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−(E1 sinωt+E3 sin 3ωt)û · x̂ is imposed on the surface of the com-

posite, which try to establish the electric field (E1 sinωt+E3 sin 3ωt)û
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x̂, ŷ, ẑ unit vectors of Cartesian coordinates

u, v elliptic cylindrical coordinates

εr1 relative permittivity of group 1 spheres

εr2 relative permittivity of group 2 spheres

ε(∞) high-frequency limit of the permittivity

ωL longitudinal optical phonon frequency

ωT transverse optical phonon frequency

γ damping coefficient

r position vector

t time

e electron charge

me electron mass

N number of electrons per unit volume

ωp plasma frequency
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r, θ, ϕ spherical coordinates

r̂, θ̂, ϕ̂ unit vectors of spherical coordinates

N1 number of group 1 spheres per unit volume

N2 number of group 2 spheres per unit volume

f1 volume fraction of group 1 spheres

f2 volume fraction of group 2 spheres

εeffr effective relative permittivity

µeff
r effective relative permeability

αe, αm electric and magnetic polarisabilities

αe1, αm1 electric and magnetic polarisabilities of spheres of group 1

αe2, αm2 electric and magnetic polarisabilities of spheres of group 2

an, bn 2n-pole electric and magnetic scattering coefficients

a
(1)
1 , b

(2)
1 electric and magnetic dipole scattering coefficients of spheres of

group 1

a
(2)
1 , b

(2)
1 electric and magnetic dipole scattering coefficients of spheres of

group 2

neff effective refractive index

¯̄εr relative permittivity tensor

¯̄µr relative permeability tensor

εrx, εry, εrz diagonal components of a relative permittivity tensor

µrx, µry, µrz diagonal components of a relative permeability tensor

ϕ propagation angle

TE transverse electric

k1 wave vector of an incident plane wave

kt wave vector of a transmitted plane wave
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St average Poynting vector of a transmitted plane wave

kx complex wave number along the x-direction

ky complex wave number along the y-direction

Ei electric field inside inclusion

Em electric field inside medium

Di electric displacement inside inclusion

Dm electric displacement inside medium

p volume packing fraction of inclusion

εi permittivity or the first-order dielectric coefficient of inclusions

εm permittivity or the first-order dielectric coefficient of medium

εe the effective first-order dielectric coefficient

χi the third-order dielectric coefficient of inclusions

χe the effective third-order dielectric coefficient

ηi the fifth-order dielectric coefficient of inclusions

ηe the effective fifth-order dielectric coefficient

δe the effective seventh-order dielectric coefficient

µe the effective ninth-order dielectric coefficient

ε∗nω the effective first-order dielectric coefficient at nth harmonics

χ∗
nω the effective third-order dielectric coefficient at nth harmonics

η∗nω the effective fifth-order dielectric coefficient at nth harmonics

δ∗nω the effective seventh-order dielectric coefficient at nth harmonics

µ∗
nω the effective ninth-order dielectric coefficient at nth harmonics

ε∗ωm(3ω)n;kω the effective first-order coupled coefficient at kth harmonics
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χ∗
ωm(3ω)n;kω the effective third-order coupled coefficient at kth harmonics

η∗ωm(3ω)n;kω the effective fifth-order coupled coefficient at kth harmonics

δ∗ωm(3ω)n;kω the effective seventh-order coupled coefficient at kth harmonics

µ∗
ωm(3ω)n;kω the effective ninth-order coupled coefficient at kth harmonics



CHAPTER I

Introduction

Composites, structures consisting of two or more constituents that differ in

chemical compositions, are very useful in many fields of pure and applied sciences.

This is because their structures and constituent materials can be adjusted to pro-

vide effective bulk properties that are more suitable for applications than those

found in natural materials. In some cases, the effective properties can differ con-

siderably to that of the constituents. For example, if we combine a metal (high

conductivity) with insulator (low conductivity) in alternating layers [1], we obtain

an anisotropic composite with low conductivity in a direction perpendicular to the

layers but high conductivity in a parallel direction. By combining two materials

with positive thermal expansion coefficients into a porous structure [2], a nega-

tive thermal expansion coefficient can be achieved, resulting in a composite with

decreasing volume when its temperature increases.

Among the physical properties of composites, electromagnetic properties

are also the subject that have widely been studied and are the main topic of our

work. This thesis is divided into two parts, concerning with linear and nonlinear

composites, respectively. The adjective ”linear” or ”nonlinear” indicate whether

that the composite constituents behave (in D−E or B−H relations) linearly or

nonlinearly, when the composites are subject to external electromagnetic fields.

The introduction and scope for each part are provided in subsequence sections.



2

1.1 Linear Electromagnetic Composites

One of the mainstream in the study of linear electromagnetic composites is

to obtain a negative index of refraction. The original idea of negative refractive

index date back to 1968 when a Russian physicists, Victor Vesselago [3] proposed

the theoretical analysis of lossless materials with simultaneously ε < 0 and µ < 0,

and showed that certain uncommon phenomena occur such as a negative phase

velocity, a negative refraction and a left-handed relation of the vectors E,H,k of

a plane wave (hence the term left-handed media). These phenomena are shown in

Figs. 1.1 and 1.2.

Figure 1.1: Relations of E,H,k of plane waves in (a) a medium with ε > 0 and

µ > 0, and (b) a medium with ε < 0 and µ < 0. This figure also shows (a) a

positive phase velocity where the phase velocity is parallel to the Poynting vector

and (b) a negative phase velocity where the phase velocity is anti-parallel to the

Poynting vector.

Vesselago also concluded that the refractive indexes of such media are nega-

tive, causing a negative angle of refraction between normal and left-handed media

(Fig. 1.2). In 2000, Pendry [4] then showed that a planar lenses (Fig. 1.3) made

by a medium with ε = −1 and µ = −1 can focus electromagnetic waves on an

area smaller than λ2, which exceeds the resolution limit of ordinary lenses. Thus

the image produced by this lenses is extremely sharp as if it is an object itself.

Because of this super lenses idea that negative index materials have received

many attentions in the past few decades. However, naturally-occurring materials
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Figure 1.2: (a) phase velocity and (b) Poynting vector refractions when a plane

wave travels from a normal medium with ε > 0 and µ > 0 into a medium with

ε < 0 and µ < 0. This figure shows that the angle of refraction (θt) is negative.

Object Image

ε = −1

µ = −1

Figure 1.3: A planar slab made by a medium with ε = −1 and µ = −1. This slab

can be used as a lenses with extraordinary resolution power [4].

with simultaneously negative ε and µ have never been reported. So researchers

have employed man-made structure materials or composites in order to obtain

this property. For example, Pendry et al. [5, 6] designed composites composed

of a periodic array of thin metallic wires and split ring resonators (SRRs), which

provide a negative permittivity and a negative permeability, respectively. Smith

et al. [7] used a certain combination of thin wires and SRRs to fabricate the

first negative index composite which exhibited a negative refraction at microwave

frequencies. For infrared regime, Wheeler et al. [8] designed a negative index

composite consisting of periodic array of LiTaO3 spheres coated by a drude model
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semiconductor. Yannopapas [9] investigated two structures that can provide neg-

ative refractive indexes at infrared frequencies. The first one is a combination

of alternating layers of LiTaO3 and n-type Ge spheres and the second one is a

fcc crystal whose lattice sites are randomly occupied by LiTaO3 and n-type Ge

spheres. For optical frequencies, Podolskiy et al. [10] reported a nanostructured

composite consisting of a periodic array of pairs of parallel gold nanorods.

For isotropic lossless materials (materials that do not absorb electromagnetic

energies, and can be characterized by real ε and real µ), a negative phase velocity

implies a negative refraction and vice versa. Hence, the negative phase velocity has

also been used as a criterion for isotropic lossy materials (materials that absorb

electromagnetic energies, and can be characterized by complex ε and complex

µ), to possess a negative refractive index. The general condition for the negative

phase velocity of a uniform plane wave in isotropic lossy media is formally proposed

by McCall et al. [11], including Re{ε} < 0 and Re{µ} < 0 as a special case. A

simpler equivalent condition has been presented by Depine and Lakhtakia [12] and

its applicability to active media have been discussed in Refs. [13, 14]. However, in

the problems of refraction concerning with lossy media, the transmitted waves are

nonuniform [15] and their negative phase velocities do not always yield the negative

refraction [16]. So in order to obtain a general criterion for the negative refraction

in a certain medium, we should consider a refraction of the nonuniform transmitted

wave rather than the phase velocity of a uniform plane wave propagation.

Because most negative index composites fabricated so far are anisotropic

[7, 10], there are also many theoretical works concerning with negative refractions

in anisotropic media. For example, Mckay and Lakhtakia [16] studied the negative

phase velocity, negative refraction and counter position in a bianisotropic medium

and showed that the positive phase velocity and the negative refraction can coexist.

Woodley and Mojahedi [17] studied backward wave phenomena in anisotropic

materials, where the angle between the phase and group velocities varies between

900 and 2700. Ding et al. [18] presented the conditions for the negative phase

velocity and the anomalous refraction in a biaxial anisotropic lossless medium,

whilst Lui and Gao [19] further generalized the work of Ding et al. by covering
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oblique orientations of the principal axes.

In this part, the scope of this thesis is as follows. First, the detailed deriva-

tion of the Lakhtakia-Depine relation is presented (chapter 3), then its special case,

namely, Re{εr} < 0 and Re{µr} < 0, where εr and µr are the relative permittivity

and the relative permeability, respectively, is used to design a negative index com-

posite at infrared frequencies (chapter 4). The structure of the composite consists

of a randomly distributed two groups of LiTaO3 and Drude semiconductor spheres

randomly distributed in an otherwise free space. This structure is different from

that of Yannopapas [9] because the spheres are not constrained to lattice sites

of a fcc crystal. We also use a different method, namely, the resonance methods

presented by Wheeler et al. [8] and arrive at a condition for calculating the plasma

frequency of drude semiconductor spheres. This condition depends on both the

packing fractions of the two groups of spheres and reduces to that presented in [8]

when the composite consists solely of Drude semiconductor spheres.

As mentioned earlier, the Lakhtakia-Depine condition is derived from the

negative phase velocity condition of the uniform plane wave and does not guarantee

the negative refraction. However if we manage to make the electric and magnetic

losses (Im{ε} and Im{µ}) to be very small, it can approach the Vesselago case

and can be used as an approximate condition for a negative refraction.

Finally, the negative phase velocity and the negative refraction in anisotropic

biaxial lossy media are investigated (chapter 5) and the general conditions for

the two phenomena are derived. We also show numerically that the negative

refraction can occur even if the phase velocity of the transmitted wave is positive.

This emphasizes the fact that a negative phase velocity should not be used as a

criterion for a negative refraction when dealing with lossy or anisotropic media.

1.2 Nonlinear Dielectric Composites

The effective response of nonlinear composites has attracted considerable re-

cent attention due to the recognition of many phenomena caused by nonlinearity,
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such as the dielectric breakdown in metal-insulator composites [20], strong en-

hancement of effective susceptibilities by local field effects [21-23] and the second-

and third-harmonic generations in nonlinear dielectric composites [24, 25]. Several

methods have been developed to estimate the effective DC properties of compos-

ites, such as the average energy method [26, 27], generalized Landau method [28],

variational method [29] and the decoupling approximation [30]. For AC properties,

Gu et al. [31] have formulated a theory for estimating the effective response of

composites with an applied AC field of the form E0 sinωt, based on the generalized

Landau method and quasi-static approximation. Wei et al. further generalized

the theory to cover composites under both DC and AC applied fields [32, 33] and

under both fundamental and third-harmonic AC fields [34]. Recently, the general

connection between DC and AC effective coefficients for the simple applied field

E0 and E0 sin(ωt) has been proposed [35], which can be applied to all isotropic

and weakly nonlinear composites.

Because the geometry of composite constituents can greatly affects the effec-

tive properties of composites, many published work have been devoted to the cases

of nonspherical or noncylindrical inclusions. For example, the effective response of

composites with slightly nonspherical inclusions was evaluated at finite frequen-

cies [36], the shape effect of strongly nonlinear dielectric composite with elliptic

cylindrical inclusions was evaluated by the decoupling approximation [37] and the

effect of the orientation of ellipsoidal inclusions on the effective response has been

analyzed by Giordano [38]. Lakhtakia et al. [39] has developed the Maxwell Gar-

nett formalism for weakly nonlinear bianisotropic composites in which both the

ellipsoidal inclusions and medium are anisotropic. Lakhtakia and Lakhtakia [40]

generalized the Bruggeman formalism to anisotropic nonlinear composites with

randomly distributed and similarly oriented ellipsoidal inclusions. Mackay [41] has

used the strong-permittivity-fluctuation theory, which incorporates higher-order

statistics of phase distributions, to estimate numerically the effective properties

of anisotropic composites with third-order nonlinearity ellipsoidal inclusions. Gao

et al. [42] have investigated strongly nonlinear two-dimensional isotropic com-

posites in which one component is elliptic cylindrical in shape while the other is
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perfect cylinders. The third-order enhancement of two dimensional semiconductor-

insulator composites with identical elliptic cylinders has been explored by Yang

et al. [43], where the frequency dependence and the effect of geometric anisotropy

were reported. The treatment of two dimensional and isotropic nonlinear elliptical

composites, including a distribution of inclusion shapes was also reported recently

by Thongsri and Natenapit [44]. The analytic expression of the third-order effec-

tive nonlinear coefficient was derived for weakly nonlinear and dilute elliptical in-

clusions and the effective properties of high-order nonlinearity enhancement could

be predicted but in numerical forms.

