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CHAPTER I
INTRODUCTION

Stochastic differential equations (SDEs) are integral equations with stochas-
tic process term, which is a collection of random variables. Their properties such
as conditional moment and variance have been well-researched. This analysis is
useful for estimating parameters in various practical applications, such as pricing
financial derivatives like variance swaps. For example, the risk-neutral conditional

moments of returns can be used to calculate the variance swap price.

Stochastic or random processes are widely used in mathematical models to
describe random phenomena, such as population growth, pollution movement,
or asset price derivatives. Random processes can be organized in various ways,
including the Bernoulli process, random walk, Markov process, Lévy process, Pois-
son process, martingale, and the most widely known Wiener process or Brownian

motion [1-7].

Stochastic volatility (SV) model [8], introduced in 2015 by Bergomi, is a
model that uses a randomly distributed process known as the stochastic process
to evaluate option derivatives. The SV model improves upon the Black-Scholes
model [9] that accounts for variable volatility. One of the main limitations of the
Black-Scholes model is its assumption that volatility is constant. This is why the
SV model is more popular in derivative pricing and hedging because it allows for

more realistic modeling of volatility.

Heston model [10], introduced by Heston in 1993, is a well-known stochastic
volatility model that describes the dynamics of an asset price. Unlike the Black-
Scholes model, which assumes constant instantaneous variance, the Heston model
assumes that momentary variance follows a stochastic process, specifically the Cox-
Ingersoll-Ross (CIR) process. This enables the Heston model to effectively account
for volatility asymmetry, the heavy-tailed nature evident in the distribution of

spreading stock returns [11], and the non-negative mean-reverting volatility. The



Heston model is widely used in finance applications, such as pricing variance swaps,
see [12-15], but there is evidence that the process parameters should change over
time, see [16-19]. In 2011, researchers modified the Heston model by substituting
the extended CIR (ECIR) instead of the fixed interest rate [20].

Constant Elasticity of Variance (CEV) process, as described in the work
of Linetsky in 2010 [21], is a stochastic volatility model where the asset price’s
volatility is determined as a function of the power of the asset price. This power is
called the elasticity factor where this power can refer to existing models such as the
geometric Brownian motion, the square-root model, and the Ornstein-Uhlenbeck

process, among others.

This thesis introduces an extended Heston-CEV hybrid model [22], which
is a modified iteration of the Heston model that incorporates the CEV process.
The formulation of this hybrid model is achieved through the solution of the
partial differential equation (PDE) using the Feynman-Kac Theorem. To assess
the precision of the analytical formula, we conduct a comparison between the
results obtained from the analytical formula and those generated through Monte

Carlo simulations.

In addition to introducing the extended Heston-CEV hybrid model, this
thesis also investigates some of the essential properties of the model, including the
first and second conditional moments. These properties are useful for financial

applications, such as calculating the equitable strike price for a variance swap.
1.1 Literature review

SDEs find application in describing the dynamic behavior of various financial
phenomena, such as derivative asset prices, interest rates, and volatility. It can
also be used to study their statistical properties, including conditional moments
and variance. These properties are extremely important in finance, for instance, to
estimate the asset expectation and to calculate the yield of derivative contracts of

underlying assets such as future contract, options contract, forward contract, and



variance swaps. Some of the interesting research related to variance swaps include:
in 2010, Zhu and Lian [14] introduced an analytical solution for pricing variance
swaps using the two-factor stochastic volatility model proposed by Heston. In the
following year, Rujivan and Zhu [23] proposed a simplified analytical formula for

valuing realized variance swaps with discrete sampling, as outlined in their work.

The two articles cited above focus on developing a closed-form or analyt-
ical formula for calculating the conditional moments, which is often difficult to
obtain through direct computation of the transition probability density functions
(PDFs), as these PDFs are often unknown. To address this issue, the Feynman-Kac
method is employed to compute the conditional moments of numerous stochastic
processes. Consequently, we have further studied these aspects and found that
there are many researches interested in the analytical formula of several processes.
In 2015, Rujivan [24] derived the formula for the ' conditional moments of the
variance process corresponding to the extended CIR process. In 2022, the ana-
lytical formula of the Heston model for calculating the moments of log prices is
presented by Chumpong and Sumritnorrapong [25]. For the Heston model with
other variance processes, such as the non-linear drift with a constant elasticity of

variance process [26] is presented the closed-form formulas in 2022.

The March-Rosenfeld process was introducted to us by Mash and Rosen-
feld [27] in 1983. This paper illustrated a new approach to validate the general-
ized CEV process and its parameter by using the maximum likelihood estimation
and examining the pricing of default-free bonds, and then suggesting the risk pre-
miums on default-free bonds or liquidity premiums. From here on, we will call
the generalized case of the CEV process, the “Mash-Rosenfeld process”. From
this research and the above literature review, we are inspired to try applying the
Mash-Rosenfeld process, which is a nonlinear drift CEV process, as a variance
process term in the Heston model. This model is referred to as the “Heston-CEV
Hybrid model” [22]. Since the range of research about closed-form and analytical

formulas for the conditional moment of various models are limited, it means that



there is still no research on the extended Heston-CEV hybrid model, where all
parameters of this model depend on time. We aim to derive an analytical formula
for the conditional moment of this model. We have expanded the description of

this model in Chapter 3.
1.2 Objectives

To derive analytical formulas and their properties for the conditional mo-
ments of the extended Heston-CEV hybrid model, and to apply these formulas
to compute the conditional of moments, variance, and mixed moment, and find

covariance and correlation of the model.
1.3 Structure of thesis

Chapter 2 of this thesis provides all the necessary background knowledge for
the research. Chapter 3 describes the extended Heston-CEV hybrid model (3.2),
including the necessary assumptions. Chapter 4 presents the main results of the
analytical formula for the analytical expressions for the conditional moments of
the extended Heston-CEV hybrid model and the consequences of this approach.
Chapter 5 illustrates how to use the analytical formula to find essential properties
of probability, include the conditional moments, volatilities, and mixed moments.
Chapter 6 provides numerical validation of the analytical formulas by comparing
the outcomes of conditional moments with those obtained from Monte Carlo sim-
ulations. Finally, Chapter 7 presents a conclusion of the work, discussion, and

future work.



CHAPTER II
BACKGROUND KNOWLEDGE

Within this chapter, we clarify the important background knowledge and
the relevant mathematical concepts related to financial processes. This chapter
is divided into nine parts; the stochastic process, CIR process and ECIR process,
the CEV model, the Marsh-Rosenfeld process, the Heston model, the simulations
of SDE, the Feynman-Kac theorem, the Cholesky decomposition method with

random variable, the Riccati equation, and the Bell polynomials, respectively.
2.1 Stochastic process

Stochastic differential equation is a type of integral equation where the coeffi-
cients are random. Therefore, SDEs are important for studying financial processes,

and their concepts are presented below.

Definition 2.1. A stochastic process or random process [28], denoted as X =
{X; : t € T}, consists of a set of random variables indexed by an index set T'
defined on a probability space (€2, F, P), where ) represents the sample space, F

is a o-field, and P stands for the probability measure.

Definition 2.2. A stochastic process Z = {Z; : t > 0} is referred to as a standard

Brownian motion or Wiener process when it meets the following conditions [28]:

(i) Zp = 0 almost surely,
(i

(iii

)
) Z; is almost surely continuous in t,

) The increments Z;, — Z for any 0 < s < t are independent,

(iv) The increment Z; — Z, follows a normal distribution with an average of 0

and a variance of t — s for any 0 < s < t.

Definition 2.3. A stochastic differential equation [29] is a specific type of integral
equation where the variables are governed by stochastic processes, and it can be
expressed as:

dXt = Mt dt+0t dZt (21)



In this equation, yu; represents the drift function, o; is the diffusion function, and

Zy is the Wiener process.

