Chapter 2

Electronic Density of States
of Porous Silicon

In this Chapter, we investigate the electronic structure of porous silicon.
First, we propose a model of porous silicon structure as a disordered system.
Thence the density of states is determined using Feynman’s path integral tech-
nique of disordered system. Subsequently an analytic expression of density of
states is obtained as well as its low- and high-energy limits. We also discuss the

band gap and mobility gap of porous silicon in the last Section.

2.1 Our Model for Porous Silicon

We use the same primitive structure of porous silicon as that of Sawada et al.
(1994), an irregular structure obtained by removing some silicon atoms randomly
from a perfect silicon crystal, and most dangling bonds of silicon atoms are termi-
nated by hydrogen atoms (Sawada et al.,1994). We also consider that Si-H bond
formation prevents reconstruction around vacancies. Therefore, this structure re-
tains partially original crystal symmetries, which is consistent with experimental
facts (Barla et al.,1984; Sugiyama and Nittono, 1990). In a sense, porous silicon
can be viewed as a disordered assembly of three-dimensional quantum wells which
are produced from random potential fluctuation from the system. It is clear that
the quantum confinement is implied in our model through the potential fluctu-
ation. This structure leads to the reduction of density of states in the vicinity

of the crystalline silicon band edges, as in the quantum confinement model, and
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the electrons (or holes) near band edge are localized. The reduction of density
of states can be seen from analytical approximated density of states which is de-
rived using Feynman’s path-integral method for disordered systems (Sa-yakanit,
1979). We also note that good details of calculation technique in Feynman’s
path-integrals of disordered systems can be found in an M.Sc. thesis of Varagorn
Piputnchonlathee (1996).

From the above discussion and by using the effective mass and the one
electron approximations, electrons can move freely in the conduction band (as
well as holes in the valence band). Removals of some atoms associated with
occurring of potential barriers are called “scatterers”. Thus, following the method
of Samathiyakanit (1974), we model porous silicon as a system of an electron (or
hole) moving among a set of N; rigid scatterers, confined within a volume (2,
and having a density n, = N1 /2. However, occurrence of the potential barriers
is equivalent to occurrence of the potential wells among the potential barriers.

Such a system is described by the Hamiltonian,

W= %mﬁz + :Zjvg (x —x}) (2.1)
where N, is the number of wells, m is the effective mass of electron (or hole) and
vp (x — x}) is the potential of a well seen by an electron (or hole) at point x due
to a well at point x; which is also assumed in a Gaussian form, as of the scatterer

potential v; (see Appendix A), which is

ve (X — X)) = —vpexp {_b‘—l_;(ﬂ] (2.2)

where [ is related to the autocorrelation length and vy is the strength of the

potential well.
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2.2 Feynman’s Path-Integral Formalism

About fifty years ago, Feynman (1948) invented a new formulatién for quantum
mechanics called path integrals. This formalism was motivated by the paper of
Dirac (1945) entitled "On The Analogy between Classical and Quantum Mechan-
ics". Rather than beginning with the Hamiltonian of a system, the Lagrangian
is considered instead allowing us not involve to the commutation relations. The
foundation concept is the amplitude, ® [x[(7)], of a system moving along any
path equal to the exponential of the phase of that path, where the phase is the

ratio of the action, S [x[(7)], along the path and Planck’s constant. In notations

® [x[(7)] = exp [zﬂ’%@] . (2.3)

Then we can define a propagator, which is an amplitude for a system
going from one point to another point during a finite time, as a sum of ® [x[(7)]
over all possible paths. That is,
K (%038, 07 ="V S5 @hx (7)] , (2.4)
all possible paths
where K is the propagator. Since the summation over all possible paths is not a
precise mathematical definition, thus a path integral is introduced. For a propa-

gator, we can write down its expression, using a path integral, as

K (i,0) = [ Dx(r)exp | 15 el (25)

where D (x (7)) denote as path-integration. For more about path integrals, Feyn-
man and Hibbs’ book (1965) is the best one which gives us rather complete

knowledge.
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Now, we shall turn back to our problem. According to our model, the

Lagrangian of our system is

1 ok
L= §m>'c2 - ;vg (x—x;). (2.6)

Using the path integral formalism, the propagator can be written as

t
K (x5, %:;t,0: X)) = /D (x (7)) exp —%/d’r (%mfcz - ivg (x — xi)) ,

: = 2.7)
where [x'] is a set of positions of wells. From this propagator, the system prop-
erties obviously depend on a configuration of wells which is random. But in
practice we measure these quantities many times on the identical prepared sys-
tem. It should be an average value, instead of the particular one, that will be
obtained from measurements. Kohn and Luttinger (1957) have shown that in gen-
eral we can substitute the specific value of any function by its ensemble average
provided that the wells aré truly independent.