For more accurate predictions of nonlinear responses, the higher-order effec-

tive coefficients can not be neglected in many cases. However, the scope of the

theoretical works reported to date concerning the higher-order response is very

limited. Therefore, in this part, we focus on the higher-order nonlinear responses

of weakly nonlinear composites. The structure investigated consists of weakly

nonlinear inclusions distributed in a linear dielectric host. The nonlinearity in

the inclusions is kept up to the fifth order while most published works considered

nonlinearity of the composite constituents up to only the third order. The gen-

eral formulae for computing the effective DC coefficients up to the ninth-order are

derived using the perturbation method and the Landau formula (Sections 6.1.2

and 6.1.3). Then we apply these formula to predict the inclusion shape effects on

the effective DC response of a weakly nonlinear composite with elliptic cylindrical

inclusions (Sections 6.1.4 and 6.1.5). Finally, the quasi-static AC responses of

weakly nonlinear composites subject to an applied AC electric field of the forms

E0 sin(ωt) and E1 sinωt+E3 sin 3ωt are investigated, and the general relationships

between effective DC and AC coefficients are derived (Sections 6.2.1 and 6.2.2).

The methodologies and results shown in this nonlinear part are from our published

work in Refs. [35] and [45].



CHAPTER II

Theoretical Background

In this chapter, some basic concepts of electromagnetic fields in continuous

media are briefly introduced. The definitions of the (complex) permittivity and

the (complex) permeability are given. Losses due to electromagnetic wave prop-

agations are investigated, resulting in the condition for the imaginary parts of

the permittivity and the permeability. Next, nonlinear dielectric media under a

static field is considered and the definitions of the nonlinear dielectric coefficients

are given. Because the inclusions of nonlinear dielectric composites investigated

in this thesis have an elliptic cylindrical shape, the general solution of Laplace

equation in elliptic cylindrical coordinates is also demonstrated.

2.1 Electromagnetic Fields in Linear Media

2.1.1 Complex Permittivity and Complex Permeability

The electromagnetic fields in a macroscopic medium without free charge and

free current densities satisfy Maxwell Equations

∇ ·D = 0, (2.1)

∇× E = −∂B
∂t
, (2.2)

∇ ·B = 0, (2.3)

∇×H =
∂D

∂t
, (2.4)

where the electric displacement (D) and the magnetic induction (B) relate to the

electric field (E) and the magnetic field intensity (H) via the Polarization (P) and
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Magnetization (M) of the medium, respectively, as

D = ε0E+P, (2.5)

B = µ0(H+M). (2.6)

In order to simplify this type of problem, it is customary to Fourier analyze

the fields as

F(r, t) =

∫ ∞

−∞
F̃(r, ω)e−iωtdω, (2.7)

where F̃(r, t) represents all the vector fields that appear in the the Maxwell equa-

tions together with the constitutive relation (2.5) and (2.6). When look closely,

we may notice that Eq. (2.7) is similar to the linear combination of the complex

field F̃(r, ω)e−iωt with different frequencies (ω). Therefore it is useful to study the

effects of these complex fields at a particular frequency then get the solution of

real problems by the linear combination (2.7). When using the Fourier integrals,

the Maxwell equations become

∇ · D̃(r) = 0, (2.8)

∇× Ẽ(r) = iωB̃(r), (2.9)

∇ · B̃(r) = 0, (2.10)

∇× H̃(r) = −iωD̃(r), (2.11)

with

D̃(r) = ε0Ẽ(r) + P̃(r), (2.12)

B̃(r) = µ0(H̃(r) + M̃(r)), (2.13)

where the ω dependence has been omitted for compact notations. A number of

theoretical models employed to analyze the response of macroscopic media under

these complex fields indicate that the polarization and the magnetization should

be written as

P̃ = ε0χ̃E(ω)Ẽ, (2.14)

M̃ = χ̃M(ω)H̃, (2.15)
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where χ̃E(ω) and χ̃M(ω) are the complex electric and magnetic susceptibilities, re-

spectively. These quantities are complex because they come out from the analyses

of responses of media with complex applied fields, for example, the well-known

Drude model. With these two relations, the D̃ − Ẽ and B̃ − H̃ relations can be

constructed as

D̃ = ε(ω)Ẽ, (2.16)

B̃ = µ(ω)H̃, (2.17)

where ε = ε0(1 + χ̃E) and µ = µ0(1 + χ̃M) are the complex permittivity and the

complex permeability, respectively.

2.1.2 Electromagnetic Losses in Linear Media

In electromagnetic theory, the magnitude and the direction of the power flow

can be calculated by the average Poynting vector

Sav =
1

2
Re{Ẽ× H̃

∗}. (2.18)

So the average energy per unit time flowing out of an arbitrary closed surface S is

1

2
Re

{∮
S

Ẽ× H̃
∗ · n̂da

}
=

1

2
Re

{∫
V

∇ · (Ẽ× H̃
∗
)dV

}
. (2.19)

Using ∇ · (Ẽ× H̃
∗
) = H̃

∗ · ∇ × Ẽ− Ẽ · (∇× H̃
∗
) = iω(µ|H̃|2 + µ|Ẽ|2), we get

1

2
Re

{∮
Ẽ× H̃

∗ · n̂da
}

=
1

2
Re

{
iω

∫
V

(µ|H̃|2 + ε|Ẽ|2)dV
}

= −ω
2
Im

{∫
V

(µ|H̃|2 + ε|Ẽ|2)dV
}

1

2
Re

{∮
Ẽ× H̃

∗ · n̂da
}

= −ω
2

∫
V

(Im{µ}|H̃|2 + Im{ε}|Ẽ|2)dV. (2.20)

Since there should be some part of the electromagnetic energy converted into heat,

the right-hand side of Eq. (2.20) should be negative, which means that∫
V

(Im{µ}|H̃|2 + Im{ε}|Ẽ|2)dV > 0. (2.21)

The two terms on the left side of Eq. (2.21) are losses due to the electric and

magnetic fields, respectively. Since the energy dissipations from the fields should
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always be positive, we assume that

Im{ε} > 0 and Im{µ} > 0, (2.22)

which indicates that ε and µ must lie on the upper half of the complex plane.

This is the so-called passivity condition, which expresses the fact that media can

only absorb the energy but not emit. Moreover, this condition is satisfied by many

models of the permittivity and permeability concerned in our analyses and is the

basic assumption of the derivation of the negative index conditions in Chapters 3

and 5.

2.2 Nonlinear Dielectric Media

2.2.1 Linear and Nonlinear Polarizations

For dielectric media in a static field, the polarization relates linearly to the

electric field as

P = ε0χEE, (2.23)

where χE is the linear (first-order) susceptibility. So the electric displacement

takes the form

D = ε0E+P = ε0(1 + χe)E = εE, (2.24)

where ε is the permittivity or the first-order dielectric coefficient. Notice that Eqs.

(2.23) and (2.24) are similar to Eqs. (2.14) and (2.16), except that the electric

field is now static and the parameters χE and ε are real.

If the electric field is high enough, the polarization will also depend on the

higher powers of the electric field. For example, suppose that the electric field is

along an x-axis, the polarization takes the form

Px = ε0χ
(1)
E Ex + ε0χ

(2)
E E2

x + ε0χ
(3)
E E3

x + ... (2.25)

where χ
(n)
E is called the nth-order nonlinear susceptibility. The condition for

isotropy implies that the reversal of the electric field (Ex → −Ex) should yields
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the reversal of the polarization (Px → −Px). Thus the terms with even powers

should vanish, so we get

Px = ε0χ
(1)
E Ex + ε0χ

(3)
E E3

x + ε0χ
(5)
E E5

x + ... . (2.26)

This can be written in full vector notation as

P = ε0χ
(1)
E E+ ε0χ

(3)
E |E|2E+ ε0χ

(5)
E |E|4E+ ..., (2.27)

where χ
(n)
E is the nth-order nonlinear susceptibility. Hence the electric displace-

ment also takes the power series form

D = ε0E+P = εE+ χ|E|2E+ η|E|4E+ ..., (2.28)

where ε = ε0(1 + χ
(1)
E ), χ = ε0χ

(3)
E , η = ε0χ

(5)
E , ... are called the first-, third- and

fifth-order dielectric coefficients, respectively.

2.3 Laplace Equation in Elliptic Cylindrical Co-

ordinates

In electrostatics, the electric potentials in linear dielectric media satisfy

Laplace equation:

∇2Φ = 0. (2.29)

If the shapes of dielectric media are elliptic cylinders, it is useful to employ elliptic

cylindrical coordinates (u, v) which relates to the cartesian coordinates as

x = a coshu cos v, (2.30)

y = a sinhu sin v, (2.31)

where a is the focal length of the coordinate system. Fig. 2.1 show the character-

istics of the elliptic cylindrical coordinates.

In terms of the elliptic cylindrical coordinates, the Laplace equation becomes

1

a2
√

sinh2 u+ sin2 v

(
∂2Φ

∂u2
+
∂2Φ

∂v2

)
= 0, (2.32)
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Figure 2.1: Elliptic cylindrical coordinates.

which has the general solution of the form [44]

Φ(u, v) =
∞∑
n=0

[
(An cosh(nu) +Bne

−nu) cos(nv) + (Cn sinh(nu) +Dne
−nu) sin(nv)

]
.

(2.33)

This solution will be employed when solving the electric potentials of elliptic

cylindrical inclusions in Chapter 6.



CHAPTER III

Lakhtakia-Depine Condition for a

Negative Refractive Index

In this chapter, we show the derivation of a negative index condition using

the negative phase velocity phenomena, in which the energy flow is antiparallel

to the phase velocity of the wave. Although, in general, this condition does not

imply a negative refraction, it can still be a good approximation for a negative

refraction when the electric and magnetic losses (Im{ε} and Im{µ}) are small.

Consider a plane electromagnetic waves propagates along the z-axis in a

linear isotropic medium whose relative permittivity and relative permeability are

given by εr(ω) = ε(ω)/ε0 and µr(ω) = µ(ω)/µ0, respectively, and subject to the

passivity condition (Eq. (2.22))

Im{εr} > 0 and Im{µr} > 0 (3.1)

Let the electric field be along the x-axis so that

Ẽ(r, t) = E0e
i(kz−ωt)x̂, (3.2)

where E0 is the amplitude and k is the wave number. It follows from Maxwell

equations that

∇× Ẽ(r, t) = iωB̃(r, t) = iωµ0µr(ω)H̃(r, t), (3.3)

∇× H̃(r, t) = −iωD̃(r, t) = −iωε0εr(ω)Ẽ(r, t). (3.4)

Hence we can obtain the magnetic field intensity as

H̃(r, t) =
1

iωµ0µr(ω)
∇× Ẽ(r, t) =

kE0

ωµ0µr(ω)
ei(kz−ωt)ŷ. (3.5)
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Applying the curl of Eq. (3.3) and using Eq. (3.4) yield

∇×∇× Ẽ(r, t) = iωµ0µr(ω)∇× H̃(r, t)

∇(∇ · Ẽ(r, t))−∇2Ẽ(r, t) = ω2ε0µ0εr(ω)µr(ω)Ẽ(r, t)

k2Ẽ(r, t) =
ω2

c2
εr(ω)µr(ω)Ẽ(r, t). (3.6)

Therefore we obtain the dispersion relation as

k =
ω

c

√
εr(ω)µr(ω). (3.7)

The magnitude and direction of the power flow can be determined by the

Poynting vector:

S =
1

2
Re{Ẽ(r, t)× H̃∗(r, t)},

=
|E0|2

2µ0

Re

{
k

µr(ω)

}
exp(−2Im{k}z)ẑ. (3.8)

Since from Eq. (2.22), the relative permittivity and the relative permeability must

lie on the upper-half of the complex plane. So we write

εr(ω) = |εr(ω)|eiϕε , 0 ≤ ϕε ≤ π, (3.9)

µr(ω) = |µr(ω)|eiϕµ , 0 ≤ ϕµ ≤ π. (3.10)

Consequently, the wave number takes the form

k± = ±ω
c

√
|εr(ω)||µr(ω)|ei(ϕε+ϕµ)/2, 0 ≤ (ϕε + ϕµ)/2 ≤ π, (3.11)

hence

k±
µr(ω)

= ±ω
c

√
|εr(ω)|
|µr(ω)|

ei(ϕε−ϕµ)/2, − π/2 ≤ (ϕε − ϕµ)/2 ≤ π/2. (3.12)

Using Eq. (3.12) in (3.8), we can conclude that the choice of k+ always corresponds

to the power flow in +z direction and the choice of k− always corresponds to the

power flow in −z direction. Rewriting Eq. (3.2) in terms of the real and imaginary

parts of the wave number, we get

Ẽ±(r, t) = E0e
−Im{k±}ei(Re{k±}z−ωt)x̂. (3.13)
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To derive the conditions for negative refractive index, we use the condition that

the phase velocity and the power flow must be in the opposite directions. Since

k+ corresponds to the power flow in the +z direction and k− corresponds to the

power flow in −z direction, It can be seen from the exponential in the right hand

side of Eq. (3.13) that the phase velocity is antiparallel to the power flow if

Re{k+} < 0 or Re{k−} > 0, (3.14)

With the definition of complex refractive index n = ck/ω, Eq. (3.14) can be

written as

Re{n+} < 0 or Re{n−} > 0, , (3.15)

where n+ and n− are the refractive index that lie on the upper half and the

lower half complex plane, respectively. Using the result presented in Appendix A,

Eqs. (3.14) can be written in terms of the relative permittivity and the relative

permeability as

ε′r
√
µ′2
r + µ′′2

r + µ′
r

√
ε′2r + ε′′2r < 0, (3.16)

where ε′r = Re{εr}, ε′′r = Im{εr}, µ′
r = Re{µr} and µ′′

r = Im{µr}. It is obvious

that if ε′r < 0 and µ′
r < 0, Eq. (2.39) is satisfied. This simple condition will be

employed later in designing our composites.



