is worth to mention
is that even though GA does  not have any dominated solutions, it
contains fewer unique solutions (in here, unique solutions are referred to the
solutions that produce the different amount of acetate and biomass) as
illustrated in Figure 4.2. GA had only 74 unique solutions out of 1,000 (population
size per generation). In addition, even though QGA produced more unique
solutions than GA, most of them (1000-131 = 869) were dominated by others,

resulting in not sitting at the first front.
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s Number of solutions 1500th in final pareto front
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Figure 4.2 Number of unique solutions among the entire population in the 1500" generation.
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Figure 4.3 The most selected knockout genes in GA (left) and QGA (right).

First, there are the genes that GA and QGA tend to prioritize to be knocked
out, such asGene 1ID4, 385, 524, and 197.Second,there are some
genes that both GA  and QGA selected to knockout, but  with
different frequency, as shown below in the rank after Gene ID 197. Finally, if
we look at all genes, as illustrated in figure 4.4, we found that GA never
picked the other 901 genes to knockout while QGA explored all genes despite by
fewer individuals. In my point of view, this may cause GA to get stuck at local
optima because GA had more redundant solutions, the solution that produce

exactly the same objective values regardless knockout patterns, than QGA. |



18

assume that this characteristics of QGA may come from the uncertainty of qubit

state and the rotation operations.
Top 1041 knockout genes in GA, gen 1500

Top 1041 knockoul genes in OGA, gen 1500

—L

0 10 200 300 400 S0 600700 SO0 | & 00 450 20 S0 W0 350
Frequency Fraquancy

Figure 4.4 The number of knockout genes from GA (left) and QGA (right).

4.2 Results across generations

a. Number of unique solutions at the first front in each generation

Figure 4.5 illustrates the number of unique solutions in the generation 1,
100, 200, 300, 400, 500, 1000, and 1500. We can see that the number of unique
solutions of GA and QGA is close to each other at the first 100"  generations, then

significantly increases from the 100" generation to the 500th generation, and finally

reaching a plateau after 1000 generations
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Number of unique solutions in the first front of each generation

100

200

300

Generation

400

500

1000

1500

0 10 20 30 40 50 60 70 80
Number of unique solutions

Figure 4.5 The number of unique solutions sitting at the first front of each generation.

According to Figure 4.6, the par

eto fronts from the 500" generation

and those from the 1000" generation are almost the same. Hence, we can stop

the model in at the 500" generation around to save more computational cost.

The unique solutions in the first front of each generation of GA(1) union QGA(2)
T T 1 T i

Number of unique solutions in the first front of each generation

© 1300

Generation

* 1500

b.

L L 3
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Number of unique solutions

Figure 4.6 (left) the first front of unique solution in generation 500 and 1500. (right) the number of

unigue solutions in first front of gen 500 and 1500.

Run time per generation

We changed the strategies of GA implementation from Costanza, 2012 due

to the limitation of run time. The details can be found in the appendix at the end

of the report. As Table 4.1 shows, QGA spent as twice as GA per one generation,
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partly because of the rotation operation, which called an additional GLPK, a linear
optimization solver. In total, the optimization solver was called twice before and

after the rotation operation was performed in QGA, compared to only once in GA.

Approach Average run time per generation (second)
GA (Costanza, 2012) 1,588.35

QGA 125.336

GA 58.69

Table 4.1 The average run time per generation spent by different approaches.
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CHAPTER V
DISCUSSION
5.1 Discussion
We have three topics to discuss here. First, we found that not many genes directly affect
the objective values. So, it is better if we have a preprocessing method to weighting relationship
between genes and objective values. Second, the strategies implemented here do not give as
good final results as those proposed in Costanza, 2012, in terms of the production of diverse and
nondominated offspring. However, the computational time and resources are more expensive.
Finally, QGA can increase variations as we expected, but most of them are dominated by the

solutions which are similar to those generated by GA.

5.2 Conclusion
The QGA approach can find optimal solutions as well as GA and also improve diversity
among the solutions. Unfortunately, the strategies used in QGA still need to be improved by

adding some mechanisms to enhance them to be nondominated solutions.

5.3 Future work

The future work includes the implementation of GA with redundant solutions handler,
implementation QGA with mechanism that enhance solutions to be nondominated and

performing more experiments with different population size and number of generations.
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APPENDIX

Strategy of implementation of Costanza, 2012

Costanza, 2012 use different crossover and mutation strategy and add redundant

handling to the GA process

a)

Genetic operator (Crossover and Mutation)

This step is composed of 3-leveled nested loop. The outmost for-loop loop
through every individual to use it as a parent. The first inner-loop is while-loop which
iterating to generate 10 candidate offspring by which randomly switch binary state 1
position. The second inner-lop is while-loop that iterating to ensure whether no
chromosome has knocked out exceed limit. if so, randomky un-knockout it.

After finish inner-loop, we have 10 candidate offspring. So, they measure the
objective values of every offspring. Then, they nondomination sort them and append the

offspring that is at the first individual at the first rank to the offspring set.

Delete redundant

This step iterates through offspring and randomly un-knockout 1 position. Then
evaluating objective values and compare to the offspring before un-knockout. If the

difference of acetate is less than 10 |, unknockout.
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