
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ปัญหาพัสดุคงคลังแบบสองระดับชั้นและพัสดุหลายชนิดภายใต้นโยบายการเติมเต็มร่วมกัน 

นางสาววราภรณ์ พกนนท์ 

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรดุษฎีบัณฑิต 
สาขาวิชาวิศวกรรมอุตสาหการ ภาควิชาวิศวกรรมอุตสาหการ 

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย 
ปีการศึกษา 2556 

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A MULTI-ITEM TWO-ECHELON INVENTORY PROBLEM UNDER JOINT REPLENISHMENT 
POLICY 

Miss Varaporn Pukcarnon 

A Dissertation Submitted in Partial Fulfillment of the Requirements 
for the Degree of Doctor of Philosophy Program in Industrial Engineering 

Department of Industrial Engineering 
Faculty of Engineering 

Chulalongkorn University 
Academic Year 2013 

Copyright of Chulalongkorn University 
 



 

 

Thesis Title A MULTI-ITEM TWO-ECHELON INVENTORY 
PROBLEM UNDER JOINT REPLENISHMENT POLICY 

By Miss Varaporn Pukcarnon 
Field of Study Industrial Engineering 
Thesis Advisor Assistant Professor Paveena Chaovalitwongse, 

Ph.D. 
Thesis Co-Advisor Naragain Phumchusri, Ph.D. 
  

 Accepted by the Faculty of Engineering, Chulalongkorn University in Partial 
Fulfillment of the Requirements for the Doctoral Degree 

 

 Dean of the Faculty of Engineering 

(Professor Bundhit Eua-arporn, Ph.D.) 

THESIS COMMITTEE 

 Chairman 

(Assistant Professor Manop Reodecha, Ph.D.) 

 Thesis Advisor 

(Assistant Professor Paveena Chaovalitwongse, Ph.D.) 

 Thesis Co-Advisor 

(Naragain Phumchusri, Ph.D.) 

 Examiner 

(Assistant Professor Wipawee Tharmmaphornphilas, Ph.D.) 

 Examiner 

(Assistant Professor Seeronk Prichanont, Ph.D.) 

 External Examiner 

(Assistant Professor Rein Boondiskulchok, D.Eng.) 

 



 iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THAI ABSTRACT  

วราภรณ์ พกนนท์ : ปัญหาพัสดุคงคลังแบบสองระดับชั้นและพัสดุหลายชนิดภายใต้
นโยบายการเติมเต็มร่วมกัน. (A MULTI-ITEM TWO-ECHELON INVENTORY 
PROBLEM UNDER JOINT REPLENISHMENT POLICY) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: 
ผศ. ดร.ปวีณา เชาวลิตวงศ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: อ. ดร.นระเกณฑ์ พุ่มชูศรี , 
203 หน้า. 

วิทยานิพนธ์ฉบับนี้ศึกษาปัญหาพัสดุคงคลัง แบบสองระดับชั้นและพัสดุหลายชนิด 
ภายใต้นโยบายการเติมเต็มร่วมกันแบบสามารถจัดหาได้ ประกอบด้วยศูนย์กระจายสินค้าหนึ่งแห่ง
และมีหลายสาขาท่ีความต้องการของลูกค้าไม่แน่นอน มีการเติมเต็มคลังแบบต่อเนื่อง มีระยะเวลา
น าในการส่งมอบ และมีการก าหนดระดับการให้บริการเป้าหมายเป็นเงื่อนไขของระบบ การวิจัย
แบ่งเป็น 3 ระยะ คือ ระยะที่ 1 – ระบบที่มีพัสดุหนึ่งชนิดและระยะเวลาน าเป็นศูนย์ ระยะที่ 2 – 
ระบบที่มีพัสดุหนึ่งชนิดและมีระยะเวลาน าในการส่งมอบ และระยะที่ 3 – ระบบที่มีพัสดุหลาย
ชนิดและมีระยะเวลาน าในการส่งมอบ แต่ละระยะประกอบด้วยจ านวนตัวแปรการตัดสินใจและ
ปัจจัยที่เกี่ยวข้องแตกต่างกัน เนื่องจากความซับซ้อนของระบบ งานวิจัยจึงอาศัยวิธีการจ าลอง
สถานการณ์ด้วยคอมพิวเตอร์ เพ่ือศึกษาการก าหนดนโยบายพัสดุคงคลัง ซึ่งสามารถแสดงถึง
อิทธิพลของปัจจัยที่เกี่ยวข้องและลักษณะค าตอบของระบบ วิธีการค้นหาค าตอบแบบฮิวริสติก
ได้รับการพัฒนาขึ้นส าหรับแต่ละระยะของการศึกษา โดยอาศัยเทคนิคการแบ่งส่วนย่อย 
(Decomposition Technique) วิธีการวนซ้ า (Iterative Procedure) และการค้นหาค าตอบแบบ
หนึ่งมิติ ที่เรียกว่า การค้นหาแบบโกลเด้นเซคชั่น (Golden Section Search) เพ่ือหาค่านโยบาย
พัสดุคงคลังที่เหมาะสมได้ ส าหรับระยะที่ 1 และ 2 สมรรถนะของฮิวริสติกที่พัฒนาขึ้นสามารถวัด
ได้โดยการเปรียบเทียบกับนโยบายที่ดีที่สุดที่ให้ค่าต้นทุนรวมทั้งระบบเฉลี่ยต่อหน่วยเวลาต่ าที่สุด 
นโยบายที่ดีที่สุดสามารถหาได้โดยใช้วิธีการจ าลองสถานการณ์ด้วยคอมพิวเตอร์ ผ่านขั้นตอนการ
ค้นหาอย่างเป็นระบบ ได้แก่ การค้นหาตัวแปรน าเข้า และการยืนยันความถูกต้องของผลลัพธ์ จาก
ผลการท าลอง ฮิวริสติกท่ีพัฒนาขึ้นใช้เวลาในการค้นหาค าตอบได้เร็วกว่ามาก เมื่อเปรียบเทียบกับ
วิธีการจ าลองสถานการณ์ด้วยคอมพิวเตอร์ โดยนโยบายที่ได้จากฮิวริสติกให้ค่าต้นทุนรวมทั้งระบบ
ต่อหน่วยเวลาสูงกว่าค่าต้นทุนรวมจากนโยบายที่ดีที่สุดเพียง 1.54% และ 1.20% โดยเฉลี่ย 
ส าหรับระยะที่ 1 และ 2 ตามล าดับ ส าหรับระยะที่ 3 นั้น งานวิจัยนี้ได้ศึกษาวิเคราะห์
เปรียบเทียบฮิวริสติกท่ีพัฒนาขึ้น เพ่ือระบุว่าสถานการณ์แบบใดเหมาะสมกับฮิวริสติกแต่ละแบบ 

ภาควิชา วิศวกรรมอุตสาหการ 

สาขาวิชา วิศวกรรมอุตสาหการ 

ปีการศึกษา 2556 

 

ลายมือชื่อนิสิต   
 

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก   
 

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม   
 

 



 v 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ENGLI SH ABSTRACT  

# # 5171828521 : MAJOR INDUSTRIAL ENGINEERING 
KEYWORDS: CAN-ORDER POLICY / TWO-ECHELON INVENTORY SYSTEM / MULTIPLE 
ITEMS / SIMULATION / HEURISTIC APPROACH 

VARAPORN PUKCARNON: A MULTI-ITEM TWO-ECHELON INVENTORY 
PROBLEM UNDER JOINT REPLENISHMENT POLICY. ADVISOR: ASST. PROF. 
PAVEENA CHAOVALITWONGSE, Ph.D., CO-ADVISOR: NARAGAIN 
PHUMCHUSRI, Ph.D., 203 pp. 