Follow the foregoing discussion, we shall define the average propaga-
tor K (xg,%;;t,0) as the sum over all configurations of the specific propagator
K’ (x9,%;t,0; [x']) weighted with the probability P ([x]) that the system having
the configuration [x’]. The average propagator can be expressed mathematically
by -

K (x,x13t,0)= Y P(]) K (x2,%;t,0;[x). (2.8)

all configuration

Suppose that the wells are completely random or uniformly distributed, we have

P([x])d[x]= %dx’l...dx’m, (2.9)
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where (2 is the volume of a porous silicon. Consequently,

t
1
K (x2,%3;t,0) /D T)) exp [h/dv' imkz}

0

t e,
; { -(%i,exp [—%/drvg (x — x'):l } i et a10)

0

Now, consider the term inside the curly braces of eq.(2.10), putting in a new form,

as
dx’ ax’ t
X e
o exp —ﬁ/drvg(x ) = o oXP —’—_l/d'rvz(x—x) -1
+ 1 (2.11)
Applying the identity,
. alN aN

and eq.(2.11) into the last term of eq.(2.10), this is reduced to

t L

dx’ ? ? i
o &P —ﬁ/d'rvz (x —x) = exp ng/dx (exp [—ﬁ
0

t

-/dTv2 (x—x)| —1][(13)

0
where ny = Ny /S is the wells concentration. Then, the exponential exponent is
expanded into Taylor series and since ny — 00, vo — 0 so that nyv? is finite. We

keep up the terms up to the second power of v; (x — x%). The average propagator
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eq.(2.10) becomes

t

K (x2,%1;1,0) /D )) exp % /dT —mx —nz/dT/dXUQ(X—X)

0
t

%ing/d'r/da/dx'vz (x (1) = x) v (x(0) = X') | |(2.14)
0
Note that the assumption we used above allows us completely describe the system

by the first and second moments of the potential. That is, the distribution of the
potential is Gaussian or normal. This means that a system of an electron moving
in weak and dense scatterers is equivalent to that of an electron moving in the
Gaussian random potential. -

Since the second term of the exponent is a time integral of the first term
in Taylor expansion of potential energy of the system, this is then interpreted as a
mean potential energy of the system. So, we define the mean potential energy due

to all wells E, and the autocorrelation function W (x (7) — x (¢)) as following:
Ey = ng/dx'vg (x — x') (2.15)
and
W (x (1) —x(0)) = /dx’v2 (x(1) = %) v (x(0) = X), (2.16)
The autocorrelation function is an important function which tells us the effect of
a potential at one point on a potential at another point. If the potential at any

two points are uncorrelated then it is called the Gaussian-white-noise random

potential. The autocorrelation function of this potential is given by
W (x (1) — x(0)) = constant - § (x (7) — x (o)) . (2.17)
By using these two functions, the average propagator can be written as

Kkt it ) / Dibslr)) i [;S[x (T)]] , (2.18)
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where

t t
1 .
Sx(r)] = /dT |:§m>'c2 —Ey+ %im/daW (x(1) —x (a))] . (2.19)
0 0

For the potential applied in our model, the mean potential energy due to all wells

which is at the same position as the mean potential energy due to all scatterers,

can be demonstrated as

7ra(2, 3/2
Eb=m /dx’v1 (x—x") =mug <4ln2> : (2.20)
and the autocorrelation is given by
2\ 3/2 . 2
W (x(r) - x (o)) = v3 (%) exp [- iy ] . (221)

where L = v/2 | denotes the autocorrelation length.

In addition, it should be noted that the mean potential energy caused
by all wells, Ey, is interpreted as upshifted energy resulted from all scatterers
or disordered structure of porous silicon. So the upshifted energy is, indeed,
confinement energy which is well known in crystalline silicon model. However,
the shift exists in both valence and conduction bands so that the confinement
energy from our model, AE, is twice of the mean potential energy, i.e.

AE = 2E, (2.22)

where Ej is defined by eq.(2.20).

2.3 The Density of States

The density of states p (E) (see Omar, 1975) can be defined by

p(E)dE = anumber of states between an energy interval E and E + dF

per unit volume. (2.23)
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This definition gives us a qualitative picture of the density of states, but does not
explicitly express the formula for calculation. The usual formula for the density
of states is concerned with the number-of-states function N (E), which provides

a number of states having energy less than or equal to F,

d

P(E)=E

N (E). (2.24)

Another formula which is directly related to the energy eigenvalue F; eigenstate
¢; can be written as
o (E) = éza (E-Ey), (2.25)
where ¢ is the Dirac delta function.
In our work, it is easy to use the formula eq.(2.25) since the Dirac delta
function can be expressed in terms of the transformed propagator. With the
energy expansion formula of the propagator (Feynman and Hibbs, 1965; Sakurai,

