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CHAPTER 1

Introduction

Composites, structures consisting of two or more constituents that differ in
chemical compositions, are very useful in many fields of pure and applied sciences.
This is because their structures and constituent materials can be adjusted to pro-
vide effective bulk properties that are more suitable for applications than those
found in natural materials. In some cases, the effective properties can differ con-
siderably to that of the constituents. For example, if we combine a metal (high
conductivity) with insulator (low conductivity) in alternating layers [1], we obtain
an anisotropic composite with low conductivity in a direction perpendicular to the
layers but high conductivity in a parallel direction. By combining two materials
with positive thermal expansion coefficients into a porous structure [2], a nega-
tive thermal expansion coefficient can be achieved, resulting in a composite with

decreasing volume when its temperature increases.

Among the physical properties of composites, electromagnetic properties
are also the subject that have widely been studied and are the main topic of our
work. This thesis is divided into two parts, concerning with linear and nonlinear
composites, respectively. The adjective ”linear” or "nonlinear” indicate whether
that the composite constituents behave (in D — E or B — H relations) linearly or
nonlinearly, when the composites are subject to external electromagnetic fields.

The introduction and scope for each part are provided in subsequence sections.



1.1 Linear Electromagnetic Composites

One of the mainstream in the study of linear electromagnetic composites is
to obtain a negative index of refraction. The original idea of negative refractive
index date back to 1968 when a Russian physicists, Victor Vesselago [3] proposed
the theoretical analysis of lossless materials with simultaneously ¢ < 0 and p < 0,
and showed that certain uncommon phenomena occur such as a negative phase
velocity, a negative refraction and a left-handed relation of the vectors E, H, k of
a plane wave (hence the term left-handed media). These phenomena are shown in

Figs. 1.1 and 1.2.

| 5k k < > S
H H
(a) e>0and >0 (b) e<Oand p <0

Figure 1.1: Relations of E, H, k of plane waves in (a) a medium with ¢ > 0 and
w > 0, and (b) a medium with ¢ < 0 and p < 0. This figure also shows (a) a
positive phase velocity where the phase velocity is parallel to the Poynting vector
and (b) a negative phase velocity where the phase velocity is anti-parallel to the

Poynting vector.

Vesselago also concluded that the refractive indexes of such media are nega-
tive, causing a negative angle of refraction between normal and left-handed media
(Fig. 1.2). In 2000, Pendry [4] then showed that a planar lenses (Fig. 1.3) made
by a medium with ¢ = —1 and g = —1 can focus electromagnetic waves on an
area smaller than A2, which exceeds the resolution limit of ordinary lenses. Thus

the image produced by this lenses is extremely sharp as if it is an object itself.

Because of this super lenses idea that negative index materials have received

many attentions in the past few decades. However, naturally-occurring materials



e>0and u>0

e<0and p<0

(a) phase velocity (b) Poynting vector

Figure 1.2: (a) phase velocity and (b) Poynting vector refractions when a plane
wave travels from a normal medium with € > 0 and p¢ > 0 into a medium with

e < 0and g < 0. This figure shows that the angle of refraction (6;) is negative.

Object Image

T~
P

Figure 1.3: A planar slab made by a medium with e = —1 and u = —1. This slab

can be used as a lenses with extraordinary resolution power [4].

with simultaneously negative ¢ and p have never been reported. So researchers
have employed man-made structure materials or composites in order to obtain
this property. For example, Pendry et al. [5, 6] designed composites composed
of a periodic array of thin metallic wires and split ring resonators (SRRs), which
provide a negative permittivity and a negative permeability, respectively. Smith
et al. [7] used a certain combination of thin wires and SRRs to fabricate the
first negative index composite which exhibited a negative refraction at microwave
frequencies. For infrared regime, Wheeler et al. [8] designed a negative index

composite consisting of periodic array of LiTaO3 spheres coated by a drude model



semiconductor. Yannopapas [9] investigated two structures that can provide neg-
ative refractive indexes at infrared frequencies. The first one is a combination
of alternating layers of LiTaO3 and n-type Ge spheres and the second one is a
fce crystal whose lattice sites are randomly occupied by LiTaOs; and n-type Ge
spheres. For optical frequencies, Podolskiy et al. [10] reported a nanostructured

composite consisting of a periodic array of pairs of parallel gold nanorods.

For isotropic lossless materials (materials that do not absorb electromagnetic
energies, and can be characterized by real € and real ), a negative phase velocity
implies a negative refraction and vice versa. Hence, the negative phase velocity has
also been used as a criterion for isotropic lossy materials (materials that absorb
electromagnetic energies, and can be characterized by complex ¢ and complex
), to possess a negative refractive index. The general condition for the negative
phase velocity of a uniform plane wave in isotropic lossy media is formally proposed
by McCall et al. [11], including Re{e} < 0 and Re{u} < 0 as a special case. A
simpler equivalent condition has been presented by Depine and Lakhtakia [12] and
its applicability to active media have been discussed in Refs. [13, 14]. However, in
the problems of refraction concerning with lossy media, the transmitted waves are
nonuniform [15] and their negative phase velocities do not always yield the negative
refraction [16]. So in order to obtain a general criterion for the negative refraction
in a certain medium, we should consider a refraction of the nonuniform transmitted

wave rather than the phase velocity of a uniform plane wave propagation.

Because most negative index composites fabricated so far are anisotropic
[7, 10], there are also many theoretical works concerning with negative refractions
in anisotropic media. For example, Mckay and Lakhtakia [16] studied the negative
phase velocity, negative refraction and counter position in a bianisotropic medium
and showed that the positive phase velocity and the negative refraction can coexist.
Woodley and Mojahedi [17] studied backward wave phenomena in anisotropic
materials, where the angle between the phase and group velocities varies between
90° and 270°. Ding et al. [18] presented the conditions for the negative phase
velocity and the anomalous refraction in a biaxial anisotropic lossless medium,

whilst Lui and Gao [19] further generalized the work of Ding et al. by covering



oblique orientations of the principal axes.

In this part, the scope of this thesis is as follows. First, the detailed deriva-
tion of the Lakhtakia-Depine relation is presented (chapter 3), then its special case,
namely, Re{e,} < 0 and Re{p,} < 0, where ¢, and p, are the relative permittivity
and the relative permeability, respectively, is used to design a negative index com-
posite at infrared frequencies (chapter 4). The structure of the composite consists
of a randomly distributed two groups of LiTaO3 and Drude semiconductor spheres
randomly distributed in an otherwise free space. This structure is different from
that of Yannopapas [9] because the spheres are not constrained to lattice sites
of a fcc crystal. We also use a different method, namely, the resonance methods
presented by Wheeler et al. [8] and arrive at a condition for calculating the plasma
frequency of drude semiconductor spheres. This condition depends on both the
packing fractions of the two groups of spheres and reduces to that presented in [§]

when the composite consists solely of Drude semiconductor spheres.

As mentioned earlier, the Lakhtakia-Depine condition is derived from the
negative phase velocity condition of the uniform plane wave and does not guarantee
the negative refraction. However if we manage to make the electric and magnetic
losses (Im{e} and Im{u}) to be very small, it can approach the Vesselago case

and can be used as an approximate condition for a negative refraction.

Finally, the negative phase velocity and the negative refraction in anisotropic
biaxial lossy media are investigated (chapter 5) and the general conditions for
the two phenomena are derived. We also show numerically that the negative
refraction can occur even if the phase velocity of the transmitted wave is positive.
This emphasizes the fact that a negative phase velocity should not be used as a

criterion for a negative refraction when dealing with lossy or anisotropic media.

1.2 Nonlinear Dielectric Composites

The effective response of nonlinear composites has attracted considerable re-

cent attention due to the recognition of many phenomena caused by nonlinearity,



such as the dielectric breakdown in metal-insulator composites [20], strong en-
hancement of effective susceptibilities by local field effects [21-23] and the second-
and third-harmonic generations in nonlinear dielectric composites [24, 25]. Several
methods have been developed to estimate the effective DC properties of compos-
ites, such as the average energy method [26, 27], generalized Landau method [28],
variational method [29] and the decoupling approximation [30]. For AC properties,
Gu et al. [31] have formulated a theory for estimating the effective response of
composites with an applied AC field of the form Eq sin wt, based on the generalized
Landau method and quasi-static approximation. Wei et al. further generalized
the theory to cover composites under both DC and AC applied fields [32, 33] and
under both fundamental and third-harmonic AC fields [34]. Recently, the general
connection between DC and AC effective coefficients for the simple applied field
Eo and Egsin(wt) has been proposed [35], which can be applied to all isotropic

and weakly nonlinear composites.

Because the geometry of composite constituents can greatly affects the effec-
tive properties of composites, many published work have been devoted to the cases
of nonspherical or noncylindrical inclusions. For example, the effective response of
composites with slightly nonspherical inclusions was evaluated at finite frequen-
cies [36], the shape effect of strongly nonlinear dielectric composite with elliptic
cylindrical inclusions was evaluated by the decoupling approximation [37] and the
effect of the orientation of ellipsoidal inclusions on the effective response has been
analyzed by Giordano [38]. Lakhtakia et al. [39] has developed the Maxwell Gar-
nett formalism for weakly nonlinear bianisotropic composites in which both the
ellipsoidal inclusions and medium are anisotropic. Lakhtakia and Lakhtakia [40]
generalized the Bruggeman formalism to anisotropic nonlinear composites with
randomly distributed and similarly oriented ellipsoidal inclusions. Mackay [41] has
used the strong-permittivity-fluctuation theory, which incorporates higher-order
statistics of phase distributions, to estimate numerically the effective properties
of anisotropic composites with third-order nonlinearity ellipsoidal inclusions. Gao
et al. [42] have investigated strongly nonlinear two-dimensional isotropic com-

posites in which one component is elliptic cylindrical in shape while the other is



perfect cylinders. The third-order enhancement of two dimensional semiconductor-
insulator composites with identical elliptic cylinders has been explored by Yang
et al. [43], where the frequency dependence and the effect of geometric anisotropy
were reported. The treatment of two dimensional and isotropic nonlinear elliptical
composites, including a distribution of inclusion shapes was also reported recently
by Thongsri and Natenapit [44]. The analytic expression of the third-order effec-
tive nonlinear coefficient was derived for weakly nonlinear and dilute elliptical in-
clusions and the effective properties of high-order nonlinearity enhancement could

be predicted but in numerical forms.

For more accurate predictions of nonlinear responses, the higher-order effec-
tive coefficients can not be neglected in many cases. However, the scope of the
theoretical works reported to date concerning the higher-order response is very
limited. Therefore, in this part, we focus on the higher-order nonlinear responses
of weakly nonlinear composites. The structure investigated consists of weakly
nonlinear inclusions distributed in a linear dielectric host. The nonlinearity in
the inclusions is kept up to the fifth order while most published works considered
nonlinearity of the composite constituents up to only the third order. The gen-
eral formulae for computing the effective DC coefficients up to the ninth-order are
derived using the perturbation method and the Landau formula (Sections 6.1.2
and 6.1.3). Then we apply these formula to predict the inclusion shape effects on
the effective DC response of a weakly nonlinear composite with elliptic cylindrical
inclusions (Sections 6.1.4 and 6.1.5). Finally, the quasi-static AC responses of
weakly nonlinear composites subject to an applied AC electric field of the forms
Eo sin(wt) and E; sin wt 4 E3 sin 3wt are investigated, and the general relationships
between effective DC and AC coefficients are derived (Sections 6.2.1 and 6.2.2).
The methodologies and results shown in this nonlinear part are from our published

work in Refs. [35] and [45].



