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CHAPTER 1

INTRODUCTION

Risk measurement is one of the essential measures that can inform actuaries and
risk managers about the degree to which the risk bearing entity. The insurance’s portfolio
can be called as the amount of surplus in the classical risk model. The amount of surplus
process can be expressed by taking account of the inflow of premiums and the outflow
of claim payments and starting with initial reserve. Therefore, we can measure risk of
insurance company through many risk measures such as the ruin probability, the value
at risk and the tail value at risk. In recent years, a majority of researches in actuarial
science focuses on the development of risk models for different underlying distributions
of the arrival of claims, claim sizes and particularly for the claim counts. Several dis-
tributions of claim counts have been explored such as Poisson distribution and Negative
Binomial distribution. Besides the classical distributions, integer valued time series for
claim counts are also introduced into the risk models.

Time series is a sequence of data points measured over time. Two common struc-
tures of time series models are the autoregressive (AR) and the moving average (MA)
structures. The autoregressive structure assumes that the current value of the series can
be explained as a linear regression of past values. The moving average structure assumes
that the current value can be explained as a regression of past values of stochastic terms
called white noises. The original autoregressive and moving average time series models
are mostly studied under the normality assumption and applied to continuous variables
of interest such as stock price markets. Later, the concepts of autoregressive moving
average models were generalized to accommodate time series of counts. For example,
McKenzie (1985) introduced the first autoregressive process integer valued AR(1) model
as a counting process. The properties of the integer valued autoregressive (INAR) and in-
teger valued moving average (INMA) are studied in Al-Osh and Alzaid (1987) and Alzaid
and Al-Osh (1988). These models can be used as claim count models based on binomial

thining operator proposed in Steutel and van Harn (1979).



Cossette and Marceau (2000) introduced the concept of time series of counts to
the context of insurance risk models. In their study, they introduced the discrete time
risk model with correlated classes of business and studied the impact on the finite time
ruin probability and on the adjustment coefficient. Since then, several studies of the risk
models based on integer valued time series have been intensively studied in literature. For
example, Cossette et al. (2011) studied the classical risk models based on time series pro-
cess based on the Poisson distribution. The Poisson distribution is one of extensive used
distributions for count data. The one important characteristic of the Poisson distribution
is that its expectation and variance are the same. This property may not be applicable
for the data that exhibit overdispersion or underdispersion such as the insurance claim
counts. Therefore, the alternative distributions have been proposed, for instance, Laphu-
domsakda and Suntornchost (2018) introduced the discrete risk model based on negative
binomial moving average (NBMA) model.

However, none of these distributions is suitable for the data with excess of zeros.
For instance, the insurance claim counts having small claims with deductibles and no
claim discounts of automobile portfolio with excess zeros in data. Therefore, alternative
distributions to accommodate zero counts have been proposed through the concept of
zero inflated first introduced by Lambert (1992). The definition of zero inflated Poisson

distribution is stated as follows

goh-eitieidiry 0,
e M\F

(1 =p)—

Jifk=1,2,...

where p € (0,1) and A > 0. In addition, parameter p represents for the proportion of
zero and if p = 0, we obtain the Poisson distribution. Later on, the zero inflated Poisson
has been applied to many applications such as a manual handling injury prevention strat-
egy trialled (Yau and Lee, 2001), the credibility premiums (Boucher and Denuit, 2008)
and the number of accidents (Boucher et al., 2009). Among these applications, one well
known application of the zero inflated Poisson is to model claim counts. For example, Yip
and Yau (2005) proposed proposed the zero inflated Poisson distribution for the excess

zeros in insurance claim count data. Zhu (2012) proposed zero inflated Poisson time se-



ries of counts (ZIP-INGARCH). Aghababaei Jazi et al. (2012) introduced the first order
integer valued AR process with zero inflated Poisson distribution (ZIP-INAR) to model
the count of events in consecutive points of time. Sarul and Sahin (2015) proposed the
zero inflated Poisson distribution as a claim count model to take account excess zeros in
data.

In this study, we apply the zero inflated Poisson to construct new discrete time risk
models based on the zero inflated Poisson moving average and the zero inflated Poisson au-
toregressive models. Moreover, we derive probabilistic properties of the new constructed
risk models, the upper bound of the ruin probability and the risk measures.

The organization of this thesis is as follows. In Chapter 2, we introduce the back-
ground knowledge used throughout this thesis. In Chapter 3, we introduce risk models
based on the first order zero inflated Poisson moving average and ¢ order zero inflated
Poisson moving average models, and related quantities such as the adjustment coefficient
function, approximations to the value at risk and tail value at risk. Numerical results
studying the trend of the ruin probability and the risk measures are also presented in
Chapter 3. In Chapter 4, we introduce risk models based on the first order zero inflated
Poisson autoregressive model, and related quantities and numerical results are presented.

In Chapter 5, we give discussions and conclusion of this thesis.



CHAPTER 11

BACKGROUND KNOWLEDGE

In this chapter, we provide some definitions and properties that will be used through-

out this thesis.
2.1 Random Variables and Probabilistic Properties
In this section, we give useful theorems and definitions and some handful techniques

to obtain the probabilistic properties for random variables.

Definition 2.1. Consider a random experiment whose sample space is S. A random
variable X is a function from the sample sapce S into the set or real number R such that

for each interval I in R, the set {s € S| X(s) € I} is an event in S.

Definition 2.2. The set {x € R|az = X(s), s € S} is called the space of random

variable X.

Definition 2.3. If the space of random variable X is countable,then X is called a discrete

random variable.

Definition 2.4. Let Rx be the space of discrete random variable X. The function
f : Rx — R defined by

is called the probability mass function (pmf) of X.

Theorem 2.5. If X is a discrete random variable with space Rx and the probability

mass function f(-), then

(a) f(x) > 0 for all z in Rx, and

® Y f@) =1

Z‘ERX



Definition 2.6. The cumulative distribution function F'(-) of a random variable X is

defined as

for all real number z.

Theorem 2.7. If X is a random variable with the space Rx and f(-) is the probability

mass function of X | then the cumulative distribution F'(-) can be defined as

P) = S f(t),

t<x
forz € Rx.

Theorem 2.8. The cumulative distribution function F(-) of a random variable X has
the following properties.

(a) lim F(z) = 1 and lim F(x) = 0,

T—r00 T—r—0Q

(b) F(z) is a non decreasing function, that is if z < y,then F(z) < F(y) for all real

numbers z, y,

(¢) F(x) is right continuous for all zy € R and lim F(z) = F(xo).

T
Definition 2.9. The n!" moment about the origin of a discrete random variable X, as
denoted by E(X™), is defined to be
BX™) = 3 amf(a), (2.1)
T e Rx

forn = 0,1,2,..., provided the right side converges absolutely and f(-) is the probability

mass function of X.

Furthermore, If n = 1, then E(X) is called the first moment about the origin, or
the expectation. If n = 2, then E(X?) is called the second moment of random variable

X about the origin.



Definition 2.10. Let X be a discrete random variable with space Ry and probability
density mass function f(-). The expectation or the expected value of the random variable

X is defined as

B(X) = Y azf(),

r€Rx
The expectation is also called mean of the random variable X, denoted by px.

Theorem 2.11. If a and b are any two real numbers,then

E(aX +0) = aE(X)+0.

Definition 2.12. Let X be a random variable with mean px. The variance of X, denoted

by Var(X), is defined as

Var(X) = B(X —pux)?.

Theorem 2.13. If X is a random variable with mean px, then

Var(X) = E(X?) - (ux)

Theorem 2.14. If X is a random variable with variance Var(X) then

Var(aX +b) = a*Var(X),

where a and b are arbitrary real constants.



Definition 2.15. Let X and Y be random variables with means pux and uy, respectively.

The covariance function between X and Y, denoted by Cov(X,Y), is defined as

Cov(X,Y) = E((X —pux)Y —py)) = EXY) = pxpy.

The correlation function between X and Y, denoted by Corr(X,Y'), is defined as

Cov(X,Y)

/Var(X)Var(Y)

Corr(X,Y) =

Definition 2.16. Let X be a discrete random variable whose probability mass function

f(-) with space Rx. The function mx : Rx — R defined by

mx(t) = E() = Y €f(a),

S RX
for t € R and mx(-) is called the moment generating function of X.

Definition 2.17. Let X be a discrete random variable whose probability mass function

is f(-) with space Rx. The function Gx : Rx — R defined by

Gx(t) = E@) = Y #f@)

€ Rx
for t € R and Gx(-) is called the probability generating function (p.g.f.) of X.

Definition 2.18. Let X and Y be discrete random variables defined on the same sample

space. The function Fxy : R? — [0, 1] defined by

Fxy(z,y) = P(X <z,Y <y),
for all real numbers = and y and Fx y(-,-) is called the joint cumulative distribution
function of X and Y. The function fyxy : R? — [0,00) defined by

fX,Y(‘T?y) = P(X = 'IaY = y)a

for all real numbers = and y and fx y(-,-) is called the joint probability mass function of

X and Y.



Definition 2.19. Let X and Y be discrete random variables with the joint probability
mass function fxy(-,-). The marginal probability mass of Y, fy : R — [0,00) defined
by

) = D fxylxy),

z€ImX

for all real number y.

Definition 2.20. Let X and Y be discrete random variables with the joint probability
mass function fx y(-,-) and fy(-) is the marginal probability mass function of the random

variable Y. The conditional probability mass function of X, given Y = y for all values

y such that fy(-) > 0, defined by

vl = L),

for all x € R,.

Definition 2.21. Let X be a discrete random variable and fxy(x|y) be the condition
probability mass function of X, given ¥ = y. The conditional expectation of X, given

Y = y defined by

BXY =y) = Y afxy(zly).

Definition 2.22. Let X1, Xo,..., X, be discrete random variables with the probabil-
ity mass functions fx,(+), fx,(-),..., fx, (-). They are said to be identically distributed

random variables if and only if

fx, (@) = fx,(z) = ... = fx,(2),

for x € R.



Definition 2.23. The discrete random variables X1, Xo, ..., X,,, are said to be indepen-
dent random variables if and only if the joint probability mass function fx, x, .. x,.(-, ..,

can be written as

IxiXo X, (X1, 22,0 m0) = fx, (21) fx, (22) - - fx, (70),

for all x1,x9,...,2, € R, where fx,(-) is the probability mass of X; (i = 1,2,...,n).

The random variables X1, Xo,..., X, are said to be independent and identically
distributed (i.i.d.) if random variables X, Xs, ..., X,, have the same probability mass

function and are mutually independent.

Lemma 2.24. Let X be a discrete random variable with probability generating function

G x (+), the probabilistic properties of X are listed as follows

d
() BOY) = 56x(0)]
2
(b) Var(X) = GaOx(0)| ~ + E(X) = (X)),

(¢) Var(X) = E(Var(X|U)) 4+ Var(E(X|U)), where U is any random variable,

E(X?) — 3E(X)Var(X) — E3(X)
Var(X)3/2 '

(d) The skewness Sk =

Proof. (a) Note that

Taking ¢t = 1, so we can obtain E(X).



10

(b) Consider
d? d?

@Gx(t) = @E(tX)
d2
= 2 Z t"f(z)
r€ Rx
= ) al@—- D f(2)
T € Rx
= Z 22772 f () — Z zt* 2 f (z).
r€ Rx r€ Rx

Taking ¢ = 1,then we obtain E(X?) — E(X). Then, we add E(X) — (E(X))? into
E(X?) — E(X), then we obtain

E(X?) - E(X) + E(X) = (B(X))? = Var(X).

(c) Note that,

Var(X) = B(X?) - (B(X))?
= E(E(X’U)) ~ EXB(X|U))
= E(E(XU)) - EAE(X|U)) ~ E(E*(X|U) + E(E*(X|U)
— E(E(X’|U) ~ EXX|U)) + E(EX(X|U)) - E*(E(X|U)
= E(Var(X|U)) + Var(E(X|U)).
(d) Note that the formula of skewness is defined as

| E(X -EX))’
Sk = Var(X )3/2

Then, we expand the numerator to derive another version that can be calculated more

easily as follows
E (X —E(X))’
Var(X)3/2
E(X?) - 3E(X?)E(X) + 3E(X)E*(X) — E3(X)
Var(X)3/2
E(X?) - 3E(X) (E(X?) — E*(X)) — E*(X)
Var(X)3/2
E(X?) — E(X)Var(X) — E3(X)
Var(X)3/2 '

Sk =




11

Definition 2.25. Let {¢;, j = 1,2,...} be a sequence of independent and identically
distributed random variables, X be an non-negative integer valued random variable which

is independent of {d;, 7 = 1,2,...} . Then the random variable
X
N = >y
j=1

is called a compound random variable.

X

Lemma 2.26. Let N; = Z 0;; for i = 1,2 are compound random variables defined in
j=1

Definition 2.25 where {61 ;7 = 1,2,...} and {62 ;7 = 1,2,...} are two mutually inde-

pendent sequences of random variables and are independent of X; and Xs, respectively.

The probabilistic properties of N; (¢ = 1,2) are provided as follows.

(b) Var(N;) = E(X;)Var(X;) + Var(X;)(E(6;))?,
(C) COV(NZ',XZ') = E(5Z)Va1‘(X7,),
(d) COV(Nl,NQ) = E((Sl)E((SQ)COV(Xl,XQ)’

where E(d;) is the mean of {J;;j = 1,2,...} and i = 1,2.

Proof. (a) Fori = 1,2, we know that {0;; j = 1,2,...} are identically distributed, then

E(6;1) = E(di2) = ... = E(6;). Thus, consider
Xi
E(N:) = B (4
j=1

= EE@i1+di2+ -+ 0 x| Xi))

X

= E(D_EG)
=1

= E(X;E(4))

= E(X)E(&).
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(b) Using Lemma 2.24 (c),we obtain

X X;
Var(Ni) = E (Var (Z (Si,j XZ)) + Var (E (Z 5z,j
Jj=1 Jj=1

= E(X;Var(é;)) + Var(X;E(5;))

J

= E(X;)Var(d;) + Var(X;)(E(5;))%

(c) Note that,

Cov(N;, X;) = E(N;X;) — E(N)E(X;)

= (X 25”) — B(X,)E(X;)E(6:)
X
— B (XZ-E (Z 8.

=1

X@>> — (E(X))*E(4;)
£

= B(X?E(%)) — (E(X;))?E(5;)

= B(XY)E(®) — (B(X;))’E()

— E@%) (B(X?) — (B(X,))?)

= E((SZ)VaI"(XZ)

(d) Note that,

X1 Xg
COV(Nl,NQ) = Cov (Z(SLJ',Z(SQJ)
7j=1 J=1

X4 Xs X1 Xo
= E (E (Z 51,3‘7252,]‘ X1, X ) (Z 13) (252,3')
=1 =1 j=1
JE(d2)

= E(X1E(61)X2E(62)) — E(X1)E(61)E(X2)E(d2 (2.2)
= E(61)E(02)(E(X1X2) — E(X1)E(X2))

= E(61)E(d2)Cov(X1, Xa),

where we use the fact that {615 = 1,2,...} and {625 = 1,2,...} are mutually

independent to obtain (2.2). O
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Theorem 2.27. The moment generating function of the compound random variable

S=X1+--+Xyis
ms(r) = Gn(mx(r)), (2:3)

where Gy (+) is the probability generating function of N.

Proof. Note that

B(SIN = n) = B ()

= (mx(r))",

so that E(e™ | N) = (mx(r))", using the conditional expectation, then we obtain

mg(r) = E(E (7| N))
= B ((mx()")

= Gn(mx(r)).

2.2 Zero Inflated Poisson Distribution

In this section, we first introduce the concept of zero inflated distribution and
the properties of zero inflated Poisson distribution used in this study. We follow the
probability mass function proposed by Lambert (1992).

The concept of zero inflated model is to allow more flexibility in modeling the
distribution to accommodate zero counts into model. Zero inflated model, added the
probability of being zero and can be formulated with the number of distributions. Zero

inflated model can be expressed as the following

P(X=k) = plgy+(1—pfk), k=01,2,...,
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where

0, w # 0,

and p is the proportion of zero, f(+) is probability mass function of Y where Y is a random
variable, taking value 0,1, 2,..., then X is called zero inflated version of random variable

Y.

Definition 2.28. Let X be a zero inflated Poisson random variable with parameters p

and A, denoted by X ~ ZIP(p,\). The probability mass function of X defined as

p+(1—pe if k=0,
e Mk

(1-p) i

Jif k=1,2,...,

where p € (0,1) and A > 0.

Lemma 2.29. The zero inflated Poisson random variable X ~ ZIP(p,\), defined as

Definition 2.28 has the following properties.

(a) The probability generating function: Gx(t) = p+ (1 —p)e 21D for t € R,
(b) The expectation: E(X) = A(1 — p),

(¢) The variance: Var(X) = (1 —p)(1+ Ap),

1+ 3X\p + 2222 — \2p

(d) The skewness: Sk = .
VI =p)AA +Ap)?
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Proof. (a) Using Definition 2.17 and the probability mass function as in Definition 2.28,

we can obtain

Gx(t) =

for t € R.

E(tY)

> tP(X =k)

k>0

P(X=0)+ > t*P(X =k)

k>1

p+(1—ple M+ Z t"(1 - p)

E>1

. e—A)\k
k>0

k
pt(-pet Y B8
k>0

p+(L—plereM

p + (1 = p)e_A(l_t)a

(b) Using Lemma 2.24 (a), we obtain E(X) as follows

(¢) Using Lemma 2.24 (a), we first find 45 G x ()

dt?

d
B(X) = =Gx()
t=1
— d 1 —A(1-t)
= 2+ (1-pe )y
_ <(1 _ p)ef)\(lft)A>
t=1
= A1-0p).
2 as follows
t=1

Gx(t)

_ 4 (p +(1- p)e_A(l_t)A)

=1 dt

= </\(1 —p)e*)‘(lft))\) ‘t:l

= N(1-p).

e M \k
k!

t=1



Then, we obtain Var(X) as follows

d2

Var(X) = —=Gx(t)] +E(X) - (E(X))?

dt t=1

= N(1-p)+A1-p)— (\1-p)>?

