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The presence of both .,.‘_;__ﬁi:‘} 35 interfe _' and intersymbol interference (151)
constitutes a major impedi 0 reliable commurliedtionsanvmultipath code-division multiple-

access (CDMA) channels any mulliuser fetectars in the past have been developed based
on novel linear and ; | - su pm \ “which make use of both soft
interference cancellation amd™ 1nsaf "-' 5 ligea ; ah “i square error filtering. All of

them are required know
of the desired users.
efficient detection o

e essential to achieve an

\.,- delays and multipath channels

The main purpo \\w | solution to the problem

of joint multiuser détectio, ng imilion @nd, - he uplink of a multiuser
DS-CDMA system explgiting 21 ised _algomy m the :---_‘i*. ation of Variational Bayes

Methods and Minimum Kullhack ler (M echnigues.  Minimum Kullback-Leibler
(MKL) methods allow to éfficic imerical comne - ibutienal probability and parameter
approximation of all the Unkn@Wn parafeiers (1.6, data symbols, channel response of each users)

from their conditional postefior -1 ps _and"d compute their estimates by condition
mean estimator. In addition, they ==, ‘ ' the Expectation maximization (EM)
al guently perform robustly in quickly
changing commuiligation Scenarios. e proposed MK i Itiuser dectector, being
soft-input soft-ontpub in its nar :

technique, to the choice of ini

E— o e I —— P————
e cxprotice for et ve Do -1-5*' gin a coded systerm

The simula E(_m_ﬁ 3 i} # Minimum Kullback-
Leibler (MEKL) mulf dete: , iltiglE-access (CDMA) channels
in the system with m‘ unknown the imtial delays and multipath cmcls of the desired users.
A few pilot symbols used by any users for channel parameters at initial. The simulation
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CHAPTER 1

INTRODUCTION

OVER THE PAST decade, a significan
multiuser detection methods for interfe - ‘tode-division multipleaccess
(CDMA) WMHNW. Al %ﬁam been reported
in literatures for u ‘ ; glem, 8 AS  maximt ihood (ML) detector,
sphere decoding algorithumgZerof ‘-/ stector (ZF giulume-mean-square-error detector
(MMSE) detector, and suceessi j fost. of previous work on
multiuser detection S o the demodulation of
multiuser signals. Since nFacLice itiost @ )MA syster =mploy error control coding
and interleaving, recemt work area has, addressed multi ser detection for coded
CDMA systems. [2119] jAnd™ F21 -18 \shown that the optimal decoding scheme
for an asynchronous ‘coded 1 ' bines the trellises of both
_ olution de, resulting in a prohibitive
computational complexity O(? i the number of users in the channel, and v
is the code constraint le gth ] _” s, dn iterative turbo multiuser receiver can
approach the optimal performa fabl = feceiver complexity (2]. Like turbo
codes, the iterative turbo mulr.iu ot-detec -J-_- hanges the extrinsic information
of transmitted symbols b:twg-.ljnggw# | decoders and its module [2]— [13].
Several papers have ] irig of the knowledge
channel-state i | knowledee ol chiannel parameter is
: : il iterative (“Turbo™)
processing tcchniq:ﬂaﬁé eceive uwﬁy the discovery of the
powerful Turbo ¢ 2-3). The so-called Turbo—pnnc:p]: can

uccessfully applied to
many dmunfdecudu? problems such as serial

h has addressed various

the asynchronous multi

essential to achie

El
=

ncatenated decudmg cq.tahzannn coded

mudulau pam-::ular a
ﬂ igi 1 transmission
over inte bnl interference cha.nne ore re.cenﬂy, 11] an upnma iterative multiuser

detector for synchmnous coded CDMAgSystem is denvedﬂscd on iterative u:-.s for

R bRty B T Y

qr channels with medium to large number of users. A similar work has also appeared in
[16].

Among of iterative turbo multiuser detectors, there are two well known difference
extrinsic information calculation. First, linear minimum mean square error (LMMSE) and
soft interference cancellation computes the extrinsic information feeding to individual channel




decoders by iterative manner [13], [17]. Second, the Sequential Monte Carlo (SMC) algorithm
(also referred to the particle filtering method) computes the extrinsic information feeding to
individual channel decoders [18]— [23]. The sequential Monte Carlo methodology original
emerged in the field of statistics and engineering has provided a promising new paradigm for
design of signal processing algorithms wi‘ h perfermance approaching the theoretical optimum

ion i hi: ! reless environments. All of the SMC
techniques are aimed at building a recursive Haycsi: , which estimates the extrinsic
probability density function (pdf)based on Ll ations. The high computational
complexity of the optimal m SET dete i @ in terms of the number
of users in the channel ) has meoti ' '

ei of low-complexity suboptimal
multiuser detectors. These lowseoraplex ethods fall largely into two categories: linear
detectors and nonlincagsdelcc o £d tor is compriscd ol a linear filter applied
to the received signal, foliéWed By 4 scalar gantizer. The nonlinear detectors are based
primarily on various t€€hnigques for Suc: e cancellz  "ohsintoH tence. In [7), some
low-complexity receiversgWhichi' pgrform Sy 0 . n and decoding either
separately or jointly ag€ studi - \

The theme of this digse
uplink asynchronous

ultiuser receiver for an
d ences. It is assumed
ling sed and the initial delays of
the desired users within the'cel _ f upknown to the receiver. A few
pilot symbols are used by any lsers. s have addressed channel estimation
in long CDMA systems [2], 3. ]t-__ﬂiﬁg'aﬁp '
and receivers are then constructed ,h}!.:iﬁ:un
to the separation of chanm:l Mﬁld
both channels and Moreover : E el at uncoded systems
and they do m:ila' rures induced --i' coding existing in
most communication systems. s recently attracted
vast attention. In [4]H 5], turbo F ies for ; éd CDMA systems are
developed, which iterdte between multiuser detection and channel décoding to successively
improve the receiver peli: ce. In these worksgthe user channels are assumed perfectly
known atﬂk i§s o multiuser
sprr.admg sequences. A novel Ba)resmn multiuser detector is pmposcd Whl::h computes
the MAP estimates of the channel ccn:l multiuser symbol§iithat are encoded befre being

RIS TR IR

oﬂstatlsucs the Gibbs sampler and Minimum Kullback-Leibler (MKL) have recently been
investigated for the optimal receiver design in various communication systems [8]—[10].
Another issue addressed in this dissertation is Minimum Kullback-Leibler (MKL) Bayesian
multiuser detection in the presence of unknown multiple-access interference (MAI) and

that the receiver has only the

finel parameters are first estimated
ed channels. This is suboptimal due
opposed to joint estimation of




narrow-band interference (NBI), a scenario that occurs in CDMA overlay systems. Various
technigues for interference suppression in CDMA overlay systems are reviewed in [11].
Existing methods include frequency-domain techniques [12], predictive techniques [13], [14],
the linear MMSE estimation technique [15], [16] and the maximum-likelihood technique

[17]. In this dissertation, we propose a a_ N0 interference suppression. The Minimum

Kullback-Leibler (MKL) is then esian estimates of all unknowns
In this dissertation, we proi e channel estimation and the
calculation of the extrinsic info inimum Kullback-Leibler
(MKL) algorithm for nume To implement
extrinsic probability by u neoding, the measurement
vector signals are decom i 12 1 ¢ nponents. Virua q; diagram, representing
the ISI channels fo dra o signal Juser, is designed toncompute the extrinsic
information by using thc B h uter : re employed to assess
the performance of i sed/Schiemes compare W it  iterali IMSE turbo multiuser

method [13].

L1  Objectives

The primary objective'of dissertatie on design a novel mathematical closed form
joint iterative Minimum Kiillbagk-Leibler QKLY multi ¢ r and channel estimations
for an uplink multipath async 1S DM employing spreading sequences.
It is assumed that the receiver hds'e spreading sequences and the
initial delays of the desired users-within multipath channels are unknown
to the receiver. few pilo | n this approaches, channel

parameters are firsile hén, constructed based
a H—_ > I_ .
on the r.stlmated ~ The Minimu illba t) multiuser receiver

mitigate multiple-access 1 nierference (ISI). Moreover,
the implementation ¢ _ e proposed k=Leibler alge ji m essentially designs
virtual trellis corresponding to each user's symbols channel delay for generating extrinsic
probability of the pmpo‘chumlzauon Minimunfi Kullback-Leibler algorithm. Simulation

Ry ﬁ?ﬁ eI g
Q‘Wﬂﬂ\‘iﬂ‘im 1RIINYAY



12 Scope

As the Minimum Kullback-Leibler Muluuw detector for DS-CDMA systems under the
presence of multiple-access interference ]I | ' # mbol interference (ISI) investigated

in the dissertation, the scope of th ; W imited to the following:
.n"F adr

nalyze computational results

1. Effects Bit error rate (BE

of proposed algorithm.”