Definition 2.4. An [t6 process [30] is a stochastic process denoted as X, for t > 0,

which can be represented as
t t
X, =X +/ s dS + / osdZy, (2.2)
0 0
where fot 0sdZ; is the Ito integral. We can rewrite the previous equation as
dXt = U dt + o0y dZt (23)

Theorem 2.1 (Itd formula: simplified version [30,31]). Let Z;, be a Wiener
process and f(t,z) is a function with continuous first partial derivative w.r.t. t

and second partial derivative w.r.t. z for allt > 0 and z € R. Then, the following
holds:

t t 1 [t
(6. 20) = £(0, Z0) + / fi(5, 2. ds + / Fu(5. 2 dZ, + 5 / Jouls Z,) ds. (2.4)
0 0 0
This formula can be expressed differentially as:
1
df(t7 Zt) = ft(t, Zt) dt + fz(t, Zt) dZt + §fzz(t, Zt) dt (25)

Theorem 2.2 (It6 formula: general version [30,31]). Consider a Wiener

process denoted as Z; and an [to process X; that satisfies the following SDE:
dXt = Mt dt + oy dZt (26)

Let Y, = f(t,X;) be a new stochastic process, where f(t,x) is a function that
depends on both x and t. If f(t,x) € C2(|0,00] x R), meaning it has continuous

first partial derivative w.r.t. t and second partial derivative w.r.t. z, the process



Y, is also an Ito process, and its dynamics can be expressed as:

dy; = <ft(t,Xt) + e fa(t, Xo) + %0? fra(t, Xt)) dt + oy fo(t, Xo) dZ,. (2.7)

2.2 CIR process and ECIR process

From the first chapter, the CIR process is introduced as a one-factor model
that characterizes the dynamics of interest rates using a SDE. It serves as a tool
for forecasting interest rates in the context of financial derivatives. This model,
an extension of the Vasicek Interest Rate model, was originally devised in 1985
by John C. Cox, Jonathan E. Ingersoll, and Stephen A. Ross. The CIR process is
precisely defined by the following SDE [16]:

d'Ut =a (b 3 Ut) dt + O'\/U_t dZt, (28)

where v, signifies the instantaneous variance or the interest rate, a is the parameter
of speed adjustment, b is the mean towards the long run value, ¢ is the volatility
and Z; is the the Wiener process, defined under a probability space (2, F, P) along
with a filtration {F;}>o.

In fact, the monetary variables depend on time. To improve this problem,
the ECIR process [16] is better suited for modeling instantaneous interest rates

than the CIR process. Its form is
dvy = a(t) (b(t) — v) dt + o(t)\/ve dZ;. (2.9)

In this equation, the coefficients a(t),b(t) and o(t) are functions that depend on
time.

2.3 CEV model

Constant elasticity of variance model is a popular stochastic volatility model

utilized in finance, particularly for modeling equities and commodities. This



model, introduced by Cox and Ross in 1976 [32], describes stochastic volatility
and the associated leverage effect, which is a key feature of financial markets. The

CEV model is governed by the following SDE [27]:
dv; = pvg dt + an/Q dZ,, (2.10)

where v; is the spot price, p is the anticipated instantaneous rate of return, o is
the instantaneous volatility and [ is the elasticity factor, 0 < 8 < 2. When
f =2, CEV will be the geometric Brownian motion (GBM) that is used to model
stock prices in the Black—Scholes model, which is the case that will be ignored.
Furthermore, if 8 = 1, the concept is applicable to the squre-root CIR process. In
practice, most options market exhibit continuous unstable volatility patterns due
to implied volatility. This means that plotting the strike prices against the implied
volatilities of options with the same underlying asset and expiration date typically
reveals a U-shaped curve, known as a "wolatility smile”. Empirical evidence [33]
suggests that the CEV process may be more suitable for describing variance of a
stock price behavior than a BS model because it can capture smiles, but the BS

model is not feasible as constant volatility is an assumption of the BS model.
2.3.1 Marsh-Rosenfeld process

Marsh and Rosenfeld extended the Cox’s CEV process to create the Marsh-
Rosenfeld process. This was motivated by several reasons, as described in the
literature [34,35]. The Marsh-Rosenfeld process is a type of CEV diffusion process
as follows [27]:

o = (Ao 1 Bude + ol i, 2.1)

-8

where A and B are the coefficient of v, =% and vy, respectively.

Moreover, if § = 1, this process becomes the square root CIR process (2.8)

with mean-reverting drift, which is introduced by Cox, Ingersoll, and Ross in 1997.



2.4 Heston model

For completing this thesis, we have reviewed the Heston model developed
by the mathematician Steven Heston in 1993. This model is stochastic and devel-
oped for price options that capture the volatility behavior of an underlying asset,
meaning that asset volatility is not constant, but instead changes over time in a
random manner. Therefore, this model outperforms other option pricing models
like the Black-Scholes model, which assumes a constant volatility. Furthermore,
the Heston model is a type of volatility smile, a common graph shape pattern of

implied volatility with strike price.

The primary Heston model is divided into two parts: the stochastic process

governing the underlying asset price, denoted as S; is expressed as follows [10]
dSt =+ MSt dt + \/FtSt de,

where the stochastic instantaneous variance v; is given by the following CIR pro-

cess
dvy = a(b — v,) dt + o\/v; dZ7,

where 11 denotes the constant interest rate or the drift of the underlying asset price
returns, a is the speed of reverting to b, b represents the long-term mean of the
price’s variance, ¢ is the volatility, and dZtS and dZt” are interconnected Wiener
processes with a correlation coefficient denoted as p € [—1, 1]. These processes are
defined within the framework of a filtered probability space (2, F;, {F; }o<t<r, @)

where {F; }o<i<r is a filtration.

All parameters from the Heston model should not be constants due to time
changes also affecting prices. Thus, we introduce the extended Heston model,
which is an adaptation of the Heston model, substituting the constant interest
rate p with a time-varying interest rate u(t) and replacing the CIR process with
an ECIR process, respectively.
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The stochastic instantaneous variance form is represented as follows [16,17,
24]:
dS; = u(t)Sy dt + /0,5, dZ7,

B (2.12)
dvy = a(t)(b(t) — v) dt + o(t)\/ v, dZ;,

where pu(t), a(t), b(t) and o(t) are time dependent parameter functions.

There are three main methods for calculating the conditional moment: 1)
a direct method, if the probability distribution of a random variable is ascertain-
able, 2) a numerical method, and 3) an analytical method. Next, we present the
widely known simulation scheme, which is the prominent scheme for approximat-
ing the moment. Conversely, the Feynman-Kac theorem is used for possessing the

analytical form for the moment. Both of these are shown below.
2.5 Simulation schemes for SDEs

To compare the accuracy of the analytical formula, one thing that can be
checked is the numerical method to approximate the solution such as the Monte-
Carlo (MC) simulation. In this thesis, we employ the Euler-Maruyama scheme,
which is the easiest MC simulation for approximating the solution of an SDE.

Suppose that the process S; follows an SDE
dSt = ,U(t, St) dt + U(t, St) dZt7 (213)

for all ¢ € [0,7]. When we partition the time interval [0,7] by N-discretized

intervals, the Euler-Maruyama approximation is determined by
Sti+1 = Sti + :u(tiv Stz) At; + O(tiv Stz) AZtm (2'14)

where At; = tiy1 —t; and AZ; = Zy, — Zy, for i € {0,1,...,N} and AZ,, is
estimated by /At; N'(0,1), where N(0, 1) is the normal distribution with mean
0 and variance 1. Meanwhile, the Euler—-Maruyama approximation converges to

the exact solution as N — oo and At; — 0. Nevertheless, it cannot be done in
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practice as it uses a lot of time to compute, and it is not possible to assign time

increments close to 0 with the existing calculating devices.

To eliminate these drawbacks, there is one more challenging method, which
is finding the exact solution. Then, we have to study the method that is able to

lead to the solution. It is described in the next section.
2.6 Feynman-Kac theorem

In 1947, Richard Feynman and Mark Kac from Cornell constructed a for-
mula that is able to connect PDEs and SDE. At first, this theorem described the
property of physics in terms of the quantum theory “path integrals” that provide
solutions to the heat equation and other diffusion equations relevant to external
cooling terms. However, in finance, we utilize this theorem for finding the expec-
tation from SDE by solving PDEs. Hence, we acheive the conditional moment

that is the exact solution, aimed at mitigating the computational time expenses.

Theorem 2.3 (N-dimensional Feyman-Kac Theorem [36]). Suppose that

T1¢, Tog, - - ., Lt follow

N
dxyy = py (g, t) dt + Z o1i(ze, t) dZy,
=
N

dxgr = po(xy, t) dt + Z oo (x4, ) dZyy, (2.15)

=1

N
drye = py(ze, t) dt + Z oni(xy, t) dZy.
i=1
where Ziy, Zoy, ..., Zne are independent Wiener processes. Let K C RN, z =
(11, 29,...,2x) and U := U(x,t) € C*1(K x [0,T)), which is dependent on both x
and t. If the function satisfies the following PDE:

N

oU U 1 en PU
o+ 2l t)a—xl +5 > Z%k(x,t)axlaxk =0, (2.16)

=1
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where

Yie(, t) = Z oui(x, t)ogi(x, 1), (2.17)

with the terminal condition U(x,T) = g(x) for all x € K, which is bounded below.