= AMl=p)A+1=A1-p))

= AM1-p)(1+Ap).

16

(d) Using Lemma 2.24 (d), we first consider E(X?3) by applying probability generating

function as follows

d3
a3

Let t = 1, then

Then,we have
11

E(X?) = Gx(1)+3E(X?) - 2E(X),

and from Lemma 2.24, we have that G’y (1) = E(X?) — E(X).
Finally, we can have

111

E(X?) = Gy(1)+3G%(1) +E(X).

11

Moreover, we know G’y (1) = A(1 —p) and Gy (1) = A3(1 — p).

Hence,

E(X3) = X(1-p)+3X2(1—p)+ 11 —p).

Gx(t) = E(X(X-1)(X —2)t¥?).
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Therefore, the skewness is

E(X?) — B(X)Var(X) — E3(X)
Var(X)3/2
A1 =p) +302(1 —p) + A1 —p) =3X(1 = p)*(1 + Ap) — (A1 —p))®
(AL = p)(1+Ap))*/?
A +30+1 =301 -p)(1+Ap) — (A1 —p))°
VAL =p)(1+ Ap)?
M 43N +1=3N1+Ap—p—Ip?) — X2(1 — 2p + p?)
VAL =p)(1+ Ap)?

1+ 3X\p +2X%p2 — \2p

VAQ=p)(T+Ap)®

2.3 Binomial Thining Operator

McKenzie (1985) and Alzaid and Al-Osh (1988) have proposed the model known as
integer valued autoregressive (INAR) and moving average (INMA) processes. The models
are constructed by using binomial thining operator. In this section, we first introduce the

definition of binomial thining operator proposed by Steutel and van Harn (1979).

Definition 2.30. Let X be a non-negative integer valued random variable. For a € (0, 1),

the ‘o’ thining operator is defined as

X
aoX = Zé“
i=1

where {0;,7 = 1,2,...} is a sequence of i.i.d. Bernoulli random variables with mean «

and is independent from X.
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Lemma 2.31 (Properties of binomial thining operator). Let X;,7 = 1,2,... be a non
negative integer valued random variables, {d;;i,7 = 1,2,...} be a sequence of ii.d.
Bernoulli random variables with mean «; and is independent from X;. Then for ¢,j =

1,2,..., has the following properties.
(a) E(a;0X;) = oyE(X;),
(b) E((a; 0 X;)Xy) = aiE(X;Xy) for i # k,
(c) Var(ajo X;) = a;(1 — a;)E(X;) + a?Var(X;),
(d) Cov(ey o X4, Xi) = a;Cov(X;, Xi),
(e) Cov(ayo X, ap o Xg,) = aaCov(X;, Xi).

Proof. (a) Since {0;;i,j = 1,2,...} is a sequence of i.i.d. Bernoulli random variables

with mean «;, then E(61 ;) = E(d2;) = E(6;;) = ;. From Lemma 2.26 (a), we obtain

>

E(aioXi) = E 52'7]‘
1

j=

= E(6)E(X;)
= OézE(Xz)
(b) For i # k,
X
E((io Xi)Xi) = E| XY 6
j=1
X,
= E|E|Xp) 6i|X
j=1
X;
= E|XzE ) dii|X
j=1
= E(X;XpE(6))
= E(§)E(X;X})

= azE(Xsz)
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(¢) Using Lemma 2.26 (b), then

X;
Var(a; 0 X;) = Var (Z 6Z~7j)
j=1

= E(X;)Var(d;) + Var(X;)(E(5;))?

= (1 — a)B(X;) + a?Var(X;).

(d) Using Lemma 2.26 (a) and (b), we obtain

COV(O@ o Xi; Xk) = E((az o Xz)Xk) - E(az o Xl)E(Xk)
= a;(E(X;Xy) — E(XG)E(Xy))

— CkiCOV(Xi, Xk)

(e) Since {d0; ;1,5 = 1,2,...} and {dx k,l = 1,2,...} are two mutually independent

sequences of i.i.d. Bernoulli random variables with means «; and ag, respectively,

X X
Cov(ai o Xi, Qf, © Xk) = Cov Z 52‘73‘, Z 5]@,[
=1

Jj=1

5 X X Xk
= E|E[D 6 Y 0ri|Xi Xi E(Z@,j E(Z(Sk,l
j=1 =1 j=1 I=1

= E(XE(6:X,E(dk))) — E(X)E(6:)E(Xk)E(dk)
= E(6:)E(d) (E(XiXk) — E(X;)E(Xy))

= o;oCov(X;, Xg).

O]

Definition 2.32. Let {a, n = 0,1,2,...} be a sequence of real numbers. The function

G : R, — R defined by
G(t) = ant",
n=0

for t € R and G(-) is called the generating function of a sequence {a, n = 0,1,2,...}.
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Moreover , we will derive the joint probability generating function (joint p.g.f.) of

the variables with thining operator which will be used in this study.

Lemma 2.33. Let N1, Ns,..., N, be compound random variables defined as Definition

2.25 ,then

X
Ni = ooX; = E i,
j=1

fori = 1,2,...,nand {d;;, i,j = 1,2,...} is a sequence of i.i.d. random variables with

the p.g.f. Gs.(-), and independent from X;. Thus, the joint p.g.f. is given as follows

s E(ZfllloXlzngOXQ =

GNy Ny, N, (21,22, .., 2n) = anoX, )

e 2

= B

(
“

X X n
Zijll 1,5 szfl 025 szzl On.j
 f 2 n

PRRANLINED DAY I 3 Gn
E (2'1 25 “ttZn

= GX, X,,..X,(Gs (21)Gs,(22) - - - G5, (2n))-



CHAPTER III

DISCRETE TIME RISK MODELS BASED ON
THE ZERO INFLATED POISSON MOVING

AVERAGE

In this chapter, we first introduce the definition of the discrete time surplus pro-
cess. In Section 3.1, we introduce to the ruin probability which provides a definition of
the time of ruin and a method of how to obtain the approximation of the ruin probability.

In Section 3.2, we discuss the discrete time risk models based on the first order zero
inflated Poisson moving average (ZIPMA(1)) model and derive its properties. The defi-
nition of the first order zero inflated Poisson moving average model is given in Definition
3.3, the model properties are defined in Lemma 3.4. The derivation of the adjustment
coefficient function of ZIPMA(1) is presented in Theorem 3.6 to obtain the Lundberg ad-
justment coeflicient to approximate the ruin probability. The proof of the unique positive
solution of zero root of the adjustment coefficient is presented in Lemma 3.7. Afterward,
we obtain the estimated ruin probability. Moreover, we introduce risk measurements,
such as the value at risk and the tail value at risk for a better decision when conjoins with
the ruin probability. Section 3.2.3 shows the numerical experiments of the ruin probabil-
ity and the risk measurements.

Moreover, we extend the model of claim counts which is the first order zero inflated
moving average model to reach the ¢'* order zero inflated moving average (ZIPMA(q))
model in Section 3.3. In this section, we give detail of the derivation and proof to obtain
the properties, the adjustment coefficient and the unique positive solution for ZIPMA(q).
In Section 3.3.3, we show the numerical experiments of the ruin probability and the risk

measurements in the cases of ZIPMA(2) and ZIPMA(3) risk models.
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Definition 3.1. Let R,, be the discrete time surplus process defined as

n N;
R, = u—i—nﬂ—ZZCm, (31)

i=1 j=1
where
e w is the positive initial reserve of the business;
e 7 is the premium rate per period;

 the sequence Cj ; is the sequence of claim sizes in period 4 and individuals j and
the sequence is independent and identically distributed distribution with moment

generating function, mc(+);
e N; is the claim number in period 1.
We also denote that
e Ny = Yoy N is the aggregate claim number for n periods;
« W; = Zf;l C;,; is the aggregate claim size for period i;

« S, = 2?21 W; is the net loss process.

3.1 Approximation to the Ruin Probability of Discrete Time Risk Model

In this section, we first give the definition of the first time of ruin and the defini-
tion of ruin probability and the methods that are applied to approximation to the ruin

probability.

Definition 3.2. Let T be the time of ruin, the first time that the surplus becomes

negative. Then T is defined as follows.

T = inf{n € NT|R, < 0}. (3.2)
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The ruin probability as a function of the initial capital u is defined as

U(u) = P{T < o|Ry = u}. (3.3)

The ruin probability is generally difficult to calculate, we then approximate to the ruin
probability which is normally applied in many researches. For example, Gray and Pitts
(2012) proposed the approximation to ruin probability by using asymptotic Lundberg-

type result

U—00 U

where R is the Lundberg adjustment coefficient. Thus, we determine R by using function
called the adjustment coefficient function. Following Nyrhinen (1998) and Miiller and

Pflug (2001), let the adjustment coefficient function ¢(-) is defined as

2N nli_}ngoﬁcn(z),

where ¢,(+) is the logarithm function of the cumulative generating function of the aggre-

gate net loss profit process defined by

en(z2) = InE(eSnmm),

They claimed that if we can find the unique R > 0 such that ¢(R) = 0, then the positive
zero root, R, is the Lunberg adjustment coefficient. Then the ruin probability W(u) is

approximated by

U(u) ~ e fu (3.4)

Hence, the main work of this study is to find the adjustment coefficient function, ¢(-),

and the positve zero root, R, from the surplus process.
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3.2 Discrete Time Risk Model based on the First Order Zero Inflated Poisson

Moving Average (1) process

In this section, we provide the definition of the first order zero inflated Poisson
moving average (ZIPMA(1)) model and derive its probabilistic properties. We firstly

consider the discrete time surplus defined in Definition 3.1,

n N
R, = u+nm— ZZCM’

i=1 j=1
when the claim counts, {N;, i € N}, are modelled by the first order zero inflated Poisson
moving average model. The definition of ZIPMA(1) and its probabilistic properties are
provided in Definitions 3.3 and Lemma 3.4, respectively. In Section 3.2.1, we derive
the adjustment coefficient function and the approximation to the ruin probability of the
ZIPMA(1) risk model. We also provide the special case of the adjustment coefficient
function when the claim sizes are exponentially distributed. In Section 3.2.2, we propose
the approximation to the value at risk (VaR) of the ZIPMA(1) net loss process.
Next, we will use the zero inflated Poisson random variable with the binomial thinning

operator to define the ZIPMA(1) model.

Definition 3.3. Let {V;, i € N} be the ZIPMA(1) model defined as

N, = «aoe€_1+¢, fori=1,2 ..., (35)

where {¢;, k =0,1,...} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and A. The o thining operator is defined in Definition 3.3 as
€i—1
ao€-1 = Z O(i—1).5»
j=1

where {d(;_1);,,j = 1,2,...} is a sequence of i.i.d. Bernoulli random variables with

mean .



25

The concept of the first order zero inflated Poisson moving average model is that we
apply the moving average model to consider the number of insured where ¢; is represented
as the number of new insured in period ¢ and « is the probability of that the insured will
reclaim. Thus, a o ¢;_1 represents that the number of claims in period i from the new
claims in period ¢ — 1, where the probability of reclaim is a. Hence, the interpretation
of N; is that the number of insured in period ¢ based on the summation of the number
of new insured in period ¢ and the number of reclaims from new insured in period i — 1,

where the new claims follow the zero inflated Poisson distribution.

Lemma 3.4. Let {N;, ¢ € N} be a ZIPMA(1) model defined in Definition 3.3, then

{N;, i € N} has the following properties.

(a) The sequence {N;, i € N} is a stationary process with the probability generating
function of N;, Gn,(z) = (p+ (1 =p)e =) (p+ (1 —p)e?*(1=2)) for i € N

and z € R.
(b) The expectation of N; is E(N;) = A(1 —p)(1 4+ «) for i € N.
(¢) The variance of N; is Var(N;) = A1 —p) ((1 + pA) + a(1 + pAa)) for i € N.

(d) The covariance function between N; and N;—,,

Aa(l —p)(1+pA), for m =1,
COV(Ni,NZ'_m) =

0 , for m > 1.

(e) The correlation function between N; and N;_y,

a(l+pA)
Corr(Ni, Ni_p) = { (L+pA) +a(l +pla)
0 , for m > 1.

Proof. To prove (a),we consider the of {N;, i € N}. Since {¢, t = 1,2,...} is a sequence
of i.i.d. zero inflated Poisson random variables with parameters p and A, by Lemma 2.29,

the probability generating function of IV; is
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Gy, (z) = E(zNi)

= E(:z9)E(z°1) (3.6)
= G (2)Ge,_, (1 —a+az)

= (p+(1=p)e ) (p (1= ppee0-2), (3.7)

for z € R, where we apply the independence between « o €;—1 and ¢; to obtain (3.6)
and apply Lemma 2.29 to obtain (3.7), respectively. Since the generating function Gy, (+)
does not depend on ¢ then Gy, (1) = Gn,() = ... = Gn,(+). Therefore, {N;, i € N} is
a stationary process. In addition, the probability generating function of {N;, ¢ € N} is

given by

Gy, (2) = (p+ (1 —p)e‘m‘z)) (p+ (1 —p)e‘m(l‘z)) :

for all 7 € N.
(b) The expectation of N; can be obtained by evaluating the derivative of Gy, (z) at

z = 1 as follows.

BN) = < On(2)

z=1

_ % (p+ (1 _p)e—)\(l—z)) (p+ (1 _p)e—)\a(l—z)>

z=1

= (e+@=pe (= ple )

z=1
+ ((p+ (1= p)e M=) (1 = p)e 20723
= (p+1-p)A=pra)+((p+1-p)(1—-p)A)

= AM1-p)(1+ ).

z=1

(c) Note that, Var(N;) = E(N?) — E*(N;) . Therefore by applying the properties of the
probability generating function in Lemma 2.24 as
d2

E<Nz2> = @GN(Z)

d

z=1 z=1



Note that,

d2
@GN,;(Z)

Thus,

E(NY) = ——=Gn.(2)

Consequently,

Var(N;) =

_ j; (p+ (1 _p)e—)\(l—z)) (p+ (1 _p)e—)\a(l—z))
z=1

= diz ((p +(1— p)e*A(l—z))((l _ p)ef)‘a(lfz))\a)

+(p+ (1= p)e =) (1 = p)e 17y

= (p +(1- p)e_’\(l_z)> ()\a(l - p)e_)‘o‘(l_z)/\oz>

z=1

+ ()\a(l — p)ef)‘a(lfz)> ((1 — p)ef)‘(lfz))\)

z=1

+ (p + (1 p)e—m(l—@) ()\(1 —p)e 7))

z=1
-+ <)\(1 —p)e_/\(l_z)> ((1 — p)e_)‘“(l_z))\a)

= (Ma)’(1=p) + Va(l—p)* + X’(1 - p) + Na(l - p)*

z=1

= M(1-p)(e®+2a(1l-p)+1).

d
1.2 = + %GNi(Z)

— M (1=p)(a®+2a(l—p)+1) +A(1—p)(1 +a).

z=1

A (1=p) (a®+2a(1=p)+1) + A1 =p)(1+ )
—(A1-p)(1+a)?
ML=—p) M1+ a)? =2pxa+ (1+a) — X1 —p)(1+ a)Q)

AL =p) (A1 +a)? = 2pAa+ (1 +a) — AL+ a)? + pA(1 + a)?)

A1 =p) (PA((1+ @)® = 20) + (1 + a))

(
(
A1 =p) (=2pra+ (14 a) + pA(1 + a)?)
(
A1 =p) (pA(L+a?) + (1 + )

(

A1 =p) ((1+p\) + a(l+ pAa)).

27
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(d) To obtain the covariance function between N; and N;_,, Cov(N;, N;_y,), we consider
into two cases: m = 1 and m > 1 as follows.
For m = 1,
Cov(N;, Ni—1) = Cov(aoe€_1+€,a06 o+ €_1)
= Cov(awoe€_1,a0€_2)+ Cov(ao€i_1,€-1)
+Cov(ej, 0 €;_2) + Cov(ej, €i—1)
= Cov(aoei_1,€6-1)
= aVar(e_1)

= aA(1—p)(1+pA),

where we use the fact that ¢;_1 is the zero inflated Poisson random variable and Lemma
2.29 to obtain the last equation.
For m > 1, by using the property that {¢;,7 = 1,2,...} is a sequence of independent

random variables,

Cov(Niy Ni—p) = Cov(awoe€i—1+ 6,006 m_1+ €—m)

=—0-

(e) From Lemma 2.29 and (d), then

COV(Ni, szm)
v/ Var(N;)Var(N;_,)
COV(Nz', Nz—m)

COI‘I“(NZ‘, Nz—m) =

Var(Ni)
a(l+pA)
f =1
(14+p\) + a(l+pla) ’ orm ’
0 , for m > 1.
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3.2.1 Adjustment coefficient function of ZIPMA (1)

In the previous section, we have provided the definition of the discrete time surplus
process based on ZIPMA (1) model. In this section, we derive the adjustment coefficient
function of ZIPMA(1) by applying the method from Section 3.1 to obtain the Lundberg
adjustment coefficient. Afterward, we provide a proof of the unique positive solution of
zero root of the adjustment coefficient. The risk model based on ZIPMA(1) is described

below

Definition 3.5. The risk model based on ZIPMA(1) can be expressed as

n N;
Brs= u+n7T—ZZCM,

i=1 j=1

where v is the positive initial reserve, 7 is the premium rate per period, IV; is modelled
by ZIPMA(1) defined in (3.5) and {Cj;} is the sequence of independent and identically

distributed distribution.