2. A novel MKL m T onsiders both iterative
decoding and channel gst

3. Parameters Estimatioy

4, the limitation ¢

5. Performance o
study of other techg
performance of clj

r and a comparative
led 7~"~,,1 includes bit error rate
%

ﬂuEI’JVIEWIﬁWEl’lﬂ‘i
ammnimumqwmaa



13 Outline

For the rest of this dissertation, chnptullreviews. the basic background and related
Topics of iterative multiuser detector literai ’ f{ ng CDMA channel model, transmitters,
receivers. Chapter III presents the pic ‘. f' ullback-Leibler Multiuser detector

l

..1
and its mathematical closed form chanr A rf(/',f e decoding will be proposed.
In chapter 1V, the effects o ﬁ___'_‘_‘: (BER f'f imation error and analyze
computational results are demmonstraied. Finally, chapier 5 will eonclude this dissertation.

The results and contributions will'Be surnmari:

ﬂ‘L!El’JVIEWI‘iWEI’]ﬂ'ﬁ
ammmmumwmaa



CHAPTER 1II

BASIC BACKGROUND ANI TED TOPICS

W ;/"

Communication channelssthatinvelve both'error-controleoding and multiple-access
signaling are of increasing inleses
networks, and broadband local

appl ;_155 ich as m. hony, wircless computer

. f al/daja ‘4{?& -a: in such channels

generally requires a lev ‘complitauenal £omplexiry th 1"% ahibil or these types of
applications. Turbo multivssed tegfion ) addr \h problem pplying the turbo
principle of iteration am@ng coustinuen ;, thms, with intermediate exchanges of

soft information (i.e., postegior pgdbabilities) about tentative H"‘ 1"‘ ere this principle

is applied by consideri Undwhich gxploits the ple-access si g structure) and
error-control decoding as thetwo ' i _ \

In this chapter revic#s thi§ arca, ining -botl “ principlés involved channel
modeling and the basis for turbamuliiu ! { ors that gequire ¢ N increased complexity

over that of the standard chamnel de ndﬂiE ;J

21 System Description and

Let us consider an asynchre em that has I active users,
employing normalized s gh multipath
channels with additi{e Snme-Gaussman-nomse-tAWw - smittedssighiat due to the k**

Fl

user is given by i

PPy
i (0= ay E Z: by [i)er :li)e(t — iT — 5T, — dkm

£ =0 =0

= | e/
where M dénol the - otes the
et ] GEE G P OL bbb T e

symbol, the aMbk[i]} and d {0 < di < T} denote, respectively, the amplitude, the symbol
stream, and the delay of the kth user's §igr‘:i.  is a normalize@iehip waveform of duffatfon

kRGO ey e (rate)

9k(t) =) Brad(t — ia) (2.2)

=1
where L is the total number of resolvable paths in the channel, 8, ; and 7 are, respectively,
the complex path gain and the delay of the k™ user’s [** path. The received continuous-time

T

(2.1)



signal at the receiver is given by

r(t) = thlm(tlwi:}
k:'l M-1

Z Z bjg{‘l! ‘ _‘____—-

k=1 i=0

‘}. — Tk.l} -+ H(t] (2.3)

he.ambi 1ent noise. At the mvﬁr\.
il 53 11[; = = t:hlp-l‘ate. Let

where denotes * mnvﬂluuun.,
the received signal r(t) is
(2.4)

be the maximum delay Sprea
sample at the matched filtegd

als. The signal

iT+(g+1T:)
ro(i) £ f r(t)(t — iT — q@h)dt
iTiqTe
rr‘l'{""ch) A
=j¢[t—iT—th] YO R
iT+qT: kw1
1+ (1)
THe+1T) N 1

[ by

ﬂ"'HTk_l m=i-{

p— )T di — mig)dt
\ | X J
+ (i) Y :

K L N-1 "I T

_Z Z Zb i m]cki-m[q_.?hkm V + 7] + vy(7)

k=1 m=i—{ 3=0

=TT R I WHI G-
(1] is n only for [(dg + 71) dy + 7))/ Tc] For convenience define

4= [(n‘t Ja’T‘] — 1 as the initial delayin terms of nurnb of chips for the F.:”'l

ﬂmﬁﬂﬂﬁ’mmﬁﬁ“ﬁﬂm

Thmughuu{ the dissertation,assume that both the maximum initial delay maz {{; } and
P are less than NV . Hence, the maximum symbol delay satisfies £, < 2. It is convenient to

(2.5)



express the signal model (2.5) in a vector form as

— (2.6)
where user k = 1,2, - -, K, thestfinsm ymbiol byft] and {b; ¢ L]‘mmndulntiun
symbols and delay symb®Is assighed £ use at (* in H.;.,n,.:- 2.4 and [21]
for more details). The noi : £, # : {% \\\h i-‘_: sian vector with
zero mean and variance'@ 1. Spreading ;, - : ned by N x P

matrices [21].

(2.7)

=P

N is processing gai ﬁm: hannel matrix
H and vector blt] can_be F f’ 5:11=c£ﬂl 9k .

hf:':CE:'g;, and _ i
H=[pY AT LR ks ] g (2.8)

ARSI

M luqcr detection (MUD)

22

- | - LY

_ ‘ Lesm ommu il
O B Lt ittt ]
channel. This problem arises naturally, for example, in ¢ de-division mul ple-access
(CDMA) systems using nonorthogonal spreading codes. It also arises in orthogonally
multiplexed wireless channels, such as time-division multiple-access channels, due to effects
such as multipath or nonideal frequency channelization, and in wireline channels such as
those arising in digital subscriber line (DSL) systems or powerline communications (PLC) in
which crosstalk and other types of interference are major impairments. The basic idea of



MUD is to exploit the cross-correlations among the signals to be demodulated to improve the
data detection process. Considerable progress has been made on this problem over the past
two decades. (See, e.g., [13]and [1].) Among. ' ings, it has been shown that the use of
MUD can provide very significant performs in interference-limited channels.

liqu on maximum-likelihood

(ML) or maximum a posteriari probability (MAP) ¢ achieve performance
very close to that of a systemuthatisdrec.o mtcr‘enc:m methods tend to be
quite complex, particularl _ ' @ resources available in most

communications receivers. Col onsiderabl ntof {m has been devoted
; ' ome of the benefits of

tuser detectors, which
less quantization

to perform data detection _ ‘ detectors are the
iterative multivser det h gz se-of tentative channel symbol decisions (either
soft or hard) to provide feedbs c3ft impravelthe'eapabi terms of complexity

or performance, of optimal or line: AT oding is considered in

addition to nonorthogonal signaling, t eXity, of ¢ ntimal receiver processing is further
exacerbated. In particular plexi " ML or ) gint MUD and channel
decoding tends to be extremelyhigh, 4 ver, thisleombination also lends itself very

well to the use of iterative MUD meiods s ,-_ btk tive hannel-symbol decisions
are produced by the channel decode i
channel-symbol decisions to the clanaels
processes, with inte: -han;

€in be used to provide tentative
tween these two constituent

‘known as turbo
MUD. This idea wag i context of convolutionally Eicoded CDMA

channels, but has sin ceit W J ng DSL, PLC,

space-time coded C D ult v m channels.

Linear MUD

0 i siderable
amount nf nﬁ '5' Hma ﬂl detectors
that mitiga c ity (sn:, e.g., [I died family of suboptima multiuw

detectors nrc. linear MMSE {Mlmmun#Mcan Square Erro
ofyi in their ownright
includ m

multiuser d.c.tc.cmr‘i

T

caq:e[lannrn is performed on the matched-filter output in (2.6), to obtain

welil = £fi] - Z (ﬁk[t]him +ouft— R 4.+ bft— L+ 1]hf,'"'“) (2.10)
1

k=

Such a soft interference cancellation scheme was first proposed in [3]. Next, in order to
further suppress the residual interference in y[i], an instantaneous linear MMSE filter is w



10

applied to yy[i], to obtain The sufficient statistic r{t] of (2.6) and (2.10) obeys the linear
model (2.11) and (2.12) ,

(2.11)
where the filter wy € R" is cliosen i t between the code bit
be[i] and 2, [i] the filter outpHt i€

uy =
= (2.12)

where

(2.13)
and

(2.14)
The solution to (2.12) is given b

(2.15)

MUD (and equalization as we 1odel to the observations.