CHAPTER IV

A Composite with Negative Refractive

Index at Infrared Frequencies

In this chapter, we present a simple structure of composite which consists

of two types of randomly distributed nonmagnetic spheres. Under the application

of the external electromagnetic fields with the wavelength much larger than the

diameters of the spheres (long-wavelength or quasi-static limit), Clausius-Mossotti

relations [46] can be employed to evaluate the effective permittivity and the effec-

tive permeability of the composite. Then the design procedure for making their

real parts to be both negative are presented.

Composites of Randomly Distributed Spheres

Effective Permittivity and Effective Permeability

Consider a composite of randomly distributed two groups of spheres (Figure

4.1). The first one have radius r1 and the relative permittivity εr1 = ε1/ε0 while

the second one have radius r2 and the relative permittivity εr2 = ε2/ε0. Both

groups are assumed to be nonmagnetic so their relative permeabilities are equal

to unity.

If the wavelength of an electromagnetic wave that passes through the com-

posite is much larger than the sizes of the spheres, the diffraction effects can be

omitted so the structure of the composite can not be resolved then it can be treated

as a homogeneous effective medium. This condition is called the long-wavelength
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group 1

group 2

Figure 4.1: A composite consisting of two group of spheres randomly distributed

in a free space

or quasi-static limit. The effective relative permittivity and the effective rela-

tive permeability of the composite can be estimated using the Clausius-Mossotti

relations for mixtures of two types of molecules [46]

N1αe1 +N2αe2

3ε0
=

(
εeffr − 1

εeffr + 2

)
(4.1)

N1αm1 +N2αm2

3
=

(
µeff
r − 1

µeff
r + 2

)
, (4.2)

where αe1 and αm1 are electric and magnetic polarizabilites of type 1 molecules,

αe2 and αm2 are electric and magnetic polarizabilites of the type 2 molecules. The

numbers of molecules per unit volume of type 1 (N1) and type 2 (N2) are related

to the volume fractions via f1 =
4
3
πr3N1 and f2 =

4
3
πr3N2, respectively.

To apply the Clausius-Mossotti relations, each sphere in the composite is

treated as a molecule with both electric and magnetic polarizabilites. From Ap-

pendix B, the electric and magnetic polarizabilities of the first group of spheres

are

αe1 = 6πε0ia
(1)
1 /k30, (4.3)

αm1 = 6πib
(1)
1 /k30, (4.4)

and for the second group are

αe2 = 6πε0ia
(2)
1 /k30, (4.5)

αm2 = 6πib
(2)
1 /k30. (4.6)
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where k0 = ω/c is the free space wave number, and the scattering coefficients

a
(1)
1 , b

(1)
1 , a

(2)
1 and b

(2)
1 take the forms (Appendix B)

a
(1)
1 =

n1ψ1(n1x1)ψ
′
1(x1)− ψ1(x1)ψ

′
1(n1x1)

n1ψ1(n1x1)ξ′1(x1)− ξ1(x1)ψ′
1(n1x1)

, (4.7)

b
(1)
1 =

ψ1(n1x1)ψ
′
1(x1)− n1ψ1(x1)ψ

′
1(n1x1)

ψ1(n1x1)ξ′1(x1)− n1ξ1(x1)ψ′
1(n1x1)

, (4.8)

a
(2)
1 =

n2ψ1(n2x2)ψ
′
1(x2)− ψ1(x2)ψ

′
1(n2x2)

n2ψ1(n2x2)ξ′1(x2)− ξ1(x2)ψ′
1(n2x2)

, (4.9)

b
(2)
1 =

ψ1(n2x2)ψ
′
1(x2)− n2ψ1(x2)ψ

′
1(n2x2)

ψ1(n2x2)ξ′1(x2)− n2ξ1(x2)ψ′
1(n2x2)

, (4.10)

where n1 = ε2r1, n2 = ε2r1, x1 = k0r1, x2 = k0r2, and ψ1(z) = zj1(z) and

ξ1(z) = zh
(1)
1 (z) are the Riccati-Bessel functions which relate to the spherical

Bessel functions of the first and the third kinds, respectively. The prime denotes

differentiation with respect to the argument.

Using Eqs (4.3)-(4.6) in Eqs (4.1) and (4.2), and solving for the effective

relative permittivity and the effective relative permeability yield

εeffr =
k30 + 4πi(N1a

(1)
1 +N2a

(2)
1 )

k30 − 2πi(N1a
(1)
1 +N2a

(2)
1 )

, (4.11)

µeff
r =

k30 + 4πi(N1b
(1)
1 +N2b

(2)
1 )

k30 − 2πi(N1b
(1)
1 +N2b

(2)
1 )

. (4.12)

Expressions (4.11) and (4.12) show that the effective properties of the composite

depend on the frequency of the wave (via k0 = ω/c) along with the densities, radii

and permittivities of the two groups of spheres.

Negative Permeability

We will show how to obtain negative permeability Re{µeff
r } < 0 by using

the sphere of group 1. Notice that the effective permeability (Eq. (4.12)) de-

pends on the properties of spheres of group 1 via the scattering coefficient b
(1)
1 .

If the denominator in Eq. (4.6) approaches zero, b
(1)
1 approaches ∞, resulting in

lim
b
(1)
1 →∞ µeffr = −2. Therefore we focus on the scattering coefficient resonance

condition:

ψ1(n1x1)ξ
′
1(x1)− n1ξ1(x1)ψ

′
1(n1x1) = 0. (4.13)
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By assuming that Im{εr1} is negligible, we arrive at

j0(n1x1) =
sin(n1x1)

n1x1
= 0, (4.14)

which imply that n1x1 = mπ,m = 1, 2, 3, ... . Hence the fundamental resonance

frequency (m = 1) is

ωres
m =

πc

r1
√
εr1

. (4.15)

The resonance frequencies of higher harmonics are not considered here because

they provide smaller wavelengths, which may result in the inapplicability of the

Clausius-Mossotti relations (because the derivation of Clausius-Mossotti relations

is based on the long-wavelength or quasi-static approximation).

Using ωres
m = 2πc/λres0 yields the ratio between the resonance wavelength

and the diameter of the spheres of group 1

λres0

2r1
=

√
εr1. (4.16)

Since the wavelength should be much greater than the diameters of the spheres for

the the Clausius-Mossotti relations to be applicable and for the composite to be

treated as an effective homogeneous medium, we assume the minimum requirement

for the long-wavelength limit condition to be λres0 /2r1 > 10. This assumption was

employed and tested with numerical calculations in [8]. Using this condition in

Eq. (4.16), we obtain the condition for the permittivity of the group 1 sphere as

εr1 > 100, which is required to drive the magnetic scattering coefficient resonance.

The high values of the relative permittivity can be achieved at infrared

frequencies by using polaritonic materials. The relative permittivity of polaritonic

materials satisfy

εr1(ω) = ε(∞)

(
1 +

ω2
L − ω2

T

ω2
T − ω2 − iωγ

)
(4.17)

where ε(∞) is the high-frequency limit of the permittivity, ωL is the longitudinal

optical phonon frequency, ωT is the transverse optical phonon frequency and γ is

the damping coefficient.
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Following the work of wheeler et al. [8], we choose LiTaO3 as the polaritonic

material for the spheres of group 1, which have the following parameters: ε(∞) =

13.4, ωL = 2π × 7.46 THz, ωT = 2π × 4.25 THz and γ = 2π × 0.15 THz.

Figure 4.2 shows that the condition Re{εr} > 100 is satisfied with low

electric loss (Im{εr}) at the frequencies 3.5 − 3.8 THz. At this frequency range,

the value of Re{εr1} is between 100−150, which corresponds (using eq. (4.15)) to

the radii of 3.22− 4.29 µm. Therefore the radii of group 1 spheres must be chosen

within this range.
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Figure 4.2: Characteristics of the relative permittivity of LiTaO3 at frequencies

between 2.7− 4.5 THz

As an example, we consider the effective relative permeability (µeff
r ) of ran-

domly distributed LiTaO3 spheres with the following parameters: f1 = 0.27, f2 = 0

and r1 = 4 µm. Figure 4.3 shows that the resonance frequency, where the Re{µeff
r }

is most negative, is centered about 3.58 THz.
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Figure 4.3: Characteristics of the relative effective permeabilities of the composites

with f1 = 0.27, f2 = 0 and r1 = 4 µm
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Negative Permittivity

For spheres of group 2 to contribute a negative effective permittivity, the

same method described in the previous section can be used to drive the resonance

in a
(2)
1 . However, it turns out that the resonance frequency in this case is higher

than that of b
(1)
1 , which requires even higher value of the relative permittivity. So

instead of using the resonance of a
(2)
1 , we use the resonance of εeffr . The scattering

coefficients a
(1)
1 , a

(2)
1 can be expanded as

a
(1)
1 = −i2

3

(
εr1 − 1

εr1 + 2

)
x31 +O(x51). (4.18)

a
(2)
1 = −i2

3

(
εr2 − 1

εr2 + 2

)
x32 +O(x52). (4.19)

Using these series expansions in Eq. (4.11) and setting the denominator to zero,

we get

f1

(
εr1 − 1

εr1 + 2

)
+ f2

(
εr1 − 1

εr1 + 2

)
= 1. (4.20)

Notice that, from the previous section εr1 ≈ 100 so (εr1 − 1)/(εr1 + 2) ≈ 1.

Therefore Eqs. (4.20) becomes

f1 + f2

(
εr2 − 1

εr2 + 2

)
= 1. (4.21)

Solving for εr2 yields

εr2 =
2f1 − f2 − 2

1− f1 − f2
, (4.22)

Because f1 + f2 < 1, the relative permittivity (εr2) given in Eq. (4.22) is always

negative.

It is well known in solid state physics that the permittivity model of free

electron gas distributed uniformly over positively charged cores in the background

can provide the required negative values. This so-called Drude model is depicted

in Fig. 4.4, where the black dots indicate free electrons and the white spheres are

positive background ions. Without applied electric field, electrons are free to roam

around and the collisions can take place between other electrons and positive ions.

If an applied electric field (E) is present, the equation of motion for each electron
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Figure 4.4: Drude model of free electron gas (black dots) on positive ion back-

ground (white spheres).

reads

me
d2r

dt2
= −eE−meγ

dr

dt
, (4.23)

where me is the electron mass, e is the charge of the electron and γ is the damping

coefficient. On the right-hand side of Eq. (4.23), the first term is the electric

force and the second term (the damping term) is due to the effects of collisions

between other electrons and positive ions. Assuming that E and r have the time

dependence e−iωt, we get

r =
1

ω2 + iωγ

eE

me

. (4.24)

If the number of electrons per unit volume is N, the polarization is P = −eNr.

Thus

P = − 1

ω2 + iωγ

e2N

me

E = ϵ0χEE, (4.25)

where χE = − 1
ω2+iωγ

e2N
meε0

. With the definition of the relative permittivity εr2 =

1 + χE, we obtain

εr2 = 1−
ω2
p

ω2 + iωγ
, (4.26)
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where ωp = e2N/meε0 is the plasma frequency. Notice that by neglecting the

damping coefficient (γ), the relative permittivity is negative below the plasma fre-

quency. This permittivity model is valid for metals (since they contains enormous

numbers of free electrons) and also some doped semiconductors (Hence the name

Drude model semiconductor). Because typical metals have plasma frequency in

the ultraviolet region, they are not useful here. However, semiconductors can be

made, via doping process, to have the plasma frequency in the required infrared

region [8]. Thus the Drude model semiconductor will be used as a material for

group 2 spheres.

Substituting Eqs. (4.26) into (4.22) and neglecting the damping coefficient,

we get the condition for the plasma frequency as

ωp = ωres

√
3(1− f1)

1− f1 − f2
, (4.27)

where ωres is the resonance frequency that make the denominator of εeffr in Eq.

(4.11) to be zero. Therefore the value of εeffr should be very high around this

frequency.

As an example, Let consider a structures of randomly distributed Drude

semiconductor spheres. We choose ωres = 2π × 3.58 THz, which corresponds to

the magnetic resonance in the previous section. So, from Eq. (4.24), ωp is about

2π × 6.73 THz. Other parameters are chosen as follows: f1 = 0, f2 = 0.15,

r2 = 4µm and γ = ωp/100. As shown in figures 4.5, The real part of εeffr have the

peak negative value around 3.51 THz.
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Figure 4.5: Characteristics of the relative effective permittivity of randomly dis-

tributed Drude semiconductor spheres. The parameters are ωp = 2π × 6.73 THz,

f1 = 0, f2 = 0.15 and r2 = 4 µm.