Theorem 3.6. Let R, be the discrete time surplus process defined in Definition 3.5. The

adjustment coefficient function ¢(z) of Ry, is defined as

C(Z) — log (p + (1 . p)e—)\(l—mc(z)(l—a—i—ozmc(z)))) — 7z, (3.8)
for z € RT.

Proof. Let z € RT. We denote that {C;;, 4,7 = 1,2,...} is a sequence of i.i.d. random
variables whose the moment generating function of {C;;, i,7 = 1,2,...} is defined as
mc(+) and the net loss process S, whose the moment generating function of \S,, is defined
as mg,(-). We then simplify the form of the aggregate net loss profit process ¢,(:) to

obtain ¢(+) as
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ca(z) = logB(e?5nmm)

2S5,
= logE<€n )

e Tz

28y
= log <E(i ))

e’TI'Z

= logmg, (z) — nnz, (3.9)
then
() = Jim ~logms, (2
c(z) = lim —logms, (2) —mz.

Next, we consider the moment generating function of .Sy,
ms,(z) = E(e)
E( DD iAo )
_ E( 2300 Cr A2 Y002 Co etz YN C, )
B (

E( ZZJ 101]+ZZ CQJ"F +ZZ] 1C"J’N1,N2,.-.,Nn))

Ny 2 N,
= E HE ZClJ ZCZJ \ H zCnJ
Jj=1 1 j=1
= E (mgw(z))
= GN(n) (mo(z)) . (310)
Consequently,
mg, (Z) = GN(n) (mo(z)) ) (311)

where Gy, (+) is the probability generating function of Ni,).
To obtain (3.11), we first derive the probability generating function Gy,(-). Since
{e;, t = 0,1,...} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and A,
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Grpz) = BN
o E(Z(OLO€()+€1)+(Oé061+52)+"'+(a06n—1+€n))

n—1
= E(")E(z") [[ B(z4)
i=1

n—1
= E()E <z250=1 504) [1E (zziil 5w'+fi) . (3.12)
=1

Using Lemma 2.29, we obtain the first term of (3.12) as

E(z) = p—l—(l—p)e*)‘(lfz) for = € RT. (3.13)

Since {d; , 4,j = 1,2,...} is a sequence of i.i.d. Bernoulli random variables with mean
o and Lemma 2.29, the probability generating function E(z%1) = E(z%2) = ... =

E(2%) = 1 — a + az, the second term of (3.12) is derived as follows.

E (225000 ) = B (B (54 %))
= E | []EG™)
j=1

= E(1-a+a2)”)
= G (l—a+az)

= p+(1—ple =2, (3.14)

for z € RT.
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For the third term of (3.12), we have that {d;;, 4,7 = 1,2,...} is a sequence of i.i.d.

Bernoulli random variables with mean o and Lemma 2.29, then we obtain

= E (26’ ﬁ E(zé“ﬂ))
j=1

= EE(1—a+az)%)

= E(zQ-a+az))9)
= G.,(2(1 —a+az))

=|[pA (1 _ p)ef)\(lfz(lfaJrozz))7 (3'15)

for z € RT. Substituting (3.13)-(3.15) into (3.12), we obtain

Gnmy(z) = (p + (1= p)e”\(l’z)) (p +(1— p)e*’\o‘(lfz))
n—1

(b + (1 =perX0-s0-atam) ™ (3.16)

where z € RT.

Therefore, we apply the result obtained in (3.16) into (3.11)

mg, (z2) = (p (- p)e*A(lfmc(z))) (p Y1 p)ef)\a(lfmc(z))>

n—1
(p + (1 94 p)e—)\(l—mc(z)(l—a—i—amc(z)))) : (317)

for = € RT. Consequently, we obtain mg, (-) from (3.17), then we put into (3.9) as the

following.

cn(z) = log (p +(1— p)eﬂ(“mdz”) +log (p +(1— p)e’m(l’mC(z”)

+(n —1)log (p +(1— p)e_’\(l_mc(z)(l_a+o‘mc(Z)))) —nmz,

for z € RT.
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Hence, we obtain the adjustment coefficient function ¢(+) is given by

c(z) = nl;rgo 5cn(z)—7rz

= log (p + (1 - p)ef)\(lfmc(z)(lfaJramc(z)))) — 7z,

for z € RT. O

Since the premium per period, 7, followed the net profit condition (NPC)(Thomas, 2009)
condition and premium calculation followed the expectation value principle (EVP)(Gray

and Pitts, 2012)

= BW)1+0)
= E(N)E(C)(1 +6)

= A1 =p)(1+a)BE(C)(1+96), (3.18)

for a security loading 6 > 0, E(W) is the expectation of the aggregate claim size, E(N)
is the expectation of the claim number and E(C) is the expectation of claim size. Next,
we will show that the adjustment coefficient has the unique positive zero root in D where

D ={z € R"}.

Lemma 3.7. The equation ¢(z) = 0 has the unique positive solution in D, where ¢(z)

is the adjustment coefficient function defined in Theorem 3.6.

Proof. To prove the Lemma,we will show that

(a) ¢(0) =0,
d
b) —c(z
0) G <0

d2
(c) @c(z) > 0 for z € D,

(d) lim e(z) = 4o0.

zZ—+00
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(a) Note that

c(z) = log (p +(1- p)e*)‘(lfmc(Z)(lfo‘JrO‘mC(Z)))) — .
We substitute z = 0 into ¢(z) defined in Theorem 3.6, then we obtain

c(0) = log(p+ (1= p)e Imme@Uatame®D)) _ ()

= log(p+(1-p))

= 0.
(b) Consider
d a- p)e_m—mc(z)(l—awmc(z)))(_/\m’c(z)(_1 + a — 2ame(z)))
%C(Z) - p Vs (1 ! p)ef/\(lfmc(Z)(I*Ctﬁ’amc(z))) -

Since we have 7 = A\(1 — p)E(C)(1 + «)(1 + ), then, for 6 > 0,

d () (- ple M=(=a+a))(_AE(O)(~1 + o — 2a)) B
=V, = P (L= ple0-(-ata) g

= A1 -pE@)1 +a) - (M1 =p)EC)(1+a)(1+6))

— AL -pPEC)1+a)(1—(1+6))
— A1 -pEC)1 +a)
< 0.

d
Then, we obtain that —c(z) < 0.
dz z=0
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(c) Note that,

2 ( ) p(l _ p)e—)\(l—mc(z)(l—a—l—amc(z))))\(mé(z)(1 _ a))
——FC(Z =
dz? (p + (1 _ p)ef/\(lfmc(z)(lfaJramc(z))))2
p(1 — p)e MmmeUmatame@ora((my(2))? + mo(2)me(2)))
(p + (1 _ p)e—k(l—mc(z)(l—a—&—amc(z))))2
p(1 = p)eAImeE-atame @) (xmg()(1 - a + ame(2))”
(p +(1- p)ef)\(lfmc(z)(lfaJramc(z))))2
(1 = plerAme(@-atame@))® \(my(2)(1 - a))
(p +(1- p)e—)\(l—mc(z)(l—oz—l—amc(z))))2

_l’_

_|_

_l’_

"

((1 . p)e—k(l—mc(z)(l—a—i-amc(z))))2 2)\04((771,0(2))2 + mC(Z)mC(Z))) |

+ 2
(p + (1 s p)e—k(l—mc(z)(l—a—&—amc(z))))

By the properties that mc(z) > 0, mg(z) > 0, mi(z) > 0 and a € (0,1), then
2

d22°

(d) We can show that the limit of ¢(z) reaches to +oo as z approaches +o0o. Let us first

(z) > 0.

consider

f(z) = Ame(z)(1 —a+ame(z)) —1)
x  Ame(2)(1 — a+ ame(z))

x dam?(z),

for z € D. We know that m¢(z) is the monotonically increasing function and continuous
function in D, then m%(z) is growing up to +oo with the exponential rate, then we can
conclude that f(z) will grow to infinity with exponential rate which is faster than any

linear trend. Hence, we obtain that

lim (log (p +(1 —p)e’\(mc(z)_l)(l_a+amc(z))) — 772) = +oo.

Z—+00

O]

Example 3.1. In this part, we consider a special case when the claim amounts follow an
exponential distribution. That is, {C;;, i € N, j = 1,2,...} is a sequence of i.i.d. expo-

nentially distributed random variables with parameter 5 > 0. The moment generating



function of {C;;,7 € N, j = 1,2,...} is defined as m¢(z) = ‘1;/5

Theorem (3.6), the adjustment coefficient function is defined as

o(z) = log (p+(1—pe Tt oy

where 7 = M1 —p)(1+ )E(C)(1+6), 0 < z < B.

3.2.2 Approximation to the value at risk and tail value at risk

of ZIPMA (1)
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for z < B. Using

(3.19)

The value at risk at the confidence level v, VaR,(S,,), for ZIPMA(1) process in the

(1 —~) quantile of S,, that refers to the amount of the net loss. So, the more value of

VaR, (Sy,) the higher risk of the surplus.

0.8

0.6

0.4

VaR,(S,)

Figure 3.1: The graph of value at risk at confidence level ~.

As Figure 3.1, the red line represents the cumulative distribution of S, then we can see

that at confidence level «, we can obtain the value of the value at risk that can inform

us about the estimated loss that the company may confront at confidence level v or a

(1 — ) probability that the loss maybe greater than the approximated value. Note that

Sno= >y Zjvzl C;,; be the net loss process and N; be a ZIPMA(1) process. The

VaR~(Sy,) is defined as

VaR,(S,) = inf{k € R|Fg, (k) > ~},

(3.20)
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where Fg, (-) is the cumulative distribution function of S,,. It is generally difficult to obtain
the distribution of S,, from the moment generating function given in (3.17). Therefore, we
apply the Fast Fourier Transform (FFT) algorithm (Gray and Pitts, 2012) to obtain an
approximation of the density function of Fg, () which can be described as the following.

From (3.11), we know that

ms,(2) = Gy (me(2)),

where m¢(-) is the moment generating function of Cj ; for all 7,57 = 1,2,...
Since C' is exponentially distributed with pamameter 5, so we first discretise distribution

of C, then for a given discretisation parameter h, we have

fo = Pr0<C<h/2) = 1—e 28

and for k = 1,2,.. .,

T

Pr((k—0.5)h < C < (k+ 0.5)h)

e—(k—O.S)hﬁ(l 2, e—h,B).

Thus, check that Y 72, fr = 1, then (fo, f1,...) is a discrete approximation to the
distribution of Xj.

Let ¢c(-) be the characteristic function of C; ; (7,7 = 1,2,...). Therefore, we apply the
FFT algorithm to approximate the characteristic function ¢¢c(-) of C; ;. We can calculate

the characteristic function of S, as follows.

¢s.(x) = Gnw)(dc(z))
— (p +(1— p)eﬂ(lﬂﬁc(r))) (p +(1— p)eﬂ\a(lwc(w)))
X (p 41— p)e—x(l—%(z)(l—a+a¢c(m>>>)"‘1 ’
where z € RT.
Applying the inverse FFT algorithm, we can approximate to the density of S, and the

Fs, (-). Finally, we can calculate the value of VaR,(Sy,).
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The value at risk is usually applied by banks or a company that want to measure risk
over a short time, then the tail value at risk is risk measure that is in many ways superior
than the value at risk. The tail value at risk is basically a standard risk measurement

which is applied in insurance companies as effective over a year or more.

0.8

0.6

0.4

\_'_l

TVaR,(S,)

Figure 3.2: The graph of tail value at risk at confidence level ~.

As Figure 3.2, it can be seen that the tail value at risk can inform about the behavior
of loss or the average of loss beyond the value at risk. According to the value of the
tail value at risk, insurance companies can apply these values to be one of many decisive
options about the strategies and financial planning. The risk measure VaR,, is a merely
cutoff point and does not describe the tail behavior beyond the VaR., threshold. The tail
value at risk at the confidence level v, TVaR,(S,) is defined as follows.
1 1
TVaR, = —— [ VaR,(Sy)dw (3.21)
1—vJ,
where VaR,, is the value at risk at confidence level w. It is difficult to directly calculate
the integral form, we then apply Riemann sum to approximate the value of the tail value

at risk.
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3.2.3 Numerical experiments of risk model based on ZIPMA (1)

In this section, we present examples to calculate the adjustment coefficient and
approximation to the ruin probability of risk model based on ZIPMA(1) claim count
process. We also provide the calculation of the value at risk and tail value at risk of the

12" periods of time at the confidence levels 0.9 and 0.95.

3.2.4 Calculation of the adjustment coefficient of risk model based on ZIPMA (1)

Let R,, be the discrete time surplus process defined in (3.1), and {V;, ¢ = 1,2,... n}
is ZIPMA(1) model as claim counts process as defined in Definition 3.3. Let {C; ;, i,j =
1,2,...} is a sequence of i.i.d. exponentially distributed random variables with param-
eter 8 and we obtain ¢(z) as in Example 3.1. The parameters setting are u = 2,
(A\,p) = (1.5,0.2), B € {0.5,1,2,4,32} and # = 0.3. Figure 3.3 shows the graph of
the unique positive zero root or the adjustment coefficient. Table 3.1, Figure 3.4 and Fig-
ure 3.5 show the adjustment coefficient zg and the approximation of the ruin probability of

R,, VY, (u) = exp(—zou) in parentheses, for different values of & € {0,0.25,0.5,0.75,1}.

0.07

0.06 -

0.05 -

0.04 -

0.03 |

c(z)

0.02 -

0.01

-0.01F

-0.02

z

Figure 3.3: The unique positive zero root of the adjustment coefficient for ZIPMA(1).
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Table 3.1: The adjustment coefficient zy and the approximation of Vg (u).

PN 0 0.25 0.5 0.75 1
0.5 0.1017 0.0849 0.0762 0.0708 0.0669
(0.8159) (0.8438) (0.8586) (0.8679) (0.8747)
1 0.2035 0.1698 0.1525 0.1416 0.1339
(0.6656) (0.7120) (0.7371) (0.7533) (0.7650)
2 0.4070 0.3396 0.3051 0.2832 0.2678
(0.4431)  (0.5070)  (0.5432)  (0.5675)  (0.5853)
4 0.8140 0.6793 0.6102 0.5665 0.5357
(0.1963) (0.2570) (0.2951) (0.3220) (0.3425)
32 6.5125 5.4349 4.8819 4.5327 4.2858
(0.000002) (0.000019) (0.000057) (0.0001 16) (0.000189)
The value of an adjustment coefficient
~ — @N\
E w0 H"“‘-...,e_hh _ :
S v T~ —
§ '“0—-——-—-9 —e— 05
S 1
E ., + 2
E 4
ERE —&- 32
E —
o |z gz S i $
] | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.4: The trend of the adjustment coefficient when « increases and the claim

size decreases of ZIPMA(1).
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The value of the appoximated ruin probability

< ]
@ o'_____.o o [} o
> ©
=
g @ "
o ° | deeaesemeee s s
a S +
£ <t +
2 <o 7
o
=
= o~
PRy
SHe———o———————o————0
| | I | I |
0.0 0.2 04 0.6 0.8 1.0

Figure 3.5: The trend of the ruin probability when « increases and the claim size
decreases of ZIPMA(1).

Table 3.1 shows that the value of the ruin probability increases along with the
increase of the values of «, but the adjustment coefficient decreases when the value of
« grows up. In addition, the value of the ruin probability decreases and the adjustment
coefficient increases with the increase of the values of 8. This result is satisfied because
the greater value of o which is regarding to the increasing of the number of claims and
the greater value of 5 which is regarding to the decreasing of claim sizes. Figure 3.3 shows
the unique positive zero root of ¢(z) in case of § = 4 and o = 0.25, which is the red
point on the blue line and it satisfies 4 statements in Lemma 3.7 that is the trend of ¢(z)
surge to positive infinity. Figures 3.4 - 3.5 show the trend of the value of the adjustment

coefficient and the ruin probability along with the increase of the values of v and 3.

3.2.5 Calculation of the value at risk and the tail value at risk for risk model

based on ZIPMA(1)

Let the time period n be 12 and divide the domain of {C;;, 7,7 = 1,2,...} which
B = 0.5 to be 5 x 10° parts with the length of steps are 0.0005 for the FFT distribution
approximation. For the Riemann sum approximation of tail value at risk, we divide the
length of steps of value at risk as 5 x 107¢. Table 3.2, Figure 3.6 show VaR,(S12) and

TVaR,(Si2) for the confidence levels v = 0.90 and 0.95, respectively.
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Table 3.2: The value of the value at risk and the tail value at risk of ZIPMA(1).

a 0 025 05 075 1
VaRooo(S12)  44.1375 54.6690 64.7550 74.5600 84.1695
VaRoos(S12)  49.4405 61.0660 72.0510 82.647  92.9765
TVaRooo(S12) 51.2812 63.2719 74.5464 85.3923 95.9468
TVaRgo5(S12) 56.0209 68.9843 81.0380 92.5661 103.7379

The value of value at risk and tail value at risk

b=/ —
i X
o _| —’w "‘ "I
[#2] ," ﬁ‘ :”
- —'_’. - o —o— VaR_Og
2 ® "’;;-'"‘J‘J' o/ -a- VaR _0.95
= - =~
g o | PRiT ~+- TVaR_0.9
~ _,';-'-’",'«-’ g/ -x-  TVaR_0.95
(=T f"‘-"," -
@ x,‘:;,;, 0/
(=R g
[Te)
O/
o _|
g
| I l ' ' !
0.0 0.2 04 0.6 0.8 1.0

Figure 3.6: The trend of the value at risk and tail value at risk when « increases at
the confidence level 0.90 and 0.95 of ZIPMA(1).