1985),

K G xit,0) = Spbalet e | ~2Ba| . (229

we have the trace of the propagator of the form
()
TrK 3711 B ——Eit]|. 2.27
(o ,0) = Y exp | <4 (227

Taking a Fourier transform of both sides of eq.(2.27) leads to

/dt TrK (x2,%1;t,0) exp {-—%Eit] = 21th<5 (F - E;). (2.28)

—0o0

Note that the identities,

5(0) = o / 2 ol (2.29)
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and
a
o (. .30
5(b) b6 (a), (2.30)
are used in the derivation of eq.(2.28). Now the required relation between the

density of states and the propagator is obtained by comparing eq.(2.25) and
eq.(2.28), we have

3] i
p(E) = %R dt TrK (x3,%3;t,0) exp l—ﬁEt] ; (2.31)

—00

Because of translational invariant of the propagator, hence
TrK (x,%1;t,0) = QK (0,0;¢,0). (2.32)

The density of states eq.(2.31) then becomes
7 /] - i
p(E) = %/dt K (0,0;t,0) exp [ﬁEt} : (2.33)

The remaining problem for the density of states is the propagator which is deter-

mined in next Section.

2.3.1 The Approximated Density of States

In general, a lot of path integrals cannot be integrated out and our problem is one
of these cases. Then an approximation method is needed inevitably. The most
widely used methods in path integral formalism are perturbation and variational
methods. Since this problem is not a perturbative-type problem, we reasonably
choose a variational method.

The concept of this method is that the appropriate trial action with para-

meter can be adjusted such that the required path integral can be obtained with
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large ¥ small

ground state

Figure 2.1: Schematic representation of harmonic well ’s shapes and their associ-
ated ground states with small and large parameters ~y

high accuracy. There are two criterias that indicate whether the chosen trial ac-
tion is suitable or not. First, the path integral of this action should be carried
out easily and exactly. Second, the physical meaning of the "real" and trial ac-
tion must be likely. However, according to Feynman’s polaron theory (1955) and
Sa-yakanit ’s work of density of states in a Gaussian random potential (1979), a
harmonic trial action clearly corresponds to the above two criterias. Therefore,
we use the following trial action of a harmonic oscillator having one parameter «

in our model,

t t

8= / 2 |20 =L [dolx(r) = x (o) (2.34)

0 0

which associates with the trial propagator,

Ko (0,0;) = (%%)3/ ; (m)s . (2.35)

Actually, the parameter -y can indicate the shape of the harmonic well as depicted

in Figure 2.1.
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Of course, the last step of this method is to adjust the parameter. Such
adjustment requires a rule or principle which enables us to find out the appropri-
ate value of parameter. This is known as a variational principle. The discussion

about the principle could not be considered yet in this Section.

2.3.1.1 The Approximated Propagator

As discussed above, in order to calculate the average propagator, we shall approx-
imate the propagators with the help of the trial action. The approximation to be
used is the first order cumulant expansion (Kubo, 1962). Let us first introduce a

path integral average with respect to the trial action Sy [x (7)] denoted by

" [ D(x(7)) Oexp.[%So (x[(7)]]
S D(x(r))exp [£So [x[(7)]]

where O is a function to be averaged. Accordingly, the average propagator can

(O)o

(2.36)

be rewritten as

Wit wo b ) /D(x('r))exp [-% (5—so)+%so]

= Ko (Xz,xl; t,O) <exp % (S = So)> . (237)
0
where K is the trial propagator, eq.(2.35). The equation (2.37) for the average

propagator is still an exact expression but still cannot be solved. The cumulant

expansion,

(@ - @ - 5 (@ -3@) @+20°+.))].

(2.38)

N =

(explal) = exp [<a> P

up to the first order allows us to get the approximated propagator,

K (XQ,Xl;t,O) = Ko (Xz,xl; t, 0) exp [% (S — SQ)O:I . (239)



50

Since the kinetic energy terms of both actions are identical, the exponent (S — So)o
can be replaced by (S’ — Sp),, where the prime symbol means excluding the ki-

netic energy term. That is,
i !
K (XQ, X1, t, 0) = KO (XQ,Xl; t, 0) exp lﬁ <Sl e 0>0:| . (240)

Since the trial propagator K has been already carried out, the remaining work
is to evaluate (S’), and (Sp),.
By substituting S from eq.(2.19), the path integral average of S’ is ex-

pressed as

t t

(S")o = —Eot + gﬁnQ/dT/dU (W (x(1) —x(0))),, (2.41)
0 0

where Eq and W (x (1) — x (0)) are given by eq.(2.20) and (2.21) respectively. To

find the average of the autocorrelation function, we use its Fourier integral,

1
(2m)°*

W ) — () / dk W (K)expik- (x (1) —x (0))] . (2.42)