Composites of LiTaO3 and Drude semiconductor spheres

Now we combine the two group of spheres made of LiTaO3 and Drude semi-

conductor. The permittivity resonance frequency (In section 4.1.3, it is ωres) are

chosen to be 2π × 3.2 THz in order to prevent the high losses in εeffr and µeffr to

coincide. The composite parameters are as follows: f1 = 0.27, f2 = 0.15, r1 = 4µm

and r2 = 4µm. Fig. 4.6 and Fig. 4.7 show that the effective relative permittivity

and the effective relative permeability are simultaneously negative. The refrac-

tive index is computed as neff =
√
ϵeffr µ

eff
r and ensuring that its imaginary part

is positive so that the Lakhtakia-Depine relation (Eq. (3.16)) is satisfied with

Re{neff} < 0. In Fig. 4.8, the graph of Re{neff} shows negative values around 3.48

to 3.68 THz. Therefore this composite satisfy the Lakhtakia-Depine condition for

negative refractive index around these infrared frequencies.
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Figure 4.6: Characteristics of the relative effective permittivity of randomly dis-

tributed LiTaO3 and Drude semiconductor spheres. The parameters are ωp =

2π × 3.2 THz, f1 = 0.27, f2 = 0.15, r1 = 4 µm and r2 = 4 µm.
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Figure 4.7: Characteristics of the relative effective permeability of randomly dis-

tributed LiTaO3 and Drude semiconductor spheres. The parameters are ωp =

2π × 3.2 THz, f1 = 0.27, f2 = 0.15, r1 = 4 µm and r2 = 4 µm.
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Figure 4.8: Characteristics of the complex refractive index of randomly distributed

LiTaO3 and Drude semiconductor spheres. The parameters are ωp = 2π×3.2 THz,

f1 = 0.27, f2 = 0.15, r1 = 4 µm and r2 = 4 µm.



CHAPTER V

Negative Phase Velocity and Negative

Refraction in Biaxial Anisotropic Lossy

Media

Here, we focus on the characteristics of the plane wave propagations in

biaxial anisotropic lossy media. In the medium principal axes (assumed here to

be the x-, y- and z-axes), the relative permittivity and the relative permeability

tensors take the forms:

¯̄εr =


εrx 0 0

0 εry 0

0 0 εrz

 and ¯̄µr =


µrx 0 0

0 µry 0

0 0 µrz

 , (5.1)

where the tensorial components are complex numbers, which subject to the pas-

sivity conditions:

Im{εri} > 0 and Im{µri} > 0, i = x, y, z. (5.2)

Our investigation is divided into two parts. First we aim to obtain the

general material condition for the negative phase velocity of uniform plane waves,

in which the electric field is polarized along one of the medium principal axes.

Secondly, we attempt to obtain the general condition for the negative refraction

between the biaxial anisotropic lossy medium and free space. In both cases, the

numerical calculations are also performed in order to show the consistency with

the theoretical results.
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5.1 Negative Phase Velocity for Uniform Plane

Waves

Let us consider a uniform plane wave, with a z-polarized electric field, trav-

eling parallel to the xy-plane in a biaxial anisotropic lossy medium as shown in

Fig. 5.1. For this wave, we have

E = ẑE0e
i(kρ̂·r−ωt), (5.3)

H = ¯̄µ−1
r

kρ̂× E

ωµ0

=
kE0

ωµ0

(
sinϕ

µrx

x̂− cosϕ

µry

ŷ)ei(kρ̂·r−ωt), (5.4)

where ρ̂ is the unit vector along the propagation direction and k is the wave

number.

x

y

z

Figure 5.1: A uniform plane wave propagates in the biaxial anisotropic medium.

The electric field polarization is along the z-axis and ϕ is the propagation angle.

From the Maxwell’s equations, the dispersion relation is obtained as follows

k2 =
ω2

c2

(
εrzµrxµry

µrx cos2 ϕ+ µry sin
2 ϕ

)
. (5.5)

For simplicity of our analysis, we write Eq. (5.5) in the simple form:

k2 =
ω2

c2
εrzµre, (5.6)

where

µre =
µrxµry

µrx cos2 ϕ+ µry sin
2 ϕ
. (5.7)
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It can easily be shown that µre also lies on the upper half of the complex plane by

considering its inverse:

1

µre

=
cos2 ϕ

µry

+
sin2 ϕ

µrx

. (5.8)

Since µrx and µry are on the upper half plane, each term on the right and their

sum must lie on the lower half plane. So the inverse of the sum must lie on the

upper half plane.

The average Poynting vector for this wave is given by

S =
1

2
Re{E×H∗} =

|E0|2

2ωµ0

[
x̂Re

{
k cosϕ

µry

}
+ ŷRe

{
k sinϕ

µrx

}]
× exp{−2Im{kρ̂} · r}, (5.9)

and

S · ρ̂ =
|E0|2

2ωµ0

Re{ k

µre

}Exp{−2Im{kρ̂} · r}. (5.10)

This indicates that some information on the alignment of S relative to ρ̂ can be

determined by considering Re{ k
µre

}. Rewrite εrz and µre in polar forms as

εrz = |εrz|eiϕε , 0 ≤ ϕε ≤ π, (5.11)

µre = |µre|eiϕµ , 0 ≤ ϕµ ≤ π. (5.12)

Substituting Eqs. (5.11) and (5.12) into Eq. (5.6) and solving for k, then we get

k± = ±ω
c

√
|εrz||µre|ei(ϕε+ϕµ)/2, 0 ≤ (ϕε + ϕµ)/2 ≤ π, (5.13)

k±
µre

= ±ω
c

√
|εrz|
|µre|

ei(ϕε−ϕµ)/2, − π/2 ≤ (ϕε − ϕµ)/2 ≤ π/2,

(5.14)

where k+ and k− lie on the upper-half and lower-half of the complex plane, re-

spectively. Using Eq. (5.14) in Eq. (5.10), it can be concluded that

S · ρ̂ > 0, for k = k+, (5.15)

S · ρ̂ < 0, for k = k−. (5.16)

These situations are illustrated in Fig. 5.2, in which the unit vectors ρ̂ and ϕ̂

divide the plane into the four regions of Q1, Q2, Q3 and Q4.
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Figure 5.2: The relative direction of S with respect to ρ̂. (a) for S · ρ̂ > 0 amd

(b) for S · ρ̂ < 0.

To satisfy the negative phase velocity condition, the phase velocity must

have a negative projection along the average Poynting vector. The direction of

the phase velocity is determined from Re{k}ρ̂, as can be seen by rewriting the

exponential terms:

ei(k·r−ωt) = e−Im{k}ρ̂·rei(Re{k}ρ̂·r−ωt). (5.17)

Hence, if Re{k} > 0, the phase velocity is in the same direction as ρ̂ and if

Re{k} < 0, it is opposite. Since for k+, the average Poynting vector can lie on

Q1 or Q4, and for k−, it can lie on Q2 or Q3, then the negative phase velocity

condition is satisfied if

Re{k+} < 0 and Re{k−} > 0. (5.18)

This can be recast into the general condition involving the material parameters

(Appendix A) as

Re{εrz}|µre|+Re{µre}|εrz| < 0. (5.19)

This relationship is similar to and can be reduced to the Lakhtakia-Depline relation

[10] for isotropic lossy media. Obviously, a simple condition that will satisfy Eq.
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(5.20) is

Re{εrz} < 0 and Re{µre} < 0. (5.20)

Note that µre depends on the propagation angle (ϕ) as does the conditions (5.19)

and (5.20). The angle-independent condition can be obtained by substituting Eq.

(5.8) into Eq. (5.20). Then, with a little algebra, we get

Re{εrz} < 0, Re{µrx} < 0 and Re{µry} < 0. (5.21)

These results can also be reduced to the isotropic conditions [10] by substituting

εrx = εry = εrz = εr and µrx = µry = µrz = µr.

To support these results, we perform a numerical estimation of the angle

between the average Poynting vector and the phase velocity for two sets of sample

parameters (Figs. (5.3) and (5.4)). Starting from a propagation angle and the

sample parameters, the vectors S and Re{k}ρ̂ are calculated. Then the angle

between these two vectors is computed. In Case 1 (εrz = −0.137 + 0.019i, µrx =

−0.361 + 0.023i and µry = −0.777 + 0.030i), the sample parameters satisfy the

angle-independent condition. So from our theoretical analysis, the phase velocity

should be negative (θ > 900) for all propagation angles (ϕ). The numerical result

(Fig. 5.3a) demonstrates this exact agreement. The general condition (5.19) is

satisfied for all propagation angles (Fig. 5.3b). In Case 2 (εrz = 0.556 + 0.007i,

µrx = −0.361 + 0.023i and µry = −0.777 + 0.030i), the general condition (5.19) is

not satisfied for any propagation angle (Fig. 5.3b), so we expect that the phase

velocity should be positive for any ϕ (the magnitude of θ is less than 900), which

agrees with the numerical result (Fig. 5.4a).
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(a) (b)

Figure 5.3: Case 1. εrz = −0.137 + 0.019i, µrx = −0.361 + 0.023i and µry =

−0.777+ 0.030i. The plot of (a) the angle between S and the phase velocity with

respect to the propagation angle, and (b) the general condition with respect to

the propagation angle.

(a) (b)

Figure 5.4: Case 2. εrz = 0.556 + 0.007i, µrx = −0.361 + 0.023i and µry =

−0.777+ 0.030i. The plot of (a) the angle between S and the phase velocity with

respect to the propagation angle, and (b) the general condition with respect to

the propagation angle.
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5.2 Negative Refraction in a Biaxial Anisotropic

Lossy Media

Consider the problem of refraction and reflection when a z-polarized (TE)

plane wave travels from a free space into a biaxial anisotropic medium, as shown

in Fig. 5.5.

y

x

Figure 5.5: The TE wave incident on the interface between free space and a biaxial

anisotropic medium.

The electric field of the incident wave can be written as

Ei = ẑE0i exp (ik1 sin θi x+ ik1 cos θi y − iωt), (5.22)

and the magnetic intensity is

Hi =
k1 × Ei

ωµ0

=
1

µ0ω
(k1 sin θix̂+ k1 cos θiŷ)× Ei, (5.23)

where k1 = ω/c and k1 is the incident wave vector. Consequently, the electric

fields of the reflected and the transmitted waves are also z-polarized

Er = ẑE0r exp (ik1 sin θr x− ik1 cos θr y − iωt), (5.24)

Hr =
1

µ0ω
(k1 sin θrx̂− k1 cos θrŷ)× Er, (5.25)

Et = ẑE0t exp (ikxx+ ikyy − iωt), (5.26)

Ht =
1

µ0ω
¯̄µ−1
r

[
(kxx̂+ kyŷ)× Et

]
(5.27)
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where kx and ky are the complex wave numbers along the x- and y-axes, respec-

tively, which have to be evaluated later. The dispersion relation for the transmitted

wave can be obtained by substituting Eq. (5.27) into ∇×Ht = −ωε0 ¯̄εr ·Et, then

we get

k2x
µry

+
k2y
µrx

=
ω2

c2
εrz. (5.28)

Using the boundary conditions E1// = E2// and H1// = H2// at the interface

(the plane y = 0), we obtain

θi = θr, (5.29)

kx =
ω

c
sin θi, (5.30)

E0r =

(
ωµrx cos θi − kyc

ωµrx cos θi + kyc

)
E0i, (5.31)

E0t =

(
2ωµrx cos θi

ωµrx cos θi + kyc

)
E0i. (5.32)

Substituting Eq. (5.30) into Eq. (5.28) yields

k2y =
ω2

c2
εreµrx, (5.33)

where

εre = εrz −
sin2 θi
µry

. (5.34)

Since Eq. (5.33) resembles the isotropic dispersion relation, we shall call εre the

effective isotropic permittivity. It can easily be shown that εre also lies on the

upper half of the complex plane. So we can solve for ky by rewriting εre and µrx

in the polar forms

εre = |εre|eiϕϵ , 0 ≤ ϕε ≤ π, (5.35)

µrx = |µrx|eiϕµ , 0 ≤ ϕµ ≤ π. (5.36)

Then

k±y = ±ω
c

√
|εre||µrx|ei(ϕε+ϕµ)/2, 0 ≤ (ϕε + ϕµ)/2 ≤ π. (5.37)
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The remaining question is the choice of ky, such that it is physically meaningful.

This can be answered by considering the average Poynting vector of the transmit-

ted wave:

St =
1

2
Re{Et ×H∗

t} =
|E0t|2

2ω
(Re{ kx

µry

}x̂+Re{ ky
µrx

}ŷ)e−2Im{ky}y. (5.38)

Since the wave propagates from medium 1 into medium 2, we expect that the

y-component of St must be positive, that is,

Re{ ky
µrx

} > 0. (5.39)

As a consequence of Eq. (5.37), we always have

Re{
k+y
µrx

} > 0, (5.40)

and

Re{
k−y
µrx

} < 0. (5.41)

So the k+y is chosen.

With the problem solved, the fields of the transmitted wave take the forms

Et = ẑE0t exp[−Im{k+y }y] exp (ikxx+ iRe{k+y }y − iωt), (5.42)

Ht =
E0t

ωµ0

(
k+y
µrx

x̂− kx
µry

ŷ) exp[−Im{k+y }y]

× exp (ikxx+ iRe{k+y }y − iωt). (5.43)

Note that the wave is nonuniform and its amplitudes decreases in the +y direction.

From the argument in the second exponentials shown in Eqs. (5.42) or (5.43), we

can see that the refraction angle with respect to the y-axis is given by

tan θt =
kx

Re{k+y }
. (5.44)

Since kx is always positive, the range of θt is from 0 to 1800. The negative refraction

occurs when the phase velocity is towards the interface (θt > 900), as shown in

Fig. 5.6, which implies that

Re{k+y } < 0. (5.45)
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y

x

Figure 5.6: The negative refraction (θt > 900) is depicted. The arrows in medium

1 and 2 indicate the phase velocity of the incident and the transmitted waves,

respectively.