From Table 3.2 and Figure 3.6, we can see that the VaR,(S,) increases as « increases.
Similarly, VaR,(Sy,) increases as v increases. The great value of « represents that there
is more probability that the new customers from the previous year will reclaim this year,
it means that either company will gain more profits or face the huge loss occurred by
insured. The value at risk can inform the estimated loss at confidence level v and the
meaning of v is that a (1 — ) probability that the loss will fall in value by greater than

the estimated loss.

3.3 Discrete Time Risk Model based on ¢'* Order Zero Inflated Poisson Mov-
ing Average (ZIPMA(q))

In this section, we extend the ZIPMA(1) risk model to the ZIPMA(q) risk model

where the discrete time surplus process is in the same form as Definition (3.1)
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n N,
R, = u+nm— ZZCM‘

i=1 j=1
However, the claim counts, {N,, n € N}, are modelled by the g"" order zero inflated
Poisson moving average model denoted by ZIPMA(q). The definition of ZIPMA(q) and
probabilistic properties are provided in Definition 3.8 and Lemma 3.9, respectively. In
Section 3.3.1, we derive the adjustment coefficient function and the approximation to the
ruin probability of the ZIPMA(q) risk model. We also provide the special case of the
adjustment coefficient function when the claim sizes are exponentially distributed. Next,
we will use the zero inflated Poisson random variable with the binomial thinning operator

to get the ZIPMA(q) model.

Definition 3.8. Let {N,,, n € N} be the ZIPMA(q) model defined as follows.

N, = €n t Q1 0€p—1 F 2062+ +Qg0€n—g,

where {€;, t = 1,2,...} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and A. The ao thining operator is defined in Definition 3.8 as

€En—1

n—1
O; 0 €p—1 = E (5,57]- )
pES!

where for any n € N, {5;?71)1' =1,2,...,q, n € N7 =1,2,...} is a sequence of i.i.d.

Bernoulli random variables with mean «;.

In ZIPMA(1) model, we consider only the number of claims in period i as a conse-
quence of new claims in period ¢ and ¢ — 1. However, in real situation, the number of new
claims in period i could depend on new claims from other previous periods. Therefore, we
extend the first order zero inflated Poisson moving average model to a more general model,
the zero inflated Poisson ¢** order moving average model ZIPMA(q) where ¢ € N. The
terms «; o €,_; represents that the number of claims from the number of claims in period
n—1 , where the probability of reclaim is «;. Hence, N, is the number of insured in period
n based on the summation of the number of reclaims from period n —1,n —2,...,n —q

and the number of new claims in period .
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Lemma 3.9. Let {N,, n € N} be the ZIPMA(q) process defined in Definition 3.8, then

{N,, n € N} has the following properties.

(a) The sequence {N,, n € N} is a stationary process with the probability generating
q

function of Ny, Gn,(2) = H <P+ (1 —p)ef’\ai(lfz)> where oy = 1 and for
i=0
n € N.

q
(b) The expectation of N,, is E(NV,) = A1 —p) <Z al-) where ag = 1.
(¢) The variance of N, Var(V,) = A(1 —p)(1 + Ap) <Z o; ) +A(1—-p) Zai(l — )
where ag = 1.

(d) The covariance function between N,, and Ny,_p,,

qg—m
A1 —=p)(1+ Ap) (am + Z aioz,urm) , for 1 < m < g,
Cov(Ny, Np—m) = i=1
0 , for m > q.

(e) The correlation function between N,, and N,,_,, where m < n,

/\(l—p)(1+/\p)(am+23;f” aiaﬁ—m)
AA=p)(1+Ap) i o) +A(1—p) 2 {_p(ei(1—ai))

1 <m <q,
Corr(Np, Np—) =

0 , m > q,

where ag = 1.

Proof. To prove (a) we consider the probability generating function of {N,, n € N}.
Since {€;, t = 1,2,...} is a sequence of i.i.d. zero inflated Poisson random variables with

parameters p and A, the probability generating function of N, can be completed as



45

nl(nl) n2(n2) 6nq(nq)
Gu(s) = I (s T 6 e )

= E(z SPh DHEE RS DRl RS DHaey e ”)

= BB () ()

= BEE (B (50 6 0)) B (B (5500 e, )
E (E (zZEZ? 6070 }Gn_i»

€n—i
(n—1)
E (] ER"
1 j=1

= E(")

.,:]Q

@
Il
,_.

= E(")

i ’:]Q

)

q
= E(ZQL)HGﬁn—i(G&i,l (Z))
i=1
q
_ (p T (1- p)ef)\(lfz)) H (p r(1- p)efmiufz))?
i=1
for z € R. Since Gy, (-) does not depend on n then Gy, (1) = Gn,(-) = ... = Gn, (*).

Therefore, {N,, n € N} is a stationary process. Furthermore, the probability generating

function of {N,, n € N} is given by

Gr,(2) = (p+(1L—ple 0 )f[( ple19)),

=1

for alln € N.
(b) From Lemma 2.31 and {e;, t = 1,2,...} is a sequence of i.i.d. zero inflated Poisson

random variables, then we obtain

E(N,) = E(en+a1oe1+amoe, o+ et oy oen_q)

= E(e) + Z E(ai o €5-i)
i=1

q
= Ml—-p)+ Z a;iE(en—;
i=1

= AMl-p) <1+2q:04z‘> :
i=1



46

(c) Using Lemma 2.31 and {e;, t = 1,2,...} is a sequence of i.i.d. zero inflated Poisson

random variables, then we have

Var(N,) = Var(e,+a10e,1+o€o+ -+ ag0€en_g)

q
= Var(e,) + Z Var(a; o €,—;)

=1

= Var(e,) + Z (ai(1 — i) E(en—;) + oF Var(€,—;))

i=1
= Var(e,) + Z o?Var(e,_;) + Z a;i(1 — a;)E(€n—s)
i=1 i=1
= Var(e) (1 +> a?) +E(en) Y ai(l — ai) (3.22)
i=1 i=1
q q
= M1-p)(1+ )\p)(z ;) + )\pzai(l — ),
=0 i=0

where we apply the fact that {e;, t = 1,2,...} is independent and identically distributed
random variables to obtain (3.22).
(d) Note that {e, t = 1,2,...} is a sequence of i.i.d. zero inflated Poisson random
variables with parameters p and A.

For m = 1, using Lemma 2.31, then

Cov(Ny, Np—1) = Cov(e, +aioe_1+ag0€,_o+ -+ ag0en_g,
€n—1+ Q1 0€_ 2+ Q2063+ - F Q40 6n*(¢1+1))
= Cov(ajo€p_1,€n—-1)+ Cov(azo€y_2,a1 0€y_2)
+---+ Cov(ag 0 €p—gq, g—1 0 €p—q)
= o1 COV(en_l, €n—1) + OzlaQCOV(En_Q, €n—2)

+ .4 aqaq_1COV(€n—qa En_q)

q—1
= Var(ep—1)(aq + Z Qi041)
i=1
q—1
= A1=p)(L+Mp)(a1+ Y aiait), (3.23)
i=1

where we use Lemma 2.29 (c) to obtain the last equation.



For m < ¢, we obtain

Cov(Ny, Np—) = Cov(en +a10€p_1+a20€n_2+ -+ qq0€,_g,
En—m + 010 € (ni1) + 020 €u(myz) T+ g O €n(gym))
= Cov(am © €n—m; €n—m) + Cov(amt1 0 €n—(m1)5 01 O en_(m+1))
+ -+ Cov(ag—m © €n—(g+m)> ¥q © €n—(g+m))
= anCov(€n—m,€n—m) + a10m1+1COV(€r_(m1)s €n—(m+1))

teet aqaq—mCOV(En—(q—l-m)v 6n—(q—l—m))
q—2

= Val"(fn_g)(az + Z CMZ'()&H_Q)
=1
q—m

= A1 =p)d+ Ap)(am + Z Qi Qitm),
i=1
where we use Lemma 2.29 (c) to obtain the last equation.

For m > ¢, we obtain

Cov(Ny, Nyp—m) = Cov(en +a10€p_1+a20€n_9+ -+ 0q0€,¢,
€n—m T Q1 © €n—(m+1) +ago En—(m+2) +rtago0 6n—(q—m)))

= 0.

(e) From Lemma 2.29 and (d) we know that Var(N,,) does not depend on n. Then,
Cov(Ny, Np—m)

v/ Var(Ny,)Var(N,,—p,)

Cov(Ny, Np—m)
Var(Ny,)

Corr(Np, Np—m) =

Then, we get

AL = p)(1+ Ap)(am + 35151" @icim)
AL =p)(L+ ) (o 0f) + AL —p) lplai(l — o))’

Corr(Np, Np—n) =

for m < g,

Corr(Np, Np—m) = 0,

form > gq.
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3.3.1 Adjustment coefficient function of ZIPMA (q)

In the previous section, we have provided the definition of the discrete time surplus
process based on ZIPMA (g) model. In this section, we derive the adjustment coefficient
function ¢(-), of ZIPMA(q) surplus process using the method from Section 3.1 to obtain
the Lundberg adjustment coefficient. Afterward, we provide a proof of the unique positive
solution of zero root of the adjustment coefficient. The risk model based on ZIPMA(q) is

described as the following.

Definition 3.10. The risk model based on ZIPMA(q) can be expressed as

n. Ny
R, = u+n7r~ZZCmyj,

m=1 j=1

where u is the positive initial reserve, w is the premium rate per period, Ny, is modelled
by zero inflated Poisson ¢* order moving average (ZIPMA(q)) defined in Definition 3.8

and {Cp, ;} is the sequence of independent and identically distributed random variables.

Lemma 3.11. Let N;, i € N be the ZIPMA(q) defined in Definition 3.8, then the joint

probability generating function of (N1, Na,..., N, ) can be expressed as

GN,\No,. N, (21,22, 20) = (p +(1 —p)ef)‘a"(lle)> x

% (p + (1 _ p)e—A(l—(l—al—l-alzl)-v-(l—aq—l-aqzq)))

X H (p—|— —A(1=zi(I—on+onzigr)- (1—0¢q+aqzi+q))>

X

N

p(1— _A(1—zn_1(1—a1+a1zn))) X o

X

x (p +(1- p)e‘m_z”)> :

N

p+(1- p)e_A(l_an(qfw(1—041+a1zn+1—<q—1))"'(1—%—1‘*‘%—1%)))

for z1,29,...,2n € RT.
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Proof. The moment generating function of Sy, mg, (), from (3.10) defined as

mg,(z) = BE(e*5)

— g (ez(W1+W2+-~~+W3))

= Mmw, w,,...W, (Za Zyenny Z)a

for z € R™ and W; = Z;V:H C;,; defined in Definition 3.1. Then, the joint probability

generating function of (Ny, Na, ..., N,) is given by

N; _N.: N,
GN17N27-~aNn(Z17227 = oy 7’2”) = E <Zl 122 P Zn ) )

for 21,22, ..., 2, € RT. The multivariate of the moment generating function, mg, (21, 22, . . . , 2n)
of (Wy,Wa,...,W,) can be expressed as the joint probability generating function of
(N1, Na,...,Ny,) and the moment generating function of {C;;} denoted by mc(-), then

we obtain

ms, (21,22, ..., 2n) = MW, Ws,. W, (21,22,...,2n)

= GN,.N,,..N,(mc(z1), mc(22),...,mc(zn)). (3.24)

Then, to obtain (3.24), we find the expression for the probability generating function,
GN, Ns,...N, (21,22, ..., 2n). Since {, t = 1,2,...} is a sequence of i.i.d. random vari-
ables, we firstly consider the the joint probability generating function of (N1, Na, ..., Ny)

as follows.



GN,,N»,...N, (21, 22,...

, Zn)

E(z{vlzévz---zév”>

E <Z€1+01106171+C¥20€172+“‘+aq0617q
1

Zﬁz+a1062—1+042062—2+"'+Clq062—q

X Z9

€nt010€, 1+ Q20€n 2+ +0g0€, g
Xz

B R )

Q10€1 1 (20€2_2 A GO€y —
xE(z; Zq ez )

n—q
€ ,0010€;  QqO€
x H E (Z'i Zit1 Zitq )
=1

n—i “n+l1—1

q—1
« H E(Zenfizaloenfi . Zaq,ioen,i)
=1

xE(z5).

20

(3.25)

For the first ¢ terms of (3.25), we apply Lemma 2.29 and the fact that {e, t = 1,2,...}

is a sequence of i.i.d. zero inflated Poisson random variables with parameters p and A to

consider the first ¢ terms, we start with the first term as the following.

E(z

Qg0€1_q

1

)

E(E (2% 1]e14))
e (1—q)
j=1
E((1 - aq+ag21)777)
GEl—q(l — Qq + O‘qzl)

p+ (1 —p)erall==1),

(3.26)
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For the second term, note that

Qg—10€2_q _Qq0€z_¢ . aq 10€2_q O 0€3_g
E(z; 25 ) = E( 25 le2—4))
5250 €24 PIER)
P q J q.:7
= | | E| 2
Jj=1

= (1—% 1+ ag121) (1 — ag + ag22))?77)
= Ge , (1 —ag-1+ag—121)(1 — ag + ag22))

= p + (1 _ p)e_A(l_(l_aqfl+O‘qflzl)(1_aq+aq22))‘ (327)

Finally, we can apply the same technique as in (3.26) and (3.27) to formulate the ¢ term

as follows.

E(zixloeozéxzoso - zgcqoeo) Z Geo ((1 — a1+ 0412’1) - (1 — oy + aqzq))

= p+ (1 A\ p)e~)\(17(17a1+a121)---(1faq+aqzq)). (3.28)

For HE (z 2 ---z?_ﬁ;q), we know that {¢,t = 1,2,...} is a sequence of i.i.d.

Z€ero mﬂated Poisson random variables with parameters p and \. First, consider the case

i = 1, we obtain
E (zl 21Ot zlajrzel) = E (E (zflzg“oel --sz:;l |61))
5 °1 s
_ HE( )--'HE<Zl+q>
j=1
= E(x(l—-—a1+az) (1 —ag+ agziiq))”’

= Ge(a1(l—a1 +ar22) - (1 — ag + agzi4g))

= p + (1 _ p)e—A(l—Zl(1—0&1+0é122)~-.(1—04q+04qz1+q))' (329)
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As a consequence, we apply the same technique as in (3.29) for i = 2,3,...,n — ¢, then
we obtain
n—q n—q
H E (Z.Ciz,oiifi o Z‘?‘ﬁ“l’) — H (p + (1 — p)e*A(lfzz‘(1*041+alzi+1)"'(1*aq+aqzi+q))> .
i 7 i+q
i=1 =1
(3.30)
q—1
For H Bz 2p o7 - 2zpa7° %) we apply the similar technique as in (3.28).
i=1

Firstjwe start with ¢ = 1,

E(z, 12" 7") = G, ((za-1(1 — a1 + a1zp))
= p+ (1 = p)e—)\(l—znﬂ(1—a1+o¢1zn))' (3.31)
Consequently, we can apply to obtain the general form for i = 2,3,...,q¢ — 1 as follows.
q—1 q—1
H E(Z;Zizzj_olei;i .. qu—iOEnJ) b (Gen,i(znfi(]- —aq + O‘lszrlfi) . (1 — oy + aizn)))
i=1 =1
q—1

2 H (p + (1 _ p)e—A(l—ZV,Lfi(l—Oél+a1Z7L+171')“‘(1—Oéi+04i2"))) .
i=1
(3.32)

Finally, the last term of (3.25), we have that {e;, ¢t = 1,2,...} is a sequence of i.i.d. zero

inflated Poisson random variables with parameters p and A, then we obtain

E(zg) = p+(1—ple 2. (3.33)
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Substituting (3.26) - (3.33) into (3.25),
E (Z{Vlzé\& ) (p _|_ Xaq(l—zl)) «
<p+ (1 o ) —)\(1—(1—0c1+a121)~--(1—aq+aqzq)))
X H (p _|_ _ p)ef)\(lfzi(17041+a1zi+1)---(17aq+aqzi+q)))

x (p+ (1= pleX1mmmizavtaz)) o

p+ (1 )e_A(l_Zn*(qfl) (1_a1+Ol1Zn+17(q—1))"'(1—aq,1+aq,12n)))

p+(1—pe ’A(H")>- (3.34)

O]

Theorem 3.12. Let R,, be the discrete time surplus process defined in Definition 3.10.

The adjustment coefficient function ¢(-) of R,, is defined as

C(Z) — log(p + (1 _p)e~)\(1-mc(z)(1~a1+a1mc(z))...(1faq+aqmc(z)))) — 7z, (335)

for € R* and o9 = 1.