The complexity of thesé g '- lements. of the vector yxli]
and bi[i] take values of linear models
such as (2.10) is of relalive Near™ D is 1o take

advantage of this relati "T low complex i linear “ﬁ: fitting by first
estimating b t] in (2.11745 if it were a vector w:lh n:n[ mmpon:ms and to project these
real estimates onto the ﬁnu"ﬂabﬂ of the actual sygbp bpls. This, of course, will not yield

ot Sﬁ"ﬁﬂiﬁmﬁlﬂﬁmﬂﬁiﬂﬁﬂ -

vector yili] itglf is used to estimate bi[i] before quantization. As noted above, this choice
is optimal agamst the white background ngise in the ahscm:cﬁs:gnal Cross l:orrd

RPTANA SN I Ta

matghed filter is the linear minimum-mean-squareerror (MMSE) detector, which detects byi]
via where I denotes the NN identity matrix, This latter detector uses, as its linear estimation
stage, the linear MMSE estimator of bgfi] given yi[i] in (2.10) under the assumption that
the symbols have a prior distribution under which they are uncorrelated with zero means;
namely, by[i] 2 sgn {H% [hf’" [HHH + o21) ™" y,,{i]] }



23 Iterative MUD

Turbo MUD falls within the categor: '\.iil {UD, in which tentative decisions
are used iteratively to improve ove ‘;\u:""-{‘l“ ¢ drom turbo MUD, iterative
detectors include several varieties, | ~m- linear a if interference cancellers,
and model-based techniques such a: .' _ . aximization (EM)

algorithm. We now discuss the,se.v ry_brief]

Note that the linear defectors gis inversion of a
N x N matrix. The comp : 5,in itSworst case, O(N?).
Although simpler in principle than thefe: ; ial gomplexity « ‘or MAP MUD, this
complexity can still be quitgiignifighni/Mor ocver, this : rix. inversion |, H""+«ar*4!']_I
cannot necessarily be amortizedédvermoge thah one fra _ = of data, since the channel and/or

the signaling waveforms ma¥ vagf from firz : '_ Jdrame. " Thus, it 1s of interest to use
lower-complexity method$ for cémp M :

MNonlinear interference cancel are ik inspir '_ ‘interference cancellers, in
that they use iterative metheds to e m (2.6), ' : n i ir linear counterparts,
‘ nﬂ?g?y, ing, nonlinear interference
cancellers also exploit the disCrete nature ol b “each iteration by making
intermediate soft or hard decisiong b: rEraltions. A inear interference cancellers,
there are a number of such methods. i of these detectors.)

As noted above, the basic pﬂh ‘ b a rate fitting of the model
(2.6),(2.10). Linear integference ' this Titting ing gnly the linear
structure of the model, wh rfer ncellers seck to improge-on this fit by
making use of further infgrmation about the model, namely bo g re elements
of a known finite alphabe mbols, and this
can also be exploited to ide further performanc provement. Fc:@zmple the EM
algorithm or Markov-chain Mnnu: Carlo (MCMC) techniques can be used to l:xplml statistical
information about b, leadin t.'.ﬁfcral soft-decision itégative nonlinear MUD algorithms.

::::;;;;:;gmﬁ AN T~
: jH"I RN nenas

uccd by an error-correcting code. In principle, this constraint should strengthen
our ah:ht}.r to fit the model (2.6) , as it reduces the number of sequences bl] that are
possible. However, the complexity of including such constraints is quite high, as we will
see below. Essentially, turbo MUD is a technique for fitting (2.6) when the symbols satisfy
coding constraints with dramatically lower complexity than optimal algorithms.

however, that exploit only the |
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Prnin (b1 )

F;mr-cuntmlcndir uf ourse, uk us in wireless and oth paired channels.

Similarly to MUD, the of trmr—contrul codes explmts the ndencies among

successive channel s)rmhoi:ftupmvc the detection{pfra single stream of data symbols.

Like MUB odi ally|i and so
iy £l Ioiing. T i) o et Bp L oo, Inh o
techniques mmlhm pmhl:m are pmllcl and serially concatenated codes separated by
interleavers, which are known to offer considérable performancedfaprovement over traditiofial

P S S LT

tl.'um that involve the iterative exchange of soft information between constituent
decoders (separated by interleavers/de-interleavers) have been shown to be very effective
approximations to optimal decoding. These well-known ideas are discussed, for example,
in [6] and [7].

Many communication systems involve both errorcontrol coding and nonorthogonal
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multiplexing. A typical configuration is a convolutional encoder mapping data symbols into
channel symbols, followed by an interleaver, and then a multiple-access channel, as shown in

detector, or a multiuser detector _ _‘ i y a de-interleaver and
a channel decoder. To see 1made as :anld replace this traditional
cenfiguration with an o Fopticaal or timal (say ML
or MAP) mapping from the reeliveds the Joriginal data, s . The complexity
of such a system is pot Y his_complexity can be m however, by
appealing to the turbo principié for decod 2 : 1 codes bove. In particular
we can reduce the compl offjoi i qu D b y /¢ exchange of soft
information, iterating until sogié ki anvelgence isieached | Like turbo decoding, this
iterative approach to joint nnclﬁ}: can ieve v ood performance
(clese to the interference- -dse ). 3

s ..
i ,._a__!-_', -I \\
_ z

:

. bz
lmES: m&-’ﬂ-““‘i"f N9

0 m&mmmumﬁmm ¢)

To consider this problem, we need to refer model of (2.3) to include coding. This
can be done very simply, by writing the channel symbols bi[i] explicitly as functions of
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underlying data symbols; i.e., for a rate- R code, we have

K M-1 L N-1

rt) =0 Do belil Y D Bracy

k=1 i=0 I=1 j=0 _

T — dy — Tig) + v(t) (2.16)

The block diagram of tangmitter Bdbreccivel Mol jaghown in Fig. 2.4. The
binary information {u[i]} foruse 1,.. afivelutionally encoded by a single
convolution encoder with w & bits (B[]} areinterleaved and mapped
to BPSK symbols stream {bi[t]} is modulated 8 reading waveform
si(t) [21] and transmitted thieul i . anuel, The received signal vector rft] at
the receiver is the super : ! ian noise, which
is defined in (2.6). In the coded c : : : iterdtive receiver structure often
makes use of turbo pring ,of 1n jon and performance.
The receiver structure ung afidefation isa i n in Fig 2.4. It

| decoders. The

We would like to fede ui-thedsct of daca symbols u, [i], . '
ukli]. The observation veetc frﬁ»l% [ M) of (2.10) is still & sufficient statistic for
1l problem of sequence

detection. Like MUD, the decoe 7 this. a can be simplified by dynamic
programming. For example, iF Rglezuser (. ‘ ] e, the per-symbol complexity
of optimal decoding reduces to D{ E‘L‘:“ ponding dynamic program being
specified by the \Fuerh: algori L decoding and by the Bahl, Cocke,
Jelinek, and Raviv (BOUJR f - With multiple users

of the constituent pie :"1'" ’a‘* ity [9]. This
complexity would typ
the code would norma h’j be chosen to meet the limits of the receiver's pre
Amplifying this constraint

{f{' = 1]' optimal dete 0 sablem sssEmiatty ot e complexity

dlly b pe (he” nsmunt length of
a! ssing capabilities,
ngth by a factor of K in the i:xpnnem will push the processing

2 B A S o

belween iterations. {Sct: 0], [11], and [12].) The basic building blocks

RS AT T R

prior probabilities and on the corresponding signal structure. That is, the SISO multiuser
detector uses prior symbol probabilities and the multiuser signaling structure to compute
posterior symbol probabilities conditioned on the observations. Similarly, the SISO channel
decoders use prior symbol probabilities and the structure imposed by the channel code
to compute posterior symbol probabilities. (Of course, the SISO decoders also compute

soft informan




underlying data symbals; i.e., for a rate- R code, we have

K L N-1
r(t) = z E bieli] D D Beserlilipl T — di — Tig) + v(f) (2.16)
k=1 i=0  i=1 j=0

The block diagram of
binary information {u[i]} for user
convolution encoder with codess
to BPSK symbols stream. _Eag

shown in Fig. 2.4. The
cnally encoded by a single
terleaved and mapped
.4 spreading waveform
; | ceived signal vector rft] at
the receiver is the superpa8ition o aécf §ignalsiplus additve whit 'iannuisc.i.rhich
eiver structure often

makes use of turbo pri id performance.