CHAPTER 11

Theoretical Background

In this chapter, some basic concepts of electromagnetic fields in continuous
media are briefly introduced. The definitions of the (complex) permittivity and
the (complex) permeability are given. Losses due to electromagnetic wave prop-
agations are investigated, resulting in the condition for the imaginary parts of
the permittivity and the permeability. Next, nonlinear dielectric media under a
static field is considered and the definitions of the nonlinear dielectric coefficients
are given. Because the inclusions of nonlinear dielectric composites investigated
in this thesis have an elliptic cylindrical shape, the general solution of Laplace

equation in elliptic cylindrical coordinates is also demonstrated.

2.1 Electromagnetic Fields in Linear Media

2.1.1 Complex Permittivity and Complex Permeability

The electromagnetic fields in a macroscopic medium without free charge and

free current densities satisfy Maxwell Equations

vV.D = 0 (2.1)
0B

V-B = 0 (2.3)
oD

where the electric displacement (D) and the magnetic induction (B) relate to the

electric field (E) and the magnetic field intensity (H) via the Polarization (P) and



Magnetization (M) of the medium, respectively, as

= €0E + P, (25)

B = pMH+M). (2.6)

In order to simplify this type of problem, it is customary to Fourier analyze

the fields as
Flr,t) — / F(r, w)e—“!du, (2.7)
where f*‘(r, t) represents all the vector fields that appear in the the Maxwell equa-
tions together with the constitutive relation (2.5) and (2.6). When look closely,
we may notice that Eq. (2.7) is similar to the linear combination of the complex
field F(r,w)e ™" with different frequencies (w). Therefore it is useful to study the
effects of these complex fields at a particular frequency then get the solution of
real problems by the linear combination (2.7). When using the Fourier integrals,

the Maxwell equations become

VxH() = —iwD(r), (2.11

with
D(r) = gE(r)+P(r), (2.12)
B(r) = po(H(r)+ M(r)), (2.13)

where the w dependence has been omitted for compact notations. A number of
theoretical models employed to analyze the response of macroscopic media under
these complex fields indicate that the polarization and the magnetization should

be written as

eoXE(W)E, (2.14)

awh
|

M = Yu(wH, (2.15)
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where yg(w) and Xum(w) are the complex electric and magnetic susceptibilities, re-
spectively. These quantities are complex because they come out from the analyses
of responses of media with complex applied fields, for example, the well-known
Drude model. With these two relations, the D — E and B — H relations can be
constructed as

D = ¢(w)E, (2.16)

B = pu(w)H, (2.17)
where € = g9(1 + Xg) and p = po(1 + Xar) are the complex permittivity and the

complex permeability, respectively.

2.1.2 Electromagnetic Losses in Linear Media

In electromagnetic theory, the magnitude and the direction of the power flow

can be calculated by the average Poynting vector
1 ~ ~
o §Re{E xH }. (2.18)
So the average energy per unit time flowing out of an arbitrary closed surface S is

1 RO | i S B e
§Re{]iE><H -fda} = R {/Vv (ExH )dV}. (2.19)

* ~

VXE—-E.-(VxH) =iwuH?*+ uE]?), we get

sRe{ B iida} — %Re{z’w/‘/(u!ﬂ\z—Fs]EIZ)dV}
_ _glm{ /V(Mﬂmguizﬁ)dv}
sRe{ fBx B pda} = -2 /V (Im{yH[EL + Im{e}EP)aV.  (2.20)

Since there should be some part of the electromagnetic energy converted into heat,

the right-hand side of Eq. (2.20) should be negative, which means that
/ (T {x} [ + Tm{}[B2)dV > 0. (2.21)
v

The two terms on the left side of Eq. (2.21) are losses due to the electric and

magnetic fields, respectively. Since the energy dissipations from the fields should
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always be positive, we assume that
Im{e} >0 and Im{u} >0, (2.22)

which indicates that ¢ and p must lie on the upper half of the complex plane.
This is the so-called passivity condition, which expresses the fact that media can
only absorb the energy but not emit. Moreover, this condition is satisfied by many
models of the permittivity and permeability concerned in our analyses and is the
basic assumption of the derivation of the negative index conditions in Chapters 3

and 5.

2.2 Nonlinear Dielectric Media

2.2.1 Linear and Nonlinear Polarizations

For dielectric media in a static field, the polarization relates linearly to the

electric field as
P = eoxgE, (2.23)

where xg is the linear (first-order) susceptibility. So the electric displacement

takes the form
D=¢E+P=¢(l+x.)E=¢E, (2.24)

where ¢ is the permittivity or the first-order dielectric coefficient. Notice that Egs.
(2.23) and (2.24) are similar to Eqgs. (2.14) and (2.16), except that the electric

field is now static and the parameters yg and ¢ are real.

If the electric field is high enough, the polarization will also depend on the
higher powers of the electric field. For example, suppose that the electric field is
along an x-axis, the polarization takes the form

P, = szS)Ex + 5oxg)Ei + €0XS’)Ei + ... (2.25)
where X(E") is called the nth-order nonlinear susceptibility. The condition for

isotropy implies that the reversal of the electric field (E, — —E,) should yields
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the reversal of the polarization (P, — —P,). Thus the terms with even powers

should vanish, so we get
P, = 50X](-31)Ex + Eng))Ei + 50X1(~35)E2 +o.. (2.26)
This can be written in full vector notation as
P = coxiy E + coxiy [EPE + goxiy [E'E + ... (2.27)
(n)

where xp’ is the nth-order nonlinear susceptibility. Hence the electric displace-

ment also takes the power series form

D = ¢E + P =<E + x|E]’E + 9|E|'E + ..., (2.28)
where £ = gq(1 + X(El)), X = on](;), n = 50X](§)7 ... are called the first-, third- and

fiftth-order dielectric coefficients, respectively.

2.3 Laplace Equation in Elliptic Cylindrical Co-

ordinates

In electrostatics, the electric potentials in linear dielectric media satisfy

Laplace equation:
V20 = 0. (2.29)

If the shapes of dielectric media are elliptic cylinders, it is useful to employ elliptic

cylindrical coordinates (u, v) which relates to the cartesian coordinates as

x = acoshucosv, (2.30)

y = asinhusino, (2.31)

where a is the focal length of the coordinate system. Fig. 2.1 show the character-

istics of the elliptic cylindrical coordinates.

In terms of the elliptic cylindrical coordinates, the Laplace equation becomes

1 0’d 9%’
=0 2.32
aQ\/sinhQIH—sinQv(au2 i 8U2> 7 (2:32)
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Figure 2.1: Elliptic cylindrical coordinates.

which has the general solution of the form [44]

O (u,v) = Z [(A, cosh(nu) + B,e™"") cos(nv) + (C, sinh(nu) 4+ Dye™™") sin(nv)] .

(2.33)

This solution will be employed when solving the electric potentials of elliptic

cylindrical inclusions in Chapter 6.



CHAPTER III

Lakhtakia-Depine Condition for a

Negative Refractive Index

In this chapter, we show the derivation of a negative index condition using
the negative phase velocity phenomena, in which the energy flow is antiparallel
to the phase velocity of the wave. Although, in general, this condition does not
imply a negative refraction, it can still be a good approximation for a negative

refraction when the electric and magnetic losses (Im{e} and Im{u}) are small.

Consider a plane electromagnetic waves propagates along the z-axis in a
linear isotropic medium whose relative permittivity and relative permeability are
given by e, (w) = e(w)/ep and p,(w) = p(w)/po, respectively, and subject to the
passivity condition (Eq. (2.22))

Im{e,.} >0 and Im{p.} >0 (3.1)
Let the electric field be along the z-axis so that
E(r,t) = Ege'®* g, (3.2)

where Eg is the amplitude and k is the wave number. It follows from Maxwell

equations that

V xE(r,t) = iwB(r,t) = iwuop, (w)H(r, 1), (3.3)

V x H(r,t) = —iwD(r,t) = —iwege, (w)E(r, ). (3.4)

Hence we can obtain the magnetic field intensity as

1 _ kE,

_ i(kz—wt) &
_ M0 ilkeeng (3.5)
W o Ly (w)



15
Applying the curl of Eq. (3.3) and using Eq. (3.4) yield

V xVxE(r,t) = iwuop.(w)V x H(r, t)
V(V ’ E(I‘, t)) - V2E(I‘, t) = W250M05r<w)ﬂr(w)ﬁ(rv t)

~ w
E°E(r,t) = C—QET(w)MT(w)E(r,t). (3.6)
Therefore we obtain the dispersion relation as

b= e @) (). (3.7)

w
c
The magnitude and direction of the power flow can be determined by the

Poynting vector:

S = %Re{ﬁ)(r,t) x H*(r, 1)},

EZ
[Eof? .
240

e{ ujw) } exp(—2Im{k}2)z. (3.8)

Since from Eq. (2.22), the relative permittivity and the relative permeability must

lie on the upper-half of the complex plane. So we write

ew) = e (W)le'?,  0<L ¢ <, (3.9)

@) = lu@le®, 0<6, <. (3.10)
Consequently, the wave number takes the form

w .
ke = 25 @l @2, 0 (o) <m  (31D)

SR A C)) TR VI B _
@) e\ )] : /2< (b — @) /2 < w/2.  (3.12)

Using Eq. (3.12) in (3.8), we can conclude that the choice of k. always corresponds

hence

to the power flow in 42z direction and the choice of k_ always corresponds to the
power flow in —z direction. Rewriting Eq. (3.2) in terms of the real and imaginary

parts of the wave number, we get

Ei(r,t) = Ege miksleiRelkez-ulg (3.13)



16

To derive the conditions for negative refractive index, we use the condition that
the phase velocity and the power flow must be in the opposite directions. Since
k. corresponds to the power flow in the 4z direction and k_ corresponds to the
power flow in —z direction, It can be seen from the exponential in the right hand

side of Eq. (3.13) that the phase velocity is antiparallel to the power flow if
Re{k;} <0 or Re{k_}>0, (3.14)

With the definition of complex refractive index n = ck/w, Eq. (3.14) can be

written as
Re{n;} <0 or Re{n_}>0,, (3.15)

where ny and n_ are the refractive index that lie on the upper half and the
lower half complex plane, respectively. Using the result presented in Appendix A,
Egs. (3.14) can be written in terms of the relative permittivity and the relative

permeability as

242 4 A/ + €2 <0, (3.16)

where €/, = Re{e,}, € = Im{e, }, pl = Re{p,} and p/ = Im{p,}. It is obvious
that if €/ < 0 and p,. < 0, Eq. (2.39) is satisfied. This simple condition will be

employed later in designing our composites.



CHAPTER IV

A Composite with Negative Refractive

Index at Infrared Frequencies

In this chapter, we present a simple structure of composite which consists
of two types of randomly distributed nonmagnetic spheres. Under the application
of the external electromagnetic fields with the wavelength much larger than the
diameters of the spheres (long-wavelength or quasi-static limit), Clausius-Mossotti
relations [46] can be employed to evaluate the effective permittivity and the effec-
tive permeability of the composite. Then the design procedure for making their

real parts to be both negative are presented.

Composites of Randomly Distributed Spheres

Effective Permittivity and Effective Permeability

Consider a composite of randomly distributed two groups of spheres (Figure
4.1). The first one have radius r; and the relative permittivity e, = €1 /g9 while
the second one have radius ro and the relative permittivity ,0 = €3/g9. Both
groups are assumed to be nonmagnetic so their relative permeabilities are equal

to unity.