Proof. We denote that {C;;, i,j = 1,2,...} is a sequence of i.i.d. random variables
whose the moment of generating function, mc(-).
Note that,

1
c(z) = T}ergoﬁlogms (2) — 2.
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From Lemma 3.11, we obtain

E(lezNz... p_|_ )‘aq(lfz)> NEEE
% (p+ 1— f)\(lf(lfa1+a1z)---(lfanraqz)))
X (p+(1— e_A(l—Z(l—al+alz)~~~(1—aq+0<q2)))n_q

X {p+ (1 )6_)\(1_2(1_0‘1+O‘1z)“'(1—aq71+o¢q,1z)))

(

X (p +(1- p)e_k(l—z(l—al'i‘alz))) N
(
(

« (p+(1 )e*A(PZ)). (3.36)

Hence, from (3.24), we can obtain the moment generating function of S,,, by replacing z

by mc(z) in (3.36) as

<p+ 1—p Aaq<1—mc<z>>> o R
<p+ 1—p)e - (1—a1+a1mc(z))---(kaﬁaqmc(z))))
« ( JeMi-mo(z ><1—a1+a1mc<z>)--~(1—aq+aqmc(z))))"‘q
X( Je~M1-me(z)(1- a1+a1mc<z)))) X e
X( Je~Ml=me (@) (A=ai+aime(2)- (1—aq,1+aq,1mc<z>>>)
x (p+ e | (3.37)

Consequently, we obtain mg, (-) from (3.37), then we put into the adjustment coefficient

function as follows.

1
c(z) = zEI-PooHIOng (2) — 7z

= log (p +(1— p)e‘”\(l_mc(z)(l—al+a1mc(z))"'(1—aq+aqmc(2)))) R

The premium per period, 7, follows the explanation in (3.18). Let D = {z € R*}. We

will show that the adjustment coefficient has the unique positive zero root in D for ¢ > 1.
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Lemma 3.13. Let ¢ > 1, the adjustment coefficient function of ZIPMA(q) has the

unique positive solution of the equation ¢(z) = 0 in D.

Proof. To simplify the notation,

Ai(z) = 1—a; +aime(z).
Then, we obtain
A;(0) = 1,
A=) = cumi(2),
A(z) = aimg(z),

and

where o = 1.

We can simplify the adjustment coefficient function defined in Theorem 3.12 as

c(z) = log (p +(1 - p)e‘m—mc<Z><1—a1+a1mc<z>>~--(1—aq+aqmc(z»)) -7z
= log (p+ (L p)e X AOAOAG)

— log (p + (1= p)er-TI AM)) _ 72, (3.38)

Similar to Lemma 3.7 to prove the Lemma, then we will show that

(a) ¢(0) =0,
d
(b) ——e(2) L 0,

d2
(c) @C(z) > 0 for z € D,

(d) lim e(z) = 4o0.

Z—+00



(a) Note that

c(z) = bg@+%1—mé”“4EﬂAW”)—nz

We substitute z = 0 into ¢(z), then we obtain

c(0) = ngH%1—MéN*ﬂﬁ#MW)—wm)

= log(p+ (1 —p))

= 0.
(b) Note that
] (1= p)e AT AN (ST, Al() Ai(2) )
=) = P4 (1= p)e 0TI, A) o

Since we have 7 = A(1 — p)E(C)(>°L i)(1 + ), then for 6 > 0,

) - p)efm_nz:ofuo)u( P A #A'S(O)Ai(o))
&9 T ot (L= p)e 20T, A.0)
(1 =p)e UL, a:E(C))

p+ (1 —per-b
q

= Zas EC)(1+60)Y ay

=2 s=0
q q
= ( as—ZaS—HZaS>
s=0 s=0 s=0
q
e
s=0
< 0.
) d
Then, we obtain that —c(z) < 0.
dz 2=0

— T

26
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(c) Since z € D, A;(z) > 0, A(z) > 0 and A; (z) > 0, then we obtain

’

£ p(1 = p)e 71Tz A=) <2A 2a=0 2ot L0 20y Ax(Z)A;(Z)Ai(Z)>
2" = (p+ (1 — pleH1-TIy 42))?
p(1 = p)e T AG) (A0 T]L, ,, AL(2) 4
- (p+ (1 — p)e 1T, A2
p(1 = p)e M- ITizo A=) (A > a—01Tiz0izs A;(Z)Ai) i
(p+ (1 — p)e= (1-TIE, 4i(2)) 2

— — q (z 2 ’ !
(1—pe ATz Al ))) (2/\ Dm0 D y—at1 Hg:(),i;éx,y A:p(z)Ay(z)Ai(z))

_l’_

i (p+ (1 — p)e A-TI 4i(2)))?

(1 —p)e -1l Ai(z)))z ()‘ et ngo,z’;é A (Z)Ai)
(p+ (1 = p)e— A-TIE, 4i(=)) '

+

Thus, we can conclude that (j‘lf;c(z) > 0.
(d) We can show that the limit of ¢(z) reaches to 400 as z approaches +00. Let us first

consider

q
x )\ch,+1(2’) H a;,
=0

for z € D. We know that m¢(z) is the monotonically increasing function and continuous
function in D, then ch+1(z) is growing up to +o0o with the exponential rate, then we can
conclude that f(z) will grow with exponential rate which is faster than any linear trend.

Hence, we can make the conclusion as

lim <log (p + (1 = p)e -1l Ai(z))) — 7rz> = +oo.

z—+o00
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Example 3.2. In this part, we consider a special case when the claim amounts follow an
exponential distribution. That is {C;;, ¢ € N, j = 1,2,...} is a sequence of i.i.d. expo-

nentially distributed random variables with parameter 5 > 0. The moment generating

function of {C;;,i € N, j = 1,2,...} is defined as mc(z) = ﬁ for z < B. Using
Theorem 3.6, the adjustment coefficient function is defined as
c(z) = log (p + (1 —p)e M-Il Ai(z))) -7z, (3.39)

where A;(z) = 1—a; + ﬁ%and T=A1-p) (XL xEC)(1+0), 0 <z < p.

3.3.2 Approximate to the value at risk and tail value at risk of ZIPMA (q)

The value at risk at the confidence level v, VaR,(S,) and the tail value at risk at
the confidence level v, TVaR,(Sy) for ZIPMA(q) process can be approximated by the
similar technique as in ZIPMA(1). Therefore, we consider the characteristic function of

Sy, as follows.

¢s,(r) = Gnm)(oc(x))
e (p + (1 L p)e_Aa0(1_¢C(z))> X oeee
% (p . p)e—x(l—u—al+a1¢c(:c>)~-<1—aq+aq¢c(ar))))

n—q
x (p r(1- p)e—A<1—¢c(x)(l—a1+a1¢c<x)>-~<1—aq+aq¢c<x>>>>

X (p F(1- p)eauwc(m)(kawamc(m)))) el
X (p +(1=p)
(p F(1- p)e—A(l—qﬁc(z))) ’

6—A(1—¢c<x>(1—a1+a1¢c<x>>-~-(1—aq_1+aq_1<z>c(m))))

X

where z € RY.
3.3.3 Numerical experiments of risk model based on ZIPMA (q)

In this section, we show examples to calculate the adjustment coefficient and ap-

proximation to the ruin probability of risk model based on ZIPMA(q) claim count process
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where we consider a special case when ¢ = 2 and ¢ = 3. That is the ZIPMA(2) and

2th

ZIPMA(3), respectively. In addition, the two risk measurements of 12" period of time

at the confidence levels 0.9 and 0.95 are also provided.

3.3.4 Calculation of the adjustment coefficient of risk model based on ZIPMA (2)

Let R, be the discrete time surplus process defined in (3.1), and {N;, i = 1,2,... n}
is a sequence of ZIPMA(2) claWim count process defined in Definition 3.8. Let
D = {z € Rt} and z < 3, and {C;;,4,5 = 1,2,...} is a sequence of i.i.d.
random variables with the exponential distribution with parameter § and we ob-
tain ¢(z) as in Example 3.2. The parameters setting are u = 2, (A\,p) = (1.5,0.2),
B8 = 4 and § = 0.3. Table 3.3 shows the adjustment coefficient 2, for different
values of oy, e € {0,0.25,0.50,0.75, 1} and the value of upper bound of the ruin
probability of R,, Vg (u) = exp(—zou) in parentheses. Figure 3.8 - 3.9 show
the trend of the adjustment coefficient and the value of upper bound of the ruin

probability, respectively.

0.09

0.08 -
0.07 [
0.06

0.05 -

c(z)

0.04 |-
0.03 |
0.02

0.01

-0.01

Figure 3.7: The unique positive zero root of the adjustment coefficient for ZIPMA(2).
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Table 3.3: The adjustment coefficient zp and the approximation of Wp (u) of
ZIPMA(2).
a2 0 0.25 0.5 0.75 1
0 0.8140 0.6793 0.6102 0.5665 0.5357
(0.1963) (0.2570) (0.2951) (0.3220) (0.3425)
0.25 0.6793 0.5927 0.5418 0.5074 0.4821
(0.2570)  (0.3056) (0.3383) (0.3624) (0.3812)
0.5 0.6102 0.5418 0.4988 0.4687 0.4460
(0.2951) (0.3383) (0.3687) (0.3916) (0.4098)
0.75  0.5665 0.5074 0.4687 0.4408 0.4196
(0.3220) (0.3624) (0.3916) (0.4141) (0.4320)
1 0.5357 0.4821 0.4460 0.4196 0.3992
(0.3425) (0.3813) (0.4098) (0.4320) (0.4500)
The value of an adjustment coefficient
Z o L8]
o | — 0
~ &\ -2 0.25
S - o +- 0.5
© | +-..?h“-ﬁ\\o - 075
S |Esidi e Te——o| [
S B G St R A TT---a
- ““%:::;_—_g—:;_;_:_:'l-
o ] | 1 | | — |
0.0 0.2 0.4 0.6 0.8 1.0

Leg]

Figure 3.8: The trend of the adjustment coefficient according to the changes of a; and

oz of ZIPMA(2).



61

The value of the approximated ruin probability

w ]
S
I
I R 4
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er__,_.--""d_-,..-*":'_._--—""‘..____.--é-""‘-- —=— 0
Tt I o—° A- 025
g N +--'- '_‘-A'- 0—----'-. F 0'5
éf”’ 0/ e '
x- 0.75
o~ / - 1
o 1 ©
s ] | | | | |
0.0 0.2 0.4 0.6 0.8 1.0

Leg]

Figure 3.9: The trend of the ruin probability according to the changes of a; and as
of ZIPMA(2).

Figure 3.7 shows the unique positive zero root of ¢(z) in the case of f = 4,
a; = 0.25 ap = 0, which is the red point on the blue line and it satisfies 4
statements in Lemma 3.13 that is the trend of ¢(z) surge to positive infinity. Table
3.3 and Figures 3.8-3.9 show that the value of ruin probability increases while the
adjustment coefficient decreases. Besides, the ruin probability dependently grows
as a function of the level a; ,i = 1,2. Therefore, the ZIPMA(2) risk model with
two periods of claim count seems to have a high value of the ruin probability than

the ruin probability from ZIPMA(1) risk model.

3.3.5 Calculation of the value at risk and the tail value at risk for risk

model based on ZIPMA (2)

In this part, we show calculations of the value at risk and tail value at risk
of a risk model based on ZIPMA(q) when ¢ = 2. Let the time period n be 12 and
divide the domain of {C;, 4,7 = 1,2,...} which 8 = 4 to be 5 x 10° parts with
the length of steps are 0.0005 for the FFT distribution approximation. For the
Riemann sum approximation of tail value at risk, we divided the length of steps of

value at risk as 5 x 107%. Tables 3.4 - 3.5 show VaR,(S}2) for the different values
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of aq,a2 € {0,0.25,0.5,0.75,1} and the value of TVaR,(Si2) (in parentheses)

for the confidence levels v = 0.90 and 0.95, respectively.

Table 3.4: The value of the value at risk and tail value at risk at confidence level 0.90

of ZIPMA(2).
a2 0 0.25 0.5 0.75 1
0 5.5200 6.8200 8.0600 9.2800 10.4600
(6.40828) (7.8785) (9.26798) (10.6081) (11.9146)
0.25 6.8400 8.1200 9.3600 10.5600 11.7600
(7.90664) (9.34731) (10.726) (12.0633) (13.3708)
0.5 8.1000 9.3600 10.6000 11.8200 13.0200
(9.31545) (10.7463) (12.1235) (13.4635) (14.7757)
0.75 9.3200 10.5800 11.8200 13.0400 14.2400
(10.6707) (12.0995) (13.4796) (14.825) (16.1438)
1 10.5200 11.8000 13.0400 14.2600 15.4600
(11.9897) (13.42()4) (14.8055) (16.1574) (17.4835)
The value of value at risk at confidence level 0.9
e __»
< T X o
N _ _,.-o-'_‘:_ T e g
= I T _ -4 A- 025
o e .+ _A-T o + 05
53 - __,-F"_- L ___-‘_—._ / e
. - - 0.75
@ —:'" o ..:"#—f’ 0//0 —&- 1
a-"" j o/
w0 - C/
| | I | | |
0.0 0.2 0.4 0.6 0.8 1.0

oy

Figure 3.10: The trend of the value at risk according to the changes of a1 and as at

the confidence level 0.90 of ZIPMA(2).
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The value of tail value at risk at confidence level 0.9
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Figure 3.11: The trend of the tail value at risk according to the changes of a; and as
at the confidence level 0.90 of ZIPMA(2).

Table 3.5: The value of the value at risk and tail value at risk at confidence level 0.95
of ZIPMA(2).

a2 0 0.25 0.5 0.75 1
0 61800  7.6000  8.9600  10.2800  11.5600
(7.00104) (8.58557) (10.0686) (11.4909) (12.8722)

025 7.6400  9.0400  10.3800  11.6800  12.9600
(8.6197)  (10.1672) (11.6373) (13.0564) (14.439)

0.5  9.0000  10.4000 11.7400  13.0400  14.3400
(10.1259)  (11.6616) (13.1303) (14.553) (15.9414)

0.75 10.3200  11.7200  13.0600  14.3800  15.6600
(11.5663) (13.0996) (14.572) (16.0014) (17.398)

1 11.6200 13.0200  14.3600  15.6800  16.9800
(12.9624) (14.4982) (15.9769) (17.4142) (18.8199)
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The value of value at risk at confidence level 0.95
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Figure 3.12: The trend of the value at risk according to the changes of a; and a9 at
the confidence level 0.95 of ZIPMA(2).

The value of tail value at risk at confidence level 0.95
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Figure 3.13: The trend of the tail value at risk according to the changes of a; and as
at the confidence level 0.95 of ZIPMA(2).

Tables 3.4 - 3.5 and Figures 3.10 - 3.13 show that the value of VaR, and
TVaR, are increasing together with the increase of the values of ay, ap and confi-
dence level v. In the other words, the increasing of oy and as which means that

there are more the number of new claims will continuously claim in the current
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year. Consequently, the company will receive either high earned premiums or
massive claims. The confidence level v can inform us about the probability that

the loss will undergo over the estimated loss with a probability (1 — ).

3.3.6 Calculation of the adjustment coefficient of risk model based on

ZIPMA (3)

Let R, be the discrete time surplus process defined in (3.1), and {N;, i =
1,2,... n} be a sequence of ZIPMA(2) claim count process defined in Definition
38. Let D = {# € R} and z < B, and {C;;, i,j = 1,2,...} is a sequence of
i.i.d. random variables with the exponential distribution with parameter 5 and
we obtain ¢(z) as in Example 3.2. The parameters setting are u = 2, (\,p) =
(1.5,0.2), 8 = 4and § = 0.3. Figures 3.15 - 3.19 show the trend of the adjustment
coefficient zq for the different values of a1, s, a3 € {0,0.25,0.50,0.75,1} and the
value of upper bound of the ruin probability of R,, Wg (u) = exp(—zou). Table
3.6 shows the value of the adjustment coefficient 2y and the value of upper bound

of the ruin probability in parentheses.

0.03

0.025 +

0.02

0.015 |

0.01

c(z)

0.005 ¢

0

-0.005

-0.01¢

-0.015

z

Figure 3.14: The unique positive zero root of the adjustment coefficient for ZIPMA(3).
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The value of an adjustment coefficient The value of the approximated ruin probability
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Figure 3.15: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed a1 = 0 and either ay or a3 increases of ZIPMA(3).

The value of an adjustment coefficient The value of the approximated ruin probability
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Figure 3.16: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed a; = 0.25 and either as or as increases of ZIPMA(3).

The value of an adjustment coefficient The value of the approximated ruin probability
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Figure 3.17: The trend of the adjustment coeflicient and the approximated ruin prob-
ability when fixed oy = 0.5 and either oy or a3 increases of ZIPMA(3).
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The value of an adjustment coefficient The value of the approximated ruin probability
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Figure 3.18: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed o; = 0.75 and either ay or a3 increases of ZIPMA(3).

The value of an adjustment coefficient The value of the approximated ruin probability
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Figure 3.19: The trend of the adjustment coefficient and the approximated ruin prob-
ability when fixed a1 = 1 and either ay or a3 increases of ZIPMA(3).