This dissertation studies a multi-item two-echelon inventory problem 
under a joint replenishment policy called “the can-order policy”. The system is 
composed of one warehouse and multiple retailers facing stochastic demand, and 
all locations are replenished continuously. This research considers lead time and 
target service level as system constraints. The research is conducted in three 
phases: phase I – a single-item system with zero lead time, phase II – a single-item 
system with non-zero lead time, and phase III – a multi-item system with non-
zero lead time. Each phase contains different number of decision variables and 
relevant factors. Due to the system complications, computer simulation is initially 
utilized for inventory policy setting. It provides insights of inventory policy setting: 
the effects of relevant factors and the solution characteristics. Heuristic 
approaches are developed to solve the problem for each phase. The proposed 
heuristics are based on decomposition approach, iterative procedure, and one-
dimensional search called golden section search to determine the appropriate 
inventory policy setting. For phase I and II, the proposed heuristics’ performance 
is measured against the best-known solution providing the minimum average total 
system-wide cost. The best-known solution can be determined by computer 
simulation with systematic procedures: input determination and output validation. 
From the experimental results, the proposed heuristics can obtain the appropriate 
policy much faster than computer simulation with the average cost gap at 1.54% 
for phase I and 1.20% for phase II, respectively. For phase III, this research 
provides comparative analysis of the proposed heuristics to identify which 
situation is suitable for each heuristic. 

Department: Industrial Engineering 

Field of Study: Industrial Engineering 

Academic Year: 2013 

 

Student's Signature   
 

Advisor's Signature   
 

Co-Advisor's Signature   
 

 



 vi 

ACKNOWLEDGEMENTS 
 

First of all, the Scholarship from the Graduate School, Chulalongkorn 
University to commemorate the 72nd anniversary of his Majesty King Bhumibala 
Aduladeja is gratefully acknowledged. 

I would like to express my gratitude to the advisor and the co-advisor of this 
dissertation: Asst.Prof. Paveena Chaovalitwongse, Ph.D., and Naragain Phumchusri, 
Ph.D., respectively. Without their help, this dissertation accomplishment would not 
be possible. They not only furnished my research ability, but also gave the good way 
for a life worth living. Their questions, ideas, and logics guided me to conduct this 
research successfully. I am very grateful to the dissertation committee for their 
kindness and beneficial recommendation to complete this dissertation. 

Giving special thanks to my doctoral colleagues including teachers and 
doctoral students in seminar classes, we had many opportunities to exchange our 
opinions for conducting the research. This extensively created a valuable knowledge. 
Additionally, I would like to thank all research colleagues in a research unit named 
“ROM” (Resources and Operations Management). With the warm atmospheric 
environment and friendly intimacy at ROM, I felt great working with everyone. I 
would also like to give a lot of thanks to Mr. Krissana Rattanapat and Mr. Anawat 
Arisujjakorn for their help with the programming coding concepts. 

Finally, I would like to express my gratefulness to my family. My parents, Mr. 
Vichai and Mrs. Paophan Pukcarnon, give me their endless love. They provided both 
financial and spiritual supports without any conditions. Without them, I could not 
complete the research. My sister, Miss Wilaiwan Pukcarnon, gave me a hand in 
everything. Without her, my life might encounter obstacle situations. Ultimately, my 
husband and my son, Mr. Pitipong Torprom and Mr. Worapong Torprom, gave me a 
huge power to pass through the momentary suffering. Without them, I could not be 
alive in this world. 

 



CONTENTS 
  Page 

THAI ABSTRACT ............................................................................................................................. iv 

ENGLISH ABSTRACT .......................................................................................................................v 

ACKNOWLEDGEMENTS ................................................................................................................. vi 

CONTENTS ..................................................................................................................................... vii 

LIST OF TABLES ............................................................................................................................. 1 

LIST OF FIGURES ........................................................................................................................... iii 

CHAPTER I INTRODUCTION .......................................................................................................... 1 

1.1 General Background .......................................................................................................... 1 

1.2 Example Industry ............................................................................................................... 5 

1.3 Statement of Problem .................................................................................................... 11 

1.3.1 Inventory policy selection .................................................................................. 11 

1.3.2 Problem description ............................................................................................. 14 

1.3.3 Problem discussion .............................................................................................. 24 

1.4 Dissertation Objective ..................................................................................................... 25 

1.5 Dissertation Scope ........................................................................................................... 25 

1.6 Dissertation Contribution ................................................................................................ 26 

1.7 Dissertation Methodology .............................................................................................. 28 

1.8 Dissertation Organization ................................................................................................ 31 

CHAPTER II LITERATURE REVIEW .............................................................................................. 33 

2.1 Joint Replenishment Problem ...................................................................................... 33 

2.1.1 Can-order policies ................................................................................................. 36 

2.1.2 Other policies ........................................................................................................ 40 

2.2 Multi-Echelon Inventory Problem ................................................................................ 43 

2.2.1 Single-item models............................................................................................... 47 

2.2.2 Multi-item models ................................................................................................ 53 

2.3 Modeling and Solution Approaches............................................................................. 55 

2.4 Conclusion ......................................................................................................................... 56 



 viii 

  Page 

CHAPTER III THE CAN-ORDER POLICY FOR SINGLE-ITEM TWO-ECHELON INVENTORY 
SYSTEM WITH ZERO LEAD TIME ............................................................................................... 58 

3.1 Problem Description ........................................................................................................ 58 

3.2 Research Methodology ................................................................................................... 62 

3.2.1 Computer simulation ........................................................................................... 63 

3.2.2 The best solution finding .................................................................................... 64 

3.2.3 Performance measurement ................................................................................ 66 

3.3 Preliminary Analysis ......................................................................................................... 67 

3.3.1 The effect of the can-order policy .................................................................... 72 

3.3.2 Comparative analysis ........................................................................................... 73 

3.3.3 Inventory policy characteristics ......................................................................... 77 

3.4 Heuristic I – Modified Deterministic Joint Replenishment (DJ) ............................... 82 

3.4.1 Mathematical model and analytical approach .............................................. 82 

3.4.2 Pilot testing ............................................................................................................ 84 

3.5 Heuristic II – Approximate Mathematical Model based on EOQ (EOQ-Z) ............ 86 

3.5.1 Mathematical model ............................................................................................ 87 

3.5.2 Heuristic algorithm ................................................................................................ 91 

3.6 Experimental Results ...................................................................................................... 94 

3.6.1 Identical retailers with zero minor ordering cost ........................................... 94 

3.6.2 Identical retailers with non-zero minor ordering cost ................................... 96 

3.6.3 Non-identical retailers .......................................................................................... 97 

3.6.4 Computational times ........................................................................................... 98 

3.7 Discussion ........................................................................................................................ 100 

3.8 Conclusion ....................................................................................................................... 104 