The Fourier transforms of the autocorrelation function is given below

2\ 3
W (k) = v? (15—) exp [—iszQ] (2.43)
Inserting eq.(2.42) into (2.41)
(e = —Eot+ %’ng‘/dr do (2(1:)3 W (k) (exp [ik- (x (1) — % (7))])y ,

)’ W (k) exp [tk.A — k¥’B?], (2.44)

where

A= (x(1)=x(0)),, (2.45)
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and
1% 2 2
B = 513 ((x (1) — x(0)) >0 ~fx{r) ~x(@)s ). (2.46)
The last form of eq.(2.44) is the cumulant expansion of the previous form, by using
the reason that only the first two cumulant functions are non-zero because S is
quadratic. Putting eq.(2.43) into (2.44) and applying the Gaussian integration

formula for each Cartesian component of k-integration, we get

2
(S = —Eot+ Eﬁ (4m) 3 n, va (WL ) /dT/dO’

-3/2 A2
Now, we consider the average of the trial action, we have
2 t t
Y m
(Spie= a7 dT/dO' (Ix (1) —x (a)|2>0. (2.48)
0o 0

Because of the symmetry under interchanging between 7 and ¢ of S4, above

equation can be written as

(Sh)e —74—] ] (1) = x(0))),. (2.49)
0

Here, the approximated propagator can be obtained by eq.(2.40), (2.47) and
(2.49). Although, the terms such as A, B and ((x (1) — x (a))2>0 are not solved
explicitly yet, such averages can be obtained from (B.13) and (B.14). Therefore

we need to find the forced classical action S({ i
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2.3.1.2 The Forced Classical Action S,

In order to obtain S({,cl and Sp corresponding to nonlocal harmonic trial ac-
tion, eq.(2.34), we have to find the classical path by working on variation of the
forced trial action S (w) which includes effect of external force f () acting on

the particle, then
t

Sfw) = /dT L(%x(1),x(7),t)
0

> /dT 2 (r) - -’;1(;L:)/tda|x(7)-x(a)|2+f(T).x(T)]
0

0
(2.50)

At the extremum point,

658 (w /dT[mx (1) - 6% (1) + £ (1) - 6x (1)

2
e / dor (e (7) = (a) -6 (x(7) — x(a»} 2.51)
0

where 0% (7) = 6 [4x ()] = £6x () and 6x(t) = §x (0) = 0. Thus

t

8653 (w) = —/d’r |:m)'i(‘r) + WT/da(x(T) —x(0)) — f(T):l - ox(1)=0
\ 1 (2.52)

Therefore, we can obtain a classical equation

% (1) + wx. (1) = ——/daxc —) (2.53)

and we can solve eq.(2.53) by introducing the Green’s function g (7,0) corre-

sponding to following equation :

<dd22 + ) g(r,0)=6(r - o) (2.54)



53

of which
(ri0) = = . [sinw (t — z) sinwo © (T — o)
Loshar S
+sinw (¢t — o) sinwr © (0 — 7)) (2.55)

where © is the Heaviside step function and we use the boundary condition x (0) =

x;and x (t) = xo. From eq.(2.53), we use eq.(2.55) and get

1 . .
x() = g (asingt —xsing (t— 1)
i 9 t f ’
+/ wT/dU'Xc (a) + EZ ) g(r,0)do (256
0 0

Solving above integral equation yields

2 wT W (t -T)
X: () e (xgsinwT +xysinw (t = 7)) — g (sm — sin ——= )
[(m + z,) Sln—— — ——/da f (o) (sm;sm w(—T2——i))
#* / %U)g (0,7)do . (2.57)

0

The forced classical trial action S({ 4 (%2,%1; t,w) is obtained by substituting eq.(2.57)

into the expression

t
S({d (X2,X1;t, w) ==1804 (X2,x1;t,W) + /d’r f (7-) - X (7-)
: 0

t t t

i % /dr)'cz('r)—%: alr/alorIX(T)—X(aﬂ2

0 0 0

+/d7‘ £{r)- % (T):l (2.58)
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which is simplified, after integrating the first term by parts and invoking eq.(2.53),

to be

S({cl (x2vxl;taw) = % [5(0 (£} % (1) =% (0) - x. (0)] + +%/dT f({r) % (1)
0

)