Table 3.6: The adjustment coefficient zy and the approximation of ¥ (u) of ZIPMA(3)

(0%}
&%)

ap =0 0 0.8140 0.6793 0.6102 0.5665 0.5357

0 0.25 0.5 0.75 1

(0.1963) (0.2570) (0.2951) (0.3220) (0.3425)
025 0.6793  0.5927  0.5418  0.5074  0.4821
(0.2570) (0.3056) (0.3383) (0.3624) (0.3812)
0.5 06102 05418  0.4938  0.4687  0.4460
(0.2951) (0.3383) (0.3687) (0.3916) (0.4098)
0.75 05665 0.5074  0.4687  0.4408  0.4196

Continued



68

Table 3.6: (continued) The adjustment coefficient zy and the approximation of ¥ (u)
of ZIPMA(3)

(6%}
)

0 0.25 0.5 0.75 1

(0.3220) (0.3624) (0.3916) (0.4141) (0.4320)

1 05357 04821 04460  0.4196  0.3992

(0.3425) (0.3813) (0.4098) (0.4320) (0.4500)

a; =025 0 06793 05927 05418  0.5074  0.4821
(0.2570) (0.3056) (0.3383) (0.3624) (0.3812)

0.25 05927  0.5301  0.4900  0.4617  0.4402

(0.3056) (0.3463) (0.3753) (0.3971) (0.4146)

0.5 05418  0.4900  0.4553  0.4301  0.4106

(0.3383)  (0.3753) (0.4022) (0.4230) (0.4399)

0.75 05074 04617 04301  0.4066  0.3882

(0.3624) (0.3971) (0.4230) (0.4434) (0.4600)

1 04821 04402 04106 0.3882  0.3706

(0.3812)  (0.4146) (0.4399) (0.4600) (0.4765)

a; =05 0 06102 05418 04988  0.4687  0.4460
(0.2951) (0.3383) (0.3687) (0.3916) (0.4098)

0.25 05418  0.4900  0.4553  0.4301  0.4106

(0.3383) (0.3753) (0.4022) (0.4230) (0.4399)

0.5 04988 04553  0.4251  0.4025  0.3847

(0.3687) (0.4022) (0.4273) (0.4470) (0.4632)

0.75 0.4687  0.4301  0.4025 0.3815  0.3649

(0.3916) (0.4230) (0.4470) (0.4662) (0.4820)

1 04460 04106 03847  0.3649  0.3490

(0.4098) (0.4399) (0.4632) (0.4820) (0.4975)

;=075 0 05665 05074  0.4687  0.4408  0.4196

Continued
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Table 3.6: (continued) The adjustment coefficient zy and the approximation of ¥ (u)

of ZIPMA (3)

(6%}
)

0

0.25

0.5

0.75

1

(0.3220)
0.25 0.5074
(0.3624)

0.5  0.4687
(0.3916)
0.75  0.4408
(0.4141)

1 0.419
(0.4320)
ap=1 0 05357
(0.3425)
025 0.4821
(0.3812)

0.5  0.4460
(0.4098)
0.75  0.4196
(0.4320)

1 0.3992
(0.4500)

(0.3624)
0.4617
(0.3971)
0.4301
(0.4230)
0.4066
(0.4434)
0.3882
(0.4600)
0.4821
(0.3812)
0.4402
(0.4146)
0.4106
(0.4399)
0.3882
(0.4600)
0.3706
(0.4765)

(0.3916)
0.4301
(0.4230)
0.4025
(0.4470)
0.3815
(0.4662)
0.3649
(0.4820)
0.4460
(0.4098)
0.4106
(0.4399)
0.3847
(0.4632)
0.3649
(0.4820)
0.3490
(0.4975)

(0.4141)
0.4066
(0.4434)
0.3815
(0.4662)
0.3622
(0.4846)
0.3467
(0.4998)
0.4196
(0.4320)
0.3882
(0.4600)
0.3649
(0.4820)
0.3467
(0.4998)
0.3320
(0.5147)

(0.4320)
0.3882
(0.4600)
0.3649
(0.4820)
0.3467
(0.4998)
0.3320
(0.5147)
0.3992
(0.4500)
0.3706
(0.4765)
0.3490
(0.4975)
(0.3320)
(0.5147)
0.3181
(0.5293)

Figure 3.14 shows the unique positive zero root of ¢(z) in case

= 4,

a1 = 0.5 and ag, a3 = 0, which is the red point on the blue line and it satisfies

4 statements in Lemma 3.13 that is the trend of ¢(z) surge to positive infinity.

Figures 3.15 - 3.19 shows the similar trend to Figures 3.8-3.9 that the ruin prob-
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ability is increasing while the adjustment coefficient is decreasing along with the

increasing of level «.

3.3.7 Calculation of the value at risk and the tail value at risk for risk

model based on ZIPMA (3)

In this part, we show a calculation of the value at risk and tail value at risk
of a risk model based on ZIPMA(gq) when ¢ = 3. Let the time period n be 12
and divide the domain of {C;;, 4,7 = 1,2,...} which 8 = 4 to be 5 x 10° parts
with the length of steps are 0.0005 for the FFT distribution approximation. For
the Riemann sum approximation of tail value at risk, we divide the length of steps
of value at risk as 5 x 107%. Figures 3.20 - 3.29 show the trend of VaR,(Si2)
and TVaR.,(S12) for the different values of oy, a9, a3 € {0,0.25,0.5,0.75,1} at
the confidence levels v = 0.90 and 0.95, respectively. Table 3.7 - 3.8 show the
the value of VaR,(S12) and TVaR,(Si2) in parentheses at the confidence levels

v = 0.90 and 0.95, respectively.

The value of value at risk at confidence level 0.90 The value of tail value at risk at confidence level 0.90
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Figure 3.20: The trend of the value at risk and the tail value at risk when fixed a; = 0
and either ap or ag increases at confidence level 0.90 of ZIPMA(3).
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The value of value at risk at confidence level 0.90 The value of tail value at risk at confidence level 0.90
o |
® <=
o |
- o3 oy
= 4 —-— 0 —-— 0
A 025 w -&- 025
o +- 05 +- 05
- - 0756 %= 0.75
2 - 1 - 1
<
w© =
©
T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 04 0.6 08 1.0
ap ay

Figure 3.21: The trend of the value at risk and the tail value at risk when fixed
a; = 0.25 and either o or a3 increases at confidence level 0.90 of ZIPMA(3).
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Figure 3.22: The trend of the value at risk and the tail value at risk when fixed
a1 = 0.50 and either a9 or as increases at confidence level 0.90 of ZIPMA(3).
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Figure 3.23: The trend of the value at risk and the tail value at risk when fixed
a1 = 0.75 and either ap or ag increases at confidence level 0.90 of ZIPMA(3).
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The value of value at risk at confidence level 0.90 The value of tail value at risk at confidence level 0.90
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Figure 3.24: The trend of the value at risk and the tail value at risk when fixed a7 = 1
and either o or ag increases at confidence level 0.90 of ZIPMA(3).

The value of value at risk at confidence level 0.95 The value of tail value at risk at confidence level 0.95
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Figure 3.25: The trend of the value at risk and the tail value at risk when fixed a; = 0
and either ag or as increases at confidence level 0.95 of ZIPMA(3).

The value of value at risk at confidence level 0.95 The value of tail value at risk at confidence level 0.95
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Figure 3.26: The trend of the value at risk and the tail value at risk when fixed
a1 = 0.25 and either ap or ag increases at confidence level 0.95 of ZIPMA(3).



73

The value of value at risk at confidence level 0.95 The value of tail value at risk at confidence level 0.95
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Figure 3.27: The trend of the value at risk and the tail value at risk when fixed
a; = 0.50 and either o or a3 increases at confidence level 0.95 of ZIPMA(3).

The value of value at risk at confidence level 0.95 The value of tail value at risk at confidence level 0.95
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Figure 3.28: The trend of the value at risk and the tail value at risk when fixed
a1 = 0.75 and either o or as increases at confidence level 0.95 of ZIPMA(3).
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Figure 3.29: The trend of the value at risk and the tail value at risk when fixed a7 = 1
and either ag or as increases at confidence level 0.95 of ZIPMA(3).
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Table 3.7: The value of value at risk and tail value at risk at confidence level 0.90 of
ZIPMA(3).

o3 0 0.25 05 0.75 1

ap =0 0 58000  7.2700 85900  9.8800  11.1600
(6.81278) (8.35703) (9.82485) (11.2452) (12.6327)

025 7.2800  8.6400  9.9600  11.2600  12.5300
(8.38418) (9.90613) (11.3671) (12.7875) (14.1783)

05 86200  9.9800  11.3000  12.5900  13.8700
(9.87097) (11.3868) ~ (12.8493) (14.2745) (15.672)

0.75 9.9300  11.2800  12.6000  13.9100  15.1900
(11.3061) (12.8228) (14.2902) (15.7225) (17.1278)

1 11.2100  12.5600  13.8900  15.2000  16.4900
(12.7057) (14.2265) (15.7009) (17.1412) (18.5552)

a; =025 0 7.3000 86500  9.9700  11.2600  12.5300
(8.41112) (9.92307) (11.377) (12.7919) (14.1783)

025 86700  10.0200  11.3300  12.6200  13.9000
(9.95163) (11.4522) (12.9037) (14.3204) (15.711)

0.5  10.0000  11.3500  12.6600  13.9600  15.2300
(11.427)  (12.9256) (14.3798) (15.8017) (17.1985)

0.75 11.3100  12.6500  13.9700  15.2700  16.5500
(12.859)  (14.36)  (15.8195) (17.2481) (18.6525)

1 125900  13.9300 152600  16.5600  17.8500
(14.2598) (15.7656) (17.2318) (18.6679) (20.0802)

a; =05 0 86500  10.0000  11.3100  12.6000  13.8700
(9.91636) (11.4162) (12.8667) (14.2823) (15.672)

025 10.0200 11.3600  12.6700  13.9600  15.2300
(11.4463) (12.9383) (14.3875) (15.8052) (17.1985)

Continued
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Table 3.7: (continued) The value of value at risk and tail value at risk at confidence
level 0.90 of ZIPMA(3).

a3
)

0.5  11.3500 12.6800 14.0000 15.2900 16.5700

0 0.25 0.5 0.75 1

(12.9201) (14.4112) (15.8631) (17.2854) (18.6846)

0.75 12,6500  13.9900  15.3100  16.6000  17.8900
(14.3549) (15.8485) (17.3052) (18.7336) (20.1395)

1 139300 152800  16.6000  17.9000  19.1900
(15.7608) (17.2587) (18.7214) (20.1566) (21.5697)

ap =075 0 99700  11.3100 12.6200  13.9100  15.1900
(11.3659)  (12.862) (14.3138) (15.7333) (17.1278)

025 11.3300 12,6700  13.9800  15.2700  16.5500
(12.8936) (14.3832) (15.8336) (17.2546) (18.6525)

0.5 12.6600  14.0000 15.3100  16.6100  17.8900
(14.3704) (15.8591) (17.3116) (18.7365) (20.1395)

0.75 13.9700  15.3000  16.6200  17.9200  19.2000
(15.8107) (17.3014) (18.7581) (20.1882) (21.5969)

1 152600  16.6000 ~ 17.9200  19.2200  20.5100
(17.2233) (18.7177) (20.1796) (21.6157) (23.0309)

ap =1 0 112600 12,6000 13.9100  15.2100  16.4900
(12.7775)  (14.2742) (15.7297) (17.1544) (18.5552)

025 12.6200 13.9600 152700  16.5700  17.8500
(14.3072) (15.7975) (17.2512) (18.6768) (20.0802)

0.5 13.9500 152900  16.6000  17.9000  19.1900
(15.7892) (17.2781) (18.7334) (20.1622) (21.5697)

0.75 152600  16.6000  17.9200  19.2200  20.5100
(17.2363) (18.7267) (20.1852) (21.6183) (23.0309)

Continued
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Table 3.7: (continued) The value of value at risk and tail value at risk at confidence
level 0.90 of ZIPMA(3).

a3
)

1 16.5600 17.9000 19.2200 20.5200 21.8100

0 0.25 0.5 0.75 1

(18.6565) (20.1498) (21.6126) (23.0511) (24.4692)

Table 3.8: The value of value at risk and tail value at risk at confidence level 0.95 of
ZIPMA(3).

s
&%)

o =0 0 6.5800 8.0800 9.5100 10.9000 12.2600

0 0.25 0.5 0.75 1

(7.42384) (9.08114) (10.6428) (12.1461) (13.6092)

025 81000  9.5900  11.0100  12.4000  13.7700
(9.11413) (10.7437) (12.2971) (13.8006) (15.2679)

05 95500  11.0300  12.4600  13.8500  15.2200
(10.6986) (12.3208) (13.8763) (15.3857) (16.8615)

0.75  10.9600  12.4300  13.8700  15.2700  16.6400
(12.2194) (13.8428) (15.4045) (16.9228) (18.408)

1 123300  13.8100  15.2500  16.6600  18.0400
(13.6969) (15.3255) (16.8958) (18.4239) (19.9196)
;=025 0 81300  9.6000  11.0200  12.4100  13.7700
(9.14689) (10.7641) (12.309) (13.8059) (15.2679)

0.25  9.6300  11.0900  12.5100  13.8900  15.2600
(10.7987) (12.4019) (13.9439) (15.4431) (16.9103)

0.5 11.0700 125300  13.9500  15.3400  16.7100
(12.3693) (13.9702) (15.5158) (17.0214) (18.4962)

0.75 124700  13.9300  15.3600  16.7500  18.1300
(13.8866) (15.4905) (17.0426) (18.5565) (20.0407)

Continued
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Table 3.8: (continued) The value of value at risk and tail value at risk at confidence
level 0.95 of ZIPMA(3).

a3
)

1 13.8400 15.3100 16.7400 18.1400 19.5300

0 0.25 0.5 0.75 1

(15.3658) (16.9755) (18.536)  (20.059) (21.5527)

a; =05 0 96000 11.0600  12.4700  13.8600  15.2200
(10.7533) (12.356)  (13.897) (15.3952) (16.8615)

025 11.0900 12,5400  13.9600  15.3400  16.7100
(12.3924) (13.9854)  (15.525) (17.0255) (18.4962)

0.5 125200  13.9800  15.4000  16.7900  18.1600
(13.9615) (15.5533) (17.0962) (18.6025) (20.0804)

0.75 13.9300  15.3800  16.8100  18.2000  19.5800
(15.4824) (17.0773) (18.6262)  (20.14)  (21.626)

1 153000 16.7600  18.1900  19.6000  20.9800
(16.9679) (18.5681) (20.1244) (21.6464) (23.1412)

a; =075 0  11.0100 124700  13.8900  15.2800  16.6400
(12.2913) (13.8898) (15.4327) (16.9356) (18.408)

0.25 125000  13.9500  15.3700  16.7600  18.1300
(13.9279) (15.5181) (17.0594) (18.5642) (20.0407)

0.5 13.9400 15.3900  16.8100  18.2100  19.5800
(15.5008) (17.0899) (18.6337) (20.1433) (21.626)

0.75 15.3500  16.8000  18.2300  19.6200  21.0000
(17.0286) (18.6202) (20.1691) (21.6852) (23.1748)

1 167300  18.1900  19.6200  21.0200  22.4100
(18.5224) (20.1185) (21.6738) (23.1971) (24.6946)

ap =1 0 124000 13.8500  15.2800  16.6700  18.0400
(13.7831) (15.3824)  (16.93)  (18.4396) (19.9196)

Continued
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Table 3.8: (continued) The value of value at risk and tail value at risk at confidence
level 0.95 of ZIPMA(3).

a3
)

0.25 13.8800 15.3400 16.7600 18.1500 19.5300

0 0.25 0.5 0.75 1

(15.4223) (17.0135) (18.5589) (20.0695) (21.5527)
05 15.3300  16.7800  18.2000  19.6000  20.9800
(17.0016) (18.5912) (20.1386) (21.6529) (23.1412)
0.75 16.7400  18.2000  19.6200  21.0200  22.4100
(18.5378)  (20.129)  (21.6804) (23.2002) (24.6946)
1 181300 195900  21.0200  22.4200  23.8100
(20.0411)  (21.6358) (23.1924) (24.7187) (26.2200)

Figures 3.20 - 3.29 and Table 3.7 - 3.8 show that the value of VaR, and
TVaR, are increasing together with the increase of the values of ay, as, a3 and

confidence levels 7.



CHAPTER IV

DISCRETE TIME RISK MODEL BASED ON
THE ZERO INFLATED POISSON

AUTOREGRESSIVE

In this chapter, we give the definition of the discrete time surplus process as
in Definition 4.1. In Section 4.1, we apply the another prospective model of time
series, which is the autoregressive model. In this section, we provide details of the
definition of the zero inflated Poisson autoregressive model in Definition 4.2, its
probabilistic properties in Lemma 4.3, the adjustment coefficient in Theorem 4.5
and the proof of the unique positive solution in Lemma 4.6. Finally, the numerical
experiments of the ruin probability and risk measurements are shown in Section

4.1.5.

Definition 4.1. Let R,, be the discrete time surplus process defined as

n N;
Rn = u—l—nﬂ—ZZC’i,j, (41)

i=1 j=1
where
o wu is the positive initial reserve of the business;
e 7 is the premium rate per period;

 the sequence C;; is the sequence of claim sizes in period ¢ and individuals
7 and the sequence is independent and identically distributed distribution

with moment generating function, meg(-);

e N, is the claim number in period .
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We also denote that

o Ny = > i, N; is the aggregate claim number for n periods;
e W; = Z;V:ll C; ; is the aggregate claim size for period i;

e S, = Z?:l W; is the net loss process.

4.1 Discrete time risk model based on first order zero inflated Poisson

autoregressive

. In this section, we provide the definition of zero inflated Poisson autore-
gressive (ZIPAR) model and derive its probabilistic properties. We consider the
discrete time surplus defined in Definition 4.1, when the claim counts, { N;, ¢ € N},
are modelled by the zero inflated Poisson first order autoregressive denoted by ZI-
PAR(1). The definition of ZIPAR(1) and its probabilistic properties are provided
in Definitions 4.2 and Lemma 4.3, respectively. In Section 4.1.1, we derive the
adjustment coefficient function and the approximation to the ruin probability of
the ZIPAR(1) risk model. We consider a special case of the adjustment coefficient
function when the claim sizes are exponentially distributed. In Section 4.1.2, we
derive an approximation to the value at risk (VaR) of the ZIPAR(1) net loss pro-
cess.