Then the solution U(x,t) can be expressed as follows:

U(z,t) =Elg(xr) | 2 = x]. (2.18)

For the following part, we show the relevant knowledge in the background

of calculations.
2.7 Cholesky decomposition method with random variable

In our work, we employ the Cholesky decomposition method for converting
the dynamical system with correlation p to the system with mutually independent

Wiener processes. The Cholesky decomposition is as follows [37]:
X =L, (2.19)

where X is the vector of dependent random variables, L is a lower triangular
matrix derived from the correlation matrix, and 7 is the vector consisting of inde-
pendent standard normal random variables. Hence, the Cholesky decomposition

of a positive definite matrix correlation C'is a decomposition of the form C = LLT.
2.8 Riccati equation

The Riccati equation is essential to solve the coefficients from the ordinary
differential equation belonging to the class of nonlinear differential equations of

the form [38]
f'(z) = A(x) + B() f(z) + C(x) f*(2), (2.20)

where A(z),C(z) # 0 and A(z), B(x),C(x) are continuous with respect to the

variable z.
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Lemma 2.1. Observe the following Riccati equation [38]
FeXPEYi-Z f0a)=a (2.21)

where X,Y, 7 and o € R, with X # 0 and Y? +4XZ € R. Suppose that \/ - is
the extension of the real square root, and ¢ = VY2 +4XZ.
Then, the function

20(e” — 1) — (p(e® + 1) + V(e — 1) u
C p(e + 1) — Y (et — 1) — 2X (e — 1) u

flt,a) = (2.22)

1S unique.

Furthermore,

' 1 2¢e 7 !
/0 flsa)ds = 5-log (¢(e¢’t 1) - V(e — 1) —2X (7 — 1)u> - 22)

2.9 Bell polynomials

Bell polynomials B, (z) are also called the exponential partial Bell polynomi-
als, which are polynomials in variables z1, zo, ... and is well known in the form of
some particular combination sequences such as the Stirling and Bell numbers. It

also appears in many applications, for example in the formula of Faa di Bruno [39].

In our work, we apply the following definition of Bell polynomials to calculate

the nth conditional moment of log price.

Definition 2.5. The exponential partial Bell polynomials B,, ; = B,, ; (21, 22, . .., 2n—j+1)

can be expressed by [40]

n! 2 i1 29 9 Zn—jt1 in—j+1
By G = Y (1) G (o)

7,1!7,2! o lp—j41

where 4y, iy, - - - > 0 satisfy the two conditions S1—I*" i), = j and 377" ki = n.

This chapter presented the imperative definitions of the stochastic process
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including the theorems of It6 formula. In addition, we recalled the many types
of variance processes, e.g., the CIR and ECIR process, the CEV model, and the
Marsh-Rosenfeld process. Furthermore, we covered the Heston and extended He-
ston models, which are important models that we considered. Afterward, we
explained how to calculate the conditional moment via simulation schemes and
analytical formulas, which need to utilize the Feynman-Kac theorem for finding.
For other basic knowledge, we used some essential parts of the Riccati equation,
the Bell polynomial, and the Cholesky decomposition method for completing our

research.

In the following chapter, we will provide a more comprehensive exposition
of the extended Heston-CEV hybrid model where we merge the Marsh-Rosenfeld

process into a segment of the variance process within the Heston model.



CHAPTER III
EXTENDED HESTON-CEV HYBRID MODEL

To achieve the main results, we have to define the extended Heston-CEV
hybrid model, which is the model we are considering. In this chapter, we briefly
overview of what this model is and what form of the SDE system can be used

further to determine its conditional moment value.
3.1 Extended Heston-CEV hybrid model

From the previous chapter, we have interpreted the Heston model. The
extended Heston-CEV hybrid model is also a Heston model, but all parameters
depend on time, and the part of the stochastic volatility equation is changed to be
a type of the CEV model. The Heston model, featuring constant parameters over
time, is referred to as the extended Heston model, and its dynamics are described

as follows:

dS, = pu(t) Sy dt + /v; Sy dZ?,

N (3.1)
dv, = a(t)(b(t) — v,) dt + o(t) /o dZ?,

where z(t), a(t), b(t) and o(t) are time dependent parameter functions, Z5 and ZP
are interconnected Wiener processes with a correlation coefficient denoted as p €

[—1, 1] subject to the framework of a filtered probability space (2, F, { F; }o<i<r, Q).

Next, we extend the Heston model (2.12) by substituting the ECIR process
with a nonlinear drift process, namely, the Marsh—Rosenfeld process (2.11) with
A=a(t)b(t), B= —a(t), and 8 = A\. The process S; is described by the following
dynamics [22]

2—X ~
dSt = ,Lb(t) St dt + UtT St de,
A ~
dv, = a(t) (b(t) oy Y - vt) dt + o(t) v dZ, (3.2)
dZ2dZ} = pdt,

where 0 < A\ < 2, applying It6’s lemma [41] to the first equation of (3.2) with
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x;:=InS; and A = (20 — 1)/ for all t > 0. The log price process can be defined
as

1 1 L =g
day = | p(t) — B vp | dt +v dZy,

where § > 1/2. Therefore, the system (3.2) turns into

1 1 1~
dxy = (,u(t) —5 vf) dt + v dZ?,
26—1

v, = at) (b(t) v — w) dt+ot)y (3.3)

dz?,
dZ2dZ? = pdt.

By applying the Cholesky decomposition [42] for obtaining a system with inde-

pendent Wiener processes Z2 and Z' under the measure Q, the correlation matrix

can be stated as

1
)= PlorLm.
| P
Hence, A
1 0
L= .
o V1I=p?
Then,
1 0 1 0 1 p

LLT =
P

e | ¥ p 1

From the system (3.3), it can be represented as

1
dxy p(t) — %Uté

d’Ut

a(t) (b(t) v;% - vt)

g~

v 0 dzs

o

dt +

26—1
o(t)v,?

e}

dZ?

From the Cholesky decomposition [42],

X =1Ln.
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Therefore,
dzs dzs
~ = L
azy dzy

From (3.4), we obtain the following matrix system

dx u(t) — 1 v dz?
"= 2 a+sn| ',
dvy a(t) (b(t) v, — Ut> az;
where the following definitions apply to > and L:
v 0 1 0
E - 25—1 and L -
0 o(t)v,* p 1—p?

Ultimately, the dynamical system described in equation (3.3) transforms into the

following

1 1 1
dr, = <,u(t) 3 vf) dt + v2° dZtS,

25-1 25-1
dvy = a(t) (b(t) v — vt> dt + po(t)v, ™ dZ° 4 o(t)\/1 — p?v, ® dZ}.
(3.5)

Up to this point, we have gained this SDE system that we can use to find
the conditional moment values. However, the uniqueness of the solution is still
not ensured. To guarantee a strong and unique solution for the ECIR process
v; (3.5) and to prevent it from being zero almost surely, we impose the following
conditions are required by Maghsoodi [17], Rogers and Williams [43], and Ekstrom
et al. [44].

Assumption 3.1. According to the process vy given in (3.5), a(t),b(t), and o(t)
strictly positive and continuously differentiable with respect to time within the
interval [0,T] and the CEV process must satisfy 2a(t)b(t) > a*(t) for A =1 or
o(t)=0 for A€ [0,1)U (1,2) [22].

Moreover, the collection of all feasible parameter functions for the extended
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Heston-CEV hybrid model (3.5) is formally characterized as follows:

{(u,a, b,0,p) € (C1([0,T],(0,00))" x [~1,1] | 2a(t)b(t) > 0>(t), Vt € [O,T]}.
(3.6)
A mathematical formula to calculate the conditional moments of logarithmic prices
within the extended Heston-CEV hybrid model (3.5) under Assumption 3.1 in
terms of log price and the parameter space (3.6) with time-dependent parameters

is defined as
E° [27] :=E% [z} | 7] = EQ[a% | (2p = 2, vp = 0)], 0<t<T, (3.7)

for the degree n € N, our results rely on solving a partial differential equation
(PDE) for a two-dimensional diffusion process [41] that produces solution solu-
tion (3.7). In general, we can solve the PDE directly for the coefficients of a

polynomial expression, which gives an analytical formula.

In this chapter, we proposed the Heston model, which is part of the variance
model converted to the Marsh-Rosenfeld process, which is the CEV process. More-
over, every parameter in this model is extended to be a time-dependent parameter.

Thus, we are able to obtain the extended Heston-CEV hybrid model.

We have now covered the extended Heston-CEV hybrid model. In the next

chapter, we will demonstrate our main results: formulas for conditional moments.