The receiver structure undgf consitesatio @ itefati eceiver as shewn in Fig 2.4, It
consists of two states th | decoders. The
two states are separated by | £ IVETS.

We would like to giatke jinfegences about. th f data symbels w,i], . .
ugli]. The observation vectog e AR of - 2.40) is sill sufficient statistic for

_ problem of sequence
detection. Like MUD, the decgding ta8k"ia this ‘sitdatibn can be simplified by dynamic
programming. For example, i t | wser (K e , the per-symbol complexity
of optimal decoding reduces to G'[ :=""‘ : f.:,“” dynamic program being
spe:cnﬁed by thc vxtcrbl algu i ' I and b}- the Bahl, Cocke,

the complexity

of the constituent prok exity [9]. This

complexity would typica o , cations, thﬁ;summ length of
the code would normallybe chosen to meet the limits of the receiver’s p ing capabilities.
Ampht’ymg this constraint ‘tn th by a factor of K in 'E'chpﬂmm will push the processing

~ PR ¥ A fege o

turbo prlmtp f iterating between algonthms nt problems, and exchangi ng
soft mfonnatlnn between iterations. (See ‘H}l [11]. and {IZ&Thn basic buﬂdmg

AR AT TR

algunﬂ'jms is to compute posterior probabilities of the channel symbols based on given
prwr probabilities and on the corresponding signal structure. That is, the SISO multiuser
detector uses prior s;mihu] probabilities and the multiuser signaling structure to compute
posterior symbol probabilities conditioned on the observations. Similarly, the SISO channel
decoders use prior symbol probabilities and the structure imposed by the channel code
to compute posterior symbol probabilities. (Of course, the SISO decoders also compute
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posterior data symbol probabilities, which will ultimately yield the overall output of the
combined algorithm.)

The turbo multivser detector begins wi multiuser detector applied to the
' ‘1o the interleaver length). This

d on the observations Y, for

rrrrrrr

.....

--------------------

e 2 Wil rm; s with equal
power: rate-1/2 constzaint g

each of the channr.}giymbuls of each of the users; that is, for each @mem of the vector
I: : This first set of poste .ﬁbahlhtws is based orfithe prior assumption that the channel

f’:‘:":‘:ﬁﬁﬁﬂ redd AL NN 3

dlanngl cudm hich correlates the channel symbols), it serves as a useful appmx:munn

TR T A

pmtﬂh:]m:s in the next step of the algorithm, which makes use of the bank of single-user
channel decoders.

 P(aaltlbelt) B) Precasers(Beftl1Y)
Prego(beldi¥) = = P ealon ) Pocesera e 1Y)

B[t

(2.17)
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The output z[t] can be well approximated by Gaussian distribution [2].

Palt]|bee), B) = —1- Lt — e eI P) @.18)

with g = (CL2 gi) Hwi o and v = gl — ik [ Kot ' ml:l thal zi|t] is the function

(2.19)

Before applying channe t be de-interleaved to
return them to their co pproximate effect
of removing any correlatio . ls by conditioning
on the ebservations y 4 SISO _MUD Thus, -afteg SISO MUD and de-interleaving, the

channel symbols can again B¢ asghimed (o be ‘one anoth hut now having

| receiver approach based
; rresults by re-interleaving
turning to the SISO MUD, now
using as a prior dlsmbuunn t babilities computed by the
5150 decoders. The S nfobabilities of the
symbol probabilities 8yt hands-iheimn-back-io-the-channel decodess-a """""’:- rleaving again.
This process of suﬁi' a i = 8180 decoders can
continue until the pnsu:ﬁ channe L= [s] sﬂ values, at which
point the data symbolsigan be MAF decoded via the data symbol rior probabilities
computed on the last appllimun of the SISO decodi gorithm. The constituents of this

nd thus ils-are omitted
1Ml
r n of the multi tector as
a posterior-probability calculator is an esse@al philosophical E:rpmmng of this a

L an) wm'mymm

usc in this turbo multiuser detector is dependent on the number of users in the channel and
is thus beyond the designer’s immediate control. Thus, although the O(2%") complexity of
optimal joint detection and decoding noted in (9] is reduced to O(2") + O(2¥) via the wrbo
principle, the second term in this complexity order is prohibitive for most applications, as
noted previously.

decode the data symbols. This
on MUD followed by decoding.”
the channel symbols at the output a




CHAPTER III

In this chapter, a mathematical. ¢ fo* for w::ruhahlluy density
estimation Minimum Kullb L , Opas polinproving the iterative

multiuser performance. This di y geworks MKL multiuser
detector and channel esti { \

. is corresponding
to each user's symbols chan

31 Variational Bay 16/ Disfribit pproxim -\:

In signal processing, as - §ciences, we are c d with observation
data, Y and we will model giie dag p: igally. saithat a set, 6 \Wlkrown parameters
describes the data-generating sy inistic ems, dge of  determines
Y under some notional rule, ¥ ql®). mccounts fo 'cqﬁf’i W ¢ data contexts in
which we must work. In particul: AR tibfibearing, then we must model the

uncertainty (sometimes called the he defining characteristic of

Bayesian methods is that we use pmbahl antify beliefs amid uncertainty, and the
calculus of ].'ll'ﬂl'labﬂl'[}r to mampu EX ;L'-r-v itat 42]- [44]. Hence, our beliefs
about the data are completely express a nbgervation model,
P(Y]6). In this way. h*’i“.Z.'?M’?_"}m“"“"‘“' #emselves.

In practice, the '® of an e given Y, and our

problem is to use thcm rn about | unkﬂn parameters, £
which generated them. I::ammg amu:l uncertainty 1s known as indu inference [44],
and it is solved by mnstmﬁu the distribution P(8|D) nnmr.ly. the distribution which
quantifies ou
simple presc
reverse the o

47284 nm"mmmmﬁ’y

'I:c.d in the light of Y. Hence, a Bayesian treatment requires prior quantification of our
behcfs about the unknown parameters, § , whether or not # is by nature fixed or randomly
realized. The signal processing community, in particular, has been resistant to the philosophy
of strong Bayesian inference [44), which assigns probabilities to fixed, as well as random,
unknown quantities. Hence, they relegate Bayesian methods to inference problems involving



only random quantities [46]- [47].
Tractability is a primary concern to any signal processing expert seeking to develop
a pamme.uic inference a]gm‘ithm. both in the and, particularly, on-line, The
th - of #, and this must be
maniputar.nr.l in order to solve pmhlc 5 of interes ; e may wish to concentrate

(3.2)

A decision, such as.a £ hay berequited. The mean @ posteriori estimate
may then be justified:

(3.3)

The integrations ational burdens

that compromise the tractabi g dig
An tractability exa ' ] - jer the moments of the
posterior distribution i.e. the £%| own functions, g(@) . of the

g (3.4)
In general, we will use_the n n gTd) 1o refer toa iaL_estimate of g (@). i
g(8) = 6, posterior mean is (3.3). The posterior mean (3.4) is only one of many dl:cmonq
that can be made in } mt estimate, g (¢}, ’H*‘f-' theory [31]

allows an optimal such

< stupplemented by
a loss function, L(g, §) i[

), 00) , quantifying the I ssociated with I';; ating g = g(#)
by § = g(f). The mmum Bzycs risk esumate is found by minimiZing the posterior

expected loss,
9 l‘ﬂ] 1] 9 = 9( Q positive

definite, leads to the choice of the posterior miean (2.7). Other sﬂard loss functions L@o

The quadraucvs function , L{g,g} =
i TS I R A T T E

Orrap = arg max P(8]Y) (3.6)



In the special case where P(#) = const,, i.e. the improper uniform prior, then

(3.7)
Here, @)y, denotes the Maximlim [ikel| (MEY Estimate, ML estimation [59) is the
workhorse of classical in c 5 b beof [ the space
of possibilities. In this chapteg Vig ‘the approximi tions which can help
to address these problems, : : ) he Variational
Bayes (VE) approximation as a al processing

algorithms for paramelric in
be novel and attractive alternati

The central idea of the
approximate marginals:

nany cases, o
nee algorithms.
tio, in terms of

P(8]Y) = P8V F=P@H Y] - (3.8)
[ | } _ ] .- ‘- Jﬂ' -7 -iir g
In essence, the apg SN 0, B

parameters in a partichiats partition of f chosen by the “designec™ " The :_g al such
approximation is chose f} Jminimizing a particular me kam ). P(6]Y)
to P(6]Y), namely, a particula i Which we will call
KLDyp Il )

The Kullback-Leibler D.wemnce: (KLD) provides objective statistical indicators for
rhu: difficulty in lits-::nmmaun bEfween two statistical Higgbtheses [29]. In addition to

B A RENINEINT:

and it is fundam&lul for characterizing the ralc function, which reflects the exponential
rate nt‘ mnveicnce of empirical measures to :r probabilities (S&fev's theorem), in largeS

FAANIAATINEINE

gluball valuate the inherent discrimination complexity [37] and the feature space quality
in pattern recognition. These are some of the reasons that explain its wide use in the context
of classification based on statistical decision theory [38]— [41].