By using the method presented in Appendix A, we obtain the general con-

dition for the negative refraction as

Re{εre}|µrx|+Re{µrx}|εre| < 0, (5.46)

which include the special case:

Re{εre} = Re{εrz} − Re{µry}
sin2 θi
|µry|2

< 0 and Re{µrx} < 0. (5.47)

This condition also suggests the angle-independent condition:

Re{µrx} < 0, Re{µry} > 0 and Re{εrz} < 0, (5.48)

which is applicable for anisotropic cases only. It can be shown that isotropic

lossless media with εr < 0 and µr < 0 satisfy Eq. (5.47).

To determine if the transmitted wave possess a positive or a negative phase

velocity, we consider the relationship

St · kt =
ω|E0t|2

2c2
T exp[−2Im{k+y }y], (5.49)

where

kt = kxx̂+ Re{k+y }ŷ, (5.50)
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and

T = sin2 θiRe{
1

µrx

}+ c2

ω2
Re{

k+y
µrx

}Re{k+y }. (5.51)

If T > 0 (St · kt > 0), the phase velocity is positive, whilst if T < 0 (St · kt < 0),

the phase velocity is negative. Fig. 5.7 shows the plots of the refraction angle

and T with respect to the incident angle. The relevant parameters are εrz =

−0.137+ i0.019, µrx = −0.361+ i0.023 and µry = 0.777+ i0.030, which are chosen

purposely to satisfy the angle-independent condition Eq. (5.48). The refraction

is negative for all θi values because θt > 900. Fig. 5.7b shows that this negative

refraction can occur even when the phase velocity is positive (T > 0).

(a) (b)

Figure 5.7: The plot of (a) the refraction angle (θt) with respect to the incident

angle (θi), and (b) the parameter T that can be used to specify if the phase velocity

is positive (T > 0) or negative (T < 0).



CHAPTER VI

Nonlinear Dielectric Composites with

Elliptic Cylindrical Inclusions

In this chapter, the formulae for evaluating the effective nonlinear coefficients

up to the ninth order of weakly nonlinear composites subject to a DC electric field

are presented. Then we evaluate the effective DC coefficients of a composite

consisting of weakly nonlinear dielectric inclusions with elliptic cylindrical shapes,

randomly embedded and oriented in a linear dielectric medium. The results are

used to study the shape effects on the enhancements of these nonlinear coefficients.

Finally we consider weakly nonlinear composites under an applied AC electric

field of the forms E0 sin(ωt) and E1 sinωt+E3 sin 3ωt. With a simple method, the

general connections between the effective DC and AC coefficients are established.

6.1 DC Applied Electric Field

6.1.1 Problem Formulation

Consider a general structure of a composite consisting of weakly nonlinear

dielectric inclusions in a linear dielectric medium (Fig. 6.1). The constitutive

relation for the inclusions is assumed to take the form

Di = εiE
i + χi|Ei|2Ei + ηi|Ei|4Ei, (6.1)

and for the medium, it is

Dm = εmE
m, (6.2)
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where εi and εm are the permittivities or the first-order dielectric coefficients of

the two media, and χi and ηi are the third- and fifth-order nonlinear dielectric

coefficients of the inclusions. The weakly nonlinearity means that the condition

1 >> χi|Ei|2/εi >> ηi|Ei|4/εi is satisfied.

i

m

Figure 6.1: A typical structure of a composite, which consists of inclusions embed-

ded in a medium. Si denotes the inclusion surfaces and S denotes the composite

surface.

Under an applied DC electric field (E0), the electric displacements and the

electric fields in the inclusions and the medium satisfy the electrostatic equations:

∇ ·D = 0, (6.3)

∇× E = 0 or E = −∇Φ, (6.4)

which lead to the boundary conditions at the inclusion surfaces Si as follows:

Φi = Φm, on Si, (6.5)

Di · n̂ = Dm · n̂ , on Si, (6.6)

where i and m denote the inclusions and the medium, respectively. In the theo-

retical analyses of nonlinear dielectric composites, it is customary to assume the

boundary condition for the DC applied field (E0) as

Φm = −E0 · x , on S, (6.7)

where S denotes the composite surface. Such boundary condition can be realized

by the potential between a parallel plate capacitor.
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For weakly nonlinear composites, the effective nonlinear dielectric coeffi-

cients relate the spatial average of D and E as follows

⟨D⟩ = εe⟨E⟩+χe|⟨E⟩|2⟨E⟩+ ηe|⟨E⟩|4⟨E⟩+ δe|⟨E⟩|6⟨E⟩+µe|⟨E⟩|8⟨E⟩+ . . . , (6.8)

where ⟨...⟩ denote the spatial average over the composite region, and εe, χe, ηe, δe

and µe are the effective first-, third-, fifth-, seventh- and the ninth-order dielectric

coefficients, respectively. Using Eq. (6.7) it can easily be shown that ⟨E⟩ = E0.

Thus

⟨D⟩ = εeE0 + χe|E0|2E0 + ηe|E0|4E0 + δe|E0|6E0 + µe|E0|8E0 + . . . . (6.9)

6.1.2 Perturbation Expansion Method

Since the inclusions are assumed to be weakly nonlinear, the order of mag-

nitude of the first-order term (εiE
i) is much larger than the third-order term

(χi|Ei|2Ei) which in turn is much larger than the fifth-order term (ηi|Ei|4Ei).

Therefore we can employ the perturbation method to analyze this problem. With

this method, we rewrite the (D− E) relation of the inclusions as

Di = εiE
i + λχi|Ei|2Ei + λ2ηi|Ei|4Ei, (6.10)

where λ is a dimensionless parameter, which indicates the order of magnitude.

For the medium, the (D− E) relation is still the same as that given in Eq. (6.2)

because it does not contain any nonlinear terms. The perturbation expansion of

the electric potentials are given as

Φi = Φ0i + λΦ1i + λ2Φ2i + ... , (6.11)

Φm = Φ0m + λΦ1m + λ2Φ2m + ... , (6.12)

where Φki and Φkm are the kth order perturbative potentials in the inclusions and

medium, respectively. Using E = −∇Φ, we get the perturbation expansion of the

electric fields as

Ei = E0i + λE1i + λ2E2i + ... , (6.13)

Em = E0m + λE1m + λ2E2m + ... , (6.14)
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where Eki = −∇Φki and Ekm = −∇Φkm. Substituting Eqs. (6.15) and (6.16)

into Eqs. (6.10) and (6.2), we can arrive at the perturbations of the electric

displacements:

Di = D0i + λD1i + λ2D2i + ... , (6.15)

Dm = D0m + λD1m + λ2D2m + ... . (6.16)

Using these perturbation expansions in Eqs. (6.3), (6.5), (6.6) and (6.7), we obtain

a linear boundary value problem for each perturbative order:

∇ ·Dkα = 0, α = i, m (6.17)

with the boundary condition on the inclusion surfaces

Dki · n̂ = Dkm · n̂, on Si, (6.18)

Φki = Φkm, on Si, (6.19)

and on the composite surface

Φkm =

−E0 · x̂, if k = 0

0, otherwise

on S. (6.20)

Hence the nonlinear problem is decomposed into a consecutive set of linear prob-

lems. In order to solve for these perturbative potentials, we must solve them from

the lowest order potential up to any required order, consecutively, which may be

laborious. Fortunately, it turns out in subsequent sections that to compute the

effective dielectric coefficients of our composites, only the potentials in the inclu-

sions are required and there exists a technique to solve these potentials quickly

and easily.

6.1.3 Effective DC Coefficients

Following the perturbation method, we specify the order of the terms in Eq.

(6.21) with the parameter λ as

⟨D⟩ = εeE0+λχe|E0|2E0+λ
2ηe|E0|4E0+λ

3δe|E0|6E0+λ
4µe|E0|8E0+. . . . (6.21)
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The effective coefficients can be estimated by considering the integral (first em-

ployed to analyze a linear composite by Landau [49])

1

V

∫
V

(D− εmE)dV = ⟨D⟩ − εmE0, (6.22)

where V are the volume of the composite. Note that the integrand vanishes in

medium so it is left with the integral in the inclusion volume (Vi) as

1

V

∫
Vi

(Di − εmE
i)dV = ⟨D⟩ − εmE0, (6.23)

By substituting Eq. (6.10) and (6.21) into (6.23), we get

1

V

∫
Vi

[(εi − εm)E
i + λχi|Ei|2Ei + λ2ηi|Ei|4Ei ]dV = (εe − εm)E0 + λχe|E0|2E0

+λ2ηe|E0|4E0 + λ3δe|E0|6E0

+λ4µe|E0|8E0 + . . . . (6.24)

Using the perturbation expansion of the electric field in the inclusions Ei =∑∞
k=0 λ

kEki in Eq. (6.24) and dotting both sides by E0, we get

1

V

∫
Vi

[∑
k

λk(εi − εm)E
ki + χi

∑
k,l,m

λk+l+m+1(Eki · Eli)Emi

+ηi
∑

k,l,m,n,p

λk+l+m+n+p+2(Eki · Eli)(Emi · Eni)Epi
]
· E0 dV = (εe − εm)E

2
0 + λχeE

4
0

+λ2ηeE
6
0 + λ3δeE

8
0 + λ4µeE

10
0 , (6.25)

where k, l, m, n, p are integers that range from 0 to ∞. By equating the terms

with the same power of λ, i.e. λ0, λ1, λ2, λ3 and λ4 we obtain the equations for

determining εe, χe, ηe, δe and µe, respectively. These are shown in Appendix C

where the derivation for the effective coefficients up to the ninth order is presented.

We report the results as follows:

εe = εm +
E0

V E2
0

·
∫
Vi

(εi − εm)E
0i dV (6.26)

χe =
E0

V E4
0

·
∫
Vi

[(εi − εm)E
1i + χi|E0i|2E0i ]dV (6.27)

ηe =
E0

V E6
0

·
∫
Vi

[
(εi − εm)E

2i + 2χi(E
0i · E1i)E0i

+χi|E0i|2E1i + ηi|E0i|4E0i
]
dV (6.28)
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δe =
E0

V E8
0

·
∫
Vi

[
(εi − εm)E

3i + χi|E1i|2E0i + 2χi(E
0i · E1i)E1i

+2χi(E
0i · E2i)E0i + χi|E0i|2E2i + 4ηi(E

0i · E1i)|E0i|2E0i

+ηi|E0i|4E1i
]
dV (6.29)

µe =
E0

V E10
0

·
∫
Vi

[
(εi − εm)E

4i + χi|E1i|2E1i + 2χi(E
0i · E1i)E2i

+2χi(E
0i · E2i)E1i + 2χi(E

1i · E2i)E0i + 2χi(E
0i · E3i)E0i

+χi|E0i|2E3i + 2ηi|E0i|2|E1i|2E0i + 4ηi(E
0i · E1i)2E0i

+4ηi|E0i|2(E0i · E1i)E1i + 4ηi(E
0i · E2i)|E0i|2E0i + ηi|E0i|4E2i

]
dV.

(6.30)

Note that the calculation of the effective coefficients requires only the potentials

inside the inclusions.

6.1.4 Composites with Elliptic Cylindrical Inclusions

In this section, the general formulae of the effective coefficients, Eqs. (6.27)-

(6.30), are applied to evaluate the effective DC response of a weakly nonlinear

composite with elliptic cylindrical inclusions. The shapes of the inclusions are

assumed to be identical and the volume packing fraction is dilute (p < 0.1).

Therefore, the electric potential inside each inclusion can be determined by ne-

glecting the effect of the other inclusions. So the problem is reduced to a single

inclusion in an infinite medium with an applied uniform field E0, as shown in

Fig. 6.2. The lengths of the semi-major and semi-minor axes are denoted by M

and N , respectively, and α is the angle between the applied electric field and the

semi-major axis. Since the inclusion shape is an elliptic cylindrical, we employ the

elliptic cylindrical coordinates (u, v) to solve this problem. These coordinates are

related to the Cartesian coordinates (x, y) by:

x = a coshu cos v, (6.31)

y = a sinhu sin v, (6.32)

where the focal length (a) of elliptic cylindrical coordinates is chosen to coincide

with that of the inclusion. Since the medium is linear, the potential Φm obey
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E0

M

N

α

i

m

Figure 6.2: A single elliptic cylindrical inclusion in a linear dielectric medium with

an applied electric field E0 making the angle α with the semi-major axis.

the Laplace equation, the general solution in elliptic cylindrical coordinates (Eq.

(2.33)) can be employed. Thus the electric potential in the medium can be written

to provide the uniform electric field (E0) at far distances as

Φm = −E0 a cosα coshu cos v − E0 a sinα sinhu sin v

+C a exp(−u) cos v +Da exp(−u) sin v. (6.33)

Because of the nonlinearity, the potential inside the inclusion does not necessarily

satisfy Laplace equation. However we will assume that the electric field in the

inclusion is uniform. This assumption may be justified by the uniqueness theorem

after the potentials are solved to satisfy all of the required boundary conditions.

