Chapter 3
Optical Absorption Coefficient

As mentioned above (Section 1.4.3), Kovalev et al. (1996) who stud-
ied the optical absorption of porous silicon suggests that porous silicon behaves
like an indirect band-gap semiconductor, of which optical transition is phonon-
assisted for photon energies up to 3 eV, as agreed with Datta and Narasimhan
(1999). However, Kovalev et at. (1998) found that the spatial confinement of
electrons and holes inside a nanocrystalline silicon increases the uncertainty of
their crystal momentum, thus, resulting in optical transitions in which phonons
are not involved. This indicates that the non-phonon assisted transitions prob-
ably consist in the optical absorption of porous silicon, contrasting with former
suggestions.

Here, we have attempted to study such contradiction by calculating op-
tical absorption coefficients in porous silicon which are contributed only from
non-phonon assisted process. The non-phonon assisted processes can occur only
when they involve with localized states because wave functions of localized states
widely spread in momentum space so that the non-phonon assisted process can
take place. On the other hand, such process cannot occur in transitions between
delocalized states with well defined wave vectors. Then we neglect all transitions
between delocalized states in our calculation. However, there are still some diffi-
culties in optical absorption calculation due to unclear band structure of porous
silicon, i.e., the position of bottom of the conduction band and top of the valence
band in momentum space. Then we assume that all interested transitions are di-

rect gap transitions, as a result, though the calculated absorption coefficients are
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overestimated in magnitude but still be enough to determine the energy region
of the non-phonon assisted process.

Before the calculation, let us now consider the quantum mechanical the-
ory of absorption in this Section. Some basic approximations required will be
mentioned first. Then the interaction between a radiation field and electrons in
a medium will be studied by using standard quantum mechanics. For more un-
derstanding, a good review of basic concept of absorption is semiconductor can

be found in Ph.D. thesis of Wichit Sritrakool (1984).

3.1 Basic Approximations

We can express the kinetic energy of a system of N electrons in the presence of
an electromagnetic field as follows
N

; {% (pi + EA (ri,t))z] (3.1)
p?/2m stands for the kinetic energy of an individual free electron, e is the absolute
value of the electronic charge and A is the vector potential of the electromagnetic
field. The choice of the Coulomb gauge implies that V- A = 0. Moreover, all non-
linear terms in the vector potential are also ignored because we deal with small
amplitude of electromagnetic wave. Subsequently, the Hamiltonian describing

the interaction of the electrons with the radiation field becomes
H = — A (I‘,’,t) - Pi (32)

which is treated as a time-dependent perturbation on the electronic states and

will induce electrons to make transitions between occupied bands and empty
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bands. According to the transition probability rate, the relationship between the
electronic structure and optical constants can be derived.

The basic approximations used are the adiabatic scheme, the one-electron
approximation and the effective mass approximation. These approximations can
simplify the complicated many-body problem into a solvable eigenvalue equa-
tion. Many-body effects caused by electron-electron interactions are not studied

significantly.

3.2 Quantum Theory of Absorption

If the perturbation term is L exp (+iwt) and the time dependence is totally in-
cluded in the exponent, the transition probability per unit time from the initial

state |¢) with energy E; to the final state |j) with energy E; becomes
2w AR
P=22 |GIL| 6(8; - B - hw) (3.3)

The perturbation L exp (—iwt) induces a transition with absorption of a photon
of energy hw whilst L exp (iwt) induces a transition with emission of a photon of
energy hw. The Dirac delta function indicates the conservation of energy. Since
we examine the absorption only, the emission term is now on disregarded.

Now, our observation is confined to the transitions from the valence band
to the conduction band. The ground state of the electronic system can be ex-
pressed as a Slater determinant composed of all one-electron states in the valence
band. It can be assumed that only one electron is excited to an excited state in
the conduction band. Thus, the Slater determinant relating to the excited state
will consist of (/V — 1) one-electron states in the valence band and only 1 one-

electron state in the conduction band. So the matrix element of transition from
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the ground state to the excited state as a result of the radiation field is only the
transition from a one-electron state in the valence band to a one-electron state
in the conduction band.

If 9, and ;. are defined as one-electron wave functions in the valence
and conduction bands respectively and k’s are their corresponding wave vectors.

Then the matrix element of the transition will be

(| H’ i) = (Viel A - P [Yy) Ose,sv (3.4)

=,
me
where sv and sc represent the spins of the two wave functions respectively.
Through this work, we will neglect the spins and handle the energy states as
a single state. When we approach the final expression for the absorption coeffi-
cient, spin will be re-introduced to cover the spin degeneracy.

