Chapter 1

Introduction

In this chapter, we give some background in Bose-Einstein condensation

(BEC) and explain the scope of the work in this thesis.

1.1 Basic Physics of Bose-Einstein Condensa-
tion

The first realization of the Bose-Einstein condensation in trapped dilute gas of
alkali atoms in the year 1995 [1,2,3] leads to a new understanding of the superfluid
systems. This system is very interesting because of the diluteness and the small
interactions between afoms so that we can use perturbative theories to study it.
In this chapter we give a brief introduction to the subject and the scope of this

thesis is stated.

1.1.1 Einstein’s Prediction for the Ideal Bose Gas

Einstein considered N non-interacting bosonic and non-relativistic particles in a
cubic box of volume L* with periodic boundary conditions. In the thermodynamic
limit, defined as

N,L — oo, (1.1)

where

N
m=P= finite, (1.2)



a phase transition occurs at a temperature 7, defined by
pX3 (T.) = ¢ (3/2) = 2.612... (1.3)

where we have defined the thermal de Broglie wavelength of the gas as a function

ME) = (:LZ:;); (1.4)

and ¢ (a) = > po, 1/k® is the Riemann Zeta function.

of the temperature T,

The order parameter of this phase transition is the fraction Ny/N of the
particles in the ground state of the box, that is, the plane wave with momentum
P = 0. For temperatures lower than 7 this fraction Ny/N remains finite in the
thermodynamic limit, whereas it tends to zero when T > T

For T > T,

No/N — 0; (1.5)

No/N:~ (1 — (%)3/2) . (1.6)

For T < T, the system has formed a Bose-Einstein condensate in the 7 = 0

For T < T,

state. The number Ny of particles in the condensate is on the order of N, which
is macroscopic. As we will see, the macroscopic population of a single quantum
state is the key feature of a Bose-Einstein condensate, and gives rise to interesting

properties such as coherence. For more details, see for example [4]

1.1.2 Experimental Realization of BEC in Trapped Gas

The major problem encountered experimentally to verify Einstein’s predictions
is that at densities and temperatures required by Eq. (1.3) at thermodynamic

equilibrium almost all materials are in the solid state. An exception is *He which



3

is a fluid at T = 0. However *He is a strongly interacting system. In “He in
sharp contrast with the prediction for the ideal gas, Eq. (1.6), No/N < 10%
even at zero temperature. The solution which successfully led to Bose-Einstein
condensation in atomic gases is to bring the system to extremely low densities
(much lower than in a normal gas) and to cool it rapidly enough so that it has
no time to recombine and solidify. The price to pay for an ultralow density is the
necessity to cool at extremely low kinetic temperatures. Typically one has in the

experiments with condensates:
p < 10" atoms/cm?® (1.7)

and

13 PauK. (1.8)

The critical temperatures range from 20 nK to the uK range. Bose-Einstein con-
densation was achieved for the first time in atomic gases in 1995. The group of
Eric Cornell and Carl Wieman at JILA was successful with 8Rb atoms [1]. They
were closely followed by the group of Wolfgang Ketterle at MIT with 22Na atoms
[2] and the group of Randy Hulet at Rice University with 7Li atoms [3]. Nowa-
days people have obtained many condensates mainly with rubidium or sodium
atoms. No other alkali atoms than the ones of the year 1995 have been con-
densed. Atomic hydrogen has been condensed. in 1998 at MIT by the group of
Dan Kleppner [5]; the éxperiments on hydrogen were actually the first ones to
start and played a fundamental pioneering role in developing many of the exper-
imental techniques having led to success with the alkali atoms , such as magnetic

trapping and evaporative cooling of atoms.