If the wavelength of an electromagnetic wave that passes through the com-
posite is much larger than the sizes of the spheres, the diffraction effects can be
omitted so the structure of the composite can not be resolved then it can be treated

as a homogeneous effective medium. This condition is called the long-wavelength
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Figure 4.1: A composite consisting of two group of spheres randomly distributed

in a free space

or quasi-static limit. The effective relative permittivity and the effective rela-
tive permeability of the composite can be estimated using the Clausius-Mossotti

relations for mixtures of two types of molecules [46]

Niaer + Nocves A\ gl — 1 (4.1)
360 €$H+ 2
Ny + Noay, eff _
10m1 + NoQiys _ s 7 (4.2)
3 pett 42

where a.; and «,,; are electric and magnetic polarizabilites of type 1 molecules,
Qo and a0 are electric and magnetic polarizabilites of the type 2 molecules. The
numbers of molecules per unit volume of type 1 (N;) and type 2 (IV,) are related

to the volume fractions via f; = 37r® Ny and f, = 37r® Na, respectively.

To apply the Clausius-Mossotti relations, each sphere in the composite is
treated as a molecule with both electric and magnetic polarizabilites. From Ap-

pendix B, the electric and magnetic polarizabilities of the first group of spheres

are
a1 = 6megialt /KD
el megiay [k, (4.3)
a1 = 6mibl" /K3, (4.4)
and for the second group are
Qg = 67r€0ia§2)/k:8’, (4.5)

s = 6mib? KR, (4.6)
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where ky = w/c is the free space wave number, and the scattering coefficients

agl), bg ), a§2) and b§2) take the forms (Appendix B)

NON nir ()Y (1) — i (z) P (mz)

P mn(mr)é (1) — & (x)¢ (nam) (.7)
D Y1(n1x1) Yy (1) — nathy (1)) (g (4.8)
! Y1 (na21)E (1) — na&a (1)) (naey) .
a(2) _ nath1 (naw2) Y] (12) — b1 (22)] (n22) (4.9)
! a1 (naw2) &1 (72) — &1 (w2)y (naza) .
@ Yi(nae)n (@) — nathi(22)) (n222) (4.10)
' U1 (n9w2)€1 (v2) — 121 (22)¢] (n2z2) .
where ny = €2, ng = €%, xy = kor1, T2 = kora, and ¥1(z) = 27j;(z) and
&(z) = zhgl)(z) are the Riccati-Bessel functions which relate to the spherical

Bessel functions of the first and the third kinds, respectively. The prime denotes

differentiation with respect to the argument.

Using Eqs (4.3)-(4.6) in Eqs (4.1) and (4.2), and solving for the effective

relative permittivity and the effective relative permeability yield

ot k:3+47rz(Na§)+Nag)) (4.11)
' k3 — 27TZ(N1 ) 4 Nga(Q)) ‘

3 Ami(NibSY + Npb(?
. ky 4 4mi( Ny R (4.12)
27TZ<N —I—N2b )

Expressions (4.11) and (4.12) show that the effective properties of the composite
depend on the frequency of the wave (via kg = w/c) along with the densities, radii

and permittivities of the two groups of spheres.

Negative Permeability

We will show how to obtain negative permeability Re{u®} < 0 by using
the sphere of group 1. Notice that the effective permeability (Eq. (4.12)) de-
pends on the properties of spheres of group 1 via the scattering coefficient bgl)
If the denominator in Eq. (4.6) approaches zero, b§1) approaches oo, resulting in

eff

lim,y , py*t = —2. Therefore we focus on the scattering coeflicient resonance
1

condition:

Y1 (ni1)€) (1) — na&y(z1)Yy (mrr) = 0. (4.13)
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By assuming that Im{e,;} is negligible, we arrive at

jo(mw) = sin(ma) _ 0, (4.14)
nixq
which imply that nyzy = mm,m = 1,2,3,... . Hence the fundamental resonance
frequency (m = 1) is
e
res = . 4.15
W' == (4.15)

The resonance frequencies of higher harmonics are not considered here because
they provide smaller wavelengths, which may result in the inapplicability of the
Clausius-Mossotti relations (because the derivation of Clausius-Mossotti relations

is based on the long-wavelength or quasi-static approximation).

T€ES

Using wr®® = 2me/A)* vields the ratio between the resonance wavelength

and the diameter of the spheres of group 1

res
)‘0

27‘1

NN (4.16)

Since the wavelength should be much greater than the diameters of the spheres for
the the Clausius-Mossotti relations to be applicable and for the composite to be
treated as an effective homogeneous medium, we assume the minimum requirement
for the long-wavelength limit condition to be Aj®/2r; > 10. This assumption was
employed and tested with numerical calculations in [8]. Using this condition in
Eq. (4.16), we obtain the condition for the permittivity of the group 1 sphere as

g,1 > 100, which is required to drive the magnetic scattering coefficient resonance.

The high values of the relative permittivity can be achieved at infrared
frequencies by using polaritonic materials. The relative permittivity of polaritonic

materials satisfy

Wy — Wrp

g,,1<w):a(oo)<1+ - L= ) (4.17)

N,
Wy — W — 1wy

where £(00) is the high-frequency limit of the permittivity, wy, is the longitudinal
optical phonon frequency, wr is the transverse optical phonon frequency and ~ is

the damping coefficient.
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Following the work of wheeler et al. [8], we choose LiTaOj as the polaritonic
material for the spheres of group 1, which have the following parameters: (o) =

13.4, wy, = 2w x 7.46 THz, wr = 27 x 4.25 THz and v = 27 x 0.15 THz.

Figure 4.2 shows that the condition Re{e,} > 100 is satisfied with low
electric loss (Im{e, }) at the frequencies 3.5 — 3.8 THz. At this frequency range,
the value of Re{e,1} is between 100 — 150, which corresponds (using eq. (4.15)) to
the radii of 3.22 — 4.29 pum. Therefore the radii of group 1 spheres must be chosen

within this range.

800 -
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----lmag P
600 |- r !

400

200

er1

-200

-400

IR R R RS N ST R R
2.8 3.0 3.2 34 3.6 3.8 4.0 4.2 4.4

Frequency (THz)

Figure 4.2: Characteristics of the relative permittivity of LiTaOs at frequencies

between 2.7 — 4.5 THz

As an example, we consider the effective relative permeability (uf) of ran-
domly distributed LiTaO3 spheres with the following parameters: f; = 0.27, fo =0
and r; = 4 pm. Figure 4.3 shows that the resonance frequency, where the Re{pcT}

is most negative, is centered about 3.58 THz.
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Figure 4.3: Characteristics of the relative effective permeabilities of the composites
with f1 =0.27, f=0and ry =4 pm
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Negative Permittivity

For spheres of group 2 to contribute a negative effective permittivity, the

same method described in the previous section can be used to drive the resonance

in a§2). However, it turns out that the resonance frequency in this case is higher

than that of bgl), which requires even higher value of the relative permittivity. So
instead of using the resonance of a?) , we use the resonance of e, The scattering

coefficients agl), a?) can be expanded as

1 2(en—1

ag ) _Zg (€r1 n 2)95“;’ + O(:z:?) (4.18)
2 2(en—1

ag ) —zg(gﬂ +2>x§ —i—O(xg). (4.19)

Using these series expansions in Eq. (4.11) and setting the denominator to zero,

we get

Erl — 1 Erl — 1
=1. 4.20
(2 25) v 255) (1.20)
Notice that, from the previous section £,; ~ 100 so (g, — 1)/(g,1 +2) = 1.

Therefore Egs. (4.20) becomes

Ero — e
=51 4.21
f1+f2(€r2+2) ( )
Solving for e,9 yields
2f1—f2—2
E€pg = ——————, 4.22
S (4.22)

Because f1 + fo < 1, the relative permittivity (,9) given in Eq. (4.22) is always

negative.

It is well known in solid state physics that the permittivity model of free
electron gas distributed uniformly over positively charged cores in the background
can provide the required negative values. This so-called Drude model is depicted
in Fig. 4.4, where the black dots indicate free electrons and the white spheres are
positive background ions. Without applied electric field, electrons are free to roam
around and the collisions can take place between other electrons and positive ions.

If an applied electric field (E) is present, the equation of motion for each electron
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Figure 4.4: Drude model of free electron gas (black dots) on positive ion back-

ground (white spheres).

reads

d*r dr
Me—5 = —eE — MeY =, (4.23)

where m, is the electron mass, e is the charge of the electron and ~ is the damping
coefficient. On the right-hand side of Eq. (4.23), the first term is the electric
force and the second term (the damping term) is due to the effects of collisions

between other electrons and positive ions. Assuming that E and r have the time

—iwt

dependence e™*", we get
1 E
w* + 1wy me
If the number of electrons per unit volume is N, the polarization is P = —eNr.
Thus
1 e?N
P=—— E= E, 4.25
w2 + iwy me OXE (4.25)
where yp = — 2 ¢ N With the definition of the relative permittivity €, =

w?+iwy meeg
1+ xp, we obtain

w2

R T 4.26
o2 w? + iwy (4.26)
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where w, = €2N/meeq is the plasma frequency. Notice that by neglecting the
damping coefficient (), the relative permittivity is negative below the plasma fre-
quency. This permittivity model is valid for metals (since they contains enormous
numbers of free electrons) and also some doped semiconductors (Hence the name
Drude model semiconductor). Because typical metals have plasma frequency in
the ultraviolet region, they are not useful here. However, semiconductors can be
made, via doping process, to have the plasma frequency in the required infrared
region [8]. Thus the Drude model semiconductor will be used as a material for

group 2 spheres.

Substituting Eqgs. (4.26) into (4.22) and neglecting the damping coefficient,

we get the condition for the plasma frequency as

res 3<1 N fl)
W R — (4.27)

Wp:

res

where w"® is the resonance frequency that make the denominator of £ in Eq.
(4.11) to be zero. Therefore the value of £ should be very high around this

frequency.

As an example, Let consider a structures of randomly distributed Drude
semiconductor spheres. We choose w™® = 27 x 3.58 THz, which corresponds to
the magnetic resonance in the previous section. So, from Eq. (4.24), w, is about
2m x 6.73 THz. Other parameters are chosen as follows: f; = 0, fo = 0.15,
ry = 4pm and v = w,/100. As shown in figures 4.5, The real part of e have the

peak negative value around 3.51 THz.
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Figure 4.5: Characteristics of the relative effective permittivity of randomly dis-
tributed Drude semiconductor spheres. The parameters are w, = 27 x 6.73 THz,

fi=0, f,=0.15and r, = 4 pm.

