Chapter 5

Excitation of Vortex State

In this chapter we study the response of the vortex state in Bose-Einstein
condensation to the excitation made by changing the trap frequency by using the
solution of path integral. Firstly, we briefly discuss the physics of this system.

When a quantum system is rotating, particles in the system move in a
circle with the circumference having the value of an integer multiple of the de
Broglie wavelength. This quantization rule leads to the Bohr model and the
discrete energy levels of the hydrogen atom. For a rotating superfluid, it leads to
quantized vortices. If we rotate a normal liquid in a bucket, the fluid will finally
rotate as if it were a rigid body where the velocity of the particles in the fluid
smoothly increases from the center to the edge. But this smooth variation is
impossible for particles in a single quantum state. To fulfill the above mentioned
quantization rule, the flow field must have some regions where the number of de
Broglie wavelengths on a closed path increase by one when going from one path to
another. One possibility is a radially symmetric flow field with concentric rings.
Between adjacent rings, the number of de Broglie wavelengths on a circumference
changes by one.

The vortices in a Bose-Einstein condensate are quantized: when an atom
goes around the vortex core, its quantum-mechanical phase changes by exactly 2 .-
Such quantized vortices play a key role in superfluidity and superconductivity.
In superconductors, magnetic flux lines arrange themselves in regular lattices
that have been directly imaged. The vortex in rotating gaseous Bose-Einstein

condensate was created by a group leaded by Dalibards [27] and Ketterle’s group
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[28]; they observed the formation of vortex lattices in a rotating Bose-condensed
gas produced by spinning laser beams around the condensate, setting it into
rotation. Before that the creation of the single vortex was done by Cornell-
Wieman group [29]. This is due to the fact that the creation of the vortex, it is not
easy to place the vortex core at the center of the condensate. Generally the vortex
created is off center. By studying an off-center vortex, they found that the core of
the single vortex is not stable but it moves around the center of the condensate.
Tempere and Devfeese [30] numerically simulated this phenomenon by using the
path integral technique with the harmonic model mentioned in Chapter 2 and
found the precession of the vortex. The precession is due to the Magnus force
which originates from the pressure difference between the inner and the outer
sides of the vortex.

In this chapter, we consider the response of the off-center vortex in
the non-interacting Bose condensate when the frequency of the trap is changed
abruptly. As we learn from Chapter 4 that our time-dependent density matrix
has no semi-group property so it is difficult to use the harmonic model which
contains the harmonic interaction between particles. As pointed out before, one
cannot be sure that using the harmonic model leads to the dissipation of the
system since it introduces only the center-of-mass to the calculation. However,
our model is not very far from the real situation. If we consider the system in a
very short period of time (with respect to the life time of the condensate) we can
say that our system is quasi-non-dissipative and the inclusion of the intera,ction“
between particles can be neglected.

Consider the vortex state in thermal equilibrium as a prepared state and

then physically change the frequency of the trapping potential to another value
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immediately and see how the vortex state and the condensate itself change with
time. The system we consider is two-dimensional. In our system, we excite
the anisotropic-trapped condensate in the horizontal plane only and assume that
there is no effect on the vertical direction. To write explicitly, we firstly prepare

the state with the trap potential
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In fact, we do not know the path integral solution for the condensate with
vortex so we take the vortex wave function from the Gross-Pitaevskii equation
to construct the density matrix. Note that this wave function represents the
vortex state at zero temperature. The wave function or the order parameter of

the Bose-Einstein condensation with vortex in two dimensions [30] is
¥, (r) = VQre- /24, (5.1)

where the vortex core is along the z-axis, ) is a trap frequency and r = /22 + .
The phase factor 0 is defined from the circulation around the center of the vortex.
The single-particle density matrix is
p(r',r) = P,(r') 9, (r)
-r'2+1-2
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Then the many-body density matrix is simply a product of one-particle density

matrices
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The time dependent density matrix can be written as
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where we have used the propagator K, (z’,t|z) for the harmonic oscillator as a

time-evolution operator, which is
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However, the statistical calculation of this density matrix is very compli-
cated since we cannot find the closed form of the single-particle density matrix so
we must calculate it numerically. In the case of the vortex placed at the distance

a away from the center of the condensate we have

P (F) = VO/(z — a)? + y2exp [z [arctan 3 E/_ a] 3. (:c22+ y2)} ‘ (5.6)

where the maximum of the condensate is at the origin and the vortex center is

situated at a distance a from the center. Express # (7) in polar coordinates,

in 6 Qr?
= VQVa2 = 2arcosf + 12 ['ars‘ ( e )— }
Y () a ar cos T2 exp |7 arcsin 5 ot gy 5
(5.7)
then the density matrix of the system can be written as
P lEF) = Q\/(a2 — 2ar’ cos§' + (7"’)2) (a? — 2ar cos 6 + r?)
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To see the time-evolution of the system, we let it evolves in time under the

influence of the harmonic potential o frequency w. Mathematically speaking, we
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use the propagator of the harmonic oscillator of frequency w as the time-evolution

operator. Thus
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This expression is too complicated so we evaluate the density distribution of the
particles by the numerical calculation. Fig. 5.1 depicts the snapshot of 5 period
of rotation.

We can see the rotation of the condensate peak around the center of
the trap with the fluctuation in the amplitude. The frequency of the rotation
is in agreement with the experimental result but in our case the decay of the
oscillation is not present since the calculation we made does not include the
dissipation term. However we anticipate that such a decay could be obtained
in the perturbation framework. It is noted that the calculation has been made
without taking the statistics into account but from the previous chapter, we found
that the statistics makes change only in the size but not in the physical behav1or
of the condensate. Hence the result we have is more or less a representative of the
dynamical behaviour of the vortex in Bose-Einstein condensation under a small

perturbation.
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Figure 5.1 The vortex precession.
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