Thus

Φi = −Aa coshu cos v −B a sinhu sin v. (6.34)

Using the boundary conditions, Eqs. (6.5) and (6.6), we obtain

Φi(u0, v) = Φm(u0, v), (6.35)

εi
∂Φi

∂u

∣∣∣∣
(u0,v)

+ χi|∇Φi|2∂Φ
i

∂u

∣∣∣∣
(u0,v)

+ ηi|∇Φi|4∂Φ
i

∂u

∣∣∣∣
(u0,v)

= εm
∂Φm

∂u

∣∣∣∣
(u0,v)

, (6.36)

where the points with coordinates (u0, v) where 0 ≤ v ≤ 2π, are on the inclusion

surface. From Eqs. (6.35) and (6.36), we have

(M +KN)A+
χi

εm
N(A2 +B2)A+

ηi
εm
N(A2 +B2)2A = E0 cosα(M +N), (6.37)

(KM +N)B+
χi

εm
M(A2+B2)B+

ηi
εm
M(A2+B2)2B = E0 sinα(M +N), (6.38)
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C =
(E0 cosα− A)M

M −N
, (6.39)

D =
(E0 sinα−B)N

M −N
. (6.40)

To solve for the constants A, B, C and D, we expand them as a power series of

E0 as follows:

A =
∞∑
k=0

AkE0
k, B =

∞∑
k=0

BkE0
k, C =

∞∑
k=0

CkE0
k, D =

∞∑
k=0

DkE0
k. (6.41)

The details of the derivation of Ak, Bk, Ck and Dk are shown in Appendix D,

including the results of the potentials up to the fourth order. Substituting the

electric fields from Eq. (D.19) into Eqs. (6.27) - (6.30) and then performing the

angular average 1
π

∫ π/2

−π/2
... dα, we obtain the effective coefficients up to the ninth

order. The closed form result of the ninth-order coefficient is not reported here

due to the length of the expression but will be depicted. Therefore we show the

results of the effective coefficients up to the seventh order as follows:

εe = εm + p
εm
2
(K − 1)

{
F (s) + F (s−1)

}
, (6.42)

χe = pχi

{
3

8
F 4(s) +

1

4
F 2(s)F 2(s−1) +

3

8
F 4(s−1)

}
, (6.43)

ηe = p

[
5ηi
16

{
F 6(s) + F 6(s−1)

}
− 15χi

2

16εm

{
F 6(s)

K + s
+
F 6(s−1)

K + s−1
)

}
+
3ηi
16

{
F 4(s)F 2(s−1) + F 2(s)F 4(s−1)

}
− 3χi

2

16εm

{(
1 + 3Ks+ 2s2

)
F1(s) +

(
2s−2 + 3Ks−1 + 1

)
F1(s

−1)

}]
,

(6.44)

δe = p

[
− 35ηiχi

16εm

{
F 8(s)

K + s
+
F 8(s−1)

K + s−1

}
− 5ηiχi

16εm

{(
1 + 4Ks+ 3s2

)
F1(s)F

2(s−1)

+
(
3s−2 + 4Ks−1 + 1

)
F1(s

−1)F 2(s)

}
− 9ηiχi

16εm
F2(s)

+
105χi

3

32εm2

{
F 8(s)

(K + s)2
+
s2F 8(s−1)

(1 +Ks)2

}
+

5χi
3

32εm2

{
F3(s) + F3(s

−1)

}
+

3χi
3

32εm2
F4(s)

]
, (6.45)
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where

F (s) =
1 + s

K + s
, F1(s) =

(1 + s)6

(K + s)3(1 +Ks)5
,

F2(s) =
(1 + s)8(1 + 2Ks+ s2)

(K + s)5(1 +Ks)5
,

F3(s) =
(1 + s)8(1 + 6Ks+ 4(1 + 3K2)s2 + 18Ks3 + 7s4)

(K + s)4(1 +Ks)8
,

F4(s) =
(1 + s)8(5 + 18Ks+ 2(4 + 9K2)s2 + 18Ks3 + 5s4)

(K + s)6(1 +Ks)6
, (6.46)

K = εi/εm is the relative permittivity, p is the volume fraction of inclusions and

s is the aspect ratio, the ratio between semi-minor and semi-major axes or vice

versa.

Note that the effective coefficients Eqs. (6.42)-(6.45) are invariant under the

transformation from s to s−1 which is trivial because interchanging between the

semi-major and semi-minor axes does not affects the inclusion shape. For s = 1,

the shapes of inclusions reduce to circular cylinders and the effective coefficients

reported here correspond to those obtained by Natenapit et al. [35].

6.1.5 Results and Discussion

The shape effects of inclusions on the effective DC coefficients are shown

in Figs. 6.3 - 6.6. In order to satisfy the weakly nonlinear condition, we set

χiE0
2/εi = 10−3 and ηiE0

4/εi = 10−6, which are much lower than one. The volume

packing fraction of inclusions is dilute and is chosen to be 0.05. The symmetrical

plots of the relative third- and fifth-order coefficients (χe/χi and ηe/ηi) versus

log s (s = N/M) with K = εi/εm are shown in Figs. 6.3 and 6.4, respectively. For

K << 1, the third- and fifth-order nonlinear effects are greatly enhanced with the

increasing eccentricity of inclusions. From Figs. 6.3a and 6.4a, at log s = 1 and

K = 0.1, the magnitude of the third- and fifth-order effective coefficients are about

17 and 216 times larger than the third- and fifth-order coefficients of inclusions,

respectively. The large enhancement is due to the increase of the electric field

in the inclusions when the relative permittivity K becomes much lower than 1.

In the contrast, the effective nonlinear response is very small for K >> 1. A
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large reduction in the nonlinear responses are observed in Figs. 6.3b and 6.4b,

which can be explained by realizing that if K >> 1 (εi >> εm), the electric fields

in all inclusions are reduced and will approach zero. Therefore, physically, the

inclusions behave as ideal conductors. Thus, the composite can be considered to

be equivalent to that of ideal-conductor inclusions dispersed in a linear dielectric

medium, which is a linear composite system. So the nonlinear response disappears

under such condition.
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Figure 6.3: The variation of the relative third-order nonlinear coefficients upon

the inclusion aspect ratios (s) at the packing fraction of 0.05 for (a) the relative

permittivity K = εi/εm less than 1 and (b) K larger than 1.
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Figure 6.4: The variation of the relative fifth-order nonlinear coefficients upon

the inclusion aspect ratios (s) at the packing fraction of 0.05 for (a) the relative

permittivity K = εi/εm less than 1 and (b) K larger than 1.
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The effect of varying the relative permittivity on the seventh- and ninth-

order effective coefficients for aspect ratios (s) of 0.4, 0.5 and 0.6 are shown in

Figs. 6.5 and 6.6. In order to show the entire behaviors of the effective responses,

a logarithmic scale for relative permittivity (K) is used. Although K = 10−4 is

rather an ideal situation, it is considered for complete predictions. The results

revealed that at χiE0
2/εi = 10−3 for both ηi = 0 and ηiE

4
0/εi = 10−6, there exists

some peaks which represent the extreme conditions under each aspect ratio. Fur-

thermore, the peaks become higher when the eccentricity of inclusions is increased

(in this case the reduction of the aspect ratio). As explained earlier, increasing the

relative permittivity will transform the nonlinear system to a linear one, and the

composite can then be considered as composed of ideal-conductor inclusions in a

linear host medium. Therefore, the seventh- and ninth-order effective coefficients

approach zero for large values of K, as expected. In order to verify our results

on the effective DC coefficients, we also calculate the effective coefficients from

the average energy method [35] which takes into account the total energy of the

composite and that of the homogeneous effective medium. It turns out that the

results from the average energy method are in exact agreement with our results

presented here. It should be noted that there are realistic application materials

having high-order nonlinearity, such as for dyn doped glasses as reported by Or-

machea [50]. The measurements of Rhodamine 6G dyn solution in Ref. [51] have

shown not only the third- but also the fifth- and seventh-order nonlinear suscep-

tibilities. Although we have considered elliptic cylindrical inclusions, the method

developed here can be applied to similar composites with ellipsoidal inclusions.

By using the general solutions of a linear dielectric ellipsoid in a linear medium

subjected to an applied uniform electric field [15] and imposing the boundary con-

ditions at the surface of the ellipsoid, we can determine the potentials as a power

series of the applied field similar to the results shown in Appendix D. Thus the

high-order effective nonlinear coefficients can be evaluated.
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Figure 6.5: The plot of the dimensionless seventh-order effective coefficients versus

log K, K = εi/εm for different aspect ratios (s) at a volume fraction of 0.05.
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Figure 6.6: The plot of the dimensionless ninth-order effective coefficients versus

log K, K = εi/εm for different aspect ratios (s) at a volume fraction of 0.05.
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6.2 AC Applied Electric Field

6.2.1 Transformation from DC to AC response

For sinusoidal applied field E0 sinωt, the boundary condition on the com-

posite surface becomes −E0 sinωt · x̂ (Fig. 6.7).

i

m

Figure 6.7: A weakly nonlinear composite subject to an AC applied electric field.

The boundary condition Φm = −E0 sinωt · x̂ is imposed on the surface of the

composite, which try to establish the electric field (E0 sinωt) inside the composite.

Assuming that the frequency is low, the electric displacement and the electric

field still satisfy the electrostatic equations (Eqs. (6.3) and (6.4)). Hence the

boundary conditions on the inclusion surface are the same as those of the DC

case. Since the electrostatic equations are time independent, the spatial average

of the electric displacement ⟨D⟩ must relates to the applied field E0 sinωt at a

particular time t via the effective DC coefficients as in Eq. (6.21). Therefore

⟨D⟩ = εeE0 sin(ωt) + χe|E0 sin(ωt)|2E0 sin(ωt) + ηe|E0 sin(ωt)|4E0 sin(ωt)

+δe|E0 sin(ωt)|6E0 sin(ωt) + µe|E0 sin(ωt)|8E0 sin(ωt) + . . . . (6.47)



57

Using trigonometric identities, this can be written as

⟨D⟩ =
[
εeE0 +

3

4
χe|E0|2E0 +

5

8
ηe|E0|4E0 +

35

64
δe|E0|6E0 +

63

128
µe|E0|8E0

+...
]
sin(ωt) +

[
− 1

4
χe|E0|2E0 −

5

16
ηe|E0|4E0 −

21

64
δe|E0|6E0

−21

64
µe|E0|8E0 + ...

]
sin(3ωt) +

[ 1

16
ηe|E0|4E0 +

7

64
δe|E0|6E0

+
9

64
µe|E0|8E0 + ...

]
sin(5ωt) +

[
− 1

64
δe|E0|6E0

− 9

256
δe|E0|8E0 + ...

]
sin(7ωt) +

[ 1

256
µe|E0|8E0 + ...

]
sin(9ωt). (6.48)

The general expression for the effective AC response is firstly proposed by [31] as

⟨D⟩ =
[
ε∗ωE0 + χ∗

ω|E0|2E0 + η∗ω|E0|4E0 + δ∗ω|E0|6E0 + µ∗
ω|E0|8E0

]
sin(ωt)

+
[
ε∗3ωE0 + χ∗

3ω|E0|2E0 + η∗3ω|E0|4E0 + δ∗3ω|E0|6E0

+µ∗
3ω|E0|8E0

]
sin(3ωt) +

[
ε∗5ωE0 + χ∗

5ω|E0|2E0 + η∗5ω|E0|4E0

+δ∗5ω|E0|6E0 + µ∗
5ω|E0|8E0

]
sin(5ωt) + ... , (6.49)

where ε∗nω, χ
∗
nω, η

∗
nω, δ

∗
nω and µ∗

nω are the effective AC coefficients at the nth

harmonics. Comparing Eq. (6.48) with (6.49), we get the relationships between

the effective DC and AC coefficients as

ε∗ω = εe χ∗
ω = 3

4
χe η∗ω = 10

16
ηe

δ∗ω = 35
64
δe µ∗

ω = 126
256
µe ε∗3ω = 0

χ∗
3ω = −1

4
χe η∗3ω = − 5

16
ηe δ∗3ω = −21

64
δe

µ∗
3ω = − 84

256
µe ε∗5ω = 0 χ∗

5ω = 0

η∗5ω = 1
16
ηe δ∗5ω = 7

64
δe µ∗

5ω = 36
256
µe

ε∗7ω = 0 χ∗
7ω = 0 η∗7ω = 0

δ∗7ω = − 1
64
δe µ∗

7ω = − 9
256
µe ε∗9ω = 0

χ∗
9ω = 0 η∗9ω = 0 δ∗9ω = 0

µ∗
9ω = 1

256
µe

Using the effective DC coefficients obtained in the previous section, we can easily

obtain the effective quasi-static AC coefficients for composites with elliptic cylin-

drical inclusions. In fact, these relationships are quite general because it can be
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applied to all weakly isotropic nonlinear composites. The effective DC coefficients

calculated from any methods developed for isotropic weakly nonlinear composites

can be directly transformed to the effective AC coefficients.

6.2.2 Transformation from DC to fundamental plus third

harmonic AC response

Now we consider the external field of the form (E1 sinωt + E3 sin 3ωt)û,

where û is a unit vector indicating the direction of the applied field. The boundary

condition on the surface of the composite is indicated in Fig. 6.8. For cylindrical

composites, the direction of û is arbitrary but perpendicular to the cylindrical

axes.

i

m

Figure 6.8: A weakly nonlinear composite subject to fundamental and third

harmonic applied electric fields. The boundary condition Φm = −(E1 sinωt +

E3 sin 3ωt)û · x̂ is imposed on the surface of the composite, which try to establish

the electric field (E1 sinωt+ E3 sin 3ωt)û inside the composite.

Using the similar argument in the previous section, we replace E0 in Eq.

(6.21) by (E1 sinωt+ E3 sin 3ωt)û:

⟨D⟩ = [εe(E1 sinωt+ E3 sin 3ωt) + χe(E1 sinωt+ E3 sin 3ωt)
3

+ηe(E1 sinωt+ E3 sin 3ωt)
5 + δe(E1 sinωt+ E3 sin 3ωt)

7 + . . . ]û.

