Chapter 2

Statistical Mechanics

This chapter is devoted to a review of statistical mechanics putting the
emphasis on the path integral approach to the subject. Our treatment is rather
sketchy and the reader is invited to consult the book by Feynman [6] and the

original papers cited for more details.

2.1 Quantum Statistical Mechanics

The main purpose of this chapter is to give a short introduction to the path
integrals for statistical mechanics and to consider this formulation for identical-
particle systems. Norrﬁally, in the framework of quantum mechanics via path
integrals, we consider the system going from one state to another, say a parti-
cle at the point z; going to x,, and find the transition probability amplitude.
In statistical mechanics we consider the quantum mechanical states in thermal
equilibrium at some temperature 7. The probability of finding the system in the
state of energy E is associated with the factor e™#, the Boltzmann factor, where
B =1/ (kgT). This factor acts as a weighting function for the determination of
any observable. For example the probability of finding a system in the state with
energy E, can be written as

1
PEa = Ee*ﬁE“ (21)

where Z = . e #Fi is the partition function which serves as a normalization

factor. From the knowledge of the partition function we can derive all thermody-
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namic properties of the system in thermal equilibrium. For example, if we want
to know the probability of finding the system at the point z, we first find the
complete set of wave functions of the system {¢, (z)} and then we can write the

probability of finding the system at the position z as

P(@)= 5 34 (@) 4 (z) e 22)

The expectation value of the observable A can be calculated from
1 1
= N ) O i Y * —BE;
B =23 Ao [e@a@ameEa @3

where A; = [ ¢; (z) A(z) ¢, (z)dz is the mean value of A in the state i. If we

define the function
plz,2') = Z ¢; (z') ¢; (z) e PFi (2.4)

called the density matrix of the quantum statistical system, the expectation value

of the observable A and the partition function can be respectively written as

W) =5 [ o2 A@)de = L1x (pa) (25)
and
2= /p(z,x) dz= Tr (p), (2.6)

where Tr (p) represents the trace of p. The general problem of quantum statistical
mechanics is to determine the density matrix. Once we know this function all the

thermodynamical quantities of the system can be derived.
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2.2 Path Integral Evaluation of the Density Ma-
trix

From the formulation of path integration for quantum mechanics, the main quan-

tity of interest is the path integral propagator
1
& i ——ET :
(2, T|z,0) = qu exp[ . ] (2.7)

describing a quantum system going from (z,0) to (z’,7). Notice that this is
resemble to the density matrix we derived in the previous section, we can see
that if we replace the time interval T' by the inverse temperature factor —iA3 We
can obtain the expression for the density matrix. Mathematically speaking we
do the analytic continuation of the variable ¢ in the complex plane. Or we can
write explicitly in the path integral form as
: /(T) i T
K («/,T|z,0) # /I(O) D[z (t)] exp [7—1/0 Ldt]

i / ;m D[z (t)] exp [}%5} ; (2.8)

After performing analytic continuation 7' — =ik, we have

| «/(Bh) Bh
p (', —ihpB|x,0) = / D [z ()] exp [—%/O ﬁdr}

z(0)

= /z:)(ﬂﬁ) Dz ()] exp [— %J (2.9)

where S and £ denote the action and Lagrangian respectively in the new vari-
able and 7 = it is called the imaginary time. Note that we treat T as a real
variable and notice that & = idz/dr so the Lagrangian is modified to £L = T + V'
with T' = md®z/dr*. Physically, the imaginary time is nothing more than a

parameter characterizing the thermodynamical systems like what the real time
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does in quantum mechanics. Time in quantum mechanics parametrizes the evo-
lution of a system and the imaginary time or the inverse temperature character-
izes the system at equilibrium at each temperature. Sometimes this imaginary
time is called the Euclidean time because when we consider the line element
of the four-dimension space-time (the Minkowski space) which can be written
ds® = — (cdt)? + d, if we work in the imaginary-time formulation the line
element becomes ds® = (cdr)? + di? as if the space-time is Euclidean. The for-
mulation of path integrals in Euclidean space is very useful in Quantum Field
Theory.