The vector potential can be exhibited in the form of frequency and the

polarization vector & which is in the same direction as the field, i.e.
A(r,t)=Apé expli(q-r—wt)]+c.c (3.5)

where q is the wave vector of the radiation and c.c. is the complex conjugate
of the previous term. Again, we will not consider the c.c. which is the emission

term. So the transition probability per unit time is

mc

or (eAo> - 2
P=T(52) | uleve-plua (B~ B~ ) (39

where E, and E, are the corresponding energies of the states in the valence and
conduction bands, respectively. The magnitude of a typical photon wave vector
is always small compared to the magnitude of the wave vectors for the electronic

wave functions whose magnitude is of the order of a few angstroms. Thus the
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exponential term in eq.(3.6) becomes unity and

21 [eA =
p=X ( 0) | 8- My, (ke, ko) |26 (Ee — By — Fuo) (3.7)

where &- M., (k¢, k,) = (¥1.| € p |%},)- The magnitude of M, in the & direction
is

M| =& / Wro (e, T) (=AY 9y (ko T) dr (3.8)
Q

In order to get the rate of the transition per unit volume, W (w), we have
to sum eq.(3.7) over all possible states in the unit volume, i.e. we must sum over
all wave vectors k. and k, (and over spin degeneracy). If there are more than
one valence band or more than one conduction band, they must also be included.
Since k. and k, are confined to the first Brillouin zone with a density Q/ (27)°

(92 stand for the volume of the crystal), the transition rate per unit volume is

W (w) = (A) / / S ML G(B.- By - ) (39)

Brillouin zone
The absorption coefficient is also described as the energy absorbed in unit time
and in unit volume divided by the energy flux.

The average energy density u in a medium of radiation field indicated
by the vector potential in eq.(3.5) is related to the optical constants through the
equation

1

u = 2—71_6712.%1(%(;)2 (3.10)

where 7 is refractive index of crystalline silicon. Additionally, the energy density
associated with a single photon of energy fw appears to be the same. The product
of the average energy density u and the velocity of the propagation in the medium

c/n is the energy flux. Thus, we can simply expressed the absorption coefficient
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in terms of W (w) as

_hwW(w) n
a(w) = 3 (3.11)
or
4 2.0
a(w) = = 3 // dk Ao M2, 5(E, — E, — hw) (3.12)
mecnw 27r)
Brillouin mue

In porous silicon, the wave vector can no longer be a good quantum
number because translational symmetry is destructed by the random vacancy
potentials. This leads to the conversion of the integration over all wave vectors

to the integration over all energies. Using one of the definitions of the density of

states
1 dk
E)=———
PE) = o aE
and a property of the delta function, eq.(3.12) can be rewritten as follows
an2e2Q) [ 4
a(w) G m2cnw db Py (E)pc (E+m) Mcv‘ (313)

This suggests that the absorption coefficient depends on the density of states
at the initial energy, the density of states at the mapping energy, and also the
matrix element linking the initial and the final states through the interaction
Hamiltonian which is so called momentum operator.

Hence, the denéity of states and the matrix element of transition becomes
the two basic physical quantities required for the determination of the absorption
coefficient of porous silicon.

It should be noted that eq.(3.13) is valid only at absolute zero temper-
ature. In such a condition, all the valence band states are occupied and all the
conduction band states are empty and there is no thermal excitation. Then,
introduction of the thermal factor, which describes the occupancy at such a tem-

perature, to the expression for the absorption coefficient is necessary if one would
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like to compare our results with experiments. This thermal factor can also be
called the occupancy factor and defined in terms of the Fermi function f (E) as

follows
FE)Y1-f(E+mw)-f(E+mw)1-f(E)]=f(E)-f(E+mw), (3.14)

where f (E) represents a probability that the state of energy E is occupied and
1 — f(E) represents the probability that the state of energy E is unoccupied.
Then the first term of the left-hand side is interpreted as the optical absorption
occurrence whereas the second term is interpreted as the probability of occurring
of emission. So eq.(3.14) can be interpreted as the total probability of occurring
of optical absorption.

Multiplying the integrand in eq.(3.13) by this factor, we can get

72620 [
a(0) = T2 [ am o, (B)p.(E +ho) M2, [ (B) - f(E+ )] (3.15)

Eventually, the final expression for the absorption coefficient must include
the spin degeneracy of each single state either by multiplying the right hand side
of eq.(3.15) by a factor two and considering all single state wave function for
the matrix element or by applying double-state density of states for both bands
together with considering double-state wave functions for the matrix element.
Both procedures will generate the same results which indicate that there is no

interaction between two different spin states.

3.3 Matrix Element of Transition

The matrix element of transition defined in eq.(3.8) is clearly a function of the

interaction Hamiltonian and the wave functions of initial and final states. The
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wave function of an electron in a solid is always evaluated through a model because
it cannot be exactly known. This also includes a crystalline semiconductor which
its band structure is significantly complicated as well as the density of states of
both valence and conduction bands do not go along with the theory, which shown
perfect parabolic shapes. The interband absorption performed by assuming the
two parabolic bands is just an approximate issue.