CHAPTER IV THE CAN-ORDER POLICY FOR SINGLE-ITEM TWO-ECHELON INVENTORY 
SYSTEM WITH NON-ZERO LEAD TIME ................................................................................... 105 

4.1 Problem Description ...................................................................................................... 105 

4.2 Research Methodology ................................................................................................. 112 



 ix 

  Page 

4.2.1 Computer simulation ......................................................................................... 112 

4.2.2 The best solution finding .................................................................................. 114 

4.3 Preliminary Analysis ....................................................................................................... 115 

4.3.1 The effect of the can-order policy .................................................................. 117 

4.3.2 The best-known solutions ................................................................................ 119 

4.3.3 Relationship between relevant factors .......................................................... 121 

4.3.4 Relationship between decision variables ...................................................... 122 

4.4 Heuristic III – Joint Replenishment Model for Single Item and Non-Zero Lead 
Time ........................................................................................................................................ 124 

4.4.1 Approximate mathematical model with non-zero lead time (MMNZ) .... 124 

4.4.2 Simulation cost model for single item and non-zero lead time (SIM/S/NZ)
 ............................................................................................................................... 137 

4.5 Experimental Results .................................................................................................... 139 

4.5.1 Identical retailers with zero minor ordering cost ......................................... 139 

4.5.2 Identical retailers with non-zero minor ordering cost ................................. 140 

4.5.3 Computational times ......................................................................................... 141 

4.5.4 Comparative analysis ......................................................................................... 142 

4.6 Discussion ........................................................................................................................ 150 

4.7 Conclusion ....................................................................................................................... 152 

CHAPTER V THE CAN-ORDER POLICY FOR MULTI-ITEM TWO-ECHELON INVENTORY 
SYSTEM WITH NON-ZERO LEAD TIME ................................................................................... 154 

5.1 Problem Description ...................................................................................................... 154 

5.1.1 Model 1 – Joint replenishment with item-based model ........................... 160 

5.1.2 Model 2 – Joint replenishment with retailer-based model ....................... 161 

5.1.3 Model 3 – Completely joint replenishment model .................................... 162 

5.1.4 Generalization of the major ordering cost at the retailers ......................... 163 

5.2 Research Methodology ................................................................................................. 164 

5.2.1 Computer simulation ......................................................................................... 164 



 x 

  Page 

5.2.2 Determination of lower/upper bound for Model 1 and Model 2 ............ 166 

5.3 Heuristic IV – Joint Replenishment Model for Multiple Location-Items and Non-
Zero Lead Time (SIM/M/NZ) .............................................................................................. 167 

5.4 Experimental Results .................................................................................................... 169 

5.5 Discussion ........................................................................................................................ 177 

5.6 Conclusion ....................................................................................................................... 180 

CHAPTER VI CONCLUSION ....................................................................................................... 181 

6.1 Dissertation Deliverables .............................................................................................. 181 

6.1.1 Analyses of the can-order policies .................................................................. 182 

6.1.2 Joint replenishment models and solution approaches .............................. 184 

6.1.3 Application of the can-order policy ................................................................ 189 

6.2 Future Research Directions .......................................................................................... 190 

REFERENCES ............................................................................................................................... 193 

VITA .............................................................................................................................................. 203 

 



LIST OF TABLES 
  Page 

Table I-1: Summary results of the comparison of the continuous joint inventory 
policies .......................................................................................................................................... 13 

Table III-1: Numerical input for preliminary experiment under identical retailers ........ 68 

Table III-2: Numerical input for preliminary experiment under non-identical retailers 
on two-retailer scenarios and three-retailer scenarios ....................................................... 69 

Table III-3: Ten total system-wide costs of two best solutions ........................................ 71 

Table III-4: An example result of ANOVA testing .................................................................. 72 

Table III-5: Numerical input for pilot testing of the DJ heuristic ....................................... 85 

Table III-6: Numerical examples for comparison of the best-known solution and the 
heuristic’s best solution under identical retailers with zero minor ordering cost ........ 95 

Table III-7: Numerical examples for comparison of computational time between the 
EOQ-Z heuristic and computer simulation under identical retailers ............................... 99 

Table IV-1: Numerical input for preliminary experiment under identical retailers ..... 116 

Table IV-2: Additional concept for developing the MMNZ heuristic as comparing to 
the EOQ-Z heuristic .................................................................................................................. 130 

Table IV-3: Pilot testing for comparison of the best-known solution and the MMNZ 
heuristic’s best solution (Low lead time) ............................................................................ 135 

Table IV-4: Pilot testing for comparison of the best-known solution and the MMNZ 
heuristic’s best solution (High lead time) ............................................................................ 136 

Table IV-5: Cost gap between the best-known solution and the SIM/S/NZ heuristic’s 
minimum solution under identical retailers with zero minor ordering cost ................ 140 

Table IV-6: Cost gap between the best-known solution and the SIM/S/NZ heuristic’s 
minimum solution under identical retailers with non-zero minor ordering cost ........ 141 

Table IV-7: Comparison of heuristics with the warehouse employing cross-docking at 

w rK K , 0 ih h , 0L = 5, iL = 1, and iTSL = 0.95 .............................................................. 145 

Table IV-8: Comparison of lower bound and heuristics with the warehouse employing 
cross-docking at w rK K , 0 ih h , 0L = 5, iL = 1, and iTSL = 0.95 ................................ 146 

Table IV-9: Comparison of heuristics with the warehouse employing cross-docking at 

w rK K , 0 ih h , 0L = 5, iL = 1, and iTSL = 0.99 .............................................................. 147 

file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231174
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231174
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231175
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231175


 2 

Table IV-10: Comparison of lower bound and heuristics with the warehouse 
employing cross-docking at 

w rK K , 0 ih h , 
0L = 5, 

iL = 1, and 
iTSL = 0.99 ............ 148 

Table V-1: Generalization of the ordering cost structure ................................................. 163 

Table V-2: The calculation of lower/upper bound for Model 1 and Model 2 ............ 167 

Table V-3: Test problems for the multi-item one-warehouse n-retailer inventory 
system with identical items and identical retailers ........................................................... 170 

Table V-4: Comparison of joint replenishment models: The result of Scenario 1 – 15
 ...................................................................................................................................................... 171 

Table V-5: Comparison of joint replenishment models: The result of Scenario 16 – 25
 ...................................................................................................................................................... 172 

Table V-6: Comparison of joint replenishment models: The result of Scenario 26 – 35
 ...................................................................................................................................................... 173 

file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231185
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231185
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231186
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231186
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231187
file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231187


LIST OF FIGURES 
  Page 

Figure I-1 Healthcare supply chain ............................................................................................ 6 

Figure I-2 Multi-item two-echelon inventory system .......................................................... 16 

Figure I-3 Example of the joint ordering model at the retailer echelon ........................ 17 

Figure I-4 Example of the inventory process: Retailer echelon ........................................ 18 

Figure I-5 Example of the inventory process: Warehouse echelon ................................. 19 

Figure I-6 Three phases for dissertation methodology ....................................................... 29 

Figure I-7 Research process ...................................................................................................... 30 

Figure II-1 Three types of replenishment pattern ................................................................ 34 

Figure II-2 The serial system ..................................................................................................... 43 

Figure II-3 The arborescent system ......................................................................................... 44 