(6.50)
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By using some identities of sine function, we can re-express Eq. (6.50) as:

⟨D⟩ = [(εeE1 +
3

4
χeE

3
1 −

3

4
χeE

2
1E3 +

3

2
χeE1E

2
3 +

5

8
ηeE

5
1 −

25

16
ηeE

4
1E3 +

15

4
ηeE

3
1E

2
3

−15

8
ηeE

2
1E

3
3 +

15

8
ηeE1E

4
3 +

35

64
δeE

7
1 −

147

64
δeE

6
1E3 +

441

64
δeE

5
1E

2
3

−525

64
δeE

4
1E

3
3 +

315

32
δeE

3
1E

4
3 −

105

32
δeE

2
1E

5
3 +

35

16
δeE1E

6
3) sinωt+ (εeE3 −

1

4
χeE

3
1

+
3

2
χeE

2
1E3 +

3

4
χeE

3
3 −

5

16
ηeE

5
1 +

15

8
ηeE

4
1E3 −

15

8
ηeE

3
1E

2
3 +

15

4
ηeE

2
1E

3
3

+
5

8
ηeE

5
3 −

21

64
δeE

7
1 +

147

64
δeE

6
1E3 −

315

64
δeE

5
1E

2
3 +

315

32
δeE

4
1E

3
3 −

175

32
δeE

3
1E

4
3

+
105

16
δeE

2
1E

5
3 +

35

64
δeE

7
3) sin 3ωt+ . . . ]û. (6.51)

The effective response of nonlinear composites under an external AC electric

field of the form (E1 sinωt+E3 sin 3ωt)û has been investigated by Wei et al. [34].

They report the general form of the effective response up to the third-order. In

this work, we further generalize the form up to the seventh-order as

⟨D⟩ = [(ε∗ω;ωE1 + ε∗3ω;ωE3 + χ∗
ω3;ωE

3
1 + χ∗

ω23ω;ωE
2
1E3 + χ∗

ω(3ω)2;ωE1E
2
3 + χ∗

(3ω)3;ωE
3
3

+η∗ω5;ωE
5
1 + η∗ω43ω;ωE

4
1E3 + η∗ω3(3ω)2;ωE

3
1E

2
3 + η∗ω2(3ω)3;ωE

2
1E

3
3 + η∗ω(3ω)4;ωE1E

4
3

+η∗(3ω)5;ωE
5
3 + δ∗ω7;ωE

7
1 + δ∗ω63ω;ωE

6
1E3 + δ∗ω5(3ω)2;ωE

5
1E

2
3 + δ∗ω4(3ω)3;ωE

4
1E

3
3

+δ∗ω3(3ω)4;ωE
3
1E

4
3 + δ∗ω2(3ω)5;ωE

2
1E

5
3 + δ∗ω(3ω)6;ωE1E

6
3 + δ∗(3ω)7;ωE

7
3) sinωt

+(ε∗ω; 3ωE1 + ε∗3ω; 3ωE3 + χ∗
ω3; 3ωE

3
1 + χ∗

ω23ω; 3ωE
2
1E3 + χ∗

ω(3ω)2; 3ωE1E
2
3

+χ∗
(3ω)3; 3ωE

3
3 + η∗ω5; 3ωE

5
1 + η∗ω43ω; 3ωE

4
1E3 + η∗ω3(3ω)2; 3ωE

3
1E

2
3

+η∗ω2(3ω)3; 3ωE
2
1E

3
3 + η∗ω(3ω)4; 3ωE1E

4
3 + η∗(3ω)5; 3ωE

5
3 + δ∗ω7; 3ωE

7
1 + δ∗ω63ω; 3ωE

6
1E3

+δ∗ω5(3ω)2; 3ωE
5
1E

2
3 + δ∗ω4(3ω)3; 3ωE

4
1E

3
3 + δ∗ω3(3ω)4; 3ωE

3
1E

4
3 + δ∗ω2(3ω)5; 3ωE

2
1E

5
3

+δ∗ω(3ω)6; 3ωE1E
6
3 + δ∗(3ω)7; 3ωE

7
3) sin 3ωt+ . . . ]û, (6.52)

where ε∗ωm(3ω)n;kω, χ
∗
ωm(3ω)n;kω, η

∗
ωm(3ω)n;kω, δ

∗
ωm(3ω)n;kω and µ∗

ωm(3ω)n;kω are coupled

effective AC coefficients at the kth harmonics. Comparing Eq. (6.51) with (6.52),

we obtain the relationships between the effective DC and AC coefficients as:

ε∗ω;ω = εe ε∗3ω;ω = 0 χ∗
ω3;ω = 3

4
χe

χ∗
ω23ω;ω = −3

4
χe χ∗

ω(3ω)2;ω = 3
2
χe χ∗

(3ω)3;ω = 0

η∗ω5;ω = 5
8
ηe η∗ω43ω;ω = −25

16
ηe η∗ω3(3ω)2;ω = 15

4
ηe
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η∗ω2(3ω)3;ω = −15
8
ηe η∗ω(3ω)4;ω = 15

8
ηe η∗(3ω)5;ω = 0

δ∗ω7;ω = 35
64
δe δ∗ω63ω;ω = −147

64
δe δ∗ω5(3ω)2;ω = 441

64
δe

δ∗ω4(3ω)3;ω = −525
64
δe δ∗ω3(3ω)4;ω = 315

32
δe δ∗ω2(3ω)5;ω = −105

32
δe

δ∗ω(3ω)6;ω = 35
16
δe δ∗(3ω)7;ω = 0

ε∗ω; 3ω = 0 ε∗3ω; 3ω = εe χ∗
ω3; 3ω = −1

4
χe

χ∗
ω23ω; 3ω = 3

2
χe χ∗

ω(3ω)2; 3ω = 0 χ∗
(3ω)3; 3ω = 3

4
χe

η∗ω5; 3ω = − 5
16
ηe η∗ω43ω; 3ω = 15

8
ηe η∗ω3(3ω)2; 3ω = −15

8
ηe

η∗ω2(3ω)3; 3ω = 15
4
ηe η∗ω(3ω)4; 3ω = 0 η∗(3ω)5; 3ω = 5

8
ηe

δ∗ω7; 3ω = −21
64
δe δ∗ω63ω; 3ω = 147

64
δe δ∗ω5(3ω)2;3ω = −315

64
δe

δ∗ω4(3ω)3; 3ω = 315
32
δe δ∗ω3(3ω)4; 3ω = −175

32
δe δ∗ω2(3ω)5; 3ω = 105

16
δe

δ∗ω(3ω)6; 3ω = 0 δ∗(3ω)7; 3ω = 35
64
δe

Again these relationships are valid for all weakly nonlinear isotropic composites.

By substituting the results of the effective DC coefficients from Eqs. (6.42) -

(6.45), the effective AC coefficients of the elliptic cylindrical composite up to the

seventh-order and third-harmonics are obtained.
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Conclusions

The Lakhtakia-Depine condition [12] for the negative refractive index in lossy

isotropic media has been investigated. This condition is based on the phenomena

of the negative phase velocity of a uniform plane wave which imply that the

direction of the phase velocity is antiparallel to the direction of the power flow or

the Poynting vector. The special case of the Lakhtakia-Depine condition, namely,

Re{εr} < 0 and Re{µr} < 0, is used in designing a negative index composite at

infrared frequencies. The structure of this composite consists of two different group

of nonmagnetic spheres. The negative real part of the effective permeability of the

composite is accomplished by the resonance of the magnetic scattering coefficient

of the first group of spheres. This resonance condition requires high values of the

relative permittivity of the first group of spheres (εr1 > 100) around the infrared

frequencies, when the size of spheres are a few micron. Such high values of the

relative permittivity can be achieved by using LiTaO3 as the material for the first

group of spheres.

For the real part of the effective relative permittivity to be negative, we

employ the resonance of the effective relative permittivity itself. This resonance

requires that the relative permittivity of the second group of spheres must be

negative, which can be achieved by using a semiconductor that satisfies the Drude

model relation because it can provide negative values under its plasma frequency.

Based on the resonance condition, the plasma frequency of the semiconductor

spheres is derived.

When combining these two group of spheres into a composite, the numeri-

cal result of the effective relative permittivity, the effective relative permeability
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and the effective refractive index show that this composite satisfies the Lakhtakia-

Depine condition for the negative refractive index around 3.48 - 3.68 THz. Since

the Lakhtakia-Depine condition is based on the negative phase velocity, this con-

dition can not generally ensure a negative angle of refraction when an electromag-

netic wave propagates into the material. However this condition can be a good

approximation of the negative refraction if the electric and magnetic losses are

low.

Next we investigate the characteristics of uniform and nonuniform plane

wave propagations in a biaxial anisotropic lossy medium. Under the principal

axes of the medium, we assume that the relative permittivity and the relative

permeability tensors can be diagonalized simultaneously. the elements of the rela-

tive permittivity and the relative permeability tensors are assumed to satisfy the

passivity condition, which imply that the elements must lie on the upper half of

the complex plane.

A uniform plane wave propagation with the electric field polarization along

one of the medium principal axes is studied and the general condition of the

negative phase velocity is derived. This condition depends on the elements of

the relative permittivity and the relative permeability tensors together with the

propagation direction. If we let the elements of each tensors to be equal, the

medium is lossy isotropic and the negative phase velocity condition is reduced

exactly to the Lakhtakia-Depine condition. To ensure our theoretical result, we

show the plots of the angle between the average Poynting vector and the phase

velocity angle for two sets of sample parameters.

Then we consider a problem of refraction when a TE plane wave propagates

from free space into the biaxial anisotropic media. In this case, it turns out that

the transmitted wave is nonuniform, implying that the planes of constant ampli-

tude and the planes of constant phase do not coincide. Based on the solutions

of this problem, the general condition of the negative angle of refraction is de-

rived, which depends on the elements of the relative permittivity and the relative

permeability tensors of the biaxial medium and the incident angle. Although the

general condition is for TE wave, it can be transformed into TM case by the elec-
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tromagnetic dualities. In order to confirm our theoretical result, we show a plot

of the angle of refraction with respect to the incident angle for a set of sample

parameters which satisfy our negative refraction condition. Moreover a plot of

a term relating to the phase velocity of the transmitted wave indicates that the

angle of refraction can be negative even if the phase velocity is positive.

We also investigated the effective responses of a weakly nonlinear dielectric

composite subject to an externally applied uniform electric field. The structure of

this composite consists of dilute fifth-order nonlinear elliptic cylindrical inclusions

randomly distributed in a linear host medium. All inclusions are assumed to be

parallel and identical in shape to each other but the orientations are random.

The electric potential and field of a single inclusion are then determined using

elliptic cylindrical coordinates and a power series method. The general formulae

for higher-order effective coefficients up to the ninth order are derived using the

Landau formula [49]. The obtained results of the effective nonlinear coefficients are

symmetric under the exchange between the semi-major and semi-minor axes and

the third-order effective coefficient agrees with that of Yu et al. [26]. Moreover,

the general features of the magnitude of ηe/ηi (Fig. 6.4a) are similar to that of

χe/χi (Fig. 6.3a) and the negative result of the fifth-order coefficient has also been

observed previously by Filho et al. [51]. Furthermore, the shape effect reveals large

enhancement of the effective responses for aspect ratios of significantly less than

one, especially at a high contrast between the linear coefficients of the inclusion

and host medium with the relative permittivity (K) being much lower than one.

The scope of our nonlinearity enhancement is mainly on dielectric compos-

ites with an electrostatic applied field. However, this could also be applied, in

the cases of time-varying fields at low frequencies. A general problem involving

weakly nonlinear composites subject to an AC applied fields of the form E0 sin(ωt)

and E1 sin(ωt) + E3 sin(3ωt) in the quasi-static limit was considered and general

relationships or transformations between the effective DC and AC coefficients were

established. The transformations were extended from the work of Wei et al. [34] to

include the effective coefficients up to the seventh order. Furthermore, the trans-

formations for non-decoupling coefficients at fundamental harmonics (εω;ω, χω;ω,
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ηω;ω and δω;ω) are the same as the transformation of our published results [35].

Following the same procedures as presented here, we note that the transformation

can be generalized to predict responses up to any order and harmonics.
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Appendix A

Derivation of the Material Condition

from Re{k+} < 0 and Re{k−} > 0

In Chapter 3, we conclude that Re{k+} < 0 or Re{k−} > 0 will be satisfied

if εr and µr are related by the inequality:

ε′r
√
µ′2
r + µ′′2

r + µ′
r

√
ε′2r + ε′′2r < 0, (A.1)

where ε′r = Re{εr}, ε′′r = Im{εr}, µ′
r = Re{µr} and µ′′

r = Im{µr}. Here, we show

the detailed derivation of this inequality as follows. Taking the real part of Eq.