Composites of LiTaO3; and Drude semiconductor spheres

Now we combine the two group of spheres made of LiTaO3 and Drude semi-
conductor. The permittivity resonance frequency (In section 4.1.3, it is w™®) are
chosen to be 27 x 3.2 THz in order to prevent the high losses in €2 and p*f to
coincide. The composite parameters are as follows: f; = 0.27, fo = 0.15, r; = 4um
and ro = 4um. Fig. 4.6 and Fig. 4.7 show that the effective relative permittivity
and the effective relative permeability are simultaneously negative. The refrac-
tive index is computed as n°f = \/W and ensuring that its imaginary part
is positive so that the Lakhtakia-Depine relation (Eq. (3.16)) is satisfied with
Re{n°®} < 0. In Fig. 4.8, the graph of Re{n°f} shows negative values around 3.48
to 3.68 THz. Therefore this composite satisfy the Lakhtakia-Depine condition for

negative refractive index around these infrared frequencies.
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Figure 4.6: Characteristics of the relative effective permittivity of randomly dis-

tributed LiTaO3 and Drude semiconductor spheres. The parameters are w,

2m x 3.2 THz, f; =0.27, fo =0.15, r; =4 pm and r, = 4 pum.
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Figure 4.7: Characteristics of the relative effective permeability of randomly dis-
tributed LiTaO3 and Drude semiconductor spheres. The parameters are w, =

2m x 3.2 THz, f; =0.27, fo =0.15, r; =4 pm and r, = 4 pum.
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Figure 4.8: Characteristics of the complex refractive index of randomly distributed
LiTaO3 and Drude semiconductor spheres. The parameters are w, = 27 x 3.2 THz,

f1i=0.27, fo=0.15,ry =4 pm and ro =4 pm.



CHAPTER V

Negative Phase Velocity and Negative
Refraction in Biaxial Anisotropic Lossy

Media

Here, we focus on the characteristics of the plane wave propagations in
biaxial anisotropic lossy media. In the medium principal axes (assumed here to
be the x-, y- and z-axes), the relative permittivity and the relative permeability

tensors take the forms:

g 0 0 e 0O 0
g = 0 &y O and  fi, = 0 fpy O ; (5.1)
0 O Erz O O Mz

where the tensorial components are complex numbers, which subject to the pas-

sivity conditions:

Im{e;} >0 and Im{u.} >0, i=u=x,y,z. (5.2)

Our investigation is divided into two parts. First we aim to obtain the
general material condition for the negative phase velocity of uniform plane waves,
in which the electric field is polarized along one of the medium principal axes.
Secondly, we attempt to obtain the general condition for the negative refraction
between the biaxial anisotropic lossy medium and free space. In both cases, the
numerical calculations are also performed in order to show the consistency with

the theoretical results.
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5.1 Negative Phase Velocity for Uniform Plane

Waves

Let us consider a uniform plane wave, with a z-polarized electric field, trav-
eling parallel to the xy-plane in a biaxial anisotropic lossy medium as shown in

Fig. 5.1. For this wave, we have

E = zEelhPr—et) (5.3)
__kpxE EkEj si -
e e e S XY
Wit Wwho Mg ,ury
where p is the unit vector along the propagation direction and k is the wave
number.
y
A

Figure 5.1: A uniform plane wave propagates in the biaxial anisotropic medium.

The electric field polarization is along the z-axis and ¢ is the propagation angle.

From the Maxwell’s equations, the dispersion relation is obtained as follows

]{:2 _ w_( €rz,urx,ury ) (55)

e \ sz COS2 @ + firy S0 )
For simplicity of our analysis, we write Eq. (5.5) in the simple form:

w2

kQ = §5TZ/'LT67 (56)

where

Mgz [y
o = — 5.7
e e COS? 6 + iy 0% 6 57)
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It can easily be shown that pu,.. also lies on the upper half of the complex plane by

considering its inverse:

1 cos? sin?
_costo sing

[tre  [hry [hra

(5.8)

Since fir, and i, are on the upper half plane, each term on the right and their
sum must lie on the lower half plane. So the inverse of the sum must lie on the

upper half plane.

The average Poynting vector for this wave is given by

S — %Re{E « H} = | Eol* {&Re{—kcos¢} +yRe{ksm¢H

2(4),&() Hory Horg
x exp{—2Im{kp} - r}, (5.9)
and
. B k R
S-p= Re Exp{—2Im{kp} -r}. 5.10
p = g e[ Exp(~2Im{kp} - x) (510

This indicates that some information on the alignment of S relative to p can be

determined by considering Re{ui}. Rewrite ¢,, and u,. in polar forms as

Ers = |E]e%, 0< @ <, (5.11)

oo = |rele®, 06, <. (5.12)
Substituting Eqgs. (5.11) and (5.12) into Eq. (5.6) and solving for k, then we get

w 4
ke = Ao VIe @20 < (9. 1) /2 < (5.13)
ki w ’8 | . _
= 5[5 P2 2 < (he — @) /2 < 7/2,
Lre c |,Ure’ / ( M)/ /

where k, and k_ lie on the upper-half and lower-half of the complex plane, re-

(5.14)

spectively. Using Eq. (5.14) in Eq. (5.10), it can be concluded that

S-p > 0, for k=ky, (5.15)
S-p < 0, for k=k_. (5.16)

These situations are illustrated in Fig. 5.2, in which the unit vectors p and é’)

divide the plane into the four regions of @)1, )2, Q3 and Q4.
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Figure 5.2: The relative direction of S with respect to p. (a) for S- p > 0 amd
(b) for S- p < 0.

To satisfy the negative phase velocity condition, the phase velocity must
have a negative projection along the average Poynting vector. The direction of
the phase velocity is determined from Re{k}p, as can be seen by rewriting the

exponential terms:

ei(k-r~wt) — e—Im{k}i)-rei(Re{k}ﬁ-rﬂm‘/)' (517)

Hence, if Re{k} > 0, the phase velocity is in the same direction as p and if
Re{k} < 0, it is opposite. Since for k., the average Poynting vector can lie on
Q1 or (Y4, and for k_, it can lie on ()2 or (Y3, then the negative phase velocity

condition is satisfied if
Re{k;} <0 and Re{k_} > 0. (5.18)

This can be recast into the general condition involving the material parameters

(Appendix A) as
Re{e,. Hire| + Re{pire tHers| <O. (5.19)

This relationship is similar to and can be reduced to the Lakhtakia-Depline relation

[10] for isotropic lossy media. Obviously, a simple condition that will satisfy Eq.
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(5.20) is
Re{e,;.} <0 and Re{p..} <0. (5.20)

Note that p,. depends on the propagation angle (¢) as does the conditions (5.19)
and (5.20). The angle-independent condition can be obtained by substituting Eq.
(5.8) into Eq. (5.20). Then, with a little algebra, we get

Re{e,;.} <0, Re{u} <0 and Re{p,,} <O0. (5.21)

These results can also be reduced to the isotropic conditions [10] by substituting

Erx = Ery = Erz = E&p and Hrg = Hry = Hrz = Hr.

To support these results, we perform a numerical estimation of the angle
between the average Poynting vector and the phase velocity for two sets of sample
parameters (Figs. (5.3) and (5.4)). Starting from a propagation angle and the
sample parameters, the vectors S and Re{k}p are calculated. Then the angle
between these two vectors is computed. In Case 1 (g,, = —0.137 + 0.0194, pt,, =
—0.361 + 0.0237 and p,, = —0.777 + 0.030¢), the sample parameters satisfy the
angle-independent condition. So from our theoretical analysis, the phase velocity
should be negative (§ > 90°) for all propagation angles (¢). The numerical result
(Fig. 5.3a) demonstrates this exact agreement. The general condition (5.19) is
satisfied for all propagation angles (Fig. 5.3b). In Case 2 (g,, = 0.556 + 0.007%,
fre = —0.361 4+ 0.0237 and p,, = —0.777 + 0.0307), the general condition (5.19) is
not satisfied for any propagation angle (Fig. 5.3b), so we expect that the phase
velocity should be positive for any ¢ (the magnitude of 6 is less than 90°), which

agrees with the numerical result (Fig. 5.4a).
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Figure 5.3: Case 1. ¢,, = —0.137 + 0.019¢, p,, = —0.361 + 0.023¢ and p,, =
—0.777 + 0.030i. The plot of (a) the angle between S and the phase velocity with
respect to the propagation angle, and (b) the general condition with respect to

the propagation angle.
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Figure 5.4: Case 2. ¢,, = 0.556 + 0.0077, p,, = —0.361 4 0.023¢ and p,, =
—0.777 + 0.030i. The plot of (a) the angle between S and the phase velocity with
respect to the propagation angle, and (b) the general condition with respect to

the propagation angle.
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5.2 Negative Refraction in a Biaxial Anisotropic

Lossy Media

Consider the problem of refraction and reflection when a z-polarized (TE)
plane wave travels from a free space into a biaxial anisotropic medium, as shown

in Fig. 5.5.

medium 2: &, [

medium 1: free space

0; | 6,

Figure 5.5: The TE wave incident on the interface between free space and a biaxial

anisotropic medium.

The electric field of the incident wave can be written as
Ez’ = 2E07, exp (Zkl sin 91 == ’Lk’l COS 6)1 Yy — iwt), (522)

and the magnetic intensity is
k1 X Ez
WHo

1
= ——(kysinb;x + ky cos0;y) x E;, (5.23)
How

where k; = w/c and k; is the incident wave vector. Consequently, the electric

fields of the reflected and the transmitted waves are also z-polarized

E, = 2zFEy exp (ikysinf, x — iky cos b, y — iwt), (5.24)
1
H, = —(kisind,.x — kjcosb,y) x E,, (5.25)
How
E, = zEyexp (ik,x + ikyy — iwt), (5.26)
1 _ . .
H, = — [ '[(kx+ky) X E (5.27)

How
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where k, and k, are the complex wave numbers along the z- and y-axes, respec-
tively, which have to be evaluated later. The dispersion relation for the transmitted

wave can be obtained by substituting Eq. (5.27) into V x H; = —weoé, - Ey, then

we get
k2 k2 w2
H—‘C + uy = e (5.28)
rY T

Using the boundary conditions E1/, = Ey/, and H,,, = Hy/, at the interface
(the plane y = 0), we obtain

0; = 0, (5.29)
ke = Zsind, (5.30)
c
Wlyg COS O; —
Ey = Eo;, 31
2 (w,umcose +k c> o (5:31)
2w [y COS O;
Ey = Ey; 5.32
Y (wum cost; + k c) o (5.32)
Substituting Eq. (5.30) into Eq. (5.28) yields
o W
k, = —3 Ereflre, (5.33)
where
Ere = Eps — oy (5.34)
/j"f’y

Since Eq. (5.33) resembles the isotropic dispersion relation, we shall call €. the
effective isotropic permittivity. It can easily be shown that ¢,. also lies on the
upper half of the complex plane. So we can solve for k, by rewriting €,. and i,

in the polar forms

Ere = |Erele®, 0< ¢. <, (5.35)

frg = |fire] €, 0< ¢, <. (5.36)
Then

w ’L e
by = Vel @2, 0 < (9 + du)/2 < (5.37)
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The remaining question is the choice of k,, such that it is physically meaningful.
This can be answered by considering the average Poynting vector of the transmit-

ted wave:

Eo|? k
| 0t| (Re{ x

2w Lry

1 k
Sy = JRe{E, x Hj} = }x+Rqﬁiwxﬂm%M. (5.38)

Since the wave propagates from medium 1 into medium 2, we expect that the
y-component of S; must be positive, that is,

ky

rT

Re{

}>0. (5.39)

As a consequence of Eq. (5.37), we always have

kJr
Re{-—} >0, (5.40)
and
QR
Re{-%} <. (5.41)

So the k; is chosen.

With the problem solved, the fields of the transmitted wave take the forms

E; = 2zEyexp[—Im{k, }y|exp (ik,x + iRe{k] }y — iwt), (5.42)
EOt ky N k:r ~
H = —(%i- §) exp[—Im{k’ }y
= B g etk )
x exp (ikyx + iRe{k; }y — iwt). (5.43)

Note that the wave is nonuniform and its amplitudes decreases in the +y direction.
From the argument in the second exponentials shown in Eqgs. (5.42) or (5.43), we

can see that the refraction angle with respect to the y-axis is given by

k

ﬁa%ﬁ' (5.44)

tan 0, =

Since k, is always positive, the range of 8, is from 0 to 180°. The negative refraction
occurs when the phase velocity is towards the interface (6; > 90°), as shown in

Fig. 5.6, which implies that

Re{k}} < 0. (5.45)
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Figure 5.6: The negative refraction (6; > 90°) is depicted. The arrows in medium
1 and 2 indicate the phase velocity of the incident and the transmitted waves,

respectively.

