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CHAPTER I  

INTRODUCTION 

1.1 Background 

One of the goals in synthetic biology is to increase a cell’s production of certain 

substances. It is involved with permuting gene activation patterns to investigate the effect of gene 

expression that yield the most desirable substances. This process can be done by the combination 

of “metabolic engineering” and “genetic engineering” techniques in order to modify gene 

patterns in bacterial DNA. 

In general, a bacterial DNA has more than 500 genes. Hence, it is challenging to explore 

all patterns of active/inactive genes, which delivers more than 2ହ଴଴ possible combinations. In 

addition, This process is costly and time-consuming. Currently, since metabolic networks, the 

seriers of biochemical reactions in a cell, are well known, it is possible to simulate a cell’s 
mechanism in vitro in order to discover a small set of gene combinations that drives the cell to 

attain the desirable amount of objective products.  

Despite using computer simulation, it’s prohibitively expensive to try all possible 

experiments. Even if we perform the simulation process with modern computing technology, it is 

still impractical to be done with limited resources. From this point, a genetic algorithm (GA) plays 

an important role to address this challenge. GA is inspired by the evolutionary theory that the 

fittest will survive through generations. We apply this idea to generate, select, and inherit good 

answers to the next better answers until the goal-satisfied answers are obtained. While in principle 

effective, GA is challenging to trade-off between exploitation and exploration as it uses a binary 

representation in a combinatorial optimization. Here, we apply a quantum-inspired genetic 

algorithm (QGA) by substituting binary representations with quantum states and then study 

advantages and disadvantages between these two methods. 
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1.2 Objectives 

To study advantages and disadvantages between genetic algorithms and quantum-

inspired genetic algorithms in the combinatorial optimization problem. 

1.3 Scope 

• Optimize only acetate and biomass fluxes. 

• Consider only an E coli model. 

1.4 Project Activities 

1. Study genetic algorithms (GA). 

2. Study the concept of metabolic engineering and microbial model. 

3. Study flux balance analysis and multi-objective optimization models. 

4. Study non-domination sort genetic algorithm II (NSGA-II). 

5. Reproduce genetic Design through multi-objective optimization in Python. 

6. Study the basics of quantum mechanics. 

7. Study quantum-inspired genetic algorithms (QGA) via the combinatorial optimization 

problems. 

8.   Implement quantum-inspired genetic algorithms in MATLAB. 

9. Measure and compare performance and result given from QGA to GA. 
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Project Activities Gantt Chart 

Processes 2021 

Jan Feb Mar Apr May Jun Jul Sep Oct Nov Dec 

1. Study genetic 

algorithms (GA). 

           

2. Study the concept of 

metabolic engineering 

and microbial model. 

           

3. Study flux balance 

analysis and multi-

objective optimization 

models. 

           

4. Study non-domination 

sort genetic algorithm II 

(NSGA-II). 

           

5. Reproduce genetic 

Design through multi-

objective optimization 

in Python. 

           

6. Study the basics of 

quantum mechanics. 

           

7. Study quantum-

inspired genetic 

algorithms (QGA) via 

the combinatorial 

optimization problems. 

           

8. Implement quantum-

inspired genetic 

algorithms in MATLAB. 
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9. Measure and compare 

performance and 

result given from QGA 

to GA. 

           

 

1.5 Benefits 

a) Benefit for the implementor 

1. Learn and practice about genetic algorithms, specifically NSGA-II and QGA. 

2. Be able to solve combinatorial optimization problems. 

b) Benefit for users 

1. Give information about computational methods in regard to comparing 

performance between GA and QGA. 

 

1.6 Report Outlines 

 This report consists of five chapters as follows. Chapter I includes background, objectives, 

scope, project activities and benefits of this project are presented. Chapter II includes the 

theoretical background knowledge relating to the work in this project are reviewed. Chapter III 

includes the methodology and the comparison pros and cons between models. Chapter IV 

includes the results of our project. Chapter V includes discussion, conclusion, and future work. 
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CHAPTER II 

THEORETICAL BACKGROUND 

 

2.1. Optimization 

 Optimization problem  is a problem that needs an optimal objective value under a set of 

predefined constraints to be a solution. The optimization problems often have common 

components as follows. 

• Objective function: An equation or a method to measure the goodness of a solution. 

Different problems usually have different objective functions. 

• Objective value: A value evaluated by the corresponding objective function. We need this 

to be as much as maximum/minimum as possible. 