CHAPTER IV
FORMULAS FOR CONDITIONAL MOMENTS

This section derives an analytical formula for the characteristic function, de-
noted as U, which is an essential component for deriving the formula governing the
conditional moments of the system (3.5), as outlined in Theorem 4.1, particularly
in scenarios where constant parameters are observed. We also derive analytical
expressions for the conditional moments of S, xr, and vy, which are provided in
Corollaries 2-4, respectively. We further assess the validity of analytical formulas

by comparing their results to those of MC simulations.
4.1 Formulas for conditional moments

In the following, we illustrate the conditional moment formulas for the ex-
tended Heston-CEV hybrid model and the Heston-CEV hybrid model, respec-
tively.

4.1.1 Extended Heston-CEV hybrid model

Theorem 4.1. Suppose x(s) = (x(s),v(s)) follows the extended Heston-CEV
hybrid model (3.5) on the time interval [t,T], with x(t) = (z,v). The characteristic

function can be written as follows [22]

1

1
EQ | pAzr+B v} | ( 7,4,B) +B(7;A,B) v3 +n(7;A,B)

ey =z,vp =v)| = U(z,v,7; A, B) = ¢

(4.1)

with 7 =T —t. Then, a(1; A, B) =: a(7), B(1; A, B) =: B(7) and n(t; A, B) =:
n(T) can be solved from the ordinary differential equations (ODEs) below
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(1) =0,
! 1 2 2 1 1 2
#(r) = 5ig o) () — & (po(B)a(r) — alt) A7) + & (0%(r) — (),
and
10) = (G + 55 (1= 900)) 5r) + pit)ar),

subject to the initial conditions «(0) = A, B(0) = B and n(0) = 0, respectively.

Proof. By utilizing N-dimensional Feynman-Kac theorem (2.16), we can show that

U satisfies the following PDE:

e+ (40~ ) U + (o) 000 —w)

20—1

1
—|—% (vf‘S Ups + 02 (t)v, ° Uw> + povy Uy = 0, (4.2)

1
where U(z,v,7; A, B) = E® [eA”TJFB”% | (z7 = x,vr = v)]. The detailed deriva-

tion of (4.2) is provided in the Appendix A.

1
To solve the PDE (4.2), we suppose that U = e*(Ti4.Ble+B(mABjod+n(riA,B)
where «, § and 7 are associated functions of A, B and 7 = T'—t. Then, all partial

derivatives of U in (4.2) can be calculated as follows

1

/ 1 / 5

U, = (:ca + 033 +n) ex B+,
+8v3 +

azr+puvd +n

ae ,

1-5 3
U’u: %U 5 Beaa:Jrﬁv Jr777

1
2 ax+pvi+
Uacz — € 77’

FoT8) 4 (1) (59 05 et ana
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1
Replacing all partial derivatives into the PDE (4.2) and dividing it by e*("=+8(mve+n(7),

it can be formulated as

—wa — 1 + (% a(t)b(t) + 2%2 (1- 5)02(15)) B+ ut)a
+ <—B’ + 2—352 o (t) % — % (a(t) — po(t)e) B+ % (a® — a)) Vi =0

To achieve the initial conditions, 7 = 0 or T' =t is determined. So, we have

1 1 1
5 5 5
6Aa:+Bv — EQ |:6Aac+Bv :| — EQ |:€Aact+th | (xT =z, 0p = ’U):|

= U(z,v,0; 4, B) = 0 (0:AB)a+B(0;A,B)v +7(0;A,B)

To compare the coefficients of the exponential term on both sides of an equation,
we get a(0) = A, 5(0) = B and n(0) = 0. From (4.3), we obtain three ODEs, that

are

o' =0, (4.4)
/ 1 2 2 1 1 2

B = 2527 (t) 5% = 5 (po(t)a —alt)) f+ 5 (o —a) and (4.5)

= (§ altbl1) + 55 (1~ 5)02@)) B+ ult)a, (46)

subject to the initial conditions «(0) = A, 5(0) = B and n(0) = 0, respectively.

The solutions «(1; A, B), (1; A, B) and n(7; A, B) can be easily founded
from the above ODEs. ]

4.1.2 Heston-CEV hybrid model

Theorem 4.2. Suppose x(s) = (z(s),v(s)) follows the Heston-CEV hybrid model
such that u(t) = u,a(t) = a,b(t) = b and o(t) = o with the initial value vector
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x(t) = (x,v). The expression for the characteristic function is as follows [22]

1

FQ 6A;,;T+Bv§ ‘ (CL’T =2, 0p = U) =: U(ac,v,T;A,B) (4.7)

1
_ ea(T;A,B) z+B(1;A,B) vé +n(1;A,B)

such that the coefficients in T =T —t are

Cl{(’T; Aa B) = A7 (48)
—A) (e — o (e poA-ay (or _
btri a5y = A=A D) = (O +1) + () (=) B
6 (e +1) - (242 4+ (5)° B) (e = 1)
and
n(r; A, B) = pAr (4.10)

Pd— pUA+a
+ (QQ—(;(S—Hl) In 26 exp ( 27)
o g e +1) = (2242 + (%) B) (e - 1)

where \/ - represents the analytical continuation of the real square root with ¢ =

\/(QUAS—U,)Q B (A(1;2A)02) '

Proof. Assuming a(t),b(t) and o(t) are constants. From (4.4)—(4.6), the system
ODEs are solved, we have (4.8)—(4.10).
For finding «(7; A, B),

(1) =0

/T da(S) =0
a(t) —a(0) =0
a(r) —A=0
a(r)=A

Then, a(1; A, B) = A.
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For solving ((7; A, B), we need to adapt the Riccati equations [38] to solve PDE
(4.5). According to (4.5) applied with the Riccati equation (see Lemma 2.1), we

derive

B(T; A, B) =

Y

CAQ=A (1) = (T + ) + () (7 - 1) B
6 (e +1) = (247 + (5)° B) (e = 1)

where ¢ = \/(—"‘”}“)2 - (A“g;“)"?).

To figure out n(A, B, T), we solve the ODE (4.6).

Hence,

= (o000 + 55 1 =8)0%0)) 5+ uit)a

/OT dn(S) = /OT <(% a(t)b(t) + % (1— 6)02@)) B+ u(t)a) S

b [T 21 —8) [T
n(r; A, B) :uATJF%/O 5(S)ds+%/o B(S)dS,

where, from 2.23 of Lemma 2.1,

/ 8(s)ds = 25 1 26 exp (L-£oitar)
0 7 \elem k)= (=54 ()" B) (e - 1)

Therefore,

n(r; A, B) = pAr

9 $d—poA+a
n <2a1275 s 1) In ¢ exp (—2(S 27)
o é(e#m +1) — (% +(2) B) (e#m — 1)

4.2 Consequences

From the previous theorem, we suddenly obtain the following consequences

when we substitute § = 1 into the extended Heston-CEV hybrid model. In addi-
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tion, we obtained the formula for the conditional n-moment of the asset price Sr,

the log price xr, and the volatility vy.

Consider 6 = 1, the process (3.5) can be deduced to the extended Heston

model and our proposed results can be reduced to the following formulas.

Corollary 1. Setting 6 = 1 in Theorem 4.1, the solution of the parameters «, 3,

and 71 can be received by solving this system

§ = 50"~ (polta—a(t) f+ 3 (0 ~a) and = alt)(t) 5 + ult)a.

along with the condition o(7; A, B) = A, and under the initial conditions 5(0; A, B) =
B and 1(0; A, B), respectively. Moreover, according Theorem 4.2, with respect to

6 = 1, we secure

a(t; A, B) = A,
AL —A) (/" =1) = (¢ (e*" +1) + (poA—a) (" — 1)) B
o(e?"+1) — (pogA—a—02B) (e — 1)
2¢ exp (—Lf)_ UQAJ”’T)
o (e’ +1)— (pcA—a—02B)(e?”—1) ]’

B(TaAvB) - -

and

2ab
n(t; A, B) = pAt + %ln
o

where ¢ = 1/ (poA —a) — A(1 — A)o2.

Proof. The proof is achieved directly by substituting 6 = 1 into Theorems 4.1
and 4.2, respectively. Then, we promptly gain the above corollary. O

It is important to observe that the result provided in Corollary 1 agrees with
that of Theorem 1 in Chumpong [25]. Furthermore, our result can be utilized
easier than Chumpong’s [25] as their formula needs to be solved step by step for
the recursive function coeflicients, but our result simply substitutes the values of
all the parameters and solve the PDEs to obtain the answer. Furthermore, the
order of the conditional moment, the amount of recursive function coefficients to

solve.
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For the remaining three Corollaries, we derive analytical formulas for con-
ditional moments of the asset price, log price, and volatility for the dynamics of

process (3.2) using Theorem 4.1.