P(OlY)= argmin KL (ﬁ{almﬁ(ag [Y)|{P[E|Y}) (3.9)
Fa Y, PiealY)
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In practical terms, functional optimization of (3.9) yields a known functional form
for P(6,|Y) and P(6|Y"), which will be known as the Variational Bayes (VB)-marginals.
However,the shaping parameters associated with ‘each of these Varistional Bayes (VB)-

interaction of VB-marginals via t} evaluation of its shaping
paramelers, since a closed-form ¢ Ava mber of problems.
However, a generic iterative algorithm forevaluatic 'B momicats and shaping parameters
is available for tractable VE al (i€, margina hose mom At can be evaluated).
This algorithm.reminiscent g it algorithm will be
called the Iterative Variationa the computational
burden of the VB-approximation i \ hm. The result
is a set of moments and shapig pag de he VB-approximation (3.8).

The Variational Baye§ (V) mgthod of pEo3
approximation of probability fufictions. &c '{B‘ L. oximating family is taken
as the set of all possible digtibutiens €xpres 5 1he i€t of requited marginals, with
the optimal such choice made By minimization of a Kullback-Leibler Divergence (KLD).
The following are among the ' Ximations ¢ and stochastic that
have been used in signal processing _.i.f'ﬂ'f i

o
4,

T * , N
* Point-based approximations; ex g ‘:ﬁi;il é mum a Posteriori (MAP) and
ML estimates. These are typieally, a5 certainty equivalents [48] in decision

ility to take account of

v techniques for

» Local approximaubn ace , E“ performs a
Taylor expansion H pol all ; 'his method is known to the
signal processing eemmunity in the context of criteria for model ¢ selection, such
as the Schwartz critcr‘in and Bayes' Information_Criterion (BIC), both of which were

ordep St bl g T TS

* Spline !g'tmmatmns tractable ap ximations of the probability function may

roposed on a sufficiently refined partition of the The computafiofial
R AT SIS

. Muimum Entropy (MaxEnt) and moment matching: the approximating distribution
may be chosen to match a selected set of the moments of the true distribution [50].
Under the MaxEnt principle [33], the optimal such moment-matching distribution is
the one possessing maximum entropy subject to these moment constraints.
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* Empirical approximations: a random sample is generated from the probahbility func-
tion, and the distributional appmxmuun 15 mmpi}r a set of pmnt Masses placcd at

years, stochastic sampling
Chain Monte Carlo (MCMC)
the golden standard for disteib

lass known as Markov
fepministic methods as

: ‘They. eld approximations
to an arbitrary level of accutacyy ally incur maje putational overheads. It
can be instructive to examin of determiaistic method—such as
the VB method— in_tesi /f;‘( S \ exity trade-offachicved by these

stochastic sampling technig

The VB method has the pg n computational

complexity and accuracy of gHE disgfibugic QroXim This is s ;}H_ d in Fig. 3.1.
The main computational biirden agsoci il B method is the need to solve iteratively
via the IVB algorithm a set of 3 incqlis equaiibns fitorder ¢ "5 ired moments
of the VB-marginals. If con nalfcost is-@f coneefn, VB-marginals may be replaced
by simpler approximations, or { 1 i 5 can be approximated, without,
L 4 vy A L) ,
hopefully, diminishing the overall guality m__ fiF signi 'i. ntly. This pathway of
approximation is suggested by the, u‘ arpow-1n Fig = and be traversed in some

of the signal processing applications preser -1 I
accuracy, the VB method is sited in thg. Texible. Hm (L o
more sophisticated technigues th ighl be ¢

ild the need exist to increase
ield Theory, which offers

32 How to Choose & Distributional Approxi i)
It will be cnnvcni:nﬂ classy d ation m@dﬁ into one of
two types:
¢ o
First : Determimistic pdistributic -_ }.is
obtaine fappli gf ?Wlﬁqu ined by
P(8Y) . q}e following are deterministic methods of distributional approximation:

(i) certainty equivalence [48], which 1#Eudet: maximum l ihood and Mnmmu

TR ST T T Y

‘ummlzanun [50].

Second : Stochastic distributional approximations: the approximation is developed via a
random sample of realizations from P(6|Y’) . The fundamental distributional approx-
imation in this class is the empirical distribution from nonparametric statistics [57].
The main focus of attention is on the numerically efficient generation of realizations
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deterministic

A

quality of approximation

from P(6]Y) . Animmediate consequence of stochastic approximatin is that .
(®) (3.10)
ﬂumwﬁwmmm
P(OlY) = ZJ (8- 9“1} (3. iZJ

'I.-l.

amammmmumma

dpproximations in this chapter. Our main focus of attention will be the Variational
Blyc.s (VB) approximation, which as we will see in dissertation is a deterministic,
free-fonm distributional approximation.
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321 Distributional Approximation as an Optimization Problem

In general, the task is to choose an ,;-llk ”ﬂl. yution, P(8]Y) € F,, from the space,
F, of all possible distributions. P{ﬂ[ ~ \1 1 ’ , and (ii) “close” to the true
posterior ,P(#]Y'), in some sense. The 1“ i "’: 15 an optimization problem

o
requiring the following elements """‘*-. -

1. A subspace of distributions. F, C h that all .{uu € F., are regarded
as tractable Here, P(¢ i » ble distribution from
the space F..

2. A proximity measure, J istribution and any

tractable approximation. (01 || (61 )] must be definedon F x F,, such that
it accept two distribuy ad P( F., as
positive scalar as it§'vz
the optimal choice of

guments, yield a
) minimizer.Then,

(3.13)

322 The Bayesian Approach to -_rr;t# : ‘;7

From the Bayesianip " (6)Y). (3.9). can be
seen as a decision-making’ 1 ‘function (3.13)
measuring the loss assotiate = ¥ “When the true
distribution is P(6]Y). 1n [60], a logarith a5 shown 16 be optimal if we
wish to extract maximuni information from the dal:a_ Use of the Iugnn nic loss function
leads to the Kullback-Leibler (KL) divergence [29] (alsorknown as the cross-entropy) as

“Wﬂﬂmlﬂﬂmwmﬂ‘im
AR AR TN a

= Ep{ﬂy] [ln ;E:{;;l {3.15)

It has the following properties:

1. KL (P(E{Y]II P(HIY]) > 0.
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2. KL (P[El‘f’] I .ﬁ{ﬂrm) =0 iff P(8]Y) = P(6]Y) almost everywhere.

3. KL (P(ﬂY}uP{mr}) = . v itive measure P(6]Y) > 0 and

P(8]Y) = 0.