• Constraints: Criteria in which every solution must be satisfied such as a lowerbound and 

an upperbound of each parameter. A criterion can be defined by equations  or 

inequations. 

 
2.2. Single-Objective and Multi-Objective Optimization problem 

 We can superficially categorize optimization problems into two types, one is single-

objective and another one is multiple- or multi-objective function. The core of difference between 

those is the conflict of objective function, objective for short, that we want to optimize. In single-

objective, objectives are non conflict but in multi-objective, objectives are conflict.  

 To illustrate what conflict and non conflict objective is, if you want to buy a car with a 

low price and less luxury, this is considered to be single-objective because these objectives, price 

and luxury, are going to the same way, decrease price, decrease luxury. On the other hand, if you 

want to buy a car with low price but high luxury, this is considered to be a multi-objective because 

these two objectives do not go the same way, if you want a luxury car, you have to pay high, but 

you want to pay less, clearly conflict.  

 The solutions that come from multi-objective optimization are called tradeoff solutions 

which mean if you want one objective more, you receive another one less.  
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 Another important topic in multi-objective optimization is Pareto front. Pareto front is a 

set containing solutions that cannot tell one better than another. We use the term ‘not dominate’ 
to describe a solution that cannot tell better than another while using ‘dominate’ for otherwise. 
Note that the meaning of 'better' is different across different problems. 

 

2.3. Flux balance analysis (FBA) 

 In a cell's metabolism, metabolite is a substance that made by organism and a process to 

a turnover reactant(s) metabolite(s) to the product metabolite(s) is called reaction. We refer to 

the action that reactants converted to products as a forward process and vice versa as a backward 

process. A reaction can  be either reversible or irreversible. The turnover rate of a reaction is 

quantified and described as a reaction flux. A map of a complete set of reactions and metabolites 

in a cell's metabolism is called a metabolic network.  

 When the total amount of any metabolite being produced must be equal to the amount 

being consumed, the system is in a steady-state (Orth JD et al. 2010). One of the 22 main factors 

influencing flux production is the presence or absence of a set of genes (Occhipinti et al. 2020). 

For example, disabling gene A can cause decreasing metabolite B in reaction C whereas increasing 

metabolite D in reaction E. In metabolic Engineering, we can benefit from the relationships 

between genes and metabolic networks in a cell’s steady state by modifying certain genes in 

order to obtain the maximum flux of desired metabolites. Such modification processes can be 

done systematically in vitro by changing knockout status of each gene and then investigating the 

consequence in the fluxes of desired metabolites until reaching the optimal amount. 

 FBA is an approach to find optimal fluxes in the steady-state based on all reactions, given 

a metabolic network and a set of active genes. 

 

2.4. Mathematical representation of a metabolic model 

 In order to represent the entire metabolic network mathematically, a stoichiometric 

coefficient matrix (S) is used. Let m and n are a number of metabolites and reactions in a cell 

respectively. S is an m x n matrix where ࢐࢏ࡿ represents the number of molecules of a metabolite 
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i used in the jth reaction. Moreover, this matrix also describes how metabolites are related to 

each reaction as follows. 

࢐࢏ࡿ • < ૙, the metabolite i is involved in the reaction j as a reactant.  

࢐࢏ࡿ • = ૙, the metabolite i is not used in the reaction j. 

࢐࢏ࡿ • > ૙, the metabolite i is involved in the reaction j as a product.  

 A set of genes is represented by a binary row vector (y) where 1 denotes that the gene is 

deactivated or knockout and 0 otherwise. 

 As stated before, the existence of a set of genes has an effect on biochemical behavior of 

a cell (Occhipinti et al. 2020). An L x n GPR mapping matrix (G) is used to describe such 

relationships where L and n are a number of genes and reactions in the cell, respectively. Each 

entry ࢐࢏ࡳ in the matrix can be either 0 if a reaction i has effect to a reaction j or 1 otherwise. 

 All of the reaction fluxes are denoted by a column vector v which has a number of 

elements equal to the number of reactions in a cell’s metabolism (n). Notice that those elements 

in v is a real number. 

Figure 1.1 is illustrating a general form of an optimization problem used in FBA. 

 

 
Figure 2.1 A general form of an optimization problem used in FBA 

 

2.5. Classical algorithms for combinatorial optimization 

Genetic algorithm (GA) 

  GA is a search heuristic that is inspired by the theory of natural evolution. 