In this Section, our attention is to determine an appropriate matrix ele-
ment of transition which physically agrees with our model.

It has been stated by Kohn and Luttinger (1957) that a state closed
to a band extremum can be demonstrated as a Bloch periodic function at the
extremum modulated by gradually varying envelope function. This well-known
idea has been widely applied to porous silicon by a number of authors (Hybertsen,
1994 and Xie et al., 1994). Consequently, the state near band edge ¥ (r) can be
written as the superposition between the Bloch function at k = 0, ug (r) and the

envelope function, ¢ (r)

1
Y (r) = :/—§¢(r) ug (r) (3.16)
with normalizations |
= / o ()2 dr = 1 (3.17)
and
/ ()P dr =1 (3.18)

Let us now consider a transition from a state in the valence band to a
state in the conduction band. If both states can be represented by wave func-
tion as shown in eq.(3.16), the matrix element of transition, which is essentially

the overlap of the two wave functions by the momentum operator, is defined in
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Mo, = g [ 6 (5) w2 @) (~i09) g, (1) (x) e (3.19)

where ¢ and v indicate the conduction and valence bands respectively. To facili-
tate the writing, the subscript "o" of uy (r) has been neglected.
The integration in eq.(3.19) can be splitted out into two integrals accord-

ing to an assumption that the envelope function is gradually varying

35 = /¢:<r>¢v(m,r>dr 5 /u:<r)<—z'nV)uu(r)dr

+ ! / 6 () (=ihV) 8, (K, 1) dr [—é / it t5) dr] (3.20)

On the basis of the fact that u.(r) and u, (r) are orthogonal, the last term of

eq.(3.20) is vanished and can then be rewritten as

M., = My M., (3.21)
by defining
Q/ —ihV) u, (r) dr (3.22)
and
Mo, = [ 62 (5)6,(r) . (3.23)

Afterward, the matrix element of transition is squared and averaged over all

directions and eq.(3.24) is achieved
IMZ,| = |[M3| |MZ,,]|. (3.24)

|MZ| can be obtained by band-structure calculation as follows (Hybertsen, 1994)

M|

= 4 eV. (3.25)
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Now on, only envelope matrix element will be substantially determined.

3.3.1 Envelope Matrix Element

Our density of states is derived through modelling potential fluctuation wells by
harmonic wells and the obtained model provides Gaussian wave functions [see
Appendix C|. However, the delocalized wave function obviously is plane wave.
So the envelope function in our model is assumed to be a superposition of the
obtained Gaussian wave function (C.7) and plane wave in order to cover both
localized and delocalized states (Sritrakool, Sa-yakanit and Glyde, 1985). Then

the envelope functions of the valence and conduction bands are

2\ /A -
u(kr) = (22) " el rlexp ke -] (329
and
o\ ¥ ;
bolicsr) = (22) " eplike demp [k -nf] 320

where r; and r; are the centers of the envelope functions and, k, ., which stand
for the wave vector of carriers, will be discussed later. The localization parameter

Moy o 18 Telated to the variational parameter through

O e
{snckeRN Thav

(3.28)

Then, the envelope matrix element which is defined relying on eq.(3.23) is
M.~ /exp [—i (ke — ky) - T] exp [-—uv |r — r,~|2] exp [——uc lr — rj|2] (3.29)

where the normalized factors of the envelope functions are temporarily ignored.

Applying the Gaussian integration formula,

oo

2
/ exp [—az® + bz] dz = (2)1/2 exp [—ab—&] ; (3.30)

—00
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eq.(3.29) then becomes

- 3/2
Menv - (ll’v + ,u'c> o= [_ ('u'”r? A ucr?)]

exp {7' (kC A5 kv) + 2 (Au’vr'i + /J'crj)}zl ;

4 (p, + 1) al)

The magnitude of squared of envelope matrix element is

3 2
m (ke — ko) [ 2ty b 2]
M2, exp |-l exp | —tule (p o p )P (332
[Mons| ~ <uv+uc> p[ 2(uv+#c)] Gige gl i

Since we obviously concern with a random system, it is important to average the

result over all random positions r;, r; and the angle between wave vector k. and

k,, 0, then

dr; [dr;
<|Mzm)|>r,-, rj, cosf i / / / : em)
5 _1_( T ) (W(#v+ﬂc)>3/2exp _M
Q /J'v + ,J'c 2/1v.uc 2 (IJ"U + /J'C)

Hy k3 :u‘c : kckv
( kcky )Smh (uﬁuc)' o

Reintroducing the normalization factors into eq.(3.33) results in

1 (22na N2 g+ n kek (ke + ky)?
M o > VIRE AL Sc% R )
<| envl ri, rj, cosf e (uv + uc) ( k'ckv ) Sin (#v T y,c) exp ) (ﬂv 3 ,U:c)

(3.34)

which represents the envelope matrix element used in our work. However, it still

be in entangled form, (|M?