We can now picturize this formulation physically. We can see that the
integrand of the path integral is in the form of exponential decays. The “sum-
over-all-paths" is the summation of the probability amplitudes (having the form
of the exponential of the action) associated with all possible paths connecting
z to z’. Hence, the path that makes the action very large has a very small
contribution to the sum. From the least action principle we know that the main
contribution to the sum-over-all-paths is from the path that makes the action
minimum, which is called the classical path. The small fluctuation paths around
this classical path also give significant contributions to the path integral. The
path in this context is the path parametrized by the imaginary time and the
kinetic term in the Lagrangian is not a physical one. |

So now we can say that our problem is to find the density matrix in the
framework of imaginary time path integrals. In the real time path integral there

is an important property of the propagator, called the “group property,"

K (1‘3,T2 +T1|£L‘1,0) =/ K(SE3,T2[£E2,O)K(IQ,Tllxl,O) dxg. (210)
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We can see that this property is still valid in its imaginary time counterpart but
we call it the “semi-group" property due to the lack of inverse of the density

matrix.

2.3 Systems of Many Particles

We now consider the systems with several variables. We treat the system of parti-
cles as an identical-particle system with the particles being either distinguishable
or indistinguishable. In each case we have to apply different way of counting
due to the symmetry corresponding to each type of statistics. We can write the
Lagrangian for a system of N particles in general as
N N
L=3% (%‘f+mu (ﬁ-)+%2vmt (ﬁ-—ﬁ-)) (2.11)
i=1 j#i
where V ; (7;) is an external potential acting on the particle ¢ and V,,, (7; — 75)
represents the interaction between particles i and j. Actually the interaction
terms can be multinary instead of binary as written above. However as the
path integration calculations rely mostly on the classical solutions of the Euler-
Lagrange equations, the binary interaction is easy to deal with but it is very
difficult to solve the many-body problem analytically. The density matrix asso-

ciated with this Lagrangian is
{='(8)}

() Allh.0 = [ 0 e en - : cr| @1y

z(0)}

where {z} = {21, 2y, ..., 2y } denotes the collection of N coordinates of the system
and the path integral measures D" [{z (7)}] = D [z, ()] D[22 (7)] - - - D [z (7).
We set m = h = 1 for simplicity. We write here in one dimension but the gen-
eralization to the three-dimensional case is obvious. Our next step is to consider

the many-body density matrix in three categories:



13
1. Distinguishable particle case (Maxwell-Boltzman statistics)
p({z'},Bl{z},0) = 3 6:({z'}) & ({z}) e~ (2.13)
2. Symmetric case (Bose-Einstein statistics)
Poym ({2}, Bl{z},0) = 15 Z Zrﬁ ({Pz'}) ¢ ({z}) e (2.14)
3. Anti-symmetric case (Fermi-Dirac statistics)

pantzsym ({‘T } ﬁl {IIJ} 0 N' Z P Z¢: ({le}) ¢i ({.’L‘}) e_ﬂE
: (2.15)

where ) |, means the sum over all permutations. {Pz} is a permutation of
x; with respect to {z}. We can see that ¢; ({Pz'}) ¢; ({Pz}) = ¢} ({2'}) ¢; ({z})
since P?2 = 1. For the last two cases, we can express the density matrix in a

general form as

p({2'}, 6l {z},0) = = Zf oo ({P2'}, 81 {z},0) (2.16)

where { = 1 for Bose-Einstein statistics, £ = —1 for Fermi-Dirac case.

The problem is how to do the sum over all permutations. We know from
group theory, particularly the theory of permutation group, that any permutation
can be broken into cycles. Consider, for example, a cycle of length 8 which can be
symbolically represented by (12345678). Let us consider one particular case of the
permutation P, = (15624387) which means (1 — 1), (2 — 5), (3 — 6), (4 — 2),
(5—4), (6 —3), (7 — 8) and (8 — 7). This permutation can be decomposed as
(1) (254) (36) (78) which means that the figures in the parentheses are permuted
cyclically. Then we say that P, is broken into one cycles of length 1, one cycle of
length 3 and two cycles of length 2.
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We now show that the knowledge about the permutation group would
simplify the problem if the Lagrangian takes the form of that of N non-interacting
particles. In such case, the many-body wave function is simply the product of
single-particle wave functions and the N-particle density matrix can be written
as a product of single-particle density matrices. The important quantity when
we want to find the thermodynamic quantity is the partition function which can
be derived by taking the trace of the density matrix, or equivalently, by setting