This algorithm is analogous to the process of natural selection where the fittest 

individuals are selected for reproduction in order to produce offspring of the next 

generation. Processes in GA are composed of 
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Population Initialization 

  We initialize a set of individuals, called population. The characteristics of 

individuals depend on what problems you want to solve with. Each individual is 

composed of genes, Each gene is embedded in binary (for this project), so, in some 

contexts, people often call individuals by chromosome instead.  

Fitness Value Calculation 

  Fitness value or fitness score show how an individual is fit quantitatively. 

The fitness value is given by a fitness function that takes an individual as an input and 

returns a fitness value as an output. 

Parent Selection 

  Parent selection is a process that uses fitness value to select individuals 

with predefined numbers to use as a parent to generate offspring, called crossover. 

Crossover 

  After parent is acquired, we do crossing over among these parent to obtain 

offspring. Then, we add parent and offspring and set it to be individuals of next 

generation. 

Mutation 

  To increase diversity among the population in the generation, GA has a 

mutation step to randomly change a gene value. Notice that changing gene value is 

done under a little amount of genes. 

  GA has many termination criteria. Here, we choose population 

convergence, offspring do not produce much differences in objective value relative to 

parents, to terminate algorithms. 

 

2.6. Non-dominated sort genetic algorithm II (NSGA-II) 

 NSGA-II is the improved version of GA. It improves parent selection step by separate it to 

two step Non-dominated sorting and crowding distance, how far within the solution. 

 This modification yields a diversity among individuals in each generation and reduces 

sharing parameters from experimentally entered by the implementor (K. Deb et al. 2002). 
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2.7. Quantum-inspired algorithms for combinatorial optimization 

 Quantum Superposition 

  Quantum superposition is a principle of quantum mechanics. It states that any two 

(or more) pure quantum states, a mathematical entity that provides a probability distribution for 

the outcomes of each possible measurement on a system (Kuk-Hyun Han and Jong-Hwan Kim 

2002), can be added together, called superposed, and the result will be another valid quantum 

state, says, that every quantum state can be represented as a sum of two or more other distinct 

states. 

 Quantum Computing 

a) Quantum bit (Qubit) 

  Superposition is used as one of the quantum phenomena in quantum computing. 

In quantum computing, the smallest unit of information stored in a two-state quantum computer 

is called a quantum bit or qubit. A qubit may be in the “1” state, in the “0” state, or in any 
superposition of the two (Zhang G 2011). The state of a qubit can be represented as: 

 
where α and β are complex numbers that amplify the probability amplitudes of the "0" state 

and "1" state respectively. |α|ଶ gives the probability that the qubit will be found in the “0” 
state and |β|ଶ gives the probability that the qubit will be found in the “1” state. Normalization 

of the state to unity guarantees 

 
 

 

b) Quantum gate (Qugate) 

 In the quantum circuit model of computation, a quantum logic gate (or qugate) is 

a basic quantum circuit operating on a small number of qubits. They are the building 

blocks of quantum circuits like classical logic gates are for conventional digital circuits. 

There are many qugates used in the quantum computing domain, but, here, we are 

considered only a rotation gate. The rotation gate can be exposition as: 
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where Δߠ௜ is a rotation angle of each Q-bit toward either 0 or 1 state depending on 

its sign. We use this rotation gate together with the lookup table, table that specify 

angle rotate to, to escape a local optimum (A. Narayanan and M. Moore 1996). 

 Quantum-Inspired Genetic Algorithms (QGA) 

 QGA applies qugate and qubit to GA by modifies chromosome representation and 

mutation as describes following: 

1. It substitutes binary embedded by qubit embedded as an information unit in the 

chromosome. 

 
            Figure 2.2 A gene unit in the chromosome 

 
        Figure 2.3 A chromosome m-length 

2. It uses rotation by rotation gate to perform rotation instead of mutation. 
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CHAPTER III 

METHODOLOGY 

3.1. An overview of process 

 In GA, we have 6 steps. There are initialization, selection, crossover, and mutation. 

In the first generation, we generate population of chromosome in initialization. After the 

first generation to the last generation(as predefined, 1500), we select parent chromosome 

in selection, produce offspring from parent in crossover, variate the offspring in mutation, 

and select the population for the next generation. In QGA, we have 6 steps from GA plus 

1 step, rotation, between mutation and population selection. 