So, from now on, it will be simply

env )r,-, r;, cosf °

rewritten as [M2,_|.
Further problem is how to determine k. and k,. According to the existence
of the mobility edge as we discussed previously in Section 2.4, the change of

state from localized to delocalized, in disordered systems, is undoubtedly sudden
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instead of continuous. The states below the mobility edge are all localized and
allow all £’s equal to zero. On the other hand, the states above the mobility edge
are all delocalized and are assumed to have parabolic F —k dispersion relationship

similar to that of free carrier

29m 1/2
b ( e (E - E;)) (3.35)
and
1/2
e (2—;—';2 (B, - E)) . (3.36)

Prior to numerical calculation, we also note that, in this calculation, the band

gap of crystalline silicon is generally temperature dependent (Singh, 1995) :
Ey(T) = E, (0) - AT (3.37)

where E, (0) is the energy gap of crystalline silicon at 0K (1.17 eV) and 8 = 0.5
meV/K.

3.4 Numerical Results of Absorption Coefficient

In this Section the calculated results of optical absorption are presented. The
calculation employs the model discussed previously with the density of states
constructed in Chapter 2. The optical absorption coefficients are calculated using

eq.(3.15) multiplied by two to include spin degeneracy, i.e.

a) =52 [ 45 o, (B0 (8) MLE,B)| ()~ (B (339)

—00

where E' = E + hw. The density of states, employed here, is PS DOS eq.(2.98)

consists of the low-energy density of states p; (E) up to the energy E* at which
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it crosses the high-energy density of states py (£). Thereafter, the high-energy
density of states is displayed. Furthermore, we sensibly assume an effective unit
band mass of 0.58mg (Singh, 1995) in density of states of valence band. For
conduction band, an effective unit band mass of 0.32my is presumed (Singh,
1995). However, in order to include the six valleys of conduction band, it is
essential to multiply the density of states by six (Singh, 1995).

The matrix element of transition manipulated in this calculation is given
by egs.(3.24), (3.25) and (3.34). The values of k,, k., p, and . are deter-
mined through the method described in Section 3.3.1. In our model, we suggest
that autocorrelation length L is approximately ag/v/In2 (see Appendix A) which,
therefore, is applied in the calculations.

In the calculations, we consider only 60%, 65%, 71% and 80% porosity
which are valid in our model. The calculated results of optical absorption coeffi-
cients at 71% porosity as a function of photon energy at 300K, 100K and 7K are
illustrated in Figures 3.2, 3.3 and 3.4, respectively and at 80% porosity at 300K,
100K and 7K are also shown in Figures 3.5, 3.6 and 3.7, respectively. Every curve
exhibits a significant peak at slightly above their mobility gap with the magni-
tude of about 80 cm™! when of about 0 cm™! is found elsewhere. For 60% and
65% porosity, the calculated absorption coefficients are close to 0 cm™! through

all energy range of study as shown in Figure 3.1.
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Figure 3.1: Calculated absorption coefficient as a function of photon energy at
60% and 65% porosity and T = 7-300K
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Figure 3.2: Calculated absorption coefficient as a function of photon energy at

71% porosity and T = 300K (solid line) and experimental result of Kovalev et al.

(1996) (dashed line)
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Figure 3.3: Calculated absorption coefficient as a function of photon energy at
71% porosity and T = 100K (solid line) and experimental result of Kovalev et al.
(1996) (dashed line)
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Figure 3.4: Calculated absorption coefficient as a function of photon energy at
71% porosity and T = 7K (solid line) and experimental result of Kovalev et al.
(1996) (dashed line)
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Figure 3.5: Calculated absorption coefficient as a function of photon energy at
80% porosity and T = 300K (solid line) and experimental result of Kovalev et al.
(1996) at 86% porosity (dashed line)
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Figure 3.6: Calculated absorption coefficient as a function of photon energy at
80% porosity and T = 100K
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Figure 3.7: Calculated absorption coefficient as a function of photon energy at
80% porosity and T = 7K

These can be concluded that non-phonon assisted transition significantly
involves with optical absorption only in a small range of energy (<0.05 eV) with
porosity above 70%. In addition, the magnitude of peak arised from calculated
results are comparable with that of the experimental results (Kovalev et al, 1996).
However, our results are overestimated due to the assumption of direct gap tran-
sition. This indicates that the calculated magnitude is substantially smaller and
may be ignored when it is calculated rigorously. This also implies that non-
phonon assisted process can be neglected in the optical absorption, at least in the

energy range of study.
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