(2.59)
Thus, we get
t
S({d (%2, %158, w) = % cot w_2_ |xo — x1|2
t
2 t
237;1wwt _n:,(_:) dr f (1) (sian — 2sin %—sin C—é—} (t —7)sin %)
9 t
(5
+£ dr f (1) (sinw(t —T)— 2sin%sin%} (t—171) sin .
0

i t

- i — T)sinwo
- /dT{dO’f (1) -f (o) {sinw (t — 7)

m2w?
0

. W ) Ty WA W . wo
—4sin ) (t =7) sin —=sin o (t — o) sin —2—}]
By means of eq.(2.58), the classical trial action Sp . can be obtained by setting

f (7) equal to zero. Hence, we find

i t
So,a (X2, X1;t,w) = 5w cot % Ixg — 3,2 (2.61)

2.3.1.3 Calculation of A, B and ((x (1) — x (o))2>0

Using the forced classical trial action S(’;’ o from eq.(2.60), the first and second
functional derivatives can be obtained
g .y 1 1 1
_— = - t — in —
5E ()" t=o  SImAE/2 (x2 BT > T)8m

1 1
+x sin 37 (t — 7) cos 577’) (2.62)

(2.60)
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and
FAgE 6 : L Y
of (1) (Sci{ (o) 5N b  mrysin~yt/2 [9 fr il sttt — Gyn (—2—) oy =)
+0O (0 — 7)siny (t — o) sin (l2T> cos% (r — ar)} : (2.63)
Putting eq.(2.62) and (2.63) into (B.13) and (B.14), we get
x(1)) = sinflyt/2 (x2 cos %’y (t — 7)sin %’y’r
+x; sin %'y (t —7)cos %7@) : (2.64)
and, for 7 > o,
(x(7)-x(0))y = m%?*yt/—é [sin7 (t = 7)sin (770) cos % (r — 0')]
+(x (7))o - (x (), (2.65)
and, for 7 < o,
(x(1)-x(0))y = mfy36+ﬁfyt/2 [sinfy (t — o)sin (%) cos% (1 — cr)]
+(x (7))o - (x (o)) (2.66)

It can be easily obtained by inserting eq.(2.64) into (2.45) that

=iy sin 3y (7 — o) cos 37 (t — (7 + o))
sin -;-'7t

) (x2 — X1). (2.67)

For B and ((x (1) — x (a))2>o, we must separately substitute for 7 > o and 7 < o

cases, €q.(2.65) and (2.66), into the new forms of them :

B = (¢ ()= 2(x(r) - x (0o + (x* (0)), (269)

= (x())g +2(x(7))o - (x(0))o — (x(0))g] ,
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and

((x (1) = %(0))%)g = (X2 (7))g = 2(x(7) - x(0))o + (X" (0))y - (2.69)

Note that, in eq.(2.68), we have set

((@(1) =2 (0))*), = 3 ((x(1) = x(0))*), (2.70)

because of the directional symmetry of the system. Now, we are able to write

down B and {(x (1) — x(0))?), as

B =ik (Sin <L 00 i UI)) : (2.71)
my sin 57t
and
1 1
Grg nr o singy |7 — glsin 5y (t — |7 — o)
() = x (@)Y, = oin o 1)
sindy (r = o)cos iy (¢t — (1 + o))\
+( 27( ) 12’7( ( ))) (X2'—xl)2.
sin 57t
It is worth to note that B has the following property
B(lr —=a))=B({t—-|r—a]). (2.73)

2.3.2 Evaluating the Approximated Density of States

According to the last two sections, it can be concluded that the approximated
density of states defined through eq.(2.40) has a translational symmetry. This
means that the formula for calculating it is given by eq.(2.33) in which only the
diagonal element of the propagator is governed with. Then we set the condition
X, = X1, we have

Ay, =0 (2.74)
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and

. 1 . 1
2 s dinsylr-olsmay (i~ |t -0}
(1) =% (0)))ol gy, = 8 A @)

In this condition, we apply eq.(2.74) to (2.47), (S’),becomes

i t
) iq F2x 2 2\ ~3/2
(b, = =B+ 35 60k (57 ) far far (84 5)
0o o

(2.76)
Based on the property eq.(2.73), the double-time integration can be reduced to

a single integration as follows,

Zd'era (B (Jr - al)'+ —?)_3/2 = tZdy (B (y) + -"f}) - : (2.77)

We obtain
; 12\ %2 12\ -3/
(S)olgyx, = —Eot + EEEL (-4—) t/dy (B (y) + Z) ; (2.78)
0
where £, = ngv? (rL2/4)”%and y = |r — o|. £Y/* is interpreted as the energy
fluctuation around its mean energy (Saito, 1974).
For (Sp),when x; = X3, substitute eq.(2.75) into (2.49) we have

t t
2 S. l A S- —1. t_ =
e g :_%/df/daﬁih( e U 3 A al)). (2.79)
i 0 0

my sin %fyt

Same as (S’),, the double-time integration can be reduced to a single integration

and can be simplified as follows

t

1 1
/da sin i sin 57 (t—o)
0

3 ivh
2sin %’yt

(S(,))O|X2=xl

8.0} 1
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Combining egs.(2.31), (2.35), (2.40), (2.78), (2.80) and (2.71) the approximated

density of states can be written as

1. m \3/2 vt 2
AR == 2k 5 <27riht) (sin(’yt/Q))

—00

) ik
- exp [% (E— Ep)t+ g— (ifyt cot, 'y% - 1) (2.81)

<
k(B / [ i
0

- However, the obtained density of states is still too complicate and cannot be
calculated numerically then it is worth to separately consider it in two limiting

case, low-energy and high-energy limits.