Figure II-4 The assembly system ............................................................................................. 44 

Figure III-1 Single-item two-echelon inventory system with zero lead time .................. 58 

Figure III-2 The computer algorithm for simulation of Phase I .......................................... 63 

Figure III-3 The cost saving of the can-order policy: Identical retailers  with zero minor 
ordering cost ................................................................................................................................ 74 

Figure III-4 The cost saving of the can-order policy: Identical retailers  with non-zero 
minor ordering cost .................................................................................................................... 74 

Figure III-5 The cost saving of the can-order policy: Non-identical retailers .................. 75 

Figure III-6 Two ranges of the best-known solution ............................................................ 78 

Figure III-7 Convex function of iS on given 0S  ..................................................................... 79 

Figure III-8 The effect of ratio on the can-order level at the retailers ............................ 81 

Figure III-9 Heuristic’s performance on pilot testing ............................................................ 86 

Figure III-10 The algorithm of the heuristic approach – EOQ-Z ........................................ 92 

Figure III-11 The effect of /r iK   ratio on the can-order level at the retailers ............ 96 

Figure III-12 Heuristic’s performance under non-identical retailers ................................. 98 

Figure IV-1 Single-item two-echelon inventory system with non-zero lead time ....... 105 

Figure IV-2 The inventory process of Phase II’s problem ................................................. 109 

Figure IV-3 The computer algorithm for simulation of Phase II ...................................... 113 

Figure IV-4 The effect of the can-order policy on target service level ......................... 118 

file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231188


 iv 

Figure IV-5 The effect of the can-order policy on target service level ......................... 118 

Figure IV-6 Two ranges of the best-known solution .......................................................... 120 

Figure IV-7 Relationship between relevant factors ............................................................ 122 

Figure IV-8 Relationship between decision variables ........................................................ 123 

Figure IV-9 The algorithm of the heuristic approach – MMNZ ........................................ 131 

Figure IV-10 The algorithm of the heuristic approach – SIM/S/NZ ................................. 138 

Figure V-1 Cost structure for Phase III .................................................................................. 157 

Figure V-2 Model 1 – Joint replenishment with item-based model .............................. 160 

Figure V-3 Model 2 – Joint replenishment with retailer-based model ......................... 161 

Figure V-4 Model 3 – Completely joint replenishment model....................................... 162 

Figure V-5 The computer algorithm for simulation of Phase III ...................................... 165 

Figure V-6 The algorithm of the heuristic approach – SIM/M/NZ................................... 169 

Figure V-7 Relationship of the proposed models and the significant relevant factors
 ...................................................................................................................................................... 177 

Figure VI-1 Summary of three phases of the dissertation with the deliverables ........ 185 

 

 

file:///D:/LOOKYEE/DISSERTATION/Dissertation/ETHESIS/final1/Dissertation_2014-05-07.docx%23_Toc387231228


CHAPTER I 
INTRODUCTION 

 
1.1 General Background 

The growing trend of supply chain management (SCM) and supply 
coordination has been paid more attention since the actions of one member in the 
chain can influence the profitability of all others in the chain. Firms are focusing on 
competing as part of a supply chain against other supply chains instead of a single 
firm against other individual firms. Much research has been done to help companies 
improve their SCM. The best solutions are obtained by using global information and 
centralized control because the decisions are made with visibility to the entire 
system using information for all locations. However, these solutions require 
cooperation and coordination across multiple parties within operations, across 
functions, and in some cases, across firms. An effective strategy of centralized control 
using global information includes Vendor Managed Inventory (VMI), which is a specific 
type of Outsourcing Inventory Management (OIM) [1-5]. Its importance has been 
growing because there are several researches and case studies verifying that can help 
control inventory cost and improve internal performance. Moreover the capabilities 
of external sources are growing, so outsourcing becomes an increasingly attractive 
option [2-13]. The vendor has the liberty of controlling the downstream re-supply 
decisions. Consequently, VMI offers ample opportunities for synchronizing inventory 
and outbound transportation decisions. In some VMI applications, the vendor not 
only manages the retail inventory but also owns it, e.g. Procter & Gamble and Wal-
Mart, or even in the healthcare industry the vendor owns some inventories in the 
hospitals’ warehouses and manages them as a single firm. So, centralized control has 
also been used for managing all inventories in the chain to minimize the total 
system-wide cost or maximize operational performance. By this reason, our research 
mainly focuses on the centralized control strategy for managing overall inventories in 
the system. 

The dissertation considers one-warehouse n-retailer inventory system (OWNR) 
which is a general pattern of two-echelon supply chain. We consider not only the 
vendor and buyer coordination but also the internal supply coordination. Such 
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system confronts the uncertainty of demand in the reality. Centralized control 
strategy can reduce demand variation because of the visibility of the entire system. 
However, this strategy will be successful if and only if the update on information 
technology is considered.  The growing trend in the spinning world is the information 
technology innovation; consequently, many companies apply the inventory planning 
program into their system to automatically linking the information within a company 
and also linking to their stakeholders in the chains. By this fascinating opportunity, 
continuous replenishment has been paid more attention in order for customer 
responsiveness. This can not only reduce their buffer stocks but also improve the 
entire system’s performance. Hence, our research concerns OWNR under uncertainty 
of demand and continuous replenishment. 

There are a number of researches in both practical and academic aspects to 
find the effective approaches for managing the entire inventories of OWNR (See e.g. 
Silver, Pyke, and Peterson [1], Kelle et al. [4], and Williams and Tokar [12] which 
demonstrate many researches of multi-echelon inventory management). Previous 
researches in the multi-echelon inventory system can be divided into two streams 
[14]: one concentrates on developing cost efficient replenishment policies by 
minimizing the total system-wide cost, and the other proposes price adjustment 
strategies which benefit both parties in the chains. However, the focus of this 
dissertation is generally on the problem dealing with joint optimization of both 
echelons’ inventory policies to minimize the total system-wide cost.  

Many supply chains such as healthcare industry and retail industry need to 
face the uncertainty of demand. Consequently, the stochastic demand is considered 
to represent the realistic situation. Of course, this raises several new issues and 
creates extreme modeling complexities in a two-echelon inventory situation. The 
researches with stochastic demand on two-echelon inventory problem have been 
intensively developed into a single-item two-echelon inventory problem. A number 
of researches on OWNR with single commodity have been conducted under either 
continuous or periodic replenishment. They proposed mathematical models and 
solution approaches for setting an appropriate inventory policy. Most of previous 
works studied two major types of the inventory policies: fixed-interval order-up-to 
polices and stock-based batch-ordering policies, on different conditions and relevant 
parameters. Further details can be seen in the reviews of Schneider, Rnks, and Kelle 
[15], Axsäter, Graves, and de Kok [16], and Wang, Choi, and Cheng [17]. Focusing on 
continuous replenishment, most researches manage multiple retailers by individual 



 3 

ordering decision. Factually, multiple retailers can coordinate their ordering decision 
to share the ordering cost1 when an order is triggered. It creates an opportunity of 
reducing the total system-wide cost. We found that there have been a few works 
concerning this cost-saving opportunity in their ordering decisions. 