Corollary 2. Substituting A = n and B = 0 into Theorem 4.1, the analytical
expression for the nth conditional moment of St subject to z; = In S; for all £ > 0,

where n is an integer. This formula is presented as
1
E@ [S%] — U(I, v, TN, O) — ea(T:n,O)z—l-ﬁ(T:n,O)vé+n(~r:n,0)_ (411)
Proof. From equation (4.1) in Theorem 4.1 and x; = In S}, we receive
%
U(z,v,7; A, B) = B2 {S{«‘ eB”T} . (4.12)

Replacing A = n and B = 0, we can have E2[S2]. O

Corollary 3. According to Theorem 4.1, the analytical formula for the nth con-

ditional moment of xz¢ for all ¢ > 0 as follows

E° [ = UL (x,0,7;0,0)

—/ 3B, (fA, =4, .. Aj,”‘j“)), (4.13)

f=1

where Ugn) = gnT(,{, (zr,v,7;A,B) =a(r; A, B)x + B(1; A, B) Vi + n(t; A, B),

f = f(z,v,7;0,0) and B, ; is the partial exponential Bell polynomials, which is
defined by

_ n' 21 i1 29 192 anj+1 In—j+1
Bn,] (217227...,Zn—j+1) _le'lg'lnfj+1' (F) (5) <(n_]+1)' )

where 71, 79, - - - > 0 satisfy the two conditions ZZ;{H ir, = j and ZZ;{H kir = n.

Proof. By using the nth derivatives with respect to A in (4.1) contained in The-



26
orem 4.1, we get

o

UM (z,v,7;A, B) = E® L‘?A"

1 1
eeod] g [ eoend] g

Next, we substitute A = 0 and B = 0 into (4.14). Thus, we obtain conditional
moment E? [27] as required. To obtain (4.13), Faa Bruno’s formula is applied; for

more details see [45]. ]

Corollary 4. According to Theorem 4.1, the analytical formula for the conditional

volatility of vz% for all £ > 0 can be expressed as

m
B

EC |:UT:| = Ugn)($71},7';0,0)

= ZBm,j (fo foBs -, .f/\émijjrl)) ; (4.15)
j=1
where U J(Bm) = g%f,{ and By, ; is the partial exponential Bell polynomials.
Proof. This proof is likewise the previous Corollary. L]

We have presented Theorems and Corollaries. After that, we will investigate
our results by numerical validation. Additionally, we will provide examples of
conditional moments of log asset price along with the conditional volatilities in

the next chapter.



CHAPTER V

PROPERTIES OF PROBABILITY

This chapter demonstrates examples of utilizing analytical formulas to find
various types of conditional moments. Moreover, we will show applications of
our formulas with properties of probability, including the fractional conditional
volatilities, variance moment, mixed moment, covariance, and correlation of the

Heston-CEV hybrid model.

Example 5.1 (The conditional moments). By applying Corollary 3, we obtain

the following closed-form formula for the first conditional moment as follows:
E® [z7] = Ua(w,v,7;0,0) = ef fa, (5.1)
where

— Q7=

fA:a:—%é(l—eﬁ)v}S

+ ((8 — 1)o® — 25ab) ((e%‘” 1) tat 45a2ﬂ) .

46a?

Meanwhile, the closed-form formula for the second conditional moment is as

follows:

EQ [1‘%} = U,(42)('/L‘7U77—;070) = effAA + fA effA

=¢f <fAA + (fA)2> ; (5.2)
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where

2aT1

P 0 saf 142 1/6

faa = 65 ( do ( 26ba + (6 — 1)o” + 4dav )
+ 4es (—25a21jl/5(25(a — po) +o1(o — 2ap))
+ (26ba — 60® + 0?) (0 (2a* — dapo + o) + aoT(0 — 2ap)))
+ % (462(11)1/5 (4@2 —4dapo + 02)

— (20ba — 60® + 0?) (6 (8a® — 16apo + 50?) — 2at (4a® — dapo + o?)))) .

Example 5.2 (The fractional conditional volatilities). By applying Corollary 4,
the closed-formula of fractional conditional volatility vﬁ of the Heston-CEV hybrid

model with m = 1 and 2 is given by

EC [u;] — 5,1 0,0) = g, (5.3)
B2 [v7] = UF)(2,0,7:0,0) = ¢/ (fBB + (fB)z) , (5.4)
where
fs= 62_;: ((e% —1) ((6 = 1)o* — 26ab) + 26av'’?),
fon = —% (e5 —=1) ((e5 = 1) ((6 — 1)0? — 20ab) + 4dav'’?) .

In the next example, we will present the conditional variance, mixed mo-

ments, covariance, and correlation, respectively, as consequences of Example 5.1.

Example 5.3 (The conditional variance moment). To find the conditional vari-
ance of the Heston-CEV hybrid model, we can apply Equations (5.1) and (5.2)

from Example 5.1. The conditional variance can be represented as follows:
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Var [z7 | (zp = x,vp = v)] = EC (7 — E% [27]))? | (zp = x,vp = v)]

I
)
N

Example 5.4 (The conditional mixed moment). From Corollaries 3 and 4, the

conditional mixed moment of the Heston-CEV hybrid model is given by

EQ [xTUjgﬂ] = U,(qlél)($7vv7—;070) = effAB + fA effB
=ef (fAB + fAfB) ; (5.5)

where

1

fap = (0% (60 (e% — 1) +at(2ap — 0)))

Vs

20a?
1

46243 o¢

(5(2ap — o) sinh <C%T> + 2dap cosh (%) — 20ap + at(o — 2a,0)) ,

-5 (26ab — (6 — 1)0?)

Through Examples 5.1, 5.2 and 5.4, we can apply these examples for calcu-
lating the K, value of the pricing variance swap contract, which is a derivative
contract that allows investors to buy or sell the anticipated future variance of the

log-returns of an underlying asset.

Example 5.5 (The conditional covariance). By applying (5.1) and (5.2) from
Example 5.1 to find the conditional covariance of x and v with § = 1, it can be

given by
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Cov [vr, vr | (a7 = z,vr = v)] = E? [(2r — E? [a7] ) (vr — E% [ur]) | (27 = 2,07 = )]
= E% [z7 vr] — B¢ [or] B¢ [ur]
o (Fan+ fafs) = (¢! f2) (¢ fn)
=l fap ( —(e)?) fafs
ef (fan+(1=e) fufa).

Example 5.6 (The conditional correlation). By applying (5.1) and (5.2) from
Example 5.1 to find the conditional correlation of x and v with § = 1, it can be

given by

Cov [z7,vr | (7 = x, v = V)]

Corr [z7 | (x7 = x,vp =v)| =
oz | ) Var [z7 | (z7 = z,vr = v)]1/2 Var [vp | (zp = x,vp = ’u)}l/2

ef (fAB +(1—ef fAfB)

)
(1 (e =)™ (o (- ()

fap+ (1 —el) fafs

<fAA +(1—e) <f,4)2>1/2 <fBB +(1—ef) (fB>2>

/2"

The above examples mean that our formula can be applied statistically and
effectively. In the following chapter, we will examine our analytical formulas by
using a numerical method to compare their results from Monte Carlo simulations

with the results from our formula.



CHAPTER VI
NUMERICAL VALIDATION EXPERIMENT

In this chapter, we numerically validate the accuracy of our closed-form
formula for the Heston-CEV hybrid model (3.2) from example 5.1, 5.2 and 5.4 by

applying the Euler-Maruyama method.
6.1 Accuracy of analytical formula

Suppose that Z; and o; be time division estimation of z; and v; over the
interval [0, 7] in N steps. Therefore, the Euler-Maruyama algorithm applied to

equation (3.2) can be approximated as follows

R R 1 3 /A;
Ty, = Ty, + (M(ti—l) ~ 5l by, ) dt + v Zz(}m

i—1

O, = 0p,_, + a(ti_1) <b(ti,1) B4\ /ﬁti—l) dt + po(t;_q) @tfé Zzi)l (6.1)

+0 1—1 Vl_pvtzl Zz(-?-)la

where the initial value Z;, = x;, and v, = vy, with At =¢; — ¢, is a constant

time step size, and Zi(l) and Zi(z) are normally distributed and independent.

In this thesis, we implement the numerical simulations via MATLAB R2021b,
which runs on a computer that is configurable to 1.1GHz quad-core Intel Core i5-
LPDDR4X, Turbo Boost up to 3.5GHz with 6MB L3 cache, speed of 3733MHz,
16.0GB RAM, 512GB SSD.