3.2. Strategy of implementation in each step 

a. Initialization 

 In GA, first, we generate 1000 chromosomes as a population. The 

chromosome is a real-value vector. Each chromosome has 1041 genes plus 2 

objective values, flux of acetate and biomass respectively. Second, we randomly 

select 50 genes from 1041 genes to knockout by set it to 1. Finally, we evaluate 

the objectives of each chromosome. 

 
Figure 3.1 Initialization of GA 

 In QGA, we generate 1000 qubits by randomly initiate probability of state 

ଶߙ ,under superposition constraint ,ߚ ,and state 1 ,ߙ ,0 + ଶߚ = 1. Second, we 
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make chromosome by observing each qubit. There are 2 steps. First, we create 

vector r with 1041 elements. The element ݎ௜, in r is a random value between 0 

and 1. Then, If ݎ௜ greater than ߙ௜
ଶ, we assign 1 into the chromosome at the index 

i. otherwise, we assign 0. 

 To obtain objective value of each chromosome, we use the same step as 

used in GA. 

 
Figure 3.2 Initialization of QGA 

b. Parent Selection 

          This step performs similarly both GA and QGA. We use tournament 

selection strategy to select the parent chromosome. In this project, we use half of 

population, 500 chromosomes, to be parents. Tournament selection is 2-nested 

loop. First loop is using for pooling chromosome. We pool chromosomes by 

randomly select 2 chromosomes from the population. After that, we select a 

chromosome which dominate each other (If chromosomes nondominated to each 

other, we select the one which have minimum rank, maximum distance, or random 

sequentially) in Inner loop.  
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Figure 3.3 Parent selection 

 In QGA, we return index of parents along with chromosomes to using in 

select qubit population. 

c. Crossover 

 This step performs almost similar in both GA and QGA. We use element-

wise crossover method to produce offspring. This method is composed of 3 steps. 

First, we randomly select 1 pair of chromosomes from parent set from previous 

step, called dad and mom. Second, we generate vector r which element have a 

value given by random 0 to 1. If ݎ௜ is greater than 0.5, select bit i from dad, else 

select bit from mom. We repeat step 1 and 2 until we retrieve 500 offspring. Finally, 

we calculate acetate and biomass of offspring. 

 
Figure 3.4 Crossover of GA 
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Figure 3.5 Crossover of QGA 

 

d. Mutation 

 Mutation step create vector r with 1041 elements. The element ݎ௜, in r is a 

random value between 0 and 1. Then, if ݎ௜ is less than mutation rate, which we 

set it to 0.2, we inverse knockout state of gene i. In GA, we inverse ith bit. In QGA, 

we switch probability of state-0 and state-1. 

e. Rotation 

 This step performs only QGA. We rotate qubit with rotation rate 0.2. The 

rotation is defined by perform following operation:  

 
 The Δߠ is defined by following lookup table from Bin-Bin Li,2002: 
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Table 3.1 Lookup table 

 In this table, ݎ௜ is the binary bit observed from qubit at index i. ܾ௜ is the 

best bit, the first chromosome of the first rank from previous generation. 

,(ݎ)݂ ݂(ܾ) is the objective value of r and b respectively. 

f. Population selection 

 This last step combining 1000 current population and 500 offspring from 

crossover. After that, perform nondomination sort to combined population, select 

only the first 1000 chromosomes to be the parent of next generation (iteration). 

 

 

 

 

 

 

 

 

 

 



16 

 

CHAPTER IV  

RESULTS  

In this chapter, we will describe the results obtained from the last generation used as final 

solutions and the results across generations in order to see how population was evolved across 

generations.  

4.1 Results from the last generation  

a. Solutions at the Pareto-front of the 1500th generation  

  

Figure 4.1 The entire population generated by GA and QGA (left). The final solutions at the 

first front of the last generation (right).  

The results show that GA and QGA have exactly the same solution set in 

the first front. Unfortunately, QGA have many dominated solutions around 15-

30 mmolgD/hW of acetate. Another point that is worth to mention 

is that even though GA does not have any dominated solutions, it 

contains fewer unique solutions (in here, unique solutions are referred to the 

solutions that produce the different amount of acetate and biomass) as 

illustrated in Figure 4.2. GA had only 74 unique solutions out of 1,000 (population 

size per generation). In addition, even though QGA produced more unique 

solutions than GA, most of them (1000-131 = 869) were dominated by others, 

resulting in not sitting at the first front.   