Regarding coordinated ordering decision on OWNR with single commodity, 
most literatures applied joint replenishment problem (JRP) to OWNR due to the 
similarity of cost functions and solution procedures [18, 19]. JRP is originally 
developed for a multi-product single-location inventory problem with the 
replenishment coordination of a group of items jointly ordered from the same 
supplier. Under continuous replenishment and stochastic demand, there are many 
joint replenishment policies developed on multi-item single-location inventory 
problem. These policies can be classified into two major streams: the can-order 
policy and others [3, 19, 20]. For two-echelon system, the existing joint 
replenishment policies from multi-item single-location inventory problem were 
extended into OWNR on different structures. We summarize some structures as the 
following literatures under continuous replenishment and stochastic demand. 

Cheung and Lee [21] employed a joint replenishment policy at the retailers 
and a traditional reorder point-fixed order quantity policy at the warehouse. The 
structure was composed of the holding costs at both echelons: the shared ordering 
cost and the penalty cost at the retailers, and target service level at the warehouse. 
Özkaya [22] extended four joint replenishment policies at the retailers and a 
traditional reorder point-based stock policy at the warehouse. Özkaya [22] converted 
the penalty cost into target service level occurred only at the retailers. Gou et al. 
[14] applied a joint replenishment policy where the retailers utilize the can-order 
policy and the warehouse takes a reorder point-based stock policy. However, Gou et 
al. [14] studied OWNR under zero lead time, so there were only holding costs and 
ordering costs taken into consideration. There have been other researches  
considering the holding cost only one echelon, such as Özkaya, Gürler, and Berk [19], 
Cetinkaya and Lee [23], and Gürbüz, Moinzadeh, and Zhou [24]. In addition, Axsäter 
and Zhang [25] developed a joint replenishment policy without concerning the 
shared ordering cost at the retailers. They focused on a trade-off between the 
holding costs and the penalty costs instead. Thus far, a few researches have 

                                                           
1 Generally, the ordering cost includes administrative costs, material handling costs, and 
transportation costs. 
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concerned coordinated ordering decision under stochastic demand and continuous 
replenishment by considering all relevant costs on both echelons, i.e. the holding 
costs, the ordering costs, and the penalty costs (or in terms of service levels). We 
realize that all relevant costs on both echelons should be considered together to 
determine the inventory policy parameters for all stores in the system. Hence, it is 
interesting to further study the coordinated ordering decision for such structure to 
determine a solution approach for inventory policy setting.  

Previously, we mentioned only a single-item two-echelon inventory problem; 
however, there are some other cases that multiple products should be considered 
simultaneously as appeared in the realistic situation. For a multi-item two-echelon 
inventory problem on stochastic demand and continuous replenishment, there have 
been a small number of researches. Mostly, the existing literatures were carried out 
on partial cost component or joint constraints. The researches considering partial 
cost components mean that it does not include all inventory costs2 in the system, 
e.g. cross-docking system, inventory-transportation problem. According to the 
literatures with joint constraints, they included, such as, capacity constraints, budget 
constraints, aggregate time-based service level constraints. Further details about 
multi-item two-echelon inventory problem can be seen in e.g. Cohen et al. [26], 
Hopp, Zhang, and Spearman [27], Qu, Bookbinder, and Iyogun [28], Sindhuchao [29], 
Al-Rifai and Rosetti [30], Topan, BayIndIr, and Tan [31, 32], Zhou, Chen, and Ge [33].  

Regarding a few of literatures studied on the shared ordering costs among 
retailers/items, it is interesting to apply joint replenishment policy into OWNR under 
stochastic demand and continuous replenishment. Then, the system including all 
inventory costs should be more taken into consideration in order to determine the 
inventory policy parameters which are suitable for all stores in the system. 
Furthermore, multi-item model should be concerned, since the model could more 
reduce the total system-wide cost from item joint replenishment not only at the 
retailer echelon but also at the warehouse echelon. Hence, it is desirable to develop 
an efficient joint replenishment policy for Multi-Item Two-Echelon Inventory Problem 
with stochastic demand and continuous replenishment for the general purpose of 
the system-wide cost optimization. 

 
                                                           
2 All inventory costs are the holding costs and the ordering costs at both echelons with either the 
penalty costs or service levels as needed.  
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1.2 Example Industry 

This dissertation is generalized for any industry which matches the considered 
system. However, this section exemplifies a specific industry to show the real 
situation. Since the research problem originally surveyed in the healthcare industry, 
the following content will specify such industry. The research can be applied into 
many parts of healthcare industry for pharmaceuticals and medical supplies 
management such as hospital’s internal chain (central storeroom and multiple 
departments), hospital network (central warehouse and multiple hospitals), and drug 
store chain (central warehouse and multiple drug stores). The survey on healthcare 
industry was conducted by two approaches: firstly, interviewing healthcare 
organizations’ staffs and other related stakeholders; and secondly, surveying 
literatures relating to healthcare industry and operations.  

In the interview process, we visited various healthcare organizations according 
to administration system and size of organization (measured from number of hospital 
beds): three private hospitals with 300, 400 and 600 beds, and two public hospitals 
with 300 and 800 beds. Interviewees comprise doctors, nurses, pharmacists, and 
inventory planners in order to cover all main human resources in pharmaceuticals 
and medical supplies management. For a survey on literatures, there are a wide 
range of literatures about healthcare supply chain and operations, for example, Kim 
[2], Kelle et al. [4], Woosley [5], Freudenheim [6], Jarrett [7], Rivard-Royer, Landry, and 
Beaulieu [8], Nicholson, Vakharia, and Erenguc [9], Moschuris and Kondylis [10], Foxx, 
Bunn, and McCay. [13], Dellaert and van de Poel [34], Totrakool [35], Rattanasin [36], 
Belson [37], Tongrod [38], Rudeejaroensakul [39], Arshinder, Kanda, and Deshmukh 
[40], as well as the information from Drugs and Medical Supplies Information Center 
(DMSIC), and The Government Pharmaceutical Organization (GPO), Thailand.  

Thailand’s healthcare supply chain, like other countries, consists of various 
stakeholders. Figure I-1 which is adapted from Rivard-Royer et al. [8] demonstrates 
the stakeholders at upstream and downstream levels, and also extensively focuses 
on hospital’s internal supply chain to illustrate multi-echelon inventory system.  
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Healthcare supply chain is formed into an arborescent distribution system 
which is a multi-echelon system that each location receives input from an immediate 
predecessor and supplies one or more immediate successors. 

For an external chain, there are three partners at the upstream level: 
vendors, manufacturers, and distributors. Vendors take responsibility for procuring 
and providing items to their successors: manufacturers, distributors, or hospitals. 
Manufacturers who produce pharmaceuticals or medical supplies and either 
distribute their products directly to the hospitals or outsource this activity to 
distributor companies. Subsequently, distributors supply items to the hospitals 
according to stock replenishment system. Some companies perform as vendor, 
manufacturer, and distributor at the same time. Each partner plans and controls their 
inventories to supply the customers either separately or coordinately along the 
chain. The dissertation defines “supplier” for a general term of vendor, manufacturer, 
and distributor who directly supplies items to the hospitals. 