4 KL (P{El?’)li F{eirj) L[ P Py 1, and the KL divergence
does not obey the triangle qual

Given 4, care is needed in AS)is from P(6]Y) to
P(8]Y). This distinction will burposes, we therefore
distinguish between the i

KL divergence for

(3.16)

(3.17)

The notations K LDy p and
not stated explicitly.

nts, which are, therefore,

323 The Variational Bayes (VB) M ;,.}.; J Distribi al / ppﬁxhnﬁon

The Variational Bayes (VE
technique with the followi
the space of conditiofally-maependent-eistripntions-

2 L

=

F. =4£(4

imation is an optimization
ang Fc is chosen as

| (61, }@R (3.18)
A necessary condition for applicability of the VB approximation is herefore that © be
multivariate. The proximityfmeasure is assigned as (3.47)¢

Adda AR FWEDE T oo
. Since the diva%&;oc. :f Ll:m.q {345}.{3,1?{ is not used, .'[l::.'. VB +appruximaﬁun'xfw Y),
AR TR

33 Other Deterministic Distributional Approximations

331 The Certainty Equivalence Approximation

In many engineering problems, full distributions P(#]Y") are avoided. Instead, a point
estimate, f, is used to summarize the full state of knowledge expressed by the posterior
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distribudon The point esti
of the postenior distribution, repl

e approximation
function:

P(lY) PG = (3.20)
72,

where @ is the chosen point estimate of ps ameter imation (3.20) is known as

the certainty equivalence p nnmp

e h alreat it in the OB (Quasi-
Bayes) and EM (Expe _:_‘_ ext nt remains
to determine an optimal AsseERER it for the point estir theoretic

W ."'- ..
framework for design of poiaL e 2t ehbices such
as the MAP, ML and mean E[ psteriori €8

3311 The Quasi-Bayes (QB) Approxima

i SEETt ﬂ‘iﬂ'ﬁﬁﬂ‘ﬁ" :
H{ﬁtmnl {amn éﬁ?ﬁlﬁm § Y} El-ﬂ;] ﬂ 0

P(8,|Y)
P(6,],Y)

f Po|y) in202Y) g G21)
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We note that the second term in (3.21) is KL (P{a;v}n P(6]Y)). which is minimized for
the restricted assignment

P(@:Y) = F (3.22)

ie. the exact marginal distribution of global minimum of

(3.21) with respect to P(f,|Y) i rst term in (3.21) is
also dependent on P(6,|Y). ¥k o (3. Zw analytical choice
for the restricted assignment, 4@V e we 5@ consistent with the

minimizer of K LDppg. From apprommatmn is

i ;/ \\\

The name Quasi-Bayes (QB) wit figt used x models [32],

(3.23)
to refer to this type of apps lon s ], the \ i pmximat:adhy
conditioning the joint posterior distibution ’ i 5 assig the true posterior
mean of f;:

; (3.24)
In this case, therefore, the appgoxi
(3.25)

3312 The Expectation-Maximizatic

The Expectation.Ma gofithm for Maxi-
mum Likelihood [ML estimation and extension for fet 2 of the model
parameters § = [6,, 6, FHer M Vi distributional
approximations. The tas !I to esl
marginal posterior distribiition:

LTk b e Ui
SEATITTNAY

[ @ - 20)g(a)dz = g(a) (3.28)
A

ization :,] he (intractable)

F,, =

et

if z € X is a continuous variable, and the Kronecker function,

1, ifz=0
& = 3.29
(=) { 0, otherwise i
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if x is integer. We optimize over the family F. with respect to K LDy g. Hence, we recognize
that this method of distributional approximation is a special case of the VB approximation,
with the functiunal resu'ictinm F(mY] = Pl and P(6,]Y) = 6(82 — ;). The

(3.30)
M-step: Use the & i-step to update
the certainty equivalent for £
(3.31)
In the context of uniform prighs (i.¢" ME estimation) it was 61 thatthlsalgmmm

menotonically increases tl
a local maximum [61].

fore converges to

332 The Laplace Approximation

This method is based on local & om0 - pos terior distribution, P(8|Y) ,
around its MAP estimate, 8, using a Gai ' !
is approximated as fo “ 51 :
"':_,=i's' o e e e : (3.32)

f A
Sidh matrix of the

uatcdﬂ é:

NS HINT

333 The Maximum Entropy (MaxEnt) Approximation

%ﬂ?ﬁ&ﬂﬁfﬂﬂﬂﬁﬁ“ﬂm&ﬂ

d, the approximation P(8|Y) € F. is chosen which maximizes the entropy,

, the posterior distribution

@ is the MAP estimate (3.4) o
logarithm of the joint ;{ bution,

(3.33)

H

f P(8]Y)In P (8]Y)d8

= -Emm [ln P(8]Y)] (3.34)
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constrained by any known moments

m; = g(0) = Epyy) [ (6)] = [ 9(6)P(6]Y)dd (3.35)
!

In the context of MaxEnt, (3.35) are knawn as the mean ¢n s¢ The MaxEnt distributional

(3.36)

where the a; are chosen usingg#ir e xamplegth f Lagrange multiphers for constrained

optimization.to satisfy the n requirement for

P(8]Y) . Since its entropyl aximized, (3.36) may be rpreted as the
smoothest (minimally informauve) dis on :;7 ing t\‘ noments of f (3.35).
The MaxEnt approximationdhas bé ely used.ingolving inyerse problems [62]— [63]
notably in reconstruction of ngh-negative « 5, suchras in \\. method for power

A stochastic distributional omly-generated approxi-
mation, P(8]Y). in contrast to all ed so far, where P(8]Y)
is uniquely determined by P(6|Y) a d The—rulcs -of thespproximation procedure. The
computational engine for stochastic -meti {
identically-distributed (1-id.

]B Ea (6- a“"’) .m (3.37)

i-l

U MR-

Epyyy 95 (0)] Fn Zgj G } G. 33)

i ey SRR

ar low-dimensional @ it may be possible to generate the iid. set {f}, using
one of a vast range of standard stochastic sampling methods. The real challenge being
addressed by modern stochastic sampling techniques is to generate a representative random
sample (3.37) for difficult notably high dimensional distributions. Markov Chain Monte
Carlo (MCMC) methods refer to a class of stochastic sampling algorithms that generate a

ration of an independent,

F‘[f?iyi
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correlated sequence of samples { g gy g | } , from a first-order (Markov)
kernel, P(6)0%=1.¥Y). For mild regula 't}r onditions on P(:|-) then 8% ~ P,(8]Y)
and k — oo where %) ~ P, (Ell"] is 1 jonary distribution of the Markov process

with this kernel. This convergence n hdent of the initialization 6%,
- "'~ 1| fj P

of the Markov chain. Careful choi that P(0)Y) = P(8|Y).
Hence, repeated simulation: fsgum uL_:;; ov prm J with n sufficiently large,
generates the required ran 3.37) (e cawpmca! approximation
(3.37). Typically, the as50ei fati and can be prohibitive in
cases of high-dimensional 4 nd_flexible way in which
MCMC methods haw he golden standard
for (Bayesian) distribution 0 ,- ential Monte Carlo
techniques, such as e updating of the
empirical distribution (3

34 Signal Decomp@siti

The problem of pars unalio able signals is encountered in a wide
range of signal processingySonal, and commumigation appli afions. Most such problems can
be posed using the following : . pp.2670—~2671) and [28].
the SAGE algorithm for specid-cas al in Gaussian noise suggests a
specific way to decompose observa: ctor (24
The set of each decomposed si;
Following [28], we
of an admissible Ty BT dar:

a number of signal components.
missible hidden data space.

of a set of variables
g equation.
Iﬂlt] - - . mlt) =Delb, ) wk[t],@
, O)-
A Renns.

wo?, where G that is defined in [23] a scalar pmhablhtr The 3. is a free paramcu:r
¢

ﬁmﬁﬁﬂﬁi‘i{u‘ﬁ%ﬂ‘m N

Zk[t] = Die(bxe)9x + B [r[t] oo Dk(éu}y;] : (3.40)

=1
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Byle=2]: by [e=1]: 5[]
Bl=21b,[e-1] b~ 11410
b.{f—“ blll' =1] :bl[ﬂ bl['l e i _':""i" {u} 8, =11

) s

5, :1-1
‘J
.'i'.,,,.:lo _) s,
{a) Virtual trellis representing 151 ting 151 (L=3)
\\R
Figure 3.3 Vi
35 Virtual Trellis D
To generate the extrinsi : “bysusinghthe” BOIR algonithm [25] for the
separable signal, we first fi icul: ¢ ~f' able signal %, n (3.40). The

informations b,, = (bt — L

Dby, ) are composed
of the signal zxt]. Withou

DB, ;) are modeled
tion from Skp-1 =
200t — L+3)...6[t]) )
senting the [SI channel with

he calculation of the

byl ]}rmg the

‘l

36 Iterative ReccivEStructu ' _— .m

The block dmgram of ‘ia itter and receiver WI is shown in Fig. 3.4. The

binary informa T mglc
convolution cnﬁ( i
[i]} s mndula d by a spreading wa l:t'orm

to BPSK symbu trcam
s(t) [21] anr.i tra.nsnum-,d thruugh ﬂ'il.‘- mulu*th channel. The Eem.d mgnal vcactu—r

al 4
slructtqc nft:n makcs use of turbo prnnmpl:: 2})- 13| o radu-:e the I oss of information aru;'.

performance. The receiver structure under consideration is a iterative receiver as shown in
Fig 3.4. It consists of two states the Minimum Kullback-Leibler (MKL) multiuser detector.
followed by K parallel channel decoders. The two states are separated by deinterleavers
and interleavers. The MKL multiuser detector computes both iterative channel estimation