6.1.1 The conditional moments

We set the parameters corresponding to assumption 3.1, namely p = 0.01,
a=0.1,b=0.1, p=0.01, c =0.001, and o6 = 1 are set for the comparison of
results between the formulas (5.1)—(5.2) from example 5.1 and the MC simulations
with 10,000 sample paths and consisting of 10,000 steps shown in Figure 6.1. These
simulations consider results for different time 7 = 0.25,0.5,0.75, 1 subject to initial

values x = 1 and v ranges from 1 to 10.
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(a) The first conditional moment (b) The second conditional moment

Figure 6.1: Validation testings of the first and second conditional moments at different
times 7 = 0.25,0.5,0.75, 1.

According to Figure 6.1, the colored circles illustrate the MC simulation
predictions that completely assort with the colored lines, which are the results from
the closed-form expressions for the first and second conditional moments (5.1)-

(5.2) from Example 5.1.

Despite perfect compatibility, the significant disadvantage of the MC simu-

lation is the time-consuming calculations required for estimation.
6.1.2 The fractional conditional volatilities

By validating the formulas (5.3) and (5.4) from Example 5.2, the compar-
isons of the accuracy of the first and second conditional volatility with the MC

simulations are represented as the figure 6.2
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(a) The first conditional volatility (b) The second conditional volatility

Figure 6.2: Validation testings of the first and second conditional volatilities at differ-
ent times 7 = 0.25,0.5,0.75, 1.

From the considered line graph, it appears that there is an absolute pairing
between the outcomes of the MC simulations and our approach. Therefore, it is

apparent that our closed-form formulas are evidently correct.

From Figures 6.1 and 6.2, we can consider the first order from both figures
to be linear graphs. Additionally, the second order is a parabola due to the
polynomial. Furthermore, it can be seen that utilizing more value 7, values of the

conditional volatilities will decrease accordingly.
6.1.3 The conditional mixed moment

Moving on to the next point, we examined the example of the conditional
mix moment (5.5). The figure 6.3 shows that our results are in excellent agreement

with the MC simulations.
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(a) The conditional mix moment

Figure 6.3: Validation testings of the conditional mix moment at different times 7 =
0.25,0.5,0.75, 1.

In conclusion, the general overview here is that our results are correct due to a
perfect match with the MC approach. Moreover, the results from our approach are
better than the results from the MC simulations due to our closed-form formulas
which can find the solutions with the continuous initial v value. Meanwhile, the
MC simulations can only find the solutions of some initial v value that we set

because it can calculate the results individually from the given initial values.

After this, we will demonstrate any other reasons why our results are more

effective than the MC simulations in the nearby subsection.
6.2 Percentage relative errors and computational times

Up to this point, we demonstrated an analytical approach for earning closed-
form formulas for the first and second conditional moments of the stochastic
volatility model, based on the Heston-CEV hybrid model. We also validated the

accuracy of our approach by comparing it to the Monte Carlo simulation approach
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using the Euler-Maruyama method. Our results demonstrate the superior perfor-

mance of our approach compared to the MC simulation approach.

In this subsection, we will show the computational times evidence that can
ensure our approach is indeed better than MC. Also, we will illustrate the per-

centage of relative errors that can occur if the MC simulations are used.
6.2.1 Percentage relative errors

From the previous section, we still employ ¢ = 0.01, « = 0.1, b = 0.1,
p=0.01, 0 =0.001, § = 1, for different time 7 = 0.25,0.5,0.75, 1 subject to initial
values x = 1 and v ranges from 1 to 10 in this subsection. However, we consider
this experiment on various cases of sample paths including 5,000, 10,000, 20,000,
and 100,000 paths.

Next, the percentage relative error is defined as

_ |EC 2] (v) — E® [27]y0 (N, 0)

e(v) = 7] (o) x 100 %,

where E© [z7] (v) satisfies our exact solution of the first conditional moment with
the initial v. On the contrary, E? [z7],,, (Np,v) is the approximate of the first
conditional moment obtained by the MC simulations with the initial v simulating

the N, sample paths.

As displayed in the following Table 6.1, we illustrate the percentage relative
errors of using the MC simulations for approximating the first conditional moment
when compared with using our formulas for different time 7 = 0.25,0.5,0.75,1

subject to initial values x = 1 and v ranges from 1 to 10.
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According to the table above, the percentage relative error varies widely
depending on the values of v and 7. In some cases, the error is very low (e.g., less
than 1%), while in others, it is very high (e.g., over 50%). It can be seen that the
smallest percentage relative error in the experiment is 0.0080, while the largest is
53.3146 if N, and 7 are inappropriate. These two values are quite different so be

mindful when selecting the parameters.

Generally, it is well known that the MC approach errors tend to increase if
run with a lower N, but higher 7, which is evidently consistent with our exper-
imental table. Additionally, there is also a note for selecting v that can affect
the errors. For example, if v = 4 in the case of 7 = 0.75 or 7 = 1, the errors
are significantly large, followed by v = 5. However, if we consider 7 = 0.25 or
7 = 0.5 with v = 8, there are the apparent occurrence of large errors, even with

large numbers of N, runs.

However, we cannot guarantee that every test running the error will be the
same value every time because the MC method is a simulation based on Euler—
Maruyama estimation with standard normal random variables. This means, we
cannot ensure results and errors. This inconsistency is another of the MC ap-

proach’s drawbacks.

The general overview here is that although the MC simulations can esti-
mate the first conditional moment of the Heston-CEV hybrid model, the results
obtained are not accurate because some percentage of relative errors are quite
large. Another disadvantage of using the MC simulations is that it is relatively

time-consuming, which we will discuss in the next subsection.
6.2.2 Computational times

Moving on to the consumption of computational time, the table for the time
calculation of the first conditional moment from our closed-form formula (5.1) and
the MC simulations for different values of NV, and 7 is shown as table 6.2. This

demonstration represents the effectiveness of our method in comparison to the MC
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simulations determined with the same parameters as the previous experiment.

Computational Times (s)
Ny | 7=025s 7=05s 7=075s 7=10s

5,000 7.3384 7.3090 7.3121 7.2752
MC 10,000 | 16.8115 16.3837  15.3887 15.4236

20,000 | 29.2205 28.3195  27.7989 27.6303

100,000 | 105.3112  104.0656 109.9809  106.6475

Exact ‘ 0.3599 0.0176 0.0079 0.0038

Table 6.2: Computational time(s) for MC simulation at different times 7 =
0.25,0.5,0.75, 1.

Overall, our approach demonstrates superior performance than the MC method,

even when N, and 7 are selected.

The smallest computational time using the MC simulations is 7.2752 s where
N, = 5,000 and 7 = 1.0s. In contrast, 0.0038 s is consumed when using our

implementation. The computation time is reduced by about 1,900 times.

Additionally, if we consider the largest error case of the MC method, which
runs on N, = 100,000 and 7 = 0.75 s, the time consumed is 109.9809s. In this
case, it takes 13,900 times more time consumption compared to the time spent by
our method at the same 7 value. Another interesting thing is that the time taken

when selecting 7 = 0.25 s is consumed significantly for the MC method.

From this chapter, it can be concluded that our approach can indeed reduce
the computational time by using the MC simulations. Furthermore, our results are
the exact solutions. In the next chapter, we will sum up all of our work, including

the presentation of our potential future work.



CHAPTER VII
CONCLUSION, DISCUSSION AND FUTURE WORK

To conclude, in Chapter 1, we justified the motivation of this thesis based
on the available literature review and provided the objective of our research. In
Chapter 2, we studied the basic knowledge related to our work, including the
stochastic process, the CIR process and the ECIR process, the CEV model, the
Mash-Rosenfeld process, the Heston model, the simulation schemes for SDEs, the
Feynman-Kac theorem, the Cholesky decomposition method, the Riccati equation,
and the Bell polynomials. After that, we presented the definition of the extended
Heston-CEV hybrid model in Chapter 3.

In Chapter 4, we demonstrated an analytical formula for the conditional
moment of the extended Heston-CEV hybrid model (3.5), which is given in The-
orem 4.1. In particular, the analytical formula for the constant parameters case
is simplified and expressed in closed form in Theorem 4.2. The well-known class
of the Heston model has been mentioned, see Corollary 1, and the closed-form
formulas for conditional moments of S; and x; have been observed respectively,

see Corollaries 2 and 3.

In Chapter 5, we showed applications of our analytical form formula for
deriving simple closed-form formulas for some essential properties of probability as
the conditional moments, the fractional conditional volatility, variance moments,

mixed moments, covariance, and correlation.