With regard to an internal chain, the surveyed hospitals have commonly 
three internal echelons: central storeroom (CS), patient care units (CU), and points of 
care (PC). CS is in charge of purchasing all items from the suppliers, setting inventory 
policies for all stores’ items in the hospital, planning, controlling, and monitoring its 
own inventories, and replenishing required stocks at CUs. CU is pharmacy or medical 
supplies substore located in a department or a region (group of departments). A 
hospital has many CUs depending on, for example, the area of hospital including size 
and layout, hospital specialization, administrative system. Inventory planners at each 
CU are responsible for monitoring and controlling its own inventories under CS’s 
policy, issuing the order to CS when any item is needed, and dispensing to PCs or 
directly to patients when receiving request from doctors or nurses. PC including ward, 
clinic, and laboratory directly services the customers or patients. It is supplied by CU 
and keeps some small stocks. However, some units such as emergency room, X-ray 
department, and check-up department have their own inventories provided by CS 
and service patients as a PC; therefore, some stores perform as both CU and PC at 
the same time.  

Currently, there is not only hospital’s internal chain (central storeroom and 
multiple CUs), but also hospital network comprising central warehouse and multiple 
hospitals. An outsourced distributor manages its inventory and hospitals’ inventory 
simultaneously. Some networks manage at CS level; the others manage at CU level 
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without CS. The distributor in hospital network owns all inventories in the network as 
a single firm. Some hospital networks implement the VMI system to enhanced 
material handling efficiency through a growing trend of information technology, i.e. 
online procurement system and the real-time information sharing. The improved 
information sharing throughout the supply chain provides more timely and accurate 
inventory data resulted in better demand forecasts and materials management. 

For the inventory policy setting, healthcare services have implemented both 
types of inventory reviews: continuous review and periodic review. Each type is 
considered depending on item types, demands, suppliers, replenishment and 
distribution operations, and resource constraints. According to the information 
technology, inventories are mostly reviewed continuously. The computer system 
facilitates to monitor inventory level all the times and automatically notifies when 
the inventory level is at or below reorder point, then items are ordered and 
delivered at just the right time. Meanwhile, period review has been used in the 
system which has strictly resource constraints (i.e. planners, transporters, budgets, 
information). Mostly, healthcare inventory management has commonly adopted “par 
level” policy which is special feature only in healthcare. There are two kinds of par 
levels. The minimum par level is equivalent to the reorder point and the maximum 
par level is equivalent to the order-up-to level (or base stock). Each kind of par 
levels can be used separately or together such as  

 ( ,s S ) policy where s  represents the reorder point or the minimum par 
level and S represents the based stock or the maximum par level. 

 ( ,r Q ) policy where r  represents the reorder point or the minimum par 
level and Q  represents the fixed order quantity.  

 ( ,R S ) policy where R  represents the length of review period and S  
represents the based stock or the maximum par level.  

The ( ,s S ) policy is the most popular approach for planning and controlling 
most of pharmaceutical and medical supplies inventories. Presently, several hospitals 
employ a continuous review ( ,s S ) inventory control policy. When inventory level for 
an item at a CU reaches a predetermined minimum level s , an order is 
automatically generated and transmitted directly to the supplier. The supplier, in 
turn, ships the amount necessary to refill to the maximum quantity S . Depending on 
the specific circumstances, materials can be either sent to CS for repacking and 
distribution or sent directly to CUs, which bypasses CS entirely. The central 
warehouse at the supplier also employs a continuous review ( ,s S ) inventory control 
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policy to fast react in the replenishment process and reduce the inventory level 
comparing to periodic stocking. 

Pharmaceuticals and medical supplies are life-threatening products. They 
need more restriction and condition for holding inventories than other products. A 
variety of products is a complex issue as more than 2,000 specific items are 
controlled under various policies and constraints to serve customers’ satisfaction, 
employees’ efficiency and cost minimization. However, 40% – 60% of inventories are 
high-demand items which are forecasted based on usage statistics. They are planned 
and controlled as the same as general merchandizing items in other industries. In 
practical situation according to continuous review, each item is individually reviewed. 
Inventory replenishments are not considered jointly even though items are ordered 
from the same supplier (i.e. generally, a supplier sells more than one product to a 
hospital). Many times inventory managers and pharmacists find that they have to 
place many orders for different items to the same supplier more than once a week. 
Order frequency reflects the ordering costs not only charged at the hospitals but 
also added up to the supplier. Therefore, under VMI system, total system-wide cost 
is considered to compromise the holding costs and the ordering costs at both 
echelons. On another hand, joint ordering should be operated to reduce ordering 
costs, number of orders, and employees’ workloads [5, 9, 34]. 

At the downstream level, customers or patients are the last in supply chain; 
they are served by the hospitals and their demands have shaped the system. In 
healthcare demand is uncertainty; therefore, stochastic demand is better considered 
to represent realistic healthcare demand. Patients’ demands are derived from item 
usage at all points of care (the first echelon) whose stocks will be replenished by 
their respective immediate predecessors (the upper echelons). In a traditional system 
which supplier’s inventories and hospitals’ inventories are managed separately as 
multiple firms, a supplier accounts for hospitals’ demands from their purchase orders 
without supply coordination. On the other hand, under the VMI system the supplier 
considers hospitals’ demands from the usage at hospitals’ stores instead of the 
traditional system to reduce bullwhip effect where the orders’ variability is amplified 
in each echelon of the supply chain: from retailer to distributor, from distributor to 
manufacturer and from the manufacturer to the suppliers [41]. Moreover, the VMI 
system can increase the accuracy of forecasted demand. In the healthcare industry 
demand variation is one of the important characteristics which influence the 
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inventory levels. High demand variation from uncertainty of customer arrival makes 
planner build up the stock to support this circumstance to prevent shortage. 

In replenishment process, lead time and service level are the important 
factors influencing to the inventory level at both echelons. Traditionally, supplier’s 
lead time of distributing products to CS is uncertain according to product availability, 
document processing and financial activities, distribution schedule, and resource 
constraints. Based on surveyed hospitals, lead time varies from 3 to 14 days for usual 
order and three hours to one day for emergency order. However, according to VMI 
the supplier can reduce and specify more certain lead time. In addition, lead time of 
hospital’s internal chain is less than lead time of the supplier-hospital chain or 
sometimes it can be negligible since the distance between CS and CUs are not 
significant. In practical situation, there is a possibility of stock out but the backlog 
must be replenished as soon as possible (emergency case). Thus, target service level 
(TSL ) is a key performance indicator required at higher rate than other industries. 
Many organizations in the supply chain use TSL  instead of the penalty cost as this 
cost cannot simply formulate. 

Generally, inventory costs consist of three components: holding cost, ordering 
cost, and penalty cost. However, as mentioned above, penalty cost is transformed 
into service level instead. Holding cost is the cost of keeping and maintaining a stock 
of goods in storage. Healthcare industry encounters a huge of holding cost, since 
many hospitals hold excessive stocks to prevent an occurrence of backlog reflecting 
to patients’ perspective. Ordering cost is separated to two types: fixed ordering cost 
and additional ordering cost. Fixed ordering cost includes administrative costs, 
material handling costs, and transportation costs. It occurs once an order is triggered 
and does not depend on the number of items (or locations) in the order. Meanwhile, 
additional ordering cost depends on the number of involved items (or locations) in 
that order, for example, additional operations cost for managing different items, 
additional transportation cost relating to distance or other charges. However, some 
hospitals do not concern additional ordering cost since it is difficult to identify in 
detail. All relevant inventory costs are traded off to determine the inventory policy 
setting to serve TSL . 