The concepts of zero inflated Poisson first order autoregressive model is quite
different from zero inflated Poisson moving average model. In the model of zero
inflated Poisson autoregressive, we consider the number of claim where N;_; is the
number of claim in period ¢ — 1 and « is the reclaim probability. Thus, o N;_
is the number of insured in period ¢ — 1 will reclaim in period 7 with a probability
a and ¢; is the number of new insured in period i. Hence, the number of insured
in period ¢, IV;, is based on the summation of the number of new claims in period

7 and the number of reclaims from period ¢ — 1 when the reclaim probability is «.
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The definition of the zero inflated Poisson first order autoregressive (ZIPAR(1))

is presented as follows.

Definition 4.2. The zero inflated Poisson first order autoregressive, N = {N;,i €

N} is defined as

N’i = OéONi,1+€i, for 1 = 1,2,..., (42)

where N follows the zero inflated Poisson with parameters p and A, ao is the
thining operator and {¢;, € N} is a sequence of i.i.d. random variables.

We assume the probability generating function of {¢;, i € N} is defined as

p+ (1= p)e )
p (1= peda0==

Ge(z) =

where p, A > 0 and o € (0,1) and {e;, ¢ € N} is independent of N; for every i.

The ao thining operator is defined as follows.

N;_1
aolN;_; = 5(z‘—1)1j~
g=1

Following Joe (1997), the dependence structure of the ZIPAR(1) model can be
expressed as follows. First, note that for Z; and Y; follow the Bernoulli with

parameters o and as, respectively. Then,

1 if Y; = 1,7Z; = 1 with probability a;as
YiZ; =

0 otherwise, with probability 1 — a;jas.

Hence Y;Z; can be considered as a Bernoulli () random variable. Then,

where N is the count random variable and X; is the Bernoulli random variable
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with parameter a;jas. Furthermore,

CY10<0520N)

Il
2
(@]
i
=

£ N vz, (4.3)

Yi 1 i Y; = 1,Z; = 1 with probability a;as

i=1 0 otherwise, with probability 1 — ajas

— 7Y

Therefore, we can conclude that

(1) o N < ajo(azoN).

Consequently, the expressions of Ny, N3, ... are defined as
N1
Ny = Z 0217 + €2,
i=1

N1 €2
N3 = Z 021031 + Z 039; + €3,
i=1 i=1

n—1 €5 n

:N1
N, = Z 02130317 * * * Opi + Z Z H Okji + €n-
i=1

j=2 i=1 k=j+1

The random variables {8215, 0315, 032, - - -, On1js On2js - - s Onn—1)j, J = 1,2,...} are

i.i.d. Bernoulli random variables with mean «. Furthermore, we give details about
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the construction in the dependence structure by understanding the multiplication
of the ao thining operator. Having defined the ZIPAR(1) process, its probabilistic

properties can be obtained as in Lemma 4.3 below

Lemma 4.3. Let {N;,i € N} be the ZIPAR(1) model defined in Definition 4.2,

then {N;,i € N} has the following. properties.

(a) The sequence {N;, i € N} is a stationary process with the probability

generating function of N;, Gy,(z) = p+ (1 —p)e 17 for i € N.
(b) The expectation of N; is E(V;) = A(1 —p) for i € N.
(¢) The variance of NN; is Var(NV;) = A1 —p)(1 + Ap) for i € N.
(d) The covariance function between N; and N;_,,

COV(NivNi—m) 2 am)\(l _p)(l + )\p)a

for m € N.

(e) The correlation function between N; and N;_,,,

Corr(N;, Ni_pm) = o™,

for m € N.

Proof. To prove (a), we consider the probability generating function of {N;, i €
N}, let {N;, i € N} and {¢;, i € N} be the processes defined in Definition 4.2

and use the fact that N; and ¢; are independent, then we obtain
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Gn,(2) = E(™)
— E(zooNiite)
= B(z)B(z%)
= G.,(2)Gn,_, (1 —a+az)

p+ (1 —p)e =2 o

= p+ (1 —p)e 72,

for = € R. Since Gy,(-) does not depend on i then Gy, (-) = Guny(-) = ... =
G, (+). Therefore, {N;, i € N} is a stationary process. In addition, the probabil-

ity generating function of {IV;, i € N} is given by

Gn,(2) = (p+ (1 —pe??),
for all 7 € N.

(b) Since Gy, (z) = E(2") for all i € N, we can use the p.g.f. Gy,(z) obtained

in (a) and the properties of the probability generating function to find E(XV;) as

follows.
B(N) = -2 (2)
dz
= ((1—p)e7])
z=1
= A1-p)

(c) To obtain the variance of N;, we first compute the second moment E(N?) by

applying the properties of the probability generating function as the following.

BV = L G(e)

d
dZ2 + %GNzQZ)

z=1 z=1

Note that,
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d? A1z
72 N (%) = ((1=p)e 2N ()
< z=1 z=1
= (1-p)X
Thus,
d? d
B(N?) = 220m(2) _1+%GNZ~(Z) .
= (1—-p)A+(1-p)
Consequently,

Var(N;) = E(N?) — E*(V;)
= (1=p)A2+ (1 =pA—((1=p)A)?
= 1=pAA+1—(1—-p)A)

= A1 —=p)(1+Ap).

(d) To obtain the formula for the covariance function by applying the independence
of ¢, and N; and use Lemma 2.29, for i = 1,2,....

For m = 1, using Lemma 2.31

Cov(N;, N;—1) = Cov(awo N;_1 + €, N;_1)
= Cov(ao N;_1,N;_1) + Cov(e;, Ni_1) (4.4)
= Cov(ao N;_1,N; )
= aVar(N;_1)

= a1 —p)(1+ Ap), (4.5)

where we use the property that ¢; and N;_; are independent to obtain (4.4), and

use (c) to obtain (4.5).
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For m > 1, by using the independence between ¢; and N;_,, for all « and m > 0,

we obtain

COV(NZ', Ni—m) = COV(O{ o Ni—l + €, Nz—m)
= COV(O[ o Nifl, NZ,m)
= (jOV(Oé2 9] Nif2 +aoe€_1, szm)

= COV(O&2 e} Ni_g, Nz—m)

SN COV(CYm o Ni—’ﬂh Nz—m)
= o™Var(N;,_n)

= a"™\1-p)(1+ \p), (4.6)

where we apply (c) to obtain (4.6).
(e) From (c), we know that Var(N;) does not depend on ¢ and the result from (d),

then for m € N,

Cov(N;, Ni—m)
\/Var(N;)Var(N;_,,)
Cov(N;, Ni_m)

Var(NV;)
a™Var(N;_,)

Var(N;)

= .

Corr(Ny, Ny—) =

4.1.1 Adjustment coefficient function of ZIPAR(1)

In this section, we derive the adjustment coefficient function of the zero
inflated Poisson AR(1) by applying the method from Section 3.1 to obtain the

Lundberg adjustment coefficient. Then, we provide a proof of the unique posi-



87

tive solution of zero root of the adjustment coefficient. The risk model based on

ZIPAR(1) can be expressed as follows.

Definition 4.4. The risk model based on ZIPAR(1) can be expressed as

n N;
R, = “+”7T_ZZCM7

i=1 j=1

where u is the positive initial reserve, m is the premium rate per period, N; is
modelled by zero inflated Poisson first order autoregressive (ZIPAR(1)) and {C; ;}
is the sequence of independent and identically distributed random variables rep-

resenting claim sizes in period ¢ and individuals j.

Theorem 4.5. Let R, be the discrete time surplus process defined in Definition
4.4. Under the condition that ama(z) < 1, the adjustment coefficient function

¢(+) is defined as

gy O

pt (1 ple (T FEES)

c(z) = log

- l—amg(z)

forz e Rtanda=1-—a.

Proof. From (3.10), we have that

1
c(z) = lim —logmg, (2) — 7z
n—oo N

= lim llog (Gny(me(z))) — mz.

n—oo 1

Then to obtain the adjustment coefficient function, we will first obtain G n () (mc(2))
as the following. Since {¢;, i € N} is independent and identically distributed and

independent of Ny, we obtain
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Grm() = BN
— E (ZN1+OZON1+52+a°N2+53+"'+a0Nn71+€n)

= E (ZN1+ocoN1+sz+a20N1+aoez+eg+~--+a”*1oN1+~~~+ocoen_1+en)

= E (zN1+aoN1+"'+aniloN1) x E (g52+a062+~~+a"’2062>

X oo X B (ztecent) 5 B () (4.8)

We obtain the last term of (4.8) as we apply the p.g.f. of {¢,¢ € N} from

Definition 4.2 as follows.

p+ (1 —pe =2
pH (1 peei

E(z) = for € RT. (4.9)
We need to find the expression of E (ZZZ‘;J aiONl), we then apply {0k }ijk=12,.
in Definition 4.2 and the p.g.f. of {d;;x} which is the sequence of i.i.d. Bernoulli
random variables, Gs,,, (2) = E(2%7*) = &+ az and N; follows the zero inflated
Poisson with parameters p and A to provide the development from periods n =
1,2,3,4.

For n = 1, we obtain

E<ZZ?:oa"oN1> Y E(ZNl)

= p4+(1=ple =2,



For n = 2, we obtain

E (zZLO o‘iONl) —

For n = 3, we have

E (ZZIZ:O aioNl)

89

= p+ (1 _ p)e—)\(l—z(d—l-az))‘

E (ZNl ZaoN1Za20N1>

N1 Zﬁ\; d214 Zi-v=11 02170314
E({z"E |z E(z

Ny, 521z‘> }N1>>

(
(H 2P (7)) |N1)>
(

Ny
[T (a0 1)
1=1
Ny O ~ 50214 28214
E | 2ME [ [[(@2® + a2®)| Ny

=1

E

Mg
E|:VME

E| 2% 1_1[ (@(a+ az) +ala+ 0422))>

=1

E (2N1 (a(a+ az) + a(a+ azQ))Nl)
Gy, (2 (ala+az) +ala+az?))
Gy, (az + aaz® 4+ o*2°)

D + (1 o p)e—)\(l—(&z+a&22+a2z3))'



For n = 4, we have

E <ZZ§:O aioNl)

90

E (ZNl ZaoN12a20N12a3oN1)
N N
E (ZNl E (Zzzzll 5211‘E (Zzzzll 02140315 %

N17521i7531i> |N1,521¢) |N1))

N
E (ZZZ:H 02170316414

Ny
E|:V'E (z i=1 021 ) ( pORE 15212‘5311'H(d+04262“53”) N1,521i) |N1>>
=1
Ny
E ZNlE (Z i= 15211E< ( Z521i53u +a22521i5311) N1,621i> ’NI>>
=1
E|:VE <z i= 15212 (a + 04252“) +ala+ 042252”)) |N1>>
1
E ZNlE 2 521z +aaz26211 —|—O€OéZ62h +a Z3521z) ’N
1:1

Ny
E|:VME (H 04252“ + aaz?i 4 o2z 352“ ’N1>>

1=1
Ny

E NlH

=1

N1
E H (a2 4+ aaz® + aa’z® + a3z4))
1)

/-\

(@ + az) + aa(a + az?) + o*(a + az3))>

E((az+aaz + ac’z +a3z4)N)
Gy (az+aaz + aa’z +a3z4)

p+ (1 — p)eM(1-(ax+aas>+ac®z+a%:t))



91

Consequently, we deduce the following general form for case n. Since {d;jx }ijr=12...
in Definition 4.2 and the p.g.f. of {d;;,} which is the sequence of i.i.d. Bernoulli
random variables and N; follows the zero inflated Poisson with parameters p and
A, then we have

B (i o)

ZleOcONl e% ONlZa oNp .. Za"710N1>

N
E (2N 2= RN zZi:H 521i"~5n1i>

_ E( Nipg ( i 0214 E(ZZZNH 0213 0(n—1)1i

Z = 15211 O(n)1i

s

Ny, 02145 - - - 6(n—1)1i) e ‘N1>)

N
— E N ( = 1 d21i = E (221:11 6211’"'5(n71)1i

H (a+ a2 '6("’”“) ‘Nl, 02145 - - ,5(n2)1¢) e |N1))
i—1

Ny
= E (le (@ + aoz 4+ an?z’ + - + a”lz”1)>
1

=

:E az + aaz? + aa?2® + - +a”1”N
= E <a ( o/z”l)
n—2
1=0
_ (1 — p)e (1= (8(Zid e 1) rantam) (4.10)

Thus, we obtain the first term and the last term of (4.8), then we will find the rest
by applying the development of expression (4.10). We use the fact that the p.g.f.

of {¢;} follows Definition 4.2 and {d;;} is the sequence of i.i.d. Bernoulli random
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variables defined in Definition 4.2. Let first consider

E <ZZ?=_02 aiOQ) yeataoeattal 2062>

I

€2 Zozer L o™ 2062)

S| ( 2 6220 | . E <ZZ’21 022i032i0(n—1)2i

I
=0 o "5 o o

52 822i032i 8 (n_1)2s

<Z 32y 02, 22121 522i632i“'5(n71)2i>

€2, 0224, - - - 75(71—2)2i> T |€2))

n—3
— G62 (d (Z (]{iZi+1) + an—QZn—l)
i=0

p+ (1 = p)e (= (E(ZIP otz ) ran=2n 7))
e n—3 1 2 1 . (411)
p + (1 -+ p)efACV(l (O‘(Zz o alzit )‘FC{" o ))

As a consequence, we also obtain terms of €3, €4, . . ., €,_1 by applying the technique
n (4.11), then we obtain the general form for each ¢; for j = 2,...,n—11in (4.8)

as follows.

BN R )
E (2 i—g Q'0€; .

p+ (1 = p)e—)\a(l—(a«zh G+1) i zi+1>+an_jzn7(j71)>)

(4.12)

Substituting (4.9)-(4.11) and (4.12) for j = 2,3,...,n — 1 into (4.8), then we

obtain

Gre(2) = (p + (1 - pleM1-(a(Zid aizi+1)+an—lzn))>
n—1 P+ (1 . p)e—/\<1—<a<217 G+1) i Z¢+1)+an,jzn7(j71)>>
X =2 \p+ (1 _ p)e*)\a<1 (O‘(Z?_ (J+1)a1z2+1)+an,jzn_(j_1)))

_ —A(1-2)
(LT L-ple - (4.13)
p+ (1 _ p)ef/\oz(lfz)
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Therefore, the moment generating function of S,, is defined as (4.13) by replacing

mSn<Z) = (p‘|‘ (1 —p)e_)‘(l_@(zzzozO‘imc(z)iﬂ)-i-a"*lmc(z)n)))
- p)e‘A(l—(d(Z?:‘o“*” aime(2) 1) tanIme(2)n-G-1) )
=2 \p + (1 _ p)e—AOL(l—(@(Z'S‘;O(jJrI)aimc(z)H-l)_;'_Oén—jmc(z)n—(jfl)))
e A1—me(2))
< (P + (1 —p)e | )
p+ (1 — p)e‘Aa(l—mc(z))

From (4.14), we obtain the adjustment coefficient function ¢,(z) as follows.

cn(2) = log ( (p + (1= ple (- (a(Zis e mo<z>i+1)+a”‘1mc<z>”)))

n—1

P + (1 4 p)€_>\<1_(a<zl* G+1) i moe (z)1+1>+an Ime(2)n (G- 1)))

(1— p)e‘*“(l‘(d(i?;o“*” aimo(2) 1) +an—ima(z)r=G-D))

=2 \p+
p + (]_ — p)ef)‘(lfmC(z))
X —nrz.
(p + (1 — p)e—/\a(l—mC(Z))) )

By the assumption that amec(z) < 1, thus we have > (amc(z))" is the geo-

metric sequence. Then we can rearrange the equation as follows.

cn(z) = log (p—i— (1—pe ( (O‘mc Z)(l ga";%é)()n 2)+mc(z)(amc(z))n—1))>

n—t (1 ( (1 <aTca<;>>CTZZ)<;+1> >+mc(z)(amc(z))n_j))

~xa (1= (ame(a) (LG Y b a) @me ) ) )

l—amg(z)
1 — ple—r1-mc(2))
+10g(p+< p)e )>—n7rz.
p R
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Finally, we thus obtain the adjustment coefficient function is given by

c(z) = lim —cu(2) =72
= lim (IOg (p +(1- p)e_)\(l_(amc(z)(W)erc(z)(amc(z))”1)))
n—oo N
1t p+(1— p)e_)‘(l—(amc(z)(w)—i—mc(z)(amc(z))nj))

1—(amg(2)" =G+

= \pia p)em(l(amo(z>(W)mo(zxamc(z»"j))

p _|_ (1 — p)e_)‘(l_mC(z))
<p (1= p)e)\a(lmc(z))) RS

Since ame(z) < 1, then the limit of (ame(2))"™ as n approaches to infinity is a
zero value, for the first and third terms of ¢(+), their limit approach to zero and
for the second term, we then apply the Cesaro mean theorem (Peyerimhoff, 1969).

Hence, we obtain

p+ (1= p)e’k(l’lfzgﬁ)@)

c(z) = log

amg(z)

e T p)e_m<1_1—amc<z>)

]

The premium per period, 7, follows the net profit condition (NPC) (Thomas,
2009) condition and premium calculation followed the expectation value principle

(EVP) (Gray and Pitts, 2012) as follows.

T = BW)(1+0)
— E(N)E(C)(1+06)

= A1 =p)EC)(1+0),

for a security loading 6 > 0, E(W) is the expectation of the aggregate claim size,
E(N) is the expectation of the claim number and E(C) is the expectation of claim
size. Next, we will show that the adjustment coefficient has the unique positive

zero root in RT.
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Lemma 4.6. From the expression for the adjustment coefficient function of the

ZIPAR(1), the equation ¢(z) = 0 has the unique positive solution in R*.