In the context of the validations, in Chapter 6, we compared the solutions
generated from our closed-form formula and the approximated results with those
obtained from the MC simulations. From the experiment, it is noticeable that our
closed-form formulas perfectly agree with the MC simulations. Nevertheless, the
highlight of our approach is decreasing computational time consumption compared
with the MC simulations, despite gaining the exact value. For the above reasons,

our approach is evidently better than the MC approach.
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For potential future work, we are interested in applying our approach to
financial forward contracts, such as the variance swap contract by using some sig-
nificant statistical probability, including the first and second conditional moment,
the conditional volatility, and the conditional mixed moment. Furthermore, we
would like to extend the two dimensions of the extended Heston-CEV hybrid model
to become a three dimension process as the extended Heston-CEV hybrid model
together with the stochastic interest rate process. Moreover, if we can successfully

expand the model, we will apply this model to the European options.
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In the appendix, we will provide the proof of PDE (4.2) and examples of
mathematical programming codes used in this research, which are Mathematica

and MATLAB.

The mathematical codes are used to find the analytical form formula of
conditional moments and the MATLAB codes are related to the calculation and

the validation of the accuracy of our analytical formulas with the MC simulations.
APPENDIX A:
According to the expression (4.2)

U+ ()= % ) 0= (at) O™ ) 0

1= 25—1
(vf Use + 02(t)v, ° va) + povy Uy = 0, (1)

=

1
where U(z,v, A, B,7) = E2 [eA””T”B”fE] , the proof appears as below [22]:
Proof. Assume the N-dimensional of SDE to be as follows

dxlt = 1 dt + 011 let + 012 dZ2t + -+ OIN dZNt,

dxor = pro dt + 091 dZ1y + 022 dZoy + -+ - + o Ay + - - - + oy AL Ny,
dxnt = ,un dt + On1 let + On2 dZQt + tet + Onm dth + s OnN dZNt>

d.TNt:uth+UN1dZ1t+UN2dZ2t+“'+O'deth+"'+O'NNdZNt.

By applying the N-dimensional Feynman-Kac theorem (2.16) with N = 2, the

corresponding PDE can be presented as

=0.

a—U—i- U, + U, + = 32U+ 32U+ a2U—|— i
o T H e TP \ M G T2 g0 T M v T P au?
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As system (2.12),

011 =

|
&

091 = po(t)v,® and

o9 =0(t)/1—p*v,» .

Then,
ou 1 o*U 0*U 0*U 02U
E + ﬂler + MQUU + 5 <U%1 W + 011021 8.%’8’[} + 011021 m + (0’%1 + 0'32) W) =0
Hence,
2 6-1
U + (,u(t) — %) U, + (a(t) (b(t)v,* — Ut)) U,
A 26-1

+% (vf‘s Use £ 020, ° Um,> + povy Uy = 0. (2)

Since 7 =T —t,dr = —dt. Therefore, U is the solution of the following PDE
= o1
-U, + (,u(t) = %) U = (a(t) (b(t)v,” — Ut)) U,
1 251
—I—% (vt% Upe + 02(t)v, ° va) + povy Uy, = 0. (3)
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The first moment: The Mathematica code to derive the closed-form for-

mula for the first conditional moment.

6->0¢,9p->6

Alz_, a ] i=a

1
o= > \/(pca—x)z+az (a-a®)

(a—az) (ee‘—l) - (e (ee‘+1) + (%) (e‘”-l)) B

B[z , a ] t=- 3
9(e5t+1)_(oa:-x_:_zﬁ) (eez-l)
o-20aX
2 62 20e” 2z
diz_, a ] :=

7Log[9

-K UZ T
(e°7 1) - (222 - 5 ) (e -1)

clz_,a]:

2 (1-6
razc+ K—¢+—a ( ) diz, a]
s 26°

1

s
naol= K[z_y @ ] t= ehleral x+Blz,al v el z,al

1
flz_, a ] :=A[z, a] x+B[z, a]l v® +c[z, a]

Uq
In[45]:= X1 = FullSimplify[D[K[z, a]l, a] /.a—=»0 /. B-»0, x> 0]

1 xt KTy 1
outisl- ——e 6 [72 [—l+e<5]v5 5 k+6 ((-1+6) 0®-26xK¢) +
46 K

e’d (4x5)<2—}<02t+502 (1+xT) +26x>T (2r-¢) - 62 (02—2}«1)))}



49

The second moment: The Mathematica code to derive the closed-form

formula for the second conditional moment.

In[-]= Alz_, B_] i=a

e = i —\/(poa—x)2+02 (a—az) 5
S

(a-az) (eer-l) - (6 (eer+1) + (p"‘#) (e‘“-l))ﬁ

Bl[z_, A1 :=- 2
o (e v1) - (22 - Z ) (e07-1)
e_DGG(I—K
267 20e” 2z °
diz_, A_1] :=—2Log E
o 9(e9‘+1)—(°T—6—2,B) (€2 -1)
x¢ o®(1-6)
clz_, Al:=razc+|—+ —— |d[z, £]
5 252

1
K[z A1 1= RYENS X+B[z,8] VO +c[z,4]
) — .=

1
flz_, A1 :=Alz, Bl x+B[z, A1 V3 +c[z, B]

fs

in[ 1= Fullsimplify[D[f[t, Bl, Bl /. B0 /. a0, x> 0]

KT 1 KT
e & 2v55}<+(-1+e? ((-1+90) 02-25;<¢>))
Out[«]=
26k
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in[ ]:= FUllSimplify[D[K[t, B], Bl /. B0 /. a-»0, x> 0]
KT 1 KT
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Out[+]=

25k
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The mix moment: The Mathematica code to derive the closed-form for-

mula for the mix conditional moment.

n[]=Alz_y, a_y, B] t=a

e=i (pUﬂ—K)2+01(a—a2);
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AH’ Bd’ Cﬂ

in[ = FUullSimplify[D[A[t, a, B], a] /. a>0 /. B>0, x> 0]
FullSimplify[D[B[z, a, Bl, a] /. a»0 /. B0, x> 0]

FullSimplify[D[c[t, a, B], al /. a>»0 /. B0, x> 0]

Ap, Bp, Cp
in[J:= Fullsimplify[D[A[T, a, B], Bl /. a»® /. B0, x> 0]
Fullsimplify[D[B[t, a, B], B] /. a» 0@ /. B0, x>0]

Fullsimplify[D[c[t, a, B], B] /. a»0@ /. B»0, x>0]

out[]- @

Aaﬁy BaB, Ca/}

in[-]= FUullSimplify[D[A[z, a, B], {a, 1}, {B, 1}] /. a»0 /. >0, x> 0]
FullSimplify[D[B[z, a, B], {a, 1}, {B, 1}]1 /. a>»0 /. B>0, x> 0]
FullSimplify[D[c[T, a, B, {a; 1}, {B, 1}1 /. a»0 /. B0, x> 0]
plz_, a_, A_]1 := FullSimplify[D[A[z, a, ], {@, 1}, {8, 1}] /. a»0 /. >0, x> 0]
qlz_, a_, A_] := FullSimplify[D[B[z, a, B], {a, 1}, {8, 1}] /. a>»0 /. 3>0, x> 0]
rlz_, a_, A1 := FullSimplify[D[c[z, a, B], {a, 1}, {£, 1}] /. a=»0 /. 3>0, x> 0]
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APPENDIX C: MATLAB

The first moment: The MATLAB code for calculating and comparing the
first conditional moment from our closed-form formula with the MC simulation,
which is simulated using 4 = 0.01, a = 0.1, 0 = 0.001, p = 0.01, b = 0.1, and

0 = 1, running for 5,000 sample paths.

i % Code : The validation of the accuracy
2 clear all
S clc
4
5 X0 = 2;
6 v = 1:10;
7/
8 t = 0;]
9 T=1[12 3 4]1%0.25;
10
ikl r=20.01;
12 k = 0.1; %kappa
13 sig = 0.001;
14 rho = 0.01;
115 the = 0.1;
16 %%
117/ All = @(t) 1;
18 A10 = @(t) -1/(2*k)*(1-exp(-k*t));
19 ABO = @(t) -1/(2xk)*(thexexp(—kkt)-the-2krxkxt+thexkxt);
20
21! for q = 1:length(T)
22 tau = T(q)-t;
23 for j = 1:1length(ve)
24 Uex(j) = A@0O(tau) + A1@(tau)xv@(j) + All(tau)*x0;
25 end
26 plot(ve,Uex, 'LineWidth',1.5)
2/ hold on
28 end
29 %%
30 Ns = 5000;
il Np = 5000;
32 E = zeros(4,length(ve));
33 for i = 1:1length(T)
34 tic
35 T(1)
36 tt = linspace(t,T(i),Ns);
37 dt = tt(2)-tt(1);
38 for j = 1:length(ve)
39 x = x@xones(Np,1);
40 v = v@(j)*ones(Np,1);
41 for g = 1:Ns-1
42 dwl = sqrt(dt)*randn(Np,1);
43 dw2 = sqrt(dt)xrandn(Np,1);
44 X = X + (r-1/2%v)*xdt + sqrt(v).*xdwl;
45 v = Vv + kx(the-v)*dt + rhoxsigksqrt(v).*xdWl + sigxsqrt(1-rho~2)xsqrt(v).*dw2;
46 end
47 Umc(j) = mean(x);
48 %%% PERCENTAGE RELATIVE ERROR %%%
49 E(i,j) = abs((Uex(j)-Umc(j))/Uex(j))*100;
50 end
Sil plot(v@,Umc,'o"', 'LineWidth',1.2)
52 hold on
58 toc

54 end
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The second moment: The MATLAB code for calculating and compar-

ing the second conditional moment from our closed-form formula with the MC

simulation, which is simulated as the previous figure, running for 5,000 sample

paths.