{z'} = {z} and intégrating OVer Iy,Ts,...,IN:

Zn = % zp:fp (/pD ({Pz},B|{z},0) dz,dz, - --de) ; (2.17)

According to the cyclic decomposition described above, we can write the partition

function as (for details see [6])

1 ' N! M
T = (Z1 (z,~B|z,0))™ (2.18)
ane | Ml,A;,MN (Hv(Mv!HMV)l:I :

where M, is the number of the cycles of length +, the summations are subject
to the constraint nyvzl YMy = N and Z, (2',75|z,0) is a single-particle partition
function with immaginary-time interval v3 (in the other words, at the tempera-

ture T = 1/(yBkp) obtained from the single-particle density matrices as

Zl (x,)’YIBI‘T)O) = /dxdx1d$2"-dx’y—lp1 (.T,,Bll'l,()) P (.'E],,BI.’I:Q, 0) P (x'y—la ﬁlxa 0)

= /dxpl {x, 7ﬂ|x’ 0).

In deriving the above result we have used the semigroup property of the density
matrix, Eq. (2.10). The factor N!/ (]_[,7 (M.,!)'va) is the number of distinct

permutations of the {M,} configuration. In the later chapters we will see that

(2.19)
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this expression makes us correctly count the possible configurations. Rewrite the

partition function in Eq. (2.18) as

M,
Zv= Y {H—(Z;ﬂfa } (2.20)
My, M, .Mn \ v "

The sum )/ 5. ), is not practical to evaluate since there are various configu-
rations of partitioning of the cycles and also we have the constraint nyvzl M, =
N. It is therefore more convenient to use the grand canonical ensemble in which
the number of particles in the system can be varied. In this ensemble, the main

object of interest is the grand partition function

Z = ieﬂNZN
N=0
=2 /Y {H—(Zziﬁ% 7(e“>"‘”*} (221)
N=0 M, Mo,. 5 (&

where we have defined Zy = 1 and the chemical potential 1 has been introduced

to account for the change of the energy of the system when the particles are

added or removed. Since } %_, DIV s TN 3 o > o, We

can further simplify the above expression as
Z = Z Z Z { 11‘4,*,/)1\4)7(6“)71‘4’
11 =0 Ma=0 M;=0 wig
“H i (21 (28) (e*)" Jn)™
¥

M,

a0pEr] iy

Il
|
8
e g
N
N

Notice that this cyclic decomposition is valid only in the case that the N -particle
density matrix can be written as a product of single-particle density matrices. To

give more insights into this formulation, we give an example in the next section.
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2.4 Model of Coupled Identical Oscillators

Brosens et al. (7,8] consider the system of identical particles in harmonic potential

interacting with harmonic interactions,

EZ—

=1

N 2

N: N
P U Bl (2.23)

t=lg=1

l\.’)r—l
l\.’)lb—'

As pointed out in the last section, to do the cyclic decomposition we need to write
the N-particle density matrix in the form of a product of single-particle density

matrices. Hence introducing the center of mass and the relative coordinates,
1 XN
= szf;- and @ =7; — R, (2.24)
i=1
then the Lagrangian is modified to
N N
L= NR +-0°NR +;2u,~ +Sw ;u (2.25)

where w? = Q% — Nw?. Although the above Lagrangian takes the form of the
uncoupled harmonic oscillators, complications arise as we notice that the coordi-
nates #; are not independent: they must satisfy the constraint 3> | @ = 0 which
severely constrains the range of integration in the path integral. The way to solve
this problem is to integrate over R and 4;’s and then enforce the constraint via

the insertion of the delta function, §(3_Y , @), in the path integral. The result is

p(\/lvﬁ’,ﬁlx/ﬁé,o)n N
G p(\/ﬁﬁ’,ﬂ]\/ﬁé,O)w FEe)

p (7, 8|7, 0),, (2.26)

where, for example, p (\/]V R, BlVN R, 0)Q represents the density matrix of a
particle with coordinate v/ NR in a harmonic potential of frequency €2. The

reader is invited to see the paper by Brosens et al. [7] for more details. By this
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way, the cyclic decomposition can be done within this model. As we will see in
the next chapter, the approximate density matrix for BEC cannot be decoupled

in this way and we need to find other method to decompose the permutation sum.
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