1.1.3 The Reasons for Studying the BEC

An important theoretical framework for Bose-Einstein condensation in interacting
systems was developed in the 50’s by Beliaev, Bogoliubov, Gross and Pitaevskii in
the context of superfluid helium. This theory however is supposed to work better
if applied to Bose condensed gases where the interactions are much weaker. The
interactions in ultracold atomic gases can be described by a single parameter a,
the so-called scattering length, as interactions take place between atoms with
very low relative kinetic energy. The gaseous condensates are dilute systems as

the mean interparticle separation is much larger than the scattering length a,
plaf’ < 1. "USTHTG)

This provides a small parameter for the theory and, as we shall see, the simple
mean field approaches can be used with success to describe most of the properties
of the atomic condensates.

Atomic gases offer some new interesting features with respect to superfluid

helium 4:

e Spatial inhomogeneity: This feature can be used as a tool to detect the
presence of a Bose-Einstein condensate inside the trap: in an inhomogeneous
gas Bose-Einstein condensation occurs not only in momentum space but also

in position space

o Finite size effects: The number of atoms in condensates of alkali gases is
usually Ny < 10”. The hydrogen condensate obtained at MIT by Kleppner

is larger with Ny ~ 10°. Interesting finite size effects, that is the effects
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which disappear in the thermodynamic limit, such as Bose-Einstein con-
densates with effective attractive interactions (¢ < 0), can be studied in

relatively small condensates.

1.2 Scope of the Work in this Thesis

The path integral formulation for statistical mechanics created by Feynman [5]
provides the method for calculating the thermodynamic properties of many-
particles systems. In this formulation one has to make the sum over all per-
mutations incorporate the Bose-Einstein or Fermi-Dirac statistics into the calcu-
lation. However this method has not been used extensively. Recently, Brosens
et al. [7,8] used the idea in [6] to formulate a calculation scheme for thermo-
dynamical systems of many bosons or fermions and applied it to the systems of
trapped bosons interacting with a harmonic potential. Technically, this model,
giving rise to repetitive Gaussian integrals, allows one to derive an analytical
expression for the generating function of the partition function. For an ideal gas
of noninteracting particles in a parabolic well, this generating function coincides
with the grand-canonical partition function. With interactions, the calculation
of this generating function circumvents the constraints on the summation over
the cycles of the permutation group. Moreover, it allows one to calculate the
canonical partition function recursively for the system with harmonic two-body
interactions. The permutation symmetry leads to summations over the cycles
that are performed using the generating function technique.

From the point of view of path integral techniqﬁes, it is interesting to
utilize the many-body path integration to the system of confined bosons in a

harmonic trap because the simplicity of the system can be a testing ground of



the method. The work presented in this thesis is as follows.

1.2.1 Calculation of the Ground State Energy

In Chapter 3, we devise a simple variational method to estimate the ground state
energy of the condensate. By using the generating functional technique we obtain
the density matrix of the system. The ground state wave function also comes out
naturally when we consider the density matrix in the zero temperature limit.
The advantage of this method is the analytical result which can be found for
various forms of interaction between particles. The results are compared to those
obtained by the mean-field method. However, this method has some limitations

and it will be discussed in Chapter 3.

1.2.2 Collective Excitation in BEC

Right after the realizations of the Bose-Einstein condensation in a trapped gas,
the dynamical aspects of the system were studied [9,10]. This is the so-called
collective excitations or collective modes of the condensate. In the experiment, it
was found, after perturbing the system by applying time-depending force or by
changing the trap strength, that the condensate oscillated with time.

In Chapter 4, we use the technique developed by Brosens et al. [7,8]
to find the time evolution of the system by studying the density. The simplest
case we calculate is the non-interacting many-particle system. We find that the
oscillation frequency of the condensate is in agreement with the experimental or
other theoretical results. The study of these first two topics leads to the last topic

in this thesis.



1.2.3 Vortex Precession and the Collective Excitation

From the experimental study of the condensate with vortex [11] the precession
of the vortex was found. This is due to the Magnus force on the vortex. This
phenomenon was simulated successfully within the model of Brosens et al. [12].
Hence, it is a good idea to study the condensate with vortex being perturbed
by changing of the trap strength or equivalently the trap frequency and see the

excitation spectrum. This will be done in Chapter 5.
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