2.3.2.1 Low-Energy Limit

In a low-lying energy tail, we suppose that 7 is large (Varagorn Piputnchonlathee,
1996). This means that we only consider the contribution from states of the large
wells, which their energies are lower than that of the small well (see also Figure

2.1). Hence, we are able to approximate

singy|r —olsingy(t—|r—of) _ 1

=2 = 2.82
sin 3t 24 ()
RN 3
sin §7t > —8iexp —z;yt : (2.83)
1 o
§7t cot 15~ 1« Efyt. (2.84)

By using eq.(2.82) and keeping only the term up to ¢, eq.(2.77) can be integrated
(Jeffrey, 1995) giving

. %
L2 —-3/2 B L2 -3/2 ’
/d’r/da <B (|Ir=oa]) + T) = [% + Z] (2.85)
0

0
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Applying egs.(2.83), (2.84) and (2.85) to (2.81), the expression for the density of

states becomes

—acr i m \3/2 ( E, o (x8/2
pL(E) = ﬁ(ﬁ) (?) /dt(zt)

it 3 t2 o s
5 (E - ZE") ~ ik (1 & 4E> , (2.86)

where E, = hy and E; = h?/(2mL?). Using the parabolic cylinder function
D, (2) definition (Gradshteyn and Ryzhik, 1965),

" g2
/dt (it)? exp (—B** — igt) = z—p—/—;—/—;%ﬁexp (8—;2) D, <#> (2.87)
we have
2-3/4 , mm \327.E N &L % =372\ ~5/4
pulB) = 5= (%) (—hl) (ﬁ (1 +4E) (2.88)
_EZanlmE] O vmE-5-3s,)

4¢ (1+4’—3L)_3V2 \: 3 (1+4f_»1)"3’2
L E, E T2

Here, the density of states of porous silicon can be written down in the form

- exp

- exp

which is obtained by Sa-yakanit, Sritrakool and Glyde (1982) for a heavily doped

semiconductor

e BT 3wt b (1;2) b(n; 2)
PrL ("7, Z) e EL§,£/4 b3/4 (77; Z) €xp |: 4£IL } D3/2 ( é.,L ) 5 (289)

where £} = £, /E%, n = (Ey— E) /E ;2 = E,/E;, and the two dimensionless

functions are defined by

] 3 3/2 3
afn;z) = WP <Zz + n) (z+4) (2.90)

e <Zz + n) 2 (1 + %)3/2 . (2.91)

and
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It is important to note that the low-energy limit eq.(2.89) is valid only in
low energy region (near bulk crystalline silicon band edge) or in the other word,

the lower energy level is, the higher reliability of density of states will be.

2.3.2.2 High-Energy Limit

In an another limit, high-energy limit case, the approximated density of states in
this case can be obtained by taking the limit v — 0 (as discussed in low-energy
limit) or equivalently ¢ — 0 which is physically understood by considering the
pseudo-Heisenberg uncertainty relation £t > A (Van Miegham, 1992). Therefore,

we are able to approximate

vt
20y, (2.92)
2 sin 3t
. t cot £ 1=0 (2.93)
27 72 T\ bl T

and
sin 37y |7 — olsingy (t = |7 — o])
ysin %fyt
Inserting egs.(2.94) to eq.(2.77), it can be integrated to obtain

/ e / -2 ( L ":12)_3/2 . (%2)_3/2 2. (2.95)

Combining egs.(2.92), (2.93) and (2.95) with (2.81) we have

1%

0. (2.94)

3/ hl/2 b i 6
1/4 —1/4 -3/2 - _SL
pu (E) = 7r2h3€ oL /dt (it)""“exp [h (B —Ep)t 2h2t ]

—00

(2.96)
By using parabolic cylinder function definition eq.(2.87) and the notation as in

low energy limit, the approximated density of states in high energy limit becomes

3/2 2
u () = Zh351/4 exp [_Z%Z] D_3/2 <\/n§_) ; (2.97)
L
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Figure 2.2: Density of states of porous silicon in high-energy limit eq.(2.97) for
the valence band with hole effective mass of 0.58mg (Singh, 1995) and conduc-
tion band with electron effective mass of 0.32mg (Singh, 1995). The scatterer
strength is 0.7 eV (Table 2.2) and the porosity is 72% (solid line). The dashed
line represents parabolic density of states of perfect crystal.