17 

 

   

Figure 4.2 Number of unique solutions among the entire population in the 1500th generation.  

b. Top 15 most knockout genes  

  

Figure 4.3 The most selected knockout genes in GA (left) and QGA (right).  

First, there are the genes that GA and QGA tend to prioritize to be knocked 

out, such as Gene ID 4, 385, 524, and 197. Second, there are some 

genes that both GA and QGA selected to knockout, but with 

different frequency, as shown below in the rank after Gene ID 197. Finally, if 

we look at all genes, as illustrated in figure 4.4, we found that GA never 

picked the other 901 genes to knockout while QGA explored all genes despite by 

fewer individuals. In my point of view, this may cause GA to get stuck at local 

optima because GA had more redundant solutions, the solution that produce 

exactly the same objective values regardless knockout patterns, than QGA. I 
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assume that this characteristics of QGA may come from the uncertainty of qubit 

state and the rotation operations.    

  

Figure 4.4 The number of knockout genes from GA (left) and QGA (right).  

4.2 Results across generations  

a. Number of unique solutions at the first front in each generation  

  Figure 4.5 illustrates the number of unique solutions in the generation 1, 

100, 200, 300, 400, 500, 1000, and 1500. We can see that the number of unique 

solutions of GA and QGA is close to each other at the first 100th   generations, then 

significantly increases from the 100th  generation to the 500th generation, and finally 

reaching a plateau after 1000 generations 
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Figure 4.5 The number of unique solutions sitting at the first front of each generation.  

According to Figure 4.6, the pareto fronts from the 500th generation 

and those from the 1000th generation are almost the same. Hence, we can stop 

the model in at the 500th generation around to save more computational cost.  

   

Figure 4.6 (left) the first front of unique solution in generation 500 and 1500. (right) the number of 

unique solutions in first front of gen 500 and 1500.  

b. Run time per generation  

We changed the strategies of GA implementation from Costanza, 2012 due 

to the limitation of run time. The details can be found in the appendix at the end 

of the report. As Table 4.1 shows, QGA spent as twice as GA per one generation, 
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partly because of the rotation operation, which called an additional GLPK, a linear 

optimization solver. In total, the optimization solver was called twice before and 

after the rotation operation was performed in QGA, compared to only once in GA.   

  

Approach  Average run time per generation (second)  

GA (Costanza, 2012)  1,588.35  

QGA  125.336  

GA  58.69  
Table 4.1 The average run time per generation spent by different approaches.   
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CHAPTER V 

DISCUSSION 

5.1 Discussion 

 We have three topics to discuss here. First, we found that not many genes directly affect 

the objective values. So, it is better if we have a preprocessing method to weighting relationship 

between genes and objective values. Second, the strategies implemented here do not give as 

good final results as those proposed in Costanza, 2012, in terms of the production of diverse and 

nondominated offspring. However, the computational time and resources are more expensive. 

Finally, QGA can increase variations as we expected, but most of them are dominated by the 

solutions which are similar to those generated by GA.  

 

5.2 Conclusion 

 The QGA approach can find optimal solutions as well as GA and also improve diversity 

among the solutions. Unfortunately, the strategies used in QGA still need to be improved by 

adding some mechanisms to enhance them to be nondominated solutions. 

 

5.3 Future work 

 The future work includes the implementation of GA with redundant solutions handler, 

implementation QGA with mechanism that enhance solutions to be nondominated and 

performing more experiments with different population size and number of generations. 
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APPENDIX  

 

Strategy of implementation of Costanza, 2012 

 Costanza, 2012 use different crossover and mutation strategy and add redundant 

handling to the GA process 

a) Genetic operator (Crossover and Mutation) 

 This step is composed of 3-leveled nested loop. The outmost for-loop  loop 

through every individual to use it as a parent. The first inner-loop is while-loop which 

iterating to generate 10 candidate offspring by which randomly switch binary state 1 

position. The second inner-lop is while-loop that iterating to ensure whether no 

chromosome has knocked out exceed limit. if so, randomky un-knockout it.  

 After finish inner-loop, we have 10 candidate offspring. So, they measure the 

objective values of every offspring. Then, they nondomination sort them and append the 

offspring that is at the first individual at the first rank to the offspring set. 

b) Delete redundant 

 This step iterates through offspring and randomly un-knockout 1 position. Then 

evaluating objective values and compare to the offspring before un-knockout. If the 

difference of acetate is less than 10ିଵ଴, unknockout. 
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