Proof. Similar to Lemma 3.7 to prove the Lemma, then we will show that

(a) ¢(0) =0,
d
b) —
(b) —c(z) L 0,
d2
(c) @c(z) > 0, for 2 € R,
(d) There exists z* € D such that lim c¢(z) = +oo.
Zz—z*
(a) Note that
ame(z)
p+(1— p)e_/\(l_l—wgc(z))
c(z) = log e TZ.
p+ (1= p)ff*m(l”*“”dz))

We substitute z = 0 into ¢(z) defined in Theorem 4.5, then we obtain

amg (0)
p+ (1= p)e(TiE)

amg(0)
1 e EeER)

()
= 0.

c(0) = log —7(0)

Before giving the proof of the statements (b), (c) and (d), we define the notations

that helps to simplify the notations as follows.

amg(z)
Be) = (1-pe (D),

amg (2)

Ei(z) = (- p)e (7).

E'(z) = %E(z)

= E(2)T(z).
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Therefore,

= aE ()T (2) 4+ aE.(2)T(2)

= aEa(z)T/(z) + ?E,(2)T?(2),

where

amg(2)\
(1— ame(2))*
(1 = ame(2))Aams(2) + 2 aa(mg(2))?
(1 = amc(2))? '

Moreover, we notice that E(z) > 0, E,(z) > 0, E'(z) > 0, E.(z) > 0, E"(2) >
0 and £ (z) > 0 with 7'(z) > 0 and T'(2) > 0.
(b) Consider

d d p+ E(2)
&) = gl (p+ Ea<z>) -

_ <p + Ea(2)> ((p +E.(2)E'(2) — (0 + E(Z))E;(Z)) .

p+ E(2) (p+ Eu(2))2 |
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Since we have 1 = A(1 — p)E(C)(1 + 0), then for § > 0,

Lo - (LEO) (LIEOFO 6 EOR0)
dz o p+ E(0) (p+ EL(0))?
- (BE0) (04 BOISOTO b+ EOREOTON
p+ E(0) (p+ Ea(0))?
= - 2O i - peio)

= AM1-pE(C) - A1 -pE)(1+0)
= —\1-p)E(C)0

< 0.

Then, we obtain that dilzc(z)L:O < 0.
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(0 + Ea(2))(p + E(2)) (PE" (2) + Ba(2)E" (2) — pE4(2) — E(2)E,)

(c) Consider
(z

((p+ Eu(2)(p+ E(2)))?
(PE'(2) + E'(2)Ea(2) — pE,(2) — E(2)E,(2)) (pE (2) + pE,(2))

((p+ Ea(2))(p + E(2)))?
(PE'(2) + E'(2) Ba(2) — pEo(2) — E(2)E,(2)) (E(2)E,(2) + E'(2)Ea(2))

((p+ Ea(2))(p + E(2)))?

PE"(2) = Eo(2) + PP(Eu(2)E'(2) — E(2)E,(2) + (2)

((p+ Ea(2))(p + E(2)))?
PE(R)E"(2) = E(:)E,(2) + Ba(2)E" () + P*(—EaBq(2) — E*(2) + E

2
el

((p + Ea(2))(p + E(2)))?

PER)Ea(2)E(2) — EX(2)E,(2) +

(2)E"(2))

2
[}

(p+ Ea(2))(p + E(2)))?
P(=E(2)Ea(2) Eq(2) + E(2) Ea(2)E" (2) — E(2) Ea(2)E,(2))

((p + Ea(2))(p + E(2)))?

P(=E?(2)Ea(z) = E?(2)Ea(2))

((p+ Ea(2))(p + E(2)))?

(2)E"(2) — B*(2) Ba(2) B, (2))

(P + Ea(2))(p + E(2)))?

(2) + E()EZ (7)) + (E(2) E2

2
a

p(E(2)E,

Vo ant
Vet <)
o

[a\]
=

—~
Tl
S|
|+
+ | &
|
~— |
ISR RN
S— | ~—
[\ e} (]

£y
—
Sy
S—
™ S
E“
L

IT

PUE"(2) = B, (2) + PPRE(2) Ea(2)(T'(2) + T*(2) — (T (2) + oT?(2))))

((p+ Ea(2))(p + E(2)))?

P(T'(2)(1 — a)(E*(2) Ea(2) + E(2)

(2)T%(2)(1 — ?))

2
e}

(=) + E(2)

2
«

((p+ Ea(2))(p + E(2)))?

E(2)Ea(2) (E(2)Ea(2)T (2)(1 — @) — pa®T?(2)(E(2) — Ea(2)))

((p+ Ea(2))(p + E(2)))?

P(E(2)Ea(2)T (2)(E(2) — aBa(2))

((p + Ea(2))(p + E(2)))?
Since the assumption ame(z) < 1 and T(z), T'(2), E(z) and E,(z) which are

increasing functions and we know that F(z) — E,(z) > 0. Then for a € (0, 1),

we know that 1 — o and 1 — a? are greater than 0. For the third term, we notice
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that E(z) — E4(2) is close to zero when « is growing up and on top of that it is
weighted by o? and p, then the third term is positive. Hence, we can conclude
d2
that —c(z) > 0.
dz? (2)
(d) We want to show that the limit of ¢(z) reaches to +oc as z approaches to some
z* € R*T. Let us first consider

ameg(z)

flz) = )\< Z)—1> forz € RY.

1 — amg(

Next, we will show that f(z) is the nonnegative function and the increasing func-

tion by considering as follows.

ame(z) me(z) — 1 '

1—ame(z) AR 1 —ame(z)

We then follow the assumption that amc(z) < 1 and also hold 1 —ame(z) > 0,
then we obtain f(z) for z € RT as the nonnegative function. Since m¢c(z) is
increasing function in R* and 0 < me(z) < +. Thus, there exists z* € D such

that 1

lim mg(2) =%
Z=yz* (07

Then, we obtain that 1 — ame(2) is decreasing and continuous function. We also
obtain

lim 1 —ame(z) = 0,
z—z*

and 1 —amg(z) > 0 forall 0 < z < z*. Therefore,

lim f(z) = oo.

Consequently,

_ f(2)
p+(1—pe ~ im0 — oo
2=zt P+ (1 — p)eaf(z) z—rz*
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then, we obtain

. p+ (1 —p)e/®

lim log = 00.
z—z* p —+ (]_ — p)eaf(z)

Hence, we can conclude that

. p+(1—pe/®
lim log — Tz = Q.
z—z* P+ (1 — p)eaf(z)

]

Example 4.1. We let the claim amounts follow the exponential distribution.
That is {C;;,i,7 € N} is a sequence of i.i.d. exponentially distributed with
parameter 5 > 0. The moment generating function of {C; ;,,j € N} is denoted
as mo(z) = ﬁ for = < . By Theorem (4.5), the adjustment coefficient

function is provided as follows.

p+ (1~ ple Mraa ) A
c(z) = log (1= EO -1 —p)5(1+9)z. (4.15)
p+ (1= ple (i

4.1.2 Approximation to the value at risk and the tail value at risk

of ZIPAR(1)

In this section, we conduct the approximation to the value at risk and the tail
value at risk at confidence level y for ZIPAR(1) process by the similar techniques as

in ZIPMA(1). Therefore, we consider the characteristic function of S,, as follows.

¢s.(z) = Gnm)(dc(z))
_ (p + (1 - p)e (-6 ai¢c<w>i+1)+a”*1¢c<x>”)>)

(pta- p)e‘A(l‘(@(ZZZo‘”” aigc(x)+ ) +an i g (zn =01

=2 \p+ (1 _ p>e—>\a(1—(&(2?;0(j+1) ai¢C(x)i+1>—i—a"*j(pc(x)nf(jfl)))

( p + (1 — p)e_)‘(l_(ﬁc(x)) )
X Y

p+ (1 — p)e—rall-¢c(2))
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where x € RT.

4.1.3 Numerical experiments of the risk model based on ZIPAR(1)

In this section, we show some examples of numerical calculations of the ad-
justment coefficient and approximation to the ruin probability of a risk model
based on the ZIPAR(1) claim count process. In addition, the two risk measure-

ments of 12" period of time at the confidence levels 0.9 and 0.95 are also provided.

4.1.4 Calculation of the adjustment coefficient of the risk model based
on ZIPAR(1)

We are setting the components of the risk model as follows; {N;, ¢ € N}
is the ZIPAR(1) model, {C;;,i,j € N} is a sequence of i.i.d. exponentially dis-
tributed with parameter 5 and we obtain ¢(z) as in Example 4.1. The parameters
setting are u = 2, (\,p) = (1.5,0.2) and the security loading § = 0.3. Table 4.1,
Figures 4.1 - 4.2 show the adjustment coefficient z; and the approximation of of
the ruin probability as W(u) = exp(—zou) in parentheses, for different values of

a € {0,0.25,0.5,0.75,0.995}.



Table 4.1: The adjustment coefficient zp and the approximation of ¥ (u) of ZIAR(1).

3 “ 0 0.25 0.5 0.75 0.995
0.5 0.1016 0.7401 0.0479 0.0235 0.0007
(0.8160)  (0.8623) (0.9085) (0.9540) (0.9986)
1 0.2032 0.1494 0.0957  0.0469 0.0013
(0.6660)  (0.7415)  (0.8256) (0.9103) (0.9973)
2 0.4063 0.2989 0.1914 0.0938 0.0025
(0.4436)  (0.5500) (0.6818) (0.8288) (0.9948)
4 0.8125 0.5977 0.3828 0.1875 0.0050
(0.1960)  (0.3025) (0.4649) (0.6871) (0.9899)
32 6.5000 4.7813 3.0625 1.5001 0.0401
(0.000002) (0.00007) (0.0022) (0.0498) (0.9229)
The value of an adjustment coefficient
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Figure 4.1: The trend of the adjustment coeflicient when « increases and the claim
size decreases of ZIPAR(1).



103

The value of the appoximated ruin probability
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Figure 4.2: The trend of the ruin probability according to the changes of a3 and as
of ZIPAR(1).

The results are as we would expect that the estimated ruin probability in-
creases with the dependence parameter « is growing up. In other words, « is
represented as the probability of the former portfolio will reclaim again in next
year. The more value of «, the more impact on the current portfolio. Moreover,
we are given the situations that claim sizes become smaller, then the approximate

to the ruin probability decreases.

4.1.5 Calculation of the value at risk and the tail value at risk for the

risk models based on ZIPAR(1)

We conduct the numerical calculation for the two risk measurements that are
the value at risk and the tail value at risk. The setting parameters are the same
as in section 4.1.4 with selecting § = 4. Table 4.2 and Figure 4.3 show VaR.(S12)

and TVaR,(S12) for the confidence levels v = 0.90 and 0.95, respectively.
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Table 4.2: The value of the value at risk and the tail value at risk of ZIPAR(1).

a 0 025 05 075 1

VaRooo(S12) 55200 5.8200 6.3000 7.1600  9.0600
VaRgos(S12)  6.1800 6.6200 7.2800 8.5200  11.0600
TVaRgo0(S12) 6.4082 6.8863 7.6366 8.9965 11.7707
TVaRg5(S12) 7.0010 7.5938 8.5287 10.2214 13.5804

The value of a value at risk and tail value at risk
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Figure 4.3: The trend of the value at risk and the tail value at risk according to the
changes of a; and ay of ZIPAR(1).

From Table 4.2, we can see that the VaR,(S,) increases as a increases.
Similarly, VaR,(.S,,) increases as «y increases. The interpretation of the increasing

of value a and + are likewise in ZIPMA(1) and ZIPMA(q).



CHAPTER V

CONCLUSIONS AND DISCUSSIONS

5.1 Conclusions

This research aims to construct the classical risk model based on zero in-
flated Poisson time series as a claim count process. According to the behavior of
customers with deductible amount in contracts tend to not state the claims that
less than or equal to deductible amount in order to get discount in premiums in the
next year. Consequently, it generated more zero claims in data than expected. By
analysing the insurance data issues in an excess zeros that caused overdispersion
in the data, this thesis shows how to tackle this problems. To overcome this is-
sues, we proposed the zero inflated Poisson time series such as the first order zero
inflated Poisson moving average ZIPMA(1), the ¢'* order zero inflated Poisson
moving average ZIPMA(g) and the first order zero inflated Poisson autoregressive
ZIPAR(1) as claim counts model in the classical risk models and generally ex-
tended ZIPMA(1) to be more practical model as ZIPMA(q). We found that these
new risk models are appropriate for the overdispersion data. Regarding to the
variances that are greater than the expectations. We also provided the derivation
of the adjustment coefficient functions of ZIPMA(1), ZIPMA(q) and ZIPAR(1)
risk models and prove the existence of their unique positive solutions. We present
a method for calculating the value of the ruin probability, the value at risk and
the tail value at risk. Finally, we compare the result from ZIPMA(1), ZIPMA(2),
ZIPMA(3) and ZIPAR(1). The value of apa = aar = {0,0.25,0.5,0.75,0.995}
and we set up the value of a;,as and ag from ZIPMA(2) and ZIPMA(3) are that
a; = ag = az = {0,0.25,0.5,0.75,0.995} in order to compare with ZIPMA(1)
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and ZIPAR(1).

The value of ruin probability
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Figure 5.1: The ruin probability from ZIPMA versus ZIPAR

Figure 5.1 shows that the value of ruin probability from ZIPMA is growing
up with the higher order. The higher order of ZIPMA means that we have the
number of new claims from more previous periods and if we have the number of
new claims from every previous periods in insurance data, then the whole data
is applied, then it will result that in a higher order of ZIPMA, the value of ruin

probability will approach to ZIPAR(1).

5.2 Future Work

Further research is needed to determine the risk sharing between 2 companies
or more than 3 companies. Regarding to the real world, most of insurance business
is basically doing activity such risk diversification as reinsurance. Then, if we can
find the ruin probability between 2 companies or more than 3 companies such as
the insurance company and reinsurance company, then it can be one the options to

make a decision for financial planning or business strategies. Thus, one direction of



107

future study is to consider multivariate zero inflated Poisson time series or another

model to solve the data issues.



REFERENCES

Aghababaei Jazi, M., Jones, G., and Lai, C.-D. (2012). First-order integer valued
ar processes with zero inflated poisson innovations. Journal of Time Series

Analysis, 33:954-963.

Al-Osh, M. A. and Alzaid, A. A. (1987). First-order integer-valued autoregressive

(inar(1)) process. Journal of Time Series Analysis, 8:261-275.

Alzaid, A. and Al-Osh, M. (1988). First-order integer-valued autoregressive (inar
(1)) process: Distributional and regression properties. Statistica Neerlandica,

42:53-61.

Boucher, J.-P. and Denuit, M. (2008). Credibility premiums for the zero-inflated
poisson model and new hunger for bonus interpretation. Insurance: Mathemat-

ics and Economics, 42:727-735.

Boucher, J.-P., Denuit, M., and Guillen, M. (2009). Number of accidents or
number of claims? an approach with zero-inflated poisson models for panel

data. Journal of Risk and Insurance, 76:821-846.

Cossette, H. and Marceau, E. (2000). The discrete-time risk model with correlated

classes of business. Insurance: Mathematics and Economics, 26:133—149.

Cossette, H., Marceau, E., and Toureille, F. (2011). Risk models based on time
series for count random variables. Insurance: Mathematics and FEconomics,

48:19-28.

Gray, R. J. and Pitts, S. M. (2012). Risk Modelling in General Insurance: From
Principles to Practice. International Series on Actuarial Science. Cambridge

University Press, UK.



109

Joe, H. (1997). Multivariate Models and Dependence Concepts. Monographs on

Statistics and Applied Probability 73. Springer US.

Lambert, D. (1992). Zero-inflated poisson regression, with an application to defects

in manufacturing. Technometrics, 34:1-14.

Laphudomsakda, K. and Suntornchost, J. (2018). Discrete time risk model based
on nbma(l) models. In: Proceedings of International Conference on Applied

Statistics(ICAS), pages 135-139.

McKenzie, E. (1985). Some simple models for discrete variate time series. JAWRA

Journal of the American Water Resources Association, 21:645-650.

Miiller, A. and Pflug, G. (2001). Asymptotic ruin probabilities for risk processes
with dependent increments. Insurance: Mathematics and Economics, 28:381—

392.

Nyrhinen, H. (1998). Rough descriptions of ruin for a general class of surplus

processes. Advances in Applied Probability, 30:1008-1026.

Peyerimhoff, A. (1969). Lectures on Summability. Lecture Notes in Mathematics.

Springer.

Sarul, L. S. and Sahin, S. (2015). An application of claim frequency data using zero
inflated and hurdle models in general insurance. Journal of Business Economics

and Finance, 4:732-743.

Steutel, F. W. and van Harn, K. (1979). Discrete analogues of self-decomposability
and stability. The Annals of Probability, 7:893-899.

Thomas, M. (2009). Non-Life Insurance Mathematics: An Introduction with the

Poisson Process. Universitext. Springer-Verlag Berlin Heidelberg.



110

Yau, K. K. and Lee, A. H. (2001). Zero-inflated poisson regression with random
effects to evaluate an occupational injury prevention programme. Statistics in

Medicine, 20:2907-2920.

Yip, K. C. and Yau, K. K. (2005). On modeling claim frequency data in general
insurance with extra zeros. Insurance: Mathematics and Economics, 36:153—

163.

Zhu, F. (2012). Zero-inflated poisson and negative binomial integer-valued garch

models. Journal of Statistical Planning and Inference, 142:826-839.



APPENDIX



112

BIOGRAPHY

Name Mr Siwarak Sawongnam

Date of Birth 5 October 1996

Place of Birth  Udonthani, Thailand

Education B.Sc. (Mathematics, Second Class Honors),

Khon Kaen University, 2018