(belt— L+ 1)beft — L+2]...b¢
as shown in Fig 3.3. In this technig
2= states is combined with e
extrinsic information utilize
BCJR algorithm via the
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u[i] [Convotution | Bilm]

u e |i]| convatution 5;!1""

Figure 3.4 An

and extrinsic probability approximatie by using MKL
algorithm and virtual trellis model. The ckteimsic | bl[t]|xi?},) employed
in MKL multiuser detector is the modifie 1|i!:_:r 1 ;lg rit numerical Minimum
Kullback-Leibler solution (p ction 5, Gnd spbendin '

o ——C ———————— |
c——-.lﬂ__(_ _iﬁﬁi_—

Pulb| X{) X

e v m

Yeu(Sts Skem1) = P *“‘-'lzux_:k,.rHﬁtbf“*“[cdiml

ret ﬂﬂ%%ﬂ%ﬂ—ﬁﬂﬂi

(3 4:}

R RAR AT NN 8

algorithm HB] [25]. It computes the extrinsic information .F:, "J' it deck) for each k™
user encode bits and the information is fed to the MKL multlusr.r detector as as priori
information for (n + 1)** iteration. Then, the next iteration the MKL multiuser detector will
receive data with more accurate prior information about the transmitted symbols.
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37 Minimum Kullback-Leibler Based Parameter Estimation

:r base on Minimum Kullback-
Leibler algorithm [29], [30] for numerical Bayesian dist ib\uibialapproximation. In our batch

processing, we denote the observiion cortesponding 6 M UmeSlor Y = {r[1],...,[M]}

. lot - i
Let 6= [Fl,ﬂz,“* ad] @uppum that we are

interested in finding estimation ator [31], the EJ is

given by E[8;|y|=[ 6, P[6;|Y un of @;, conditional
on the observation data t calculation is

performed by integrating the r the rest of the
parameters and in mosL8as idea behind the
MEKL algorithm is the minirg \rariatiuna] Bayes
K LDy g between the tru (a on P(8]Y). The
Kullback-Leibler divergence peiw ge - {Ell’} (also known
as the cross-entropy) is delined

K L@V )| B0V ) = [P In - (3.42)

A strategy for the MKL algorithm H :
to the true a posteriori P(8|Y). The s
logarithmic loss functior

") with a suitable form close
an optimization problem. A

(3.4 5 shown to b éP_ . If we wish
to minimum informatia

Y rrm—— e

(3.43)

However, in some cascm true a pnﬁmnnn distribution P(8|Y) is u@ computationally
intractable, espeu::ally in hl‘lﬂ ensions E Thus em can he overcome by approx-

imating lht (@) Llnnall)r
tractable F{ J F |
“E-l'lﬂrl

For the istribution approximation P(@8|Y’) duscusscd abnvc the task is to
choose an uprmnal distribution P(8]Y') by @inimizing K LD y@in (3.43). Let distribytion

TRTR IR TINYIR

P(O]Y) = P(6,0,..64Y) = [[ P(4,IY). (3.44)

i=1

Then, the minimum of K LDy g for a posteriori marginal distribution P[ﬂjﬁ’} is

P(ﬂjl}’] = argmin KL(P{ElY]!lF(ElY]} (3.45)
Pia,lY)
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Using this strategy in (3.45), we can compute P(8;]Y) by minimizing the K LDyp cost
function.

KL(P@Y)||P(6Y)) =

KL(P(OIY)|P(6]Y)

wonst. (3.46)

)'I

Only the first term on"fc right-hand side of (3.46) is dependent on"P(8;]Y). Hence,
minimizaunrn of (3.46) withi' rgspect to P(g;]Y), keeping P (6;]Y) fixed, is achieved by

e b b e TNE) 1119

P(&;1Y) ox exp (Bp(a) 0 P (0,Y)))

QRABHATIKNIINNANY

mples at iteration ()

P(eWY)=P(s", ef“, B0 Y)= ['[P(a{“m (3.48)

=1
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The P(61+1)|Y) is estimated from the following step

POV V) =exp(Epye
P(EV|Y ) =exp( B et

(3.49)

38  Prior Distributi
In principle, the prior 5 sed i@inco . i knowledge about the
unknown parameters. : - émployed when su &— V - limited. For MKL

algorithm, we need to

|lst:.|r distribution from
prior and conditional )

s A Wi wil's MKL computation
is to choose the prior distribugion wit hic formso that th 'F}n belong to be the
same function family as prigf. THe prior and A o be conjugated [33].

The choice of functional familyl dependsén likal
strategy throughout the paper.

se this conjugate prior

1. For unknown channel g;, a

distribution is assumed P[gy] ~

e ———— . —— T —————— i —————— e Vi, |y enn
2. Fu'r{hc I.'IDI. I anee 75 an inverse chi-sooare pnor distrrhotion o 3 mﬁd

e A0 INVELSS COL SQUAT i G
Plog] ~ ;ﬂ -""

39 The Turbo Mln#num Kullback- hlm: Multiuser Detector

. SNBSS

Bi\bi[i]. The MKL multiuser detector is an efficient method to find a posteriori dis-
tribution P[§|Y,,] given by observatioff Yas = {zi1}s-. - ﬂ']} and previous estifination

A B T S L L

tration n, only a subset 6 of  is updated while keeping the pammelcr in the cumplemm
ﬂ-\;. fixed. Second the concept of admissible hidden data space [16] Xy which depend only
on Oy is selected for our algorithm. The incomplete data Y)y is related by mean of a possible
nondeterministic mapping by Xas — Yar(Xas) for each f;. Let we define admissible hidden
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data space for k' parameter at iteration n by (3.40)

71 = Dut g™

k—1

+ Bk [T[ﬁ]— D (b “'“}QE“'I:'] (3.50)

I
where observation X, ={ (M=o} .., 23 (M] Minirum Kullback-
Iﬂl“ﬂ- (MKL} nﬂﬂﬂﬂn In . -' _J-:“ 1 DOSLE] |l d_. '-r“'in. i :. 0 ximaﬁun for me kl'.h
admissible hidden data space e a aﬁﬂ] - E,(:n-l} _
(B gn=1) 2n-1y o

Py (6 [t)| X =

P(BY|x g

UUpdat
P(g™| X

Updat,
P(o1X {0

Update

(3.51)
where, the details fof Pty = AL Wibway .51) are found
in section 3.11 , 3.12
We next propose a M| algﬁm in (3.51) and
channel decoding, n BCIR a[gunthm in Table 1. As shown } ig. 3.4, the new

dctcctm' is called the uinuluu Kullback-Leiblar- rt-o multiuser detector. The MKL

G ﬁ“ﬂ TSNS

Imtlaq[au:m of the MKL Algon

@Wﬁﬂﬁﬂmﬂ TINYINY

Plgi] ~ N(g,£9.9))
Ploi] ~ (;E](""“_IJBKP[-—?:EE&] ~ X2 (o0, Biry) (3.57)

To estimate prior distribution, the data sequence is divided into a sequence of frame length
M and pilot overhead of each frame known by user length My = 5. The initial conjugate
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priors are compute by the aid of pilot symbols. First, By assuming the perfect known pilot
symbols, the initial conjugate priors P[g| is computed by substituting known pilot symbols
in (3.54). Second, the result of channel estimati 2t

nowledge of g"‘":' and o,

35), is summarized in table

2[{1}

In some enginee
avoided due to intractab
points 8" are used (c
distribution P(f, X, H"
approximation rcplacl :

g prablers, full stochastic. dis utiens approximation are

0 K. ) e ead, the estimation
ssed by the joint
reted as an extreme

(3.58)

The approximation in eq. (3.58)48 knoyh' 2t

1e# principle [30]. In order to
exploit extrinsic information I

ibution using MKL algorithm,

.u;- [IX T2 =exp( Ep giat R)) g (3.59)
Lf 81 for the

kg [t]
tion-tor joint admissible

[I'

Based on the certair 1}'
restricted marginal denai
hidden data space XH l d #, can be expressed as”

L

P04, X)) = P(Bigs, o, X7

f ﬁﬁﬂﬂﬂﬁmﬁﬂm (iie)

o P(bi[t]|Bkrpate Xn H(Hmm*ﬂ"'l

mmm' AN

respect to .P{B’E:;H[XE ) simply result in replacement lnP{bk[tHﬂE‘:-ﬂ‘;-'X %) ). Then, we
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obtain

Pu(blt)lX{7) = P{ba[nuai:;,‘gx‘“’

(3.61)

where Sie-1 = &' and Sy 8 argithaisimies of the virtual tre 1e t-1 and t with
corresponding output by '
trellis in eq.(3.61), the sumuat)
define bi[t]. According tg

bi[t] in virtual
ed by be[t], is similar
) revisited.