In conclusion, healthcare industry is an example industry managing several 
different products stored in their group of warehouses as well as customer demands 
are uncertainty. Under OWNR, they can apply the continuous review to monitor all 
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inventory levels as the real-time and fast react. Joint replenishment is able to apply 
for multi-item multi-location inventory system with concerning lead time and target 
service level. However, the inventory planning and control process needs to 
encounter more complication of the system characteristics in order to set the best 
inventory policy parameters for coordinated supply chain. 

 
1.3 Statement of Problem 

This section is separated to two sub-sections: inventory policy selection and 
problem description. Since section 1.1 (general background) and 1.2 (example 
industry) provide inventory policies in general and propose JRP but not yet identified 
which inventory policy will be studied in the dissertation. Due to the fact that there 
are various inventory policies under JRP, inventory policy selection will be analyzed 
before describing the research problem in detail. Then, problem description is stated 
following the selected inventory policy. It also shows the mechanism of such 
inventory policy for multi-item two-echelon inventory system.  

  
1.3.1 Inventory policy selection 

Recall that JRP or joint replenishment problem is originally developed 
for the multi-product single-location inventory problem by coordinating the 
replenishment of a group of items that are jointly ordered from the same supplier. 
Focusing on stochastic demand and continuous replenishment, there are four main 
inventory policies proposed under JRP as follows: (Let j  denote the item j  stored 
in a location)   

(1) The can-order ( , ,j j js c S ) policy [42] 
When the inventory position (on hand + on order – amount 

backlogged) of any item drops to or below its must-order level 
js  an order is placed 

to bring its inventory level to base stock 
jS  and for all items j k  with the 

inventory below can-order level kc , inventory levels are also replenished to kS . 
(2) The ( , jQ S ) policy [43] 

Aggregate consumption of all items is monitored and when it 
reaches a certain level Q , all items are replenished to their order-up-to level 

jS . 
(3) The ( , )j jQ s S  policy [44, 45] 
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Aggregate consumption is continuously reviewed whereas the 
inventory level of item j  are only reviewed when aggregated consumption of all 
items reaches or exceeds a certain level Q . Any item has its inventory level less 
than 

js , its inventory level is brought up to its order-up-to level 
jS . 

(4) The ( , )jQ S T  policy [19]  
It is a hybrid inventory policy between continuous replenishment 

and periodic replenishment. When the aggregate demand since last replenishment 
reaches Q  units or the time elapsed since last replenishment reaches T , all items 
are replenished up to their order-up-to level 

jS . 

Each policy has the advantages and disadvantages on different 
situations. Considering the example industry, there are a number of items stored in 
each store and high service level is required. Practically all policies can be applied 
into the system; however, the can-order ( , ,j j js c S ) policy seems to be more 
practical by the reasons that  

- It is straightforward and appealing to one’s common sense [46]  
- The study of Gou et al. [14] demonstrated that the can-order     

( , ,j j js c S ) policy can save the total system-wide cost on OWNR about 5-20% as 
comparing with the independent controlled ( ,j js S ) policy at the retailers. 
Additionally, Özkaya [22] studied the special can-order ( , 1,j j js S S ) policy where 
the can-order level 

jc  equals to 1jS  . The result showed that the total system-
wide cost can be saved up to 30% depending on relevant factors. 

- Özkaya [22] also showed that the special can-order policy 
increases cost-saving when higher number of retailers in the system and/or higher 
target service level. These situations are substantially consistent with the example 
industry.  

- From the example industry survey, compatibility of the can-
order policy with the current computer software for inventory management is 
practically preferable because the computer software includes the can-order policy 
into the system as an option. The software defines two levels for reorder policy as 
demonstrated in the can-order policy, although it has never been used in reality. 

Academically, all considered inventory policies are mostly compared 
on the test beds [44, 47] which all parameters are identical for all items under single-
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location consideration. The results compared by Özkaya et al. [19] are depicted in 
the summary table. 
 

Table I-1: Summary results of the comparison of the continuous joint inventory 
policies 

 

In
st

an
ce

s Relevant Factors 

Summary Results  Major 
ordering cost 

Unit holding 
cost 

Unit penalty 
cost 

1 Low Low Low The can-order ( , ,j j js c S ) policy 
performs better than the others 

2 High Low Low The ( , )j jQ s S  policy outperforms 

3 Low High High The can-order ( , ,j j js c S ) policy 
performs better than the others 

4 High High High The ( , )jQ S T  policy slightly 
outperforms and followed by the 
can-order ( , ,j j js c S ) policy and 

the ( , )j jQ s S  policy respectively. 

 

The ( , jQ S ) policy is not raised in the table because it is beaten by 
the other policies. According to the table, the can-order policy is interesting since it 
outperforms the other policies in many instances. However, the can-order ( , ,j j js c S ) 
policy analyzed in Özkaya et al. [19] is developed under the approximate 
mathematical model on the assumption that joint replenishment is Poisson 
distributed. On the other hand, van Eijs [48] using the exact mathematical model 
showed that the can-order ( , ,j j js c S ) policy performs well in the case of high major 
ordering cost when using the special can-order ( , 1,j j js S S ) policy. Therefore, the 
can-order policy in instances 2 and instance 4 is likely to perform better result than 
the study of Özkaya et al. [19]. Comparing the can-order ( , ,j j js c S ) policy with the 
periodic joint replenishment, the ( , )j jP s S  policy is an outstanding periodic joint 
replenishment policy where the inventory level of all items are reviewed once every 
P  time units and each item with the inventory level below 

js  is replenished up to 
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level 
jS . The comparative result showed the similar pattern as Table I-1. For 

instance 2, the ( , )j jP s S  policy is slightly better than the can-order ( , ,j j js c S ) policy. 
However, the can-order ( , ,j j js c S ) policy is a continuous review replenishment policy 
and therefore can react faster to new information than the periodic replenishment 
policies, the can-order ( , ,j j js c S ) policy should intuitively perform better than the 
periodic replenishment policies. 

In conclusion, even though the can-order ( , ,j j js c S ) policy is not the 
best policy in every situation, it performs well in the important circumstances relating 
to the example industry (e.g. high service level, high number of retailers/items). The 
can-order ( , ,j j js c S ) policy does not perform bad itself but depends on the heuristic 
approach to determine the appropriate inventory policy setting [48]. Hence, this 
dissertation focuses on the can-order ( , ,j j js c S ) policy which is an important class of 
joint replenishment policy. Later section will combine the can-order ( , ,j j js c S ) policy 
into OWNR, as well as describe the research problem with such policy relating to the 
example industry with two-echelon inventory system.  

 
1.3.2 Problem description 

This dissertation considers inventory policy parameter setting under 
joint replenishment policy called the continuous can-order ( , ,j j js c S ) policy in the 
complicated system consisting of one warehouse and multiple retailers. It is an 
arborescent distribution system or a well-known one warehouse n-retailer 
distribution system. A warehouse and multiple retailers are cooperated as a single 
firm to concern total system-wide cost under global information and centralized 
control. So, inventory planner is in charge of planning and controlling overall 
inventories of all locations in the system under certain circumstances to minimize 
the total system-wide cost. Planner needs to determine the inventory policy 
parameters for all items in all locations to usually plan and control them under this 
predetermined setting. 