We also note that the validity of the high energy limit eq.(2.97) is confined only
in high energy region (far from bulk crystalline band edge). Alternately, we can
also say that the higher energy level is, the higher reliability of density of states
will be.

These two limit density of states will be used in calculation of the optical
absorption of porous silicon in next Chapter. A specific example of the density of
states of valence and conduction bands in high-energy limit (eq.(2.97)) is shown
in Figure 2.2 and in low-energy limit is shown in Figure 2.3 as well.

Although we have set up the full expression for the density of states of
porous silicon eq.(2.81), it has not been possible to evaluate the full expression
exactly at all energies because of many built-in essential singularities. In order to

solve this problem, we use the idea of matching density of states of Sa-yakanit and
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Figure 2.3: Density of states of porous silicon in low- energy limit eq.(2.89) (solid
line) and high-enegy limit eq.(2.97) (dashed line) for the valence band with hole
effective mass of 0.58mg (Singh, 1995) and conduction band with electron effective
mass of 0.32mp (Singh, 1995). The scatterer strength is 0.7 eV (Table 2.2) and
the porosity is 72%. ;

Glyde (1980) in their work of heavily doped semiconductors. Then the chosen
density of states for all energies is thus the low-energy limit density of states,
pr (E), matched with the high-energy limit density of states, py (E), in high

energies, i.e.,
pc(E) = pr (E)[1 - O (E - E")] + py (E) ©(E - E"), (2.98)

where E* is the energy at p; (E) crosses py (E).

The density of states in eq.(2.98) represents the density of states of porous
silicon in our model then it is simply called the PS DOS. The PS DOS is shown
graphically in Figure 2.4. This PS DOS will be used in our calculation for the
optical absorption coefficient in next chapter.

Additionally we can conclude based on the PS DOS, the low- or the high-

energy limit density of states that the density of states closed to the band edge
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Figure 2.4: The density of states of porous silicon (PS DOS), for valence band
and conduction band, consist of low-energy limit density of states and high-energy
limit density of states.
of bulk crystalline silicon are clearly much less than that of parabolic density
of states of bulk crystalline silicon. This is the band-gap widening from our
model which is an important feature of the model in order to explain the visible
photoluminescence. The band-gap widening in our model is approximately equal
to the confinement energy AE (see also the last of Section 2.2) which is wider
when porosity is increased. This trend with porosity is same as that of crystalline
silicon model.

Finally, it is important to emphasize that such an expression obtained
(eq.(2.98)) is the first analytical density of states which is directly extracted from

the realistic structure of a whole porous silicon sample.
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2.3.3 The Variational Equation

As mention earlier, the essential step of this method is to adjust the variational
parameter (z or ) which is introduced in the trial action. In doing this, we must
have a rule or principle which allow us to be able to find out the appropriate
value of the parameter. This is known as the Lloyd and Best variational principle
(Lloyd and Best, 1975).

Lloyd and Best have shown that, the exact density of states is the function

which maximizes the pressure P (E) of the fermion system

E E’ E
H@Eﬂﬂ/ﬁ%@=/ﬁﬂ%ﬂﬂ@) (2.99)

This means that, for calculating the approximated density of states, the vari-
ational parameter should be chosen so that the pressure function reaches its

maximum value. Therefore, the variational equation is obtained in the form

0
o, P(E:2) =0, (2.100)
or
T 9
/dE' (E - E" —a—z—p(E';z) =aA). (2.101)

The asymptotic behavior of this variational principle is to maximize the
density of states, which is so-called the Halperin and Lax’s variational ansatz
(1966,1967) obtained by their work relating to the band tail in heavily doped
semiconductor. That is

%p(E;z) =0 (2.102)
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n | z from eq.(2.105) | z from eq.(2.101)
-0.01 0.039 0.040
-0.05 0.171 0.172
-0.10 0.306 0.308
-0.50 1.000 1.002
-1.00 1.562 1.572
-5.00 4.000 4.000
-10.0 5.844 5.844
-50.0 13.651 13.651

Table 2.1: Calculated variational parameter from eq.(2.105) and (2.101) at dif-
ferent energy

In Halperin and Lax’ work, this equation has been reduced to a more simple one
by taking the prefactor of the exponential slowly varies with respect to the expo-
nential term. The left-hand side of eq.(2.102) then becomes a partial derivative

of the exponent of the density of states. In symbol,

0

Applying eq.(2.91) to (2.103), we obtain
22+ z—4n=0. (2.104)

Since z is the ratio of the energy associated with the harmonic oscillator and the
energy of the fluctuation, it definitely must be positive. Thus keeping only the
positive root,

z= % [(1 +169)"/% — 1] ; (2.105)

As shown in Table 2.1, there are just a little bit different between the value of
variational parameters which are determined from eq.(2.101) and eq.(2.105), is
existed. Thus we use eq.(2.105) to determine the variational parameter in the

calculation of optical absorption coefficient, which involve with the density of
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Figure 2.5: Schematic representation of density of states of porous silicon showing
localized states between E. and E; with delocalized states outside this range.

states, in next Chapter.