P(Skp1=+',Ste=5/8 (3.62)

From our analysis, the recursiVe (@ ird proba Iy Ske) = PSke = 5, X l{:“l}l} and
recursive backward probabi g : can be formulated as
follows [25]

(S =~ (3.63)

T aes
:

with initial condition ag{Sh o) = 1/2(“"1 and boundary condition Fa(Ss
The probability (S ¢, Sk :-‘J is defined by

o ﬁmﬁ'ﬁfm&ﬁlmﬂl
amai” PToL N aR) (LR

The hkcllhood probability of admissible hidden data space £\ [f] is defined by

2
l l'.ﬂ'.i f.] o -Dk(bk )y[ﬂ-ll n
M{n-l} a_k'.l{n 1) ) (3.66)

Sar) = 1/2671),

P(a{M[glbes, 8070) =
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Like wrbo code [26], the modified extrinsic information probability PM{bk[t][X{ Ar) on
virtual trellis structure involves the information about by[t] without knowledge from priori
information Py(b{" " [t]|dec k). Combining eq. 65)] into (3.61), we obtain

S e—1) B (i)

l‘.n]
Pag (bt} X, VRV (A (3.67)
312 Prove algorithm o probability distributie _amf () }

The density function forj id @, can be expressed

as
P(6i, X% (3.68)
Expanding (3.68) and taks
In P(6, X{) o Yo, J0 IR (5., )% B (o) 1o P (o)
n P (b))
“ﬁ(n-u
d-ﬂ
(3.69)
Computational conditienal probability of g, by
P(g|X%) ‘!-"
R/ { of E-‘f"-“+Zm&i“’)“m{ﬁ&“’}ly
=1
ﬂ U ﬁ""’W{ ‘ﬁ"ﬁl’@l ¥y
o exp((g — g “‘“*{9 l:s 70)

MR INE

n o =
oM = gty e 2{:‘!1121) n:}x(mm Dy (b™)gf u)

M
= Y Db D7) 3.71)
=1
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. . v . 2 n
313 Prove algorithm of probability distribution P(o} | X}") )

Computational conditional probabi

o2 X,

(3.72)

With

(3.73)

ﬂ'HEJ’J‘VIEWI‘SWEI’]ﬂ’i
ammnimumfmmaa
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Table 3.1: Minimum Kullback-Leibler-Based Turbo Mulf tion For Separable
DS-CDMA Signal algorithm ' £

Pl ~ N Bgdﬂ) M
"', B~ @)\va) i Y _uu"h‘,‘\\

 For User index : k= 1,3
|« Compute admissible hiflde:
{0, =), 2 (B

E‘E‘][t] = D.(# / 1:} L S 'ﬂ"!-l
+ B [r' =3 2D, (6 -';__ (3.52)
1 —

R

I_H!
i

e Set ei,“"l:EE‘_ll = {Bin—l}.gin—l}
e The MKL multiuser d LeC _ g priori  informations
{Pab{" " [t] | deck vighs teration

- R
{I‘I—rt] to compute & :Ef_!m,l:fﬂill'-_l-mf _iiiﬁ“ﬁ‘ o L e BT

I:

Fufﬁin}lb]l 17“-'. 3 X, H) 65y

. Dunterlcawng and feecing Py{ﬁ{“}[ﬁllxﬁf) e

k'™ channel decoder(see Fige3:,
acmua g probabili ﬂ;ﬂ ) hd
® The extrinsic i : }t-l :

decoder (see Fig 34}wﬂwnmmﬂca?edsndfedhmkmMKLMulnwm

T AN 8




41

* Computing conditional dis

P(g™); (3.54)

* Updating g™ base on thelca
setting ﬂi“] — { _gE'} e Bi“] g
* Finally, Computing noise y@rias

q) 1. EI E:L-}dgkm

g section 3.13).
N\
P(8:X™))) (3.55)

{

P X{)

o« Und an{u} Cr— IJ'IE. ‘ or by u':{“} ;2;_13 =
[ RP(AX)do; Rlost s

« Updating 0" F ..‘?' P
P{E{“”l P(o," | X

P{awme P{o*"’ixf"*} p(e" |x*:"“] (3.56)

ﬁﬁﬂ’él MaNEINT
qmmmmumiwmﬁ’ i
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Initial value g0 =0,

For Iteration index : n =482, .
For User index : k=1 :

* Compute admissible

(=0, 5., o0

M) = DMt
+ B

L] Cumpute initial of cha
M, i [

ko = )i Di(be)* Di(by.)
£ = secn_Zho
l'l i
{n) _ _(n-1)

Gk = Gis

™

O = ngz- :
:-.-u = > [|=t - pete, t“]" + By

2‘“*”’?1148’3%8?]‘51’18’]1‘]’5

Sumng nntml jugnmpnmﬁ S?Jhygt‘ngm] zﬁl 2&



Kullback-Leibler (MKL
lengths for each user are

to giy~ N(0,1/P). ,E ; t over block
of M=300 symbols. The pi hals gverhead T are My = 5. All users’
spreading sequence are chiBse agfa shit sequence with m-sequences N=15and their shifted
versions are employed. The maXimgm d ’." r"?"* om with restriction
P < N. The number of uséf is =7 /The channcl code i 11 ‘u 2 constraint length-5
convolution code (with generalor: ;_: i --l -7 Th -\ rleaver is generated
randomly and fixed for all Simulation. F{- ipatison with oth: ilar receiver, the
joint turbo (LMMSE) iterative multiuse el el ! me channel estimation

algorithm (3.54)-(3.55). Tn this Sectionl’s Jations are tested in order to
demonstrate the performance of our p

In Fig. 4.1 and 4.2, the
presented for symbol chann

ceiver in term of BER are
elfestimation and
iterative channel estimatGia-algomitiin-ait-fdsimiboitlit-do-ieiaueiel Turbo (LMMSE)

multiuser detector are.simt ser detector are
compared. BER performance of o & CO ﬁm with a few
iteration faster than turba {LMMSE) multiuser detector,

In Fig. 4.3, 4.4 and 4.?:]1: quality of channel estimations are measured by the average

normalized fi = =3 Thi nts are

1 | | [ )

compared wﬁ!cﬁ;ﬂ a 1 ﬂﬁm[ ;—nli’]
and NMSE2 #[“_'W_]

In Fig. 4.6 and 4.7, we demonstrate thfpufonnana: of T‘& MEL multiuser dew

the qcmasing (L) make the growing number of virtual Markov states and the ISI channel

representing parity check bits in virtual trellis. Thus, BER reaches convergence with a few
iteration.
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P ER b

T ]

Figure 4.2: BER performante of T
multiuser detector with L=3

w0 ——

L T

T T Rk AR T e e P T T T ey

ELMNG (dB)

Figure 4.3: The normalized mean square error channel estimation of Turbo-MKL algorithm
with various numbers of iteration
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TTER 1

ation |
4

.mi
wm
s £
2 2
o
-
B = ,
*asmn Ma.m “35WN q

(@8
Figure 4.5: The normalized mean square error of noise variance for Turbo-MKL algorithm

with various numbers of iteration
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5 6
Eb/NO (dB)

Figure 4.7 BER performance of Turbo LMMSE multiuser with L=2 and L=3




Following the frameworksof Minimun b. bler (MKL) algorithm, this dis-
sertation proposes the Mir Lei pltiuser detector based
on a mew concept of virtual nels for each signal

decomposition users. Ba dule computes

the numerical Bayesian extrig n ith complexity

per iteration = O(8K iteration of
conventional LMMSE wrbo sl =0 () ity per iteration
of our MKL multiuser detgtor s more than canvention: " A "E" tinser module.
However, the BER performancé of MK ! pidly in the first few

iterations as one may nly 7th iteration
for L = 2 and 3th iteration 1'" \'Ll‘ the iterative MKL
channel estimation algorithm, the : i for ehannel vector gy is
~O(K MPL?) and for noise vari '

ﬂ‘lJEl’J“fIEW]‘iWEI']ﬂ?
ammnimum’mmaa
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KLDyg sibler divergefice for Vatiational Bayes
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LMMSE
MAI
MAP
MaxEnt
MCMC
MEL
ML
MMSE

.--**ff‘

Minimum Mean Sqtmre Error
mmum Risk
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