1) System structure 

A warehouse is placed at the upper echelon called “warehouse 
echelon”. It holds inventories for supplying all retailers’ orders. Inventories at the 
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warehouse are assumed to replenish by an outside supplier whose ample stock is 
not considered in the problem. Although this assumption seems quite unrealistic 
since normally the warehouse orders several items from various suppliers, the 
problem only specifies the group of items supplied by the same outside supplier 
(e.g. in healthcare industry, pharmaceuticals and medical supplies are often ordered 
from the same manufacturer or vendor). The warehouse distributes required items to 
retailers within the same lot (no-splitting lot) to reduce replenishment frequency 
which directly reflects to reduce ordering costs as well. In this problem, it is 
supposed that vehicle capacity is uncapacitated to sufficiently supply all required 
items in an order. Multiple retailers are placed at the lower echelon called “retailer 
echelon” and located in proximity. They have their own stores to keep multiple 
items supplied by the warehouse. Each retailer holds inventories for serving 
customer demands which are uncertainty but it can represent by the mean, thus 
customer demands are defined as stochastic demand. This characteristic makes the 
problem more realistic than considering with deterministic in the current situation 
that customer requirements can be easily changed all the time.  

Figure I-2 illustrates the structure of the multi-item two-echelon 
inventory system. Information flows from the retailer echelon to the warehouse 
echelon, whereas material flows from the warehouse echelon to the retailer 
echelon. The warehouse gets information from retailers, aggregates all information, 
create replenishment plan, and distributes the required items to the retailers. 
According to the two-echelon arborescent distribution system, there is a location set 
composed of n +1 locations; one location of warehouse and n  locations of retailers. 
Define that index i  represents location i  where i  = 0 for the warehouse and i N , 
N = {1, 2, …, n } for the retailers. Considering the multi-item inventory system, such 
system comprises an item set with m  items. Let index j  denote item j  in the 
system, so that j M , M = {1, 2, …, m }. Thus, the whole system is composed of 
multiple location-items indexed by ij  representing item j  at location i . Totally, the 
system has ( 1)n m   location-items. Customer demands come from the end 
customers at the retailers. In the dissertation, we assume that customer demands are 
identical Poisson distributed with rate 

ij .  Using Poisson process properties 
facilitates the study of the complicated system as found in many researches on joint 
replenishment policies. See e.g. a review of joint replenishment policies by Khouja 
and Goyal [20]. 
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Figure I-2 Multi-item two-echelon inventory system 

2) Inventory policy 

Inventory planner is in charge of planning and controlling overall 
inventories of all locations in the system to minimize the total system-wide cost. At 
the beginning of considered period (e.g. year, three months, month, twice weeks, 
week), planner needs to determine the inventory policy parameters for all items in 
all locations to usually plan and control them under the predetermined setting. 
Planner uses input data for making decision, e.g. number of retailer-items considered 
in the system, cost components, forecasted retailer-item demand characteristics, 
location-items’ lead times, and target service levels. Planner needs to tradeoff 
between the relevant costs at both echelons to minimize total system-wide cost. 
Then, daily operations are executed with continuous review by utilizing the 
predetermined inventory policy setting. 

“Inventory position” is used for ordering decision. This quantity 
includes the outstanding orders that have not yet arrived and backorders which units 
have been demanded but not yet delivered [49]. Thus, 

Inventory position = stock on hand + outstanding orders – backorders 
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The can-order ( , ,ij ij ijs c S ) policy is selected to apply into the 
considered system and used at all locations (i.e. warehouse and retailers). For each 
location, it has two reorder points: the must-order level for location-item ij  
represented by ijs  providing normal replenishment, and the can-order level ijc  
making special replenishment. For retailer echelon (retailer i N , N = {1, 2, …, n }), 
an order will be triggered to create normal replenishment when the inventory 
position of any retailer-item drops to or below its must-order level ijs . Then, other 
retailer-items in the system will be also included by this order if their inventory 
position is at or below its can-order level ijc ; a special replenishment is occurred. All 
the involved retailer-items’ inventory will be fulfilled from the warehouse to their 
own order-up-to level ijS . Summarily, at the retailer echelon coordinated ordering 
decision can be occurred among retailer-items. Figure I-3 shows an example of joint 
ordering model which an order is replenished from the warehouse. Suppose that 
there are four retailers and three items.  
 

An order includes Retailer-Item 
(i,j) = {(1,1), (1,2), (2,1), (3,1), (3,3)}

Retailer 1 
orders (1,1) and (1,2)

Warehouse

Retailer 2 
orders (2,1)

Retailer 3
orders (3,1) and (3,3) 

Note that the example has total 12 Retailer-Items:
{(1,1), (1,2), (1,3), (2,1), (2,2), (2,3), 
(3,1), (3,2), (3,3), (4,1), (4,2), (4,3)}

Retailer 4
No order  

 
Figure I-3 Example of the joint ordering model at the retailer echelon 

For the warehouse, it also employs the can-order (
(0, ) (0, ) (0, ), ,j j js c S ) 

policy using for coordinating multiple items at single location i  = 0. Warehouse will 
issue an order when the inventory position of any item reaches its must-order level 

(0, )js . Meanwhile if other items’ inventory position reach their can-order level (0, )jc ; 
they will be also included in the order sent to the outside supplier who sells a group 
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of items. All the involved items’ inventory will be fulfilled to their own order-up-to 
level (0, )jS . Therefore, at warehouse echelon coordinated ordering decision can be 
occurred among items. Factually, Fig.I-3 can represent joint ordering model at the 
warehouse as well by adapting to multi-item single location model. Since there are 
two levels of order cycle in the system, we differentiate between order cycle at 
retailer echelon and order cycle at warehouse echelon by defining “dispatch cycle” 
and “replenishment cycle” for retailer echelon and warehouse echelon, respectively. 

An example of the can-order ( , ,ij ij ijs c S ) policy is shown in Fig.I-4 and 
Fig.I-.5 to express the inventory process of the can-order policy for OWNR. The 
example sets the policy for the warehouse and the retailers. In this example, it is 
assumed that lead time is zero at both echelons and shortage is not allowed. There 
are two retailers and two items, so four retailer-items are considered as defined 
index ( , )i j  = {(1,1), (1,2), (2,1), (2,2)}.  
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Figure I-4 Example of the inventory process: Retailer echelon 
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Figure I-5 Example of the inventory process: Warehouse echelon 

At each location-item, inventory position continuously reduces when 
demand is arrived and increase when order is triggered. To explain the example, let 

ijI  and ijI  represents the inventory position before demand arrival and after 
demand arrival of item j  at location i , respectively. Let 

ijQ  denote the dispatch (or 
replenishment) quantity of item j  at location i . 

The replenishment policies at retailer echelon 
 At least one retailer-item that ij ijI s , the order will be triggered  

 The other retailer-items that  ijij ijs I c   will be included in the same order 

 Thus, the dispatch quantity of item j  at retailer i N  is equal to ijij ijQ S I   

 The total dispatch quantity of item j  sent to warehouse is equal to ij

i N

Q


  

The replenishment policies at warehouse echelon 
 Inventory position of item j  at the warehouse (0, )(0, ) jj ij

i N

I I Q


   

  At least one item that (0, ) (0, )j jI s , an order