1 clear all

2 clc

3

4 X0 = 1;

5 vo = 1:1:10;

6

7 t=0;

8 T =1[12 3 4]%0.25;

9

10 0.01;

11 0.1; %kappa

12 = 0.001;

13 = 0.01;

14 =0.1;

15

16 %%

17

18 A22 = @(t) 1;

19 A21 = @(t) -1/kk(l-exp(-k¥t));

20 A20 = @(t) 1/(4xk™2)*exp(-2xkx¥t)*(exp(kxt)-1)"2

21 All = @(t) -1/kx(thexexp(—kxt)-the-2krxkxt+thexkxt);

22 A10 = @(t) 1/(4%k~3)xkexp(-2xkkt)*k(-2kkkthe+dkkxthexexp (kkt)-2xkkthexexp (2kkxt)-4xk 2kexp(kxt) ...
23 +4kk"2kexp ( 2kkekt ) +4k rkk 2k tkexp (kkt ) -4k rkk 2k tkexp ( 2kkkt ) -2kthexk 2k tkexp (kkt) +2kthexk 2ktkexp (2kkkt) ...
24 +4xrhoksigkkkexp (kxt)-4krhoxsigkkkexp (2xkkt) +4xrhokxsigkk 2xtxexp (kxt)-sigh2+sig"2xexp(2xkkt) ...
25 F2xsign2kkktrexp (kxt));

26 A00 = @(t) 1/(8%k~3)kexp(-2xkkt)x(2xthe 2kk-dkthe2kkkexp (kkt)+2xthe2kkkexp (2kxkxt) ...
27 +8xthexk"2xexp (k¥t)-8xthexk"2kexp (2xkkt) -8+ rrthexk 2xtxexp (k¥t) ...
28 +8krxthexk 2xtxexp (2xkkt) +4xthe”2xk 2xtxexp (kxt) —4kthe2xk 2xtxexp (2xkkt) ...
29 +8%k "2k 3kt 2kexp ( 2kkokt ) +8xthexk 3k txexp (2xkkt) ...

30 =8krkthexk 3kt 2kexp (2kkkt) +2kthe 2k 3kt 2kexp (2kkkt) ...

31 —-16*thexrhokxsigkkkexp (kkt)+16xthexrhoxsigkkkexp(2xkkt) ...

32 —8xthexrhoxsigxk"2xtxexp (kkt)-8xthexrhoxsigxk"2xtxexp (2xkxt) ...
33 +thexsig™2+4xthexsig~2kexp (kxt)-5*thexsig~2kexp(2kkkt) ...

34 +4xthexsig 2xkxtkxexp (kkt)+2xthexsig 2kkxtkexp (2xkkt));

BS)

36 for g = 1:length(T)

37 tau = T(q)-t;

38 for j = 1:length(ve)

39 Uex(j) = A@0(tau) + Al@(tau)xvO(j) + All(tau)*x@ + A20(tau)*ve(j)~2 + A21(tau)*x0xvO(j) + A22(tau)*x0"2
40 end

41 plot(ve,Uex, 'LineWidth',1.5)

42 hold on

43 end

44

45 %%

46

47 Ns = 5000;

48 Np = 5000;

49

50 for i = 1:length(T)

51 tic

52 T(i)

53 tt = linspace(t,T(i),Ns);

54 dt = tt(2)-tt(1);

55 % pd = makedist('Normal',@,sqrt(dt));

56 for j = 1l:length(ve)

57 X = x@xones(Np,1);

58 v = v@(j)*ones(Np,1);

59 for g = 1:Ns-1

60 dWl = sqrt(dt)*randn(Np,1);

61 dwW2 = sqrt(dt)*randn(Np,1);

62 % dwWl = random(pd,Np,1)

63 % dwW2 = random(pd,Np,1)

64 x = X + (r-1/2%v)*dt + sqrt(v).xdWl

65 v = v + kx(the-v)*dt + rhoxsigksqrt(v).xdWl + sigksqrt(1-rho”2)*sqrt(v).xdw2;
66 end

67 Umc(j) = mean(x.”2);

68

69 end

70 plot(v@,Umc, ‘o', 'LineWidth',1.2)

71 hold on

72 toc
73 end
74
75
76 grid on
77 grid minor

78

79 xlabel('$v$', 'Interpreter', 'latex"')

80 ylabel('su_{\alpha}*{(2)}(x,v,\tau)$", 'Interpreter', 'latex')

81 legend({'$\tau=0.25%"', '$\tau=0.50%", '$\tau=0.75%", '$\tau=1.00$"', 'MC with $\tau=0.25%"','MC with $\tau=0.50%"', 'MC with $\tau=0
82

hold off
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The mix moment: The MATLAB code for calculating and comparing the
mix conditional moment from our closed-form formula with the MC simulation,

which is simulated as the previous figure, running for 5,000 sample paths.

1 clear all

2 clc

3

4 % delta = 1

5

6 X0 = 2;

7 vo = 1:10;

8

9 t=0;

10 T = [12 3 4]%0.25;

11

12 r=0.01;

13 k = 0.1; %kappa

14 sig = 0.001;

15 rho = 0.01;

16 the = 0.1;

17

18 %%

19 A1 = @(t) 1/(2%k~2)*(sigkexp(—kkt)*(sig(exp(kkt)=-1)+kkt*(2xkxrho-sig)))
20 AB2 = @(t) -1/(4%k~3)*sigkexp(—kkt)*(2xkkthe)
21

22 A1l = @(t) 1;

23 A10 = @(t) -1/(2%k)*(1-exp(-k*t));

24 A00 = @(t) -1/(2xk)*(thexexp(-k¥t)-the-2xrxkxt+thexkxt);
25

26 Al = @(t) exp(-kxt);

27 A2 = @(t) (exp(-kkt)-1)xthe;

28

29 for q = 1:length(T)

30 tau = T(q)-t;

31 for j = 1:length(ve)

32 Uex(j) = (A@1(tau)*ve(j)+A02(tau)) + (A0@(tau)+Al10(tau)*ve(j)+All(tau)*x0) * (Al(tau)*ve(j)+A2(tau));
33 end

34 plot(ve,Uex, 'LineWidth',1.5)

35 hold on

36 end

37 %%

38

39 Ns = 5000;

40 Np = 5000;

41

42 for i = 1:1length(T)

43 tic

44 T(i)

45 tt = linspace(t,T(i),Ns);

46 dt = tt(2)-tt(1);

47 for j = 1:length(ve)

48 X = x@xones(Np,1);

49 v = v0(j)*ones(Np,1);

50 for g = 1:Ns-1

51 dwl = sqrt(dt)*randn(Np,1);

52 dw2 = sqrt(dt)*randn(Np,1);

53 X = X + (r=1/2%v)*dt + sqrt(v).*dwl;
54 v = v + kk(the-v)*dt + rhoxsigksqrt(v).*dWl + sigksqrt(1-rho”2)xsqrt(v).*dw2;
55 end

56 Umc(j) = mean(x.xv);

57 end

58 plot(ve,Umc,'o", 'LineWidth',1.2)

59 hold on

60 toc

61 end

62

63 grid on

64 grid minor

65

66 xlabel('$vs$', 'Interpreter','latex")

67 ylabel('$u_{\alpha\beta}~{(1)}(x,v,\tau)$', 'Interpreter','latex")
68 legend({'$\tau=0.25%", '$\tau=0.50%", '$\tau=0.75%", '$\tau=1.00%"', 'MC with $\tau=0.25$','MC with $\tau=0.50%', 'MC with $\tau=0.
69

70 hold off
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