(3.11) yields

Re{k±} = ±ω
c

√
|εr||µr| cos

(
ϕε + ϕµ

2

)
. (A.2)

Then the conditions Re{k+} < 0 or Re{k−} > 0 lead to

ω

c

√
|εr||µr| cos

(
ϕε + ϕµ

2

)
< 0,

cos

(
ϕε + ϕµ

2

)
< 0,

cos

(
ϕε

2

)
cos

(
ϕµ

2

)
− sin

(
ϕε

2

)
sin

(
ϕµ

2

)
< 0,√

cosϕε + 1

2

√
cosϕµ + 1

2
−

√
1− cosϕε

2

√
1− cosϕµ

2
< 0,(

cosϕε + 1
)(

cosϕµ + 1
)
<

(
1− cosϕε

)
(1− cosϕµ

)
. (A.3)

Rewrite εr and µr as

ε′r + iε′′r =
√
ε′2r + ε′′2r

(
cosϕε + i sinϕε

)
, (A.4)

µ′
r + iµ′′

r =
√
µ′2
r + µ′′2

r

(
cosϕµ + i sinϕµ

)
. (A.5)
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Therefore

cosϕε =
ε′r√

ε′2r + ε′′2r
, cosϕµ =

µ′
r√

µ′2
r + µ′′2

r

. (A.6)

Substituting Eqs. (A.6) into Eq. (A.3), we get(
ε′r√

ε′2r + ε′′2r
+ 1

)(
µ′
r√

µ′2
r + µ′′2

r

+ 1

)
<

(
1− ε′r√

ε′2r + ε′′2r

)(
1− µ′

r√
µ′2
r + µ′′2

r

)
,(

ε′r +
√
ε′2r + ε′′2r

)(
µr +

√
µ′2
r + µ′′2

r

′)√
ε′2r + ε′′2r

√
µ′2
r + µ′′2

r

<

(√
ε′2r + ε′′2r − ε′r

)(√
µ′2
r + µ′′2

r − µ′
r

)√
ε′2r + ε′′2r

√
µ′2
r + µ′′2

r

,(
ε′r +

√
ε′2r + ε′′2r

)(
µr +

√
µ′2
r + µ′′2

r

′)
<

(√
ε′2r + ε′′2r − ε′r

)(√
µ′2
r + µ′′2

r − µ′
r

)
,

ε′r
√
µ′2
r + µ′′2

r + µ′
r

√
ε′2r + ε′′2r < −ε′r

√
µ′2
r + µ′′2

r − µ′
r

√
ε′2r + ε′′2r ,

2ε′r
√
µ′2
r + µ′′2

r + 2µ′
r

√
ε′2r + ε′′2r < 0,

ε′r
√
µ′2
r + µ′′2

r + µ′
r

√
ε′2r + ε′′2r < 0. (A.7)



Appendix B

Polarizabilities of Nonmagnetic Spheres

The electric and magnetic polarizabilities of a nonmagnetic sphere can be

obtained by solving the scattering problem of a plane electromagnetic wave by

that sphere. Consider a plane wave incident on a nonmagnetic sphere of radius

r0, having the relative permittivity εr and the relative permeability µr = 1. The

electric and magnetic fields of the wave are polarized in x and y direction. This

situation is shown in Figure B.1.

x

y

z

Incidence Wave

Scattered Wave

Figure B.1: Scattering of a plane wave by a sphere.

The incident plane wave of angular frequency ω can be written (omitting e−iωt) as

Einc = x̂E0e
ikz (B.1)

Hinc = ŷH0e
ikz (B.2)

where k0 = ω/c is the free space wave number and H0 = k0E0/(ωµ0).



74

The total fields outside the sphere are the incident fields plus the scattered fields:

Eout = Einc + Esc (B.3)

Hout = Hinc +Hsc (B.4)

Since the process for solving this problem involves a very lengthy mathe-

matics [47], we simply give the result of the scattered fields

Esc =
∞∑
n=1

E0i
n 2n+ 1

n(n+ 1)
(ianN

(3)
e1n − ibnM

(3)
o1n), (B.5)

Hsc =
k

ωµ

∞∑
n=1

E0i
n 2n+ 1

n(n+ 1)
(ibnN

(3)
o1n + anM

(3)
e1n). (B.6)

where Memn, Momn, Nemn and Nomn are the vector spherical harmonics:

Memn = − m

sin θ
sinmϕPm

n (cos θ)zn(ρ)θ̂

− cosmϕ
dPm

n (cosθ)

dθ
zn(ρ)ϕ̂, (B.7)

Momn =
m

cos θ
sinmϕPm

n (sin θ)zn(ρ)θ̂

− cosmϕ
dPm

n (cosθ)

dθ
zn(ρ)ϕ̂, (B.8)

Nemn =
zn(ρ)

ρ
cosmϕn(n+ 1)Pm

n (cos θ)r̂

+cosmϕ
dPm

n (cos θ)

θ

1

ρ

d

dρ
[ρzn(ρ)]θ̂

−m sinmϕ
dPm

n (cos θ)

θ

1

ρ

d

dρ
[ρzn(ρ)]ϕ̂, (B.9)

Nemn =
zn(ρ)

ρ
sinmϕn(n+ 1)Pm

n (cos θ)r̂

+sinmϕ
dPm

n (cos θ)

θ

1

ρ

d

dρ
[ρzn(ρ)]θ̂

−m cosmϕ
dPm

n (cos θ)

θ

1

ρ

d

dρ
[ρzn(ρ)]ϕ̂, (B.10)

where ρ = k0r, P
m
n is the associated Lergendre function and zn is a spherical

Bessel function. The superscript (3) in Eqs. (B.5) and (B.6) indicate that we
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must represent zn(ρ) by the spherical Bessel function of the third kind h
(1)
n (ρ). the

scattering coefficients an and bn are

an =
mψn(mx)ψ

′
n(x)− ψn(x)ψ

′
n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′
n(mx)

, (B.11)

bn =
ψn(mx)ψ

′
n(x)−mψn(x)ψ

′
n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′
n(mx)

, (B.12)

where m = ε2r, x = k0r0, and ψ1(z) = zj1(z) and ξ1(z) = zh
(1)
1 (z) are the Riccati-

Bessel functions which relate to the spherical Bessel functions of the first and the

third kinds, respectively. The prime denotes differentiation with respect to the

argument.

In the Eqs. (B.5) and (B.6), the terms n = 1 correspond to the dipole fields,

n = 2 correspond to the quadrupole fields and so on. To calculate the electric and

magnetic polarizabilities, we keep only the dipole terms (n=1) and rewrite Eqs.

(B.5) and (B.6) as

E =
1

4πε0

{
k20
(
r̂× (6πε0ia1/k

3
0)E0x̂

)
× r̂

eik0r

r
+
[
3r̂
(
r̂ · (6πε0ia1/k30)E0x̂

)
−(6πε0ia1/k

3
0)E0x̂

]( 1

r3
− ik0

r2

)
eik0r

}
−Z0

4π
k20
(
r̂ × (6πib1/k

3
0)H0ŷ

)eik0r
r

(
1− 1

ik0r

)
, (B.13)

H =
ck20
4π

(
r̂ × (6πε0ia1/k

3
0)E0x̂

)eik0r
r

(
1− 1

ik0r

)
+

1

4π

{
k20
(
r̂× (6πib1/k

3
0)H0ŷ

)
× r̂

eik0r

r
+
[
3r̂
(
r̂ · (6πib1/k30)H0ŷ

)
−(6πib1/k

3
0)H0ŷ

]( 1

r3
− ik0

r2

)
eik0r

}
, (B.14)

Comparing Eqs. (B.13) and (B.14) with the standard forms of the electric +

magnetic dipole fields [48]

E =
1

4πε0

{
k2(r̂× p)× r̂

eikr

r
+ [3r̂(r̂ · p)− p]

(
1

r3
− ik

r2

)
eikr

}
−Z0

4π
k2(r̂ ×m)

eikr

r

(
1− 1

ikr

)
, (B.15)

H =
ck2

4π
(r̂ × p)

eikr

r

(
1− 1

ikr

)
+

1

4π

{
k2(r̂×m)× r̂

eikr

r
+ [3r̂(r̂ ·m)−m]

(
1

r3
− ik

r2

)
eikr

}
,

(B.16)
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we can see that the electric and magnetic dipole moments of the spheres are

p = (6πε0ia1/k
3
0)E0x̂ (B.17)

m = (6πib1/k
3
0)H0ŷ (B.18)

(B.19)

Since E0x̂ and H0ŷ are the valuee of the external fields at the center of the sphere,

we can conclude that the electric and magnetic polarizabilities of this sphere are

αe = 6πε0ia1/k
3
0 (B.20)

αm = 6πib1/k
3
0 (B.21)



Appendix C

Derivation of the Effective Coefficients

From Eq. (6.25), equating the terms with the same power of λ yields for λ0

to λ4 as

(εe − εm)E
2
0 =

E0

V
·
∫
Vi

(εi − εm)E
0i dV, (C.1)

χeE
4
0 =

E0

V
·
∫
Vi

[(εi − εm)E
1i + χ′

i|E0i|2E0i ]dV, (C.2)

ηeE
6
0 =

E0

V
·
∫
Vi

[
(εi − εm)E

2i + 2χi(E
0i · E1i)E0i

+χi|E0i|2E1i + ηi|E0i|4E0i
]
dV, (C.3)

δeE
8
0 =

E0

V
·
∫
Vi

[
(εi − εm)E

3i + χi|E1i|2E0i + 2χi(E
0i · E1i)E1i

+2χi(E
0i · E2i)E0i + χi|E0i|2E2i + 4ηi(E

0i · E1i)2|E0i|2E0i

+ηi|E0i|4E1i
]
dV, (C.4)

µeE
10
0 =

E0

V
·
∫
Vi

[
(εi − εm)E

4i + χi|E1i|2E1i + 2χi(E
0i · E1i)E2i

+2χi(E
0i · E2i)E1i + 2χi(E

1i · E2i)E0i + 2χi(E
0i · E3i)E0i

+χi|E0i|2E3i + 2ηi|E0i|2|E1i|2E0i + 4ηi(E
0i · E1i)2E0i

+4ηi|E0i|2(E0i · E1i)E1i + 4ηi(E
0i · E2i)|E0i|2E0i + ηi|E0i|4E2i

]
dV.

(C.5)

So εe, χe, ηe, δe and µe can be obtained from Eqs.(C.1)-(C.5), respectively.



Appendix D

Determination of the Potentials in

Composite Constituents

Using the power series Eq.(6.41) in Eqs. (6.37) - (6.40), we obtain:

E0 cosα(M +N) =
∑
k

(M +KN)AkE0
k +

∑
k,l,m

χiN

εm
(AkAl +BkBl)AmE0

k+l+m

+
∑

k,l,m,n,p

ηiN

εm
(AkAl +BkBl)(AmAn +BmBn)ApE0

k+l+m+n+p,

(D.1)

E0 sinα(M +N) =
∑
k

(KM +N)BkE0
k +

∑
k,l,m

χiM

εm
(AkAl +BkBl)BmE0

k+l+m

+
∑

k,l,m,n,p

ηiM

εm
(AkAl +BkBl)(AmAn +BmBn)BpE0

k+l+m+n+p,

(D.2)

∑
k

CkE
k
0 =

(E0 cosα−
∑

k AkE
k
0)M

M −N
, (D.3)

∑
k

DkE
k
0 =

(E0 cosα−
∑

k BkE
k
0)M

M −N
, (D.4)

where k, l, m, n and p are the integers that range from 0 to ∞. By equating the

term proportional to the same power of E0, we obtain Ak = Bk = Ck = Dk = 0

for k is even and:

A1 = cosα
M +N

M +KN
, (D.5)

B1 = sinα
M +N

KM +N
, (D.6)
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A3 = −χiN(A1
2 +B1

2)A1

εm(M +KN)
, (D.7)

B3 = −χiM(A1
2 +B1

2)B1

εm(KM +N)
, (D.8)

A5 = − 1

M +KN

[χiN

εm

{
2(A1A3 +B1B3)A1 + (A1

2 +B1
2)A3

}
+
ηiN

εm

{
(A1

2 +B1
2)2A1

}]
, (D.9)

B5 = − 1

KM +N

[χiM

εm

{
2(A1A3 +B1B3)B1 + (A1

2 +B1
2)B3

}
+
ηiM

εm

{
(A1

2 +B1
2)2B1

}]
, (D.10)

A7 = − 1

M +KN

[χiN

εm

{
2(A1A3 +B1B3)A3 + (A3

2 +B3
2)A1

+2(A1A5 +B1B5)A1 + (A1
2 +B1

2)A5

}
+
ηiN

εm

{
4(A1A3 +B1B3)(A1

2 +B1
2)A1

+(A1
2 +B1

2)2A3

}]
, (D.11)

B7 = − 1

KM +N

[χiM

εm

{
2(A1A3 +B1B3)B3 + (A3

2 +B3
2)B1

+2(A1A5 +B1B5)B1 + (A1
2 +B1

2)B5

}
+
ηiM

εm

{
4(A1A3 +B1B3)(A1

2 +B1
2)B1

+(A1
2 +B1

2)2B3

}]
, (D.12)

C1 =
(cosα− A1)M

M −N
, (D.13)

D1 =
(sinα−B1)N

M −N
, (D.14)

Ck =
−AkM

M −N
, k = 3, 5, 7, ... (D.15)

Dk =
−BkN

M −N
, k = 3, 5, 7, ... (D.16)
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Thus, from Eqs. (6.34) and (6.33), the potentials in the inclusions and the host

medium are obtained as follows:

Φi = −(A1x+B1y)E0 − (A3x+B3y)E0
3

−(A5x+B5y)E0
5 − (A7x+B7y)E0

7 + . . . , (D.17)

Φm = (C1 a exp(−u) cos v − a cosα coshu cos v

+D1 a exp(−u) sin v − a sinα sinhu sin v)E0

+(C3a exp(−u) cos v +D3a exp(−u) sin v)E3
0

+C5a exp(−u) cos v +D5a exp(−u) sin v)E5
0

+C7a exp(−u) cos v +D7a exp(−u) sin v)E7
0 + . . . . (D.18)

It turns out that, the terms on the right hand side of Eqs. (D.17) and (D.18) with

E2k+1
0 correspond to the perturbative potentials Φki and Φkm of order k. Thus the

perturbative electric fields in the inclusion (Eki = −∇Φki) are

Eki = E2k+1
0 (A2k+1x̂+B2k+1ŷ). (D.19)
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