2.4 Band Gap of Porous Silicon

Usually, a band gap is defined by the energy difference between conduction and
valence band edges but this definition cannot be applied to porous silicon due to
existence of band tails. We believe that it may not be meaningful to extract the
band gap of porous silicon by this definition.

Consequently from our model, according to Anderson’s theory of local-
izatién (Anderson, 1958), the states in a band tail near each band edge become
localized due to potential fluctuation from the scatterer randomness as well the
localized states and delocalized states are separated by a conventional energy
level called “mobility edge” which is denoted as E for conduction band and E
for valence band. These are depicted in Figure.2.5.

The energy difference between conduction- and valence-band mobility
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edges is called “mobility gap”. In a periodic system or ordered system, the
mobility gap is obviously equal to the energy gap. Therefore, we can determine

the mobility gap of porous silicon, Ej, as
E,=E - E, (2.106)
which can be related to the band gap of crystalline silicon, E,, as
E,=E,+(E,— E.)+(E,— E,). (2.107)

Since justification to choose mobility edges is not clear, it is reasonable to take
them roughly at the value of mean potential energy Fy due to all scatterers
(Sritrakool, Sa-yakanit and Glyde, 1985). Since E, is measured from the band
edge, then

E -~ FE.=FE,~FE = E,. (2.108)

From eq.(2.20), we see that Eq is dependent only on the number density of scatter

n, and the strength of scatterer vy. Thus the band gap of porous silicon becomes

ma? \*/?
E, = E,+ 2E, = E, + 2n1v ( 41n°2> (2.109)

In our model, the density of scatterers can be related to the porosity p defined in

eq.(1.1)

__ mass of Si wafer - mass of PS

100
mass of Si wafer e
then
. i volume of all vacancies %100 = ™ % 100 (2.110)
total volume o

By combining egs.(2.109) and (2.110), we obtain the approximated mobility gap

of porous silicon as

2

3/2
e P\ [ mag
Eg = Eg + 2’Uo’no (100> (41112) (2.111)
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Le., for porous silicon with 72% porosity together with scatterer strength assumed
to be 0.7 eV, the calculated mobility gap is about 1.8 eV. It is clear that there
is an energy-gap widening from our model. However, we cannot get the mobility
gap numerically because the scatterer strength vy cannot be obtained from our
model.

According to electrical transport properties of disordered systems, it is
well known that the activation energy, E,, of the extended state conductivity is
comparable to the energy difference between the mobility edge and Fermi level,
Ep (Mott and Davis, 1971). Consequently, a following relation is reasonably
employed

E, = Er—E,. (2.112)

It is worth to calculate using crystalline band edge, E,, as a reference, then
E, = (Ep —E,)+(E,— E.). (2.113)

Using egs.(2.108), (2.20), (2.110) and the fact that the Fermi level lines at the

mid gap. we then obtain

R nopy [ ma2 \*?
B2 +1"’(100) (4ln2 : A
So,
> E,\ [100\ [ ma2 \~*?
o= (2-3) () (@) e

Afterward, the scatterer strength, which is obtained from eq.(2.115) in
various porosity using the experimental results of activation enefgy of Lee et al.
(1996), are shown in Table 2.2. The experimental results are obtained from the
slope of Arrhenius plot which is plotted between recipocal of absolute temperature

and logalithm of dark conductivity. Such results of Lee et al. (1996) are confirmed
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Porosity (%) Activation energy : E, (eV) Scatterer strength : vo (eV)
40 0.30 -0.910
53 0.51 -0.170
60 0.60 0.032
65 0.73 0.285
71 0.98 0.711
80 1.01 0.679

Table 2.2: Activation energy and calculated scatterer strength from eq.(2.115) at
various porosity (Lee, Lee and Jang, 1996).

by the work of Lubianiker and Balberg (1997) that they are associated with
extended conduction. The plot of scatterer strength as a function of porosity
is shown in Figure 2.6 as well. Such a plot is interesting dug to two aspects.
First, the scatterer strength which is proportional to porosity contradicts our
constant model potential [Appendix A]. It is believed that this contrast implies
the perfection of potential wells in the model. Second, it appears that the scatterer
strength is negative when porosity beiow 60%, indicating that our model is reliable

at porosity above 60%. However, more detail are discussed later in Chapter 4.
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