By using the method presented in Appendix A, we obtain the general con-

dition for the negative refraction as
Re{ere Hptra| + Re{pira }ere| <O, (5.46)

which include the special case:

o 29i
Re{e,.} = Re{en} — Re{ury}sﬁl—P <0 and Re{.} < 0. (5.47)
Ty

This condition also suggests the angle-independent condition:
Re{prs} <0, Re{pry} >0 and Re{e,.} <0, (5.48)

which is applicable for anisotropic cases only. It can be shown that isotropic

lossless media with e, < 0 and pu, < 0 satisfy Eq. (5.47).

To determine if the transmitted wave possess a positive or a negative phase
velocity, we consider the relationship

W|E0t|2

c2

St'kt:

T exp[—2Im{k} }y], (5.49)
where

k; = k% + Re{k/}y, (5.50)
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and

+

1 ¢ ky +
}+ FRe{M—}Re{ky }. (5.51)

T = sin? 6;Re{
/’[’7‘1'

If 7> 0 (S; - ki > 0), the phase velocity is positive, whilst if 7" < 0 (S; - k; < 0),
the phase velocity is negative. Fig. 5.7 shows the plots of the refraction angle
and T with respect to the incident angle. The relevant parameters are ¢,, =
—0.1374140.019, pty, = —0.361+4140.023 and pt,, = 0.777 +¢0.030, which are chosen
purposely to satisfy the angle-independent condition Eq. (5.48). The refraction
is negative for all §; values because 6, > 90°. Fig. 5.7b shows that this negative

refraction can occur even when the phase velocity is positive (7" > 0).

15
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0.51
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0.0
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154
1201 FWIMNNSG
0 20 40 60 80 0O 20 40 60 80
0 i
(a) (b)

Figure 5.7: The plot of (a) the refraction angle (6;) with respect to the incident
angle (6;), and (b) the parameter T that can be used to specify if the phase velocity
is positive (T' > 0) or negative (7' < 0).



CHAPTER VI

Nonlinear Dielectric Composites with

Elliptic Cylindrical Inclusions

In this chapter, the formulae for evaluating the effective nonlinear coefficients
up to the ninth order of weakly nonlinear composites subject to a DC electric field
are presented. Then we evaluate the effective DC coefficients of a composite
consisting of weakly nonlinear dielectric inclusions with elliptic cylindrical shapes,
randomly embedded and oriented in a linear dielectric medium. The results are
used to study the shape effects on the enhancements of these nonlinear coefficients.
Finally we consider weakly nonlinear composites under an applied AC electric
field of the forms Ej sin(wt) and E; sin wt + E;3 sin 3wt. With a simple method, the

general connections between the effective DC and AC coefficients are established.

6.1 DC Applied Electric Field

6.1.1 Problem Formulation

Consider a general structure of a composite consisting of weakly nonlinear
dielectric inclusions in a linear dielectric medium (Fig. 6.1). The constitutive

relation for the inclusions is assumed to take the form
D' = E" + y|E'|’E’ + n;|[E'['E’, (6.1)

and for the medium, it is

D™ =¢,E™, (6.2)
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where ¢; and ¢, are the permittivities or the first-order dielectric coefficients of
the two media, and y; and n; are the third- and fifth-order nonlinear dielectric
coefficients of the inclusions. The weakly nonlinearity means that the condition

1 >> yi|E")?/e; >> ni| EY|* /¢, is satisfied.

S;
<
o O
OQ
e o " s

Figure 6.1: A typical structure of a composite, which consists of inclusions embed-
ded in a medium. S; denotes the inclusion surfaces and S denotes the composite

surface.

Under an applied DC electric field (Eg), the electric displacements and the

electric fields in the inclusions and the medium satisfy the electrostatic equations:
V-D =0, (6.3)
VXE=0 or E=-Vo, (6.4)

which lead to the boundary conditions at the inclusion surfaces S; as follows:
P'=d™  on S, (6.5)
D' a=D"-n, on S (6.6)

where ¢ and m denote the inclusions and the medium, respectively. In the theo-
retical analyses of nonlinear dielectric composites, it is customary to assume the

boundary condition for the DC applied field (Eq) as
d" = —-Eg-x, on S, (6.7)

where S denotes the composite surface. Such boundary condition can be realized

by the potential between a parallel plate capacitor.
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For weakly nonlinear composites, the effective nonlinear dielectric coeffi-

cients relate the spatial average of D and E as follows
(D) = c(E) + x[(E) *(E) + 1 [(E)[*(E) + 0| (E)|*(E) + pie| (E)*(E) + ..., (6.8)

where (...) denote the spatial average over the composite region, and &, e, 7e, e
and . are the effective first-, third-, fifth-, seventh- and the ninth-order dielectric
coefficients, respectively. Using Eq. (6.7) it can easily be shown that (E) = E,.
Thus

(D) = e.Eo + Xe|Eo|*Eo + 1e|Eo|"Eq + 8¢ [Eo|°Eo + p1e|Eo|*Eo + . ... . (6.9)

6.1.2 Perturbation Expansion Method

Since the inclusions are assumed to be weakly nonlinear, the order of mag-
nitude of the first-order term (g;E’) is much larger than the third-order term
(x;|E‘|?E") which in turn is much larger than the fifth-order term (n;|E’|*E").
Therefore we can employ the perturbation method to analyze this problem. With

this method, we rewrite the (D — E) relation of the inclusions as
D" = ¢,E' + A\ |E'[’E’ + 20 |[E'|*E’, (6.10)

where ) is a dimensionless parameter, which indicates the order of magnitude.
For the medium, the (D — E) relation is still the same as that given in Eq. (6.2)
because it does not contain any nonlinear terms. The perturbation expansion of

the electric potentials are given as

' = OV LN 4 NO¥ (6.11)

P = U L NI £ NPT 4 (6.12)
where ®* and ®*™ are the k' order perturbative potentials in the inclusions and
medium, respectively. Using E = —V &, we get the perturbation expansion of the
electric fields as

E' = E"+)E" 4+ NE* + .., (6.13)

E™ = E" +)\E" + ME*" + ..., (6.14)
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where E¥ = —V®* and EF™ = —V®*". Substituting Eqs. (6.15) and (6.16)
into Egs. (6.10) and (6.2), we can arrive at the perturbations of the electric

displacements:
D' = D%+ \DY 4 \D¥ + .| (6.15)
D™ = D" 4+ AD" + X?D*" + .... (6.16)

Using these perturbation expansions in Egs. (6.3), (6.5), (6.6) and (6.7), we obtain

a linear boundary value problem for each perturbative order:
V-D** =0, a=im (6.17)
with the boundary condition on the inclusion surfaces

D*.n = D.n, on S, (6.18)
oF = oM  on S, (6.19)

and on the composite surface

Prm — on S. (6.20)

0, otherwise
Hence the nonlinear problem is decomposed into a consecutive set of linear prob-
lems. In order to solve for these perturbative potentials, we must solve them from
the lowest order potential up to any required order, consecutively, which may be
laborious. Fortunately, it turns out in subsequent sections that to compute the
effective dielectric coefficients of our composites, only the potentials in the inclu-
sions are required and there exists a technique to solve these potentials quickly

and easily.

6.1.3 Effective DC Coefficients

Following the perturbation method, we specify the order of the terms in Eq.
(6.21) with the parameter \ as

(D) = e, Eg+Axe|Eo|*Eo+ A1 Eo|*Eg + A0, | Eo|CEo + A\ 11 |[Eo|PEg +. .. . (6.21)
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The effective coefficients can be estimated by considering the integral (first em-

ployed to analyze a linear composite by Landau [49])
1
= / (D —¢,E)dV = (D) — ¢,,Eq, (6.22)
Vv

where V' are the volume of the composite. Note that the integrand vanishes in

medium so it is left with the integral in the inclusion volume (V;) as
1 . .
—/ (D' — £, E)dV = (D) — &,,Eq, (6.23)
Vv

By substituting Eq. (6.10) and (6.21) into (6.23), we get

V/ [(éfz — €m)El + )\Xz‘EZ|2EZ + /\2?71|E2’4El]dv = (66 — Efm)Eo + )\Xe’EO|2EO
\%
+ 221 Eo| *Eq + A6 | Eo|°Eq

AN e | EoPEo + ... . (6.24)

Using the perturbation expansion of the electric field in the inclusions E' =
S oo A"EM in Eq. (6.24) and dotting both sides by Eq, we get

V/V [Z /\k(gz . €m)EkZ 4+ i Z /\k+l+'rrL+1(Ekz . Elz)Emz
ik o

+n; Z )\k+l+m+n+p+2(Eki - Elz)<Emz > Em)EPz} . EO dV = (56 o Em)E(Q) + )\XEEZOI
k,l,m,n,p

FNNES + A30.ES + Mpu B, (6.25)
where k, 1, m, n, p are integers that range from 0 to co. By equating the terms
with the same power of A, i.e. A% A, A%, A3 and \* we obtain the equations for
determining €., Xe, 7e, 0. and p., respectively. These are shown in Appendix C

where the derivation for the effective coefficients up to the ninth order is presented.

We report the results as follows:

E, i
e = Em+ V—Eg . /V(az — &) EY"dV (6.26)
Ye = 04 / [(62 —am)Eh—i-Xi’EOZPEOZ]dV (6.27)
VE; Jv,
Eg

, = — - i_mEQi 2ZEOZE1ZEOZ
o=y ), (6B 2nE B
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55 _ 08 . / [(51 - em)ESz + Xi|Elz‘2E01 =+ 2X1(EOZ 5 Elz)Elz
VES Jv.

+2X1(EOZ X EQi)EOi + Xz|E01’2E2’L + 477Z(E02 A Eli)‘EOiPEOi
+n;| E¥|["E"] dV (6.29)

o = VEP

. / [(57, o em)E4i + X2|E11|2E11 + 2XZ(EOZ X Eli)EQi
Vi

+XZ|E01|2E31 + 2nl|EOZ|2|E1Z|2EOZ + 4771<EOZ . Eli)QEOi
+47]1|E02|2<E02 . Eli)Eli 4 4Th<EO7, . E2i)|E0i‘2EOi 4 771|E0Z|4E2z:| dV
(6.30)

Note that the calculation of the effective coefficients requires only the potentials

inside the inclusions.

6.1.4 Composites with Elliptic Cylindrical Inclusions

In this section, the general formulae of the effective coefficients, Eqs. (6.27)-
(6.30), are applied to evaluate the effective DC response of a weakly nonlinear
composite with elliptic cylindrical inclusions. The shapes of the inclusions are
assumed to be identical and the volume packing fraction is dilute (p < 0.1).
Therefore, the electric potential inside each inclusion can be determined by ne-
glecting the effect of the other inclusions. So the problem is reduced to a single
inclusion in an infinite medium with an applied uniform field Eq, as shown in
Fig. 6.2. The lengths of the semi-major and semi-minor axes are denoted by M
and N, respectively, and « is the angle between the applied electric field and the
semi-major axis. Since the inclusion shape is an elliptic cylindrical, we employ the
elliptic cylindrical coordinates (u,v) to solve this problem. These coordinates are

related to the Cartesian coordinates (z,y) by:
x = a coshucosv, (6.31)

y = a sinhusino, (6.32)

where the focal length (a) of elliptic cylindrical coordinates is chosen to coincide

with that of the inclusion. Since the medium is linear, the potential ®™ obey
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Figure 6.2: A single elliptic cylindrical inclusion in a linear dielectric medium with

an applied electric field Eg making the angle o with the semi-major axis.

the Laplace equation, the general solution in elliptic cylindrical coordinates (Eq.
(2.33)) can be employed. Thus the electric potential in the medium can be written

to provide the uniform electric field (Eg) at far distances as

d" = —Egacosacoshucosv — Egasinasinhusinwv

+C aexp(—u) cosv + D aexp(—u) sin v. (6.33)

Because of the nonlinearity, the potential inside the inclusion does not necessarily
satisfy Laplace equation. However we will assume that the electric field in the
inclusion is uniform. This assumption may be justified by the uniqueness theorem
after the potentials are solved to satisfy all of the required boundary conditions.
Thus

®' = —Aacoshucosv — Basinhusinv. (6.34)

Using the boundary conditions, Egs. (6.5) and (6.6), we obtain

' (ug, v) = " (ug, v), (6.35)
0P* 0! 0! oo™
£i— + x| Vo' 2 + ;| VO [ =— = & ., (6.36)
ou (uo.0) ou (uo.0) ou (uo.0) ou (uo.0)
ug,v ug,v uQ,v ug,v

where the points with coordinates (ug,v) where 0 < v < 27, are on the inclusion
surface. From Eqgs. (6.35) and (6.36), we have

(M+ K N)A+ ?N(A2 +B)A+ :—iN(Az + B%)2A = Eycosa(M + N), (6.37)

m m

(K M+ N)B+ X0 (A2 1 BB+ T M(A? + B%)2B = Egsina(M + N), (6.38)

Em Em
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(Epcosa — A)M

0= (6.39)
Eysina — B)N
p=! OS;\;OLN N (6.40)

To solve for the constants A, B, C' and D, we expand them as a power series of

Eq as follows:
A= AE*, B=) BEF C=> GE*, D=> DiE (641

The details of the derivation of Ay, By, Cy and D, are shown in Appendix D,
including the results of the potentials up to the fourth order. Substituting the
electric fields from Eq. (D.19) into Eqgs. (6.27) - (6.30) and then performing the
angular average — f /2 .da, we obtain the effective coefficients up to the ninth
order. The closed form result of the ninth-order coefficient is not reported here
due to the length of the expression but will be depicted. Therefore we show the

results of the effective coefficients up to the seventh order as follows:

Ee = Em —i—p%n(K - 1){F(s) + F(s—l)}, (6.42)
v = {EF e PEPE ) LI 6

- ) e )

16
3
_15(5 {(1+3K5+25)F1() (2572 +3Ks™' + 1) Fy( 1)}],
(6.44)
. 39m; X Fg( 5771Xz 2/ .—1
= p{_ 16¢,, {K—l—s K+s 1 165, | (L 4K 43 Al PG

+(352 + 4Ks 4 1) Fy(s )F?(s)} 9”“’ Fy(s)

105y [ F5(s) | s*FS(s7))
+325m2{(K+s) (1+Ks)2}

+%{F3(s) +F3(sl)} + 3?; i SFy(s )] (6.45)
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where

1+s (1+s)8
Fls) = Fis) = (K +5)3(1 + Ks)>’

K+
(1+s)%(1+2Ks + s?)

Fy(s) =
2(8) = R s T Ky
Fy(s) (1+s)8(1+6Ks+4(1 +3K?%)s*> + 18K s® + 7s?)
S) =
’ (K + s)4(1 4 Ks)® ’
1 8(5+ 18K 2(4+9K?%)s? + 18K s + 5st
F4(3):( +5)%(5 + s+2(44+9K%)s* + 5% 4 5s%) (6.46)

(K +5)5(1 + Ks)b ’
K = ¢;/e,, is the relative permittivity, p is the volume fraction of inclusions and

s is the aspect ratio, the ratio between semi-minor and semi-major axes or vice

versa.

Note that the effective coefficients Egs. (6.42)-(6.45) are invariant under the

transformation from s to s~}

which is trivial because interchanging between the
semi-major and semi-minor axes does not affects the inclusion shape. For s =1,
the shapes of inclusions reduce to circular cylinders and the effective coefficients

reported here correspond to those obtained by Natenapit et al. [35].

6.1.5 Results and Discussion

The shape effects of inclusions on the effective DC coefficients are shown
in Figs. 6.3 - 6.6. In order to satisfy the weakly nonlinear condition, we set
YiEo? /e; = 1073 and mE04 /e; = 1075, which are much lower than one. The volume
packing fraction of inclusions is dilute and is chosen to be 0.05. The symmetrical
plots of the relative third- and fifth-order coefficients (x./x; and 7./n;) versus
logs (s = N/M) with K = ¢;/e,,, are shown in Figs. 6.3 and 6.4, respectively. For
K << 1, the third- and fifth-order nonlinear effects are greatly enhanced with the
increasing eccentricity of inclusions. From Figs. 6.3a and 6.4a, at logs = 1 and
K = 0.1, the magnitude of the third- and fifth-order effective coefficients are about
17 and 216 times larger than the third- and fifth-order coefficients of inclusions,
respectively. The large enhancement is due to the increase of the electric field
in the inclusions when the relative permittivity K becomes much lower than 1.

In the contrast, the effective nonlinear response is very small for K >> 1. A
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large reduction in the nonlinear responses are observed in Figs. 6.3b and 6.4b,
which can be explained by realizing that if K >> 1 (¢; >> ¢,,), the electric fields
in all inclusions are reduced and will approach zero. Therefore, physically, the
inclusions behave as ideal conductors. Thus, the composite can be considered to
be equivalent to that of ideal-conductor inclusions dispersed in a linear dielectric
medium, which is a linear composite system. So the nonlinear response disappears

under such condition.
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Figure 6.3: The variation of the relative third-order nonlinear coefficients upon
the inclusion aspect ratios (s) at the packing fraction of 0.05 for (a) the relative

permittivity K = ¢;/e,, less than 1 and (b) K larger than 1.
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The effect of varying the relative permittivity on the seventh- and ninth-
order effective coefficients for aspect ratios (s) of 0.4, 0.5 and 0.6 are shown in
Figs. 6.5 and 6.6. In order to show the entire behaviors of the effective responses,
a logarithmic scale for relative permittivity (K) is used. Although K = 107 is
rather an ideal situation, it is considered for complete predictions. The results
revealed that at x;E¢?/e; = 1073 for both 7; = 0 and n,Ej/; = 107%, there exists
some peaks which represent the extreme conditions under each aspect ratio. Fur-
thermore, the peaks become higher when the eccentricity of inclusions is increased
(in this case the reduction of the aspect ratio). As explained earlier, increasing the
relative permittivity will transform the nonlinear system to a linear one, and the
composite can then be considered as composed of ideal-conductor inclusions in a
linear host medium. Therefore, the seventh- and ninth-order effective coefficients
approach zero for large values of K, as expected. In order to verify our results
on the effective DC coefficients, we also calculate the effective coefficients from
the average energy method [35] which takes into account the total energy of the
composite and that of the homogeneous effective medium. It turns out that the
results from the average energy method are in exact agreement with our results
presented here. It should be noted that there are realistic application materials
having high-order nonlinearity, such as for dyn doped glasses as reported by Or-
machea [50]. The measurements of Rhodamine 6G dyn solution in Ref. [51] have
shown not only the third- but also the fifth- and seventh-order nonlinear suscep-
tibilities. Although we have considered elliptic cylindrical inclusions, the method
developed here can be applied to similar composites with ellipsoidal inclusions.
By using the general solutions of a linear dielectric ellipsoid in a linear medium
subjected to an applied uniform electric field [15] and imposing the boundary con-
ditions at the surface of the ellipsoid, we can determine the potentials as a power
series of the applied field similar to the results shown in Appendix D. Thus the

high-order effective nonlinear coefficients can be evaluated.
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Figure 6.6: The plot of the dimensionless ninth-order effective coefficients versus

log K, K = ¢;/e,, for different aspect ratios (s) at a volume fraction of 0.05.
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6.2 AC Applied Electric Field

6.2.1 Transformation from DC to AC response

For sinusoidal applied field Eqsinwt, the boundary condition on the com-

posite surface becomes —Egsinwt - x (Fig. 6.7).

[fbm = —Eqsinwt - f(]

@ 08
OQCDQ
@ o =~

Figure 6.7: A weakly nonlinear composite subject to an AC applied electric field.
The boundary condition ®™ = —Egsinwt - x is imposed on the surface of the

composite, which try to establish the electric field (Eq sin wt) inside the composite.

Assuming that the frequency is low, the electric displacement and the electric
field still satisfy the electrostatic equations (Egs. (6.3) and (6.4)). Hence the
boundary conditions on the inclusion surface are the same as those of the DC
case. Since the electrostatic equations are time independent, the spatial average
of the electric displacement (D) must relates to the applied field Egsinwt at a
particular time ¢ via the effective DC coefficients as in Eq. (6.21). Therefore

(D) = e.Egsin(wt) 4 xe|Eqsin(wt)|*Eq sin(wt) 4 1| Eg sin(wt) |*Eq sin(wt)

+0.|Eq sin(wt)|PEq sin(wt) + pe|Eg sin(wt)|*Eg sin(wt) + ... .  (6.47)
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Using trigonometric identities, this can be written as

3 5 35 63
D) = [e.Eq+ ~x|Eol*Eo + =n.|Eo|*Eo + —6.|Eo|°Eq + — 1| Eo|°E
(D) B 0+4X| ol 0+877| ol 0+64 [ Eo| 0+128M| o[ "Eq
. 1 5 21
+} sm(wt) + [ - ZX€|E0|2EO - 1—6776|E0‘4E0 - 6—4(56|E0|6E0
21 g : 1 . 7 6
_6_4#6|E0| E, + ] sin(3wt) + [1—6776]E0| Eq + 6—45€|E0\ E,

9 . 1
+6_4M6|E0|8E0 + } 51n(5wt) + [— a5e|E0|6E0

9 . 1 .
—%5€\E0|8E0 + ...] sin(7wt) + [%/MEO\BEO + ...] sin(9wt). (6.48)

The general expression for the effective AC response is firstly proposed by [31] as

(D) = [elEo+ x5 |Eol*Eo + 05 |Eo|"Eo + 65| Eo| “Eq + 11| Eo[*Eg] sin(wt)
+[e5.Eo + X5 Eol*Eo + 75, Eo| "Eo + 05, [Eo| "Eq
+,U/§w‘E0|8EQ} sin(Swt) -+ [ggwEO -+ X;w‘EOPEO -+ n;w|E0|4E0

+05, | Eo|°Eo + ik, |Eo|*Eo] sin(5wt) + ..., (6.49)

where €%, Xi., M, On, and p*  are the effective AC coefficients at the n'

harmonics. Comparing Eq. (6.48) with (6.49), we get the relationships between
the effective DC and AC coefficients as

€y = Ee X = %Xe oy = %776

0y = %66 ty = %N@ €3, =0

ng = _iXe nj;w = _1_56776 5;’:0.; = _%56
:ugw = _%Me ggw =0 X;w =0

n;w = 1_1677e 5;w = 61455 Mgw = %Me

=0 x7=0 7m7,=0
5;(42 = _6L45€ IU“:;w = _%MG €Sw =0
Xow =0 15, =0 dg,=0
* 1
Moy = ﬁ/l’e
Using the effective DC coefficients obtained in the previous section, we can easily

obtain the effective quasi-static AC coefficients for composites with elliptic cylin-

drical inclusions. In fact, these relationships are quite general because it can be
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applied to all weakly isotropic nonlinear composites. The effective DC coefficients
calculated from any methods developed for isotropic weakly nonlinear composites

can be directly transformed to the effective AC coefficients.

6.2.2 Transformation from DC to fundamental plus third

harmonic AC response

Now we consider the external field of the form (FE;sinwt + Ejsin 3wt)u,
where 1 is a unit vector indicating the direction of the applied field. The boundary
condition on the surface of the composite is indicated in Fig. 6.8. For cylindrical
composites, the direction of 1 is arbitrary but perpendicular to the cylindrical

axes.

[ "= —(F;sinwt + E3sin 3wt)a - f{j

& " 6
OQCDQ

e e "0

Figure 6.8: A weakly nonlinear composite subject to fundamental and third
harmonic applied electric fields. The boundary condition ®™ = —(E;sinwt +
FEs5sin 3wt)t - x is imposed on the surface of the composite, which try to establish

the electric field (£} sinwt + Ej5sin 3wt)u inside the composite.

Using the similar argument in the previous section, we replace Eq in Eq.

(6.21) by (E;sinwt 4+ E3sin 3wt)a:

(D) = [e (B sinwt + Fysin3wt) + x.(Ey sinwt + Essin 3wt)?

41 ( By sinwt + Essin 3wt)® 4 6.(F) sinwt + Ezsin3wt)” + ... ]l
(6.50)
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By using some identities of sine function, we can re-express Eq. (6.50) as

(D) = [(ecF+ 0B} — eBLEs + XA + 2n B} — Zn BLEy + B S
—%n E2ES + %fneElEg‘j - ﬁwf — %(SBE?E;; + 46415 EE?

5255 ELES + 3155 EE; — 0556E12E§’ + %@ElES) sinwt + (e.E3 — %XQEf
+;><3E12E3 + zer‘Q’ 156neE5 185neEfE3 - %neEf B3 + %neEf E;
—+gneE5——216&Ef 1476<E6Eg 3{556Efﬂg4-§%;5eEfﬁg-1%§56E§E§

1055 E2ES + 2—256E§) sin 3wt + ... ]l (6.51)

The effective response of nonlinear composites under an external AC electric
field of the form (E; sinwt + E5sin 3wt)a has been investigated by Wei et al. [34].
They report the general form of the effective response up to the third-order. In

this work, we further generalize the form up to the seventh-order as

<D> = [<€:'wEl + ‘g;w'wE3 + X:ﬁwEf + XZ23w'wEfE3 + X:J(Bw)z'wElEg + X>(k3w)3'wE§)
+nw5 E5 +77w43w wE E3 +nw3(3w)2 E E +nw 2(3w)3; E E +nw(3w)4 ElE

+772<3w)5'wE35 + 5:)7wE17 T 5:} El E3 + 6:)5(3w E5E2 + 5*4(3w Eng

63w; w
073 30,0 B By F Oz (30050 Bt B3 + Oygaans. o E1ES + 03,7, F3) sinwt
+(5Z;3wEl + €380 3 + XZ3;3WE1 + XZ23w;3wE1 Es + XZ(3W)2;3WE1E§
+X?3w)3;3wE§ + 77:35;3wEir) + 77:43w;3wEilE3 + 77:13(3w)2;3wE;1))E§
+77:;2(3w)3;3wE%E§ + 77:;(3w)4;3wE1E§ + nik3w)5;3wE§ + 5:;7;3wE17 + 5;63w;3wE16E3
+5Z5(3w)2;3wEfE§ + 5:4(3w)3;3wEilE§ + 5:13(3w)4;3wE§)E§ + 6::2(3w)5;3wEfE§
00 30)6: 30 ELES + 0375, B3 ) sin 3wt + ... |0, (6.52)

where 5wm(3w) o X:m(%)n;kw, n:m(Sw)”;kw7 6:)m(3w)n;kw and ,u:m(?w)n;kw are coupled

effective AC coefficients at the k™ harmonics. Comparing Eq. (6.51) with (6.52),

we obtain the relationships between the effective DC and AC coefficients as:

Sw = Suw=0 X, = IXe

X:ﬂgw;w = _%Xe XZ(gw)z;w = %Xe X?gw):s;w =0

* 25 *

. _s _ _1
nw5;w = 3§l nw43w;w = " 16l 77u,)3(3w)2;w = % e
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7711.12(34;.))3;4/.1 =% 77c;.)(3u1)4;w = g 77(30.1)5;0.1 =0
* =355 * — _U7gs * )
wliw — 64°¢€ wl3w;w 64 “€ w5 (Bw)Z;w T 64 €
* — _5255¢ * — 3155 * — 1055
wt(Bw)3 w T 64 7€ wi(Bw)tw T 32 Ve w?(3w)bw T 32 7€
* _ 35 * _
w(3w)b;w T 1656 5(30.))7;0.) =0
* _ * _ * _ 1
6w;3w =0 E3Lu;3w = &e Xw3;3w - _ZXE
Xw23w;3w = 2Xe Xw(3w)2;3w =0 X(Sw)3;3w = 1Xe
T’w5;3w = " 16l nw43w;3w = 3 le3(3w)2;3w - 8 e
77(.02(340)3;30.; =4 nw(?)w)4;3w W 77(300)5;30.1 = 37
s g N _ uzs . _ _sis5
wT;3w — 647€ wl3w;3w T 64 € wd(Bw)Z;83w 64 €
S* — 3155 * — _1755¢ * — 1055
w(3w)3;3w T 32 7€ w3 (Bw)* 3w T 32 7€ w2(3w)%;3w T 16 €
* _ * — 35
5w(3w)6;3w =0 6(3w)7;3w Y/, 6456

Again these relationships are valid for all weakly nonlinear isotropic composites.
By substituting the results of the effective DC coefficients from Eqs. (6.42) -
(6.45), the effective AC coefficients of the elliptic ¢ylindrical composite up to the

seventh-order and third-harmonics are obtained.
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Conclusions

The Lakhtakia-Depine condition [12] for the negative refractive index in lossy
isotropic media has been investigated. This condition is based on the phenomena
of the negative phase velocity of a uniform plane wave which imply that the
direction of the phase velocity is antiparallel to the direction of the power flow or
the Poynting vector. The special case of the Lakhtakia-Depine condition, namely,
Re{e,} < 0 and Re{u,} < 0, is used in designing a negative index composite at
infrared frequencies. The structure of this composite consists of two different group
of nonmagnetic spheres. The negative real part of the effective permeability of the
composite is accomplished by the resonance of the magnetic scattering coefficient
of the first group of spheres. This resonance condition requires high values of the
relative permittivity of the first group of spheres (£,1 > 100) around the infrared
frequencies, when the size of spheres are a few micron. Such high values of the
relative permittivity can be achieved by using LiTaOj3 as the material for the first

group of spheres.

For the real part of the effective relative permittivity to be negative, we
employ the resonance of the effective relative permittivity itself. This resonance
requires that the relative permittivity of the second group of spheres must be
negative, which can be achieved by using a semiconductor that satisfies the Drude
model relation because it can provide negative values under its plasma frequency.
Based on the resonance condition, the plasma frequency of the semiconductor

spheres is derived.

When combining these two group of spheres into a composite, the numeri-

cal result of the effective relative permittivity, the effective relative permeability
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and the effective refractive index show that this composite satisfies the Lakhtakia-
Depine condition for the negative refractive index around 3.48 - 3.68 THz. Since
the Lakhtakia-Depine condition is based on the negative phase velocity, this con-
dition can not generally ensure a negative angle of refraction when an electromag-
netic wave propagates into the material. However this condition can be a good
approximation of the negative refraction if the electric and magnetic losses are

low.

Next we investigate the characteristics of uniform and nonuniform plane
wave propagations in a biaxial anisotropic lossy medium. Under the principal
axes of the medium, we assume that the relative permittivity and the relative
permeability tensors can be diagonalized simultaneously. the elements of the rela-
tive permittivity and the relative permeability tensors are assumed to satisfy the
passivity condition, which imply that the elements must lie on the upper half of

the complex plane.

A uniform plane wave propagation with the electric field polarization along
one of the medium principal axes is studied and the general condition of the
negative phase velocity is derived. This condition depends on the elements of
the relative permittivity and the relative permeability tensors together with the
propagation direction. If we let the elements of each tensors to be equal, the
medium is lossy isotropic and the negative phase velocity condition is reduced
exactly to the Lakhtakia-Depine condition. To ensure our theoretical result, we
show the plots of the angle between the average Poynting vector and the phase

velocity angle for two sets of sample parameters.

Then we consider a problem of refraction when a TE plane wave propagates
from free space into the biaxial anisotropic media. In this case, it turns out that
the transmitted wave is nonuniform, implying that the planes of constant ampli-
tude and the planes of constant phase do not coincide. Based on the solutions
of this problem, the general condition of the negative angle of refraction is de-
rived, which depends on the elements of the relative permittivity and the relative
permeability tensors of the biaxial medium and the incident angle. Although the

general condition is for TE wave, it can be transformed into TM case by the elec-
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tromagnetic dualities. In order to confirm our theoretical result, we show a plot
of the angle of refraction with respect to the incident angle for a set of sample
parameters which satisfy our negative refraction condition. Moreover a plot of
a term relating to the phase velocity of the transmitted wave indicates that the

angle of refraction can be negative even if the phase velocity is positive.

We also investigated the effective responses of a weakly nonlinear dielectric
composite subject to an externally applied uniform electric field. The structure of
this composite consists of dilute fifth-order nonlinear elliptic cylindrical inclusions
randomly distributed in a linear host medium. All inclusions are assumed to be
parallel and identical in shape to each other but the orientations are random.
The electric potential and field of a single inclusion are then determined using
elliptic cylindrical coordinates and a power series method. The general formulae
for higher-order effective coefficients up to the ninth order are derived using the
Landau formula [49]. The obtained results of the effective nonlinear coefficients are
symmetric under the exchange between the semi-major and semi-minor axes and
the third-order effective coefficient agrees with that of Yu et al. [26]. Moreover,
the general features of the magnitude of n./n; (Fig. 6.4a) are similar to that of
Xe/Xi (Fig. 6.3a) and the negative result of the fifth-order coefficient has also been
observed previously by Filho et al. [51]. Furthermore, the shape effect reveals large
enhancement of the effective responses for aspect ratios of significantly less than
one, especially at a high contrast between the linear coefficients of the inclusion

and host medium with the relative permittivity (/) being much lower than one.

The scope of our nonlinearity enhancement is mainly on dielectric compos-
ites with an electrostatic applied field. However, this could also be applied, in
the cases of time-varying fields at low frequencies. A general problem involving
weakly nonlinear composites subject to an AC applied fields of the form Eg sin(wt)
and E; sin(wt) + E3sin(3wt) in the quasi-static limit was considered and general
relationships or transformations between the effective DC and AC coefficients were
established. The transformations were extended from the work of Wei et al. [34] to
include the effective coefficients up to the seventh order. Furthermore, the trans-

formations for non-decoupling coefficients at fundamental harmonics (€4, 0w, Xuw;w,
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Nw;w and d,,.,) are the same as the transformation of our published results [35].
Following the same procedures as presented here, we note that the transformation

can be generalized to predict responses up to any order and harmonics.
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Appendix A

Derivation of the Material Condition

from Re{k,} <0 and Re{k_} >0

In Chapter 3, we conclude that Re{k;} < 0 or Re{k_} > 0 will be satisfied
if ¢, and p, are related by the inequality:

eV 1P+ /e + €% <0, (A1)

where €/ = Re{e, }, €/ =Im{e, }, u,. = Re{p,} and p = Im{p,}. Here, we show
the detailed derivation of this inequality as follows. Taking the real part of Eq.
(3.11) yields

Re{Ku} = /e, ] cos (%;—%) (A.2)
Then the conditions Re{k;} < 0 or Re{k_} > 0 lead to

E\/|6T||,u7«|cos(m) < 0,
& 2

cos (@) < 0,

cos (%) cos (%) — sin (%) sin (%)
\/COSgba—l—l\/COSgbu—l—l \/1—COS¢8\/1—COS¢M 0
2 2 2 2 =0

(cos o + 1)(008 O+ 1) < (1 — COS ¢5)(1 — COS ¢u)- (A.3)

A
o

Rewrite ¢, and p, as

e +iel = y/e?+e(cose. +ising.), (A.4)

4 = \/p?+ % (cos ¢, +ising,). (A.5)
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Therefore

/ /
& oy

e CoS ¢, = ———rte—,
2 2] H 2 2
VEr e Vo Ay

Substituting Eqgs. (A.6) into Eq. (A.3), we get

cos ¢, =

! 1 ! 1
(\/WH)( 2+ H) ) (1_ W) (1_ \/m)
(20 + V2T ) (e + 12+ 412 (Ve? +e? —e) (Vi + w2 — )

\/5412 n 5;{2 \/Mg n M;/Q < \/E;Q i 6;/2 \/ W2+ ’
(b + VEZH ) (e + VP + i) < (VER TR — ) (Vi + p? — i),
R N R Y R (AVE R

el /2 + P+ 20 N/ER + e < 0,

SN HE+ W2+ R e < 0. (A7)




Appendix B

Polarizabilities of Nonmagnetic Spheres

The electric and magnetic polarizabilities of a nonmagnetic sphere can be
obtained by solving the scattering problem of a plane electromagnetic wave by
that sphere. Consider a plane wave incident on a nonmagnetic sphere of radius
ro, having the relative permittivity ¢, and the relative permeability pu,. = 1. The
electric and magnetic fields of the wave are polarized in x and y direction. This

situation is shown in Figure B.1.

Y

Incidence Wave y \

Scattered Wave

Figure B.1: Scattering of a plane wave by a sphere.

The incident plane wave of angular frequency w can be written (omitting e=**) as
Eine = 2Epe™ (B.1)
Hi. = gHpe™* (B.2)

where kg = w/c is the free space wave number and Hy = koEq/(wpo).
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The total fields outside the sphere are the incident fields plus the scattered fields:

Eout = Einc+Esc (BS)

Hout = Hinc+Hsc (B4)

Since the process for solving this problem involves a very lengthy mathe-
matics [47], we simply give the result of the scattered fields

oo

Z w 2n+1

:ESC = a E()Z m(la Nej)n — b Moln) (B5)
2 + 1

H, - —}j P (0N, + a,ME)). (B.6)

where Mein, Momn, Nemn and Ny, are the vector spherical harmonics:

m . N -
/) Girgsin moP"(cos6)z,(p)0
pm ;
~cosmp 00, ()g, (B.7)

Memn

" in moP™(sin 0)z,(p)0

cos 6
dP'"(cosf ~
et 09, (B.5)

Momn

— cosmeo

Nepwn = Zn(p) cosmon(n+ 1)P"(cos )t
0

+cosm¢w; jp pon(p)0
—msmmqs@; jp o), (B.9)

Newn = Z"TEP) sinm¢n(n + 1)P(cos 0)F
oinmg 1D g
meosme L SOLL g, (B.10)

where p = kor, P/" is the associated Lergendre function and z, is a spherical

Bessel function. The superscript (3) in Egs. (B.5) and (B.6) indicate that we
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must represent z,(p) by the spherical Bessel function of the third kind hY (p). the

scattering coefficients a,, and b, are

i ma) (@) — @), (ma)

T (ma)e, (@) — (@)U (ma) (B.1)
o) )

b = ) () — mEn (@) (ma) (B.12)

where m = 2, x = korg, and ¥y (2) = zj1(2) and & (z) = zhgl)(z) are the Riccati-
Bessel functions which relate to the spherical Bessel functions of the first and the
third kinds, respectively. The prime denotes differentiation with respect to the

argument.

In the Egs. (B.5) and (B.6), the terms n = 1 correspond to the dipole fields,
n = 2 correspond to the quadrupole fields and so on. To calculate the electric and
magnetic polarizabilities, we keep only the dipole terms (n=1) and rewrite Egs.

(B.5) and (B.6) as

1 o/ / 7 1 Aeiko’r‘
E = kg (B x (6megiar /kg)Eox) X T 7‘

47'('80

1 K ,
_(67T€OZ.CL1/]€§)E0)A(] (ﬁ = Z—O> elkor}

r2
2o

+ [Bf' (f‘ . (67r50ia1/k§)E0§<)

6ikor
k‘?(r x (6miby /ky)Hoy) . (1 S .1 )7 (B.13)

2 ikor
H = Zk (7 x (6megiar [k )EOX)6 <1— , )
r

7

1
+E{k§(f~ x (6miby /kg)Hoy) x fer + [38(2 - (6mibi/k])Hoy)

1 ik »
: 3 o 0 ikor
—(67iby /k§)Hoy] (73 - )e 0 } (B.14)
Comparing Eqgs. (B.13) and (B.14) with the standard forms of the electric +

magnetic dipole fields [48]

E = 47?150 {k2(f X p) X er:r + [32(¢ - p) — P (T—l?’ — i—l;)eikr}
—%/ﬁ(f x m) 6: <1 - %) (B.15)
+%{kz2(f X m) X er:T + [3%(F - m) — m] (r—lg - ;—];) lkr}j

(B.16)
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we can see that the electric and magnetic dipole moments of the spheres are

P = (67?50ia1//€8)E0f< (B.17)
m = (6miby/kd)Hoy (B.18)
(B.19)

Since Egx and Hgy are the valuee of the external fields at the center of the sphere,
we can conclude that the electric and magnetic polarizabilities of this sphere are
o, = 6megiay/ki (B.20)

Oy = 6miby /K (B.21)



Appendix C

Derivation of the Effective Coeflicients

From Eq. (6.25), equating the terms with the same power of \ yields for \°

to \* as

Eo

(cc — em)Ea = :
0 vV v

(e; — em)E AV,

Eqg

xEy = | 15 = en)EY + XEYPEY aV,
Vo,

= / (g = em)E* + 2),(E” - EV)EY
Vo

+XZ|E01|2E11 +nZIEOZ|4EOZ} d‘/,

neEg =

Eq
%
+2XZ(EOZ X EQZ')EO'L + XZ’EOZ|2E2'L + 47’]1(EOZ X Eli)2|E0i|2E0i

5eEg — / [(51 . €m)E3i o X2|E1Z|2EOZ 4 2XZ(EOZ . Eli)Eli
Vi

MeE(l)O _ 70 . s [(gi _ &?m)E4’ + Xz'|Eh‘2Eh + 2Xi(EOZ . E12>E2z

+XZ’E01|2E31 + 2n2’E02|2|E1’L|2E02 + 4nZ(EOZ B Eli)QEOi

(C.1)

(C.2)

(C.4)

+477Z‘E01’2(E02 . Eli)Eli + 47’]1(EDZ X EQi)‘EOiPEOi + 772|E01‘4E22] dV

(C.5)

SO €e, Xes Ne, 0e and . can be obtained from Eqs.(C.1)-(C.5), respectively.



Appendix D

Determination of the Potentials in

Composite Constituents

Using the power series Eq.(6.41) in Egs. (6.37) - (6.40), we obtain:

‘N
Egcosa(M +N) = S (M+KNAE + 3 X2 (44 + BuB)AEF

klm ™

k
/N
+X 7’6 (AuAs + BiB)(AmAn + By By) A EofHtmente,

k,,m,n,p

(D.1)

M
Eosina(M + N) = S (KM +N)BiEo" + 3 X2 (A,4, + BB BBy

Em
k k,l,m
ni M E+l+m+n+
+ ) (ARA; 4+ ByB))(Am A, + BrnB,)B,Eq P
k,l,mmn,p 4
(D.2)
Eycosa — AERM
ZCkE’g:( 0 M—Zﬁf #Fo) : (D.3)
k
Eycosa — BLEMM
ZDkE’S:( 0 M—ijv #Fo) , (D.4)
k

where k, [, m, n and p are the integers that range from 0 to co. By equating the
term proportional to the same power of Eg, we obtain Ay, = By = Cy, = D, =0

for k is even and:

M+ N

Al = COS OCW_;(]V, (D5)
M+ N

B, —sina—t 2 (D.6)
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N(A2 + B) A

Xi
Ay = — D.7
3 €m(M+ KN) ) ( )
XiM(A12 + 312)31
B, = — D.
1 N
A = - [’im {2(A1A3 4 BiBs) AL+ (A2 + Bf)A;»,}
niN 2 212
e {(a+B2ad], (D.9)
1 M
By = ~ir v [Xgm {2(A1A3 4 BiBs)By + (A% + 312)33}
ni M 2 212
+ o {(A1 + B17) Bl}]7 (D.10)
1 N
4 =~ [Xgm {2(A1A3 + B1Bs)As + (A2 + B A,
+2(A1As +BiBs)A; + (A2 + Bl2)A5}
N
+77€ {4(A1A3 + B1Bs>(A12 + B12)A1
+(A® + 312)2143}], (D.11)
1 M
By = TKMEN [Xgm {2(A1A3 + B B3)Bs + (A32 + B32)B1
12(A,As + BiBs) By + (A2 + 312)35}
; M
+”€ {4(A1A3 + BiBa) (A2 + Bi2)B,
+H(A? + 312)233}]7 (D.12)
(cosa — A)M
— D.1
Cl M _ N ) ( 3)
(sinaw — By)N
D = D.14
Mo N (D.14)
A M
= k= D.1
Ck M—N’ 37 57 77 ( 5)
—B.N
Dy = —* k=3,5,17,.. (D.16)
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Thus, from Egs. (6.34) and (6.33), the potentials in the inclusions and the host

medium are obtained as follows:

(I)i = —(Alx + Bly)EO — (Agﬂ? + Bgy)E03
—(As7 + Bsy)Eo® — (A7z + Bry)Ey" + ..., (D.17)
d" = (Ciaexp(—u)cosv — acosacoshucosv

+D; aexp(—u)sinv — asin asinh usinv) Fy
+(Csaexp(—u) cos v + Dsa exp(—u) sinv) B3
+Csa exp(—u) cos v + Dsa exp(—u) sinv) By

+Craexp(—u) cosv + Dyaexp(—u)sinv)Ef +... . (D.18)

It turns out that, the terms on the right hand side of Egs. (D.17) and (D.18) with
Egk“ correspond to the perturbative potentials ®* and ®*™ of order k. Thus the

perturbative electric fields in the inclusion (E* = —V®*) are

E¥ = B2 ( Ay 1% + Bopi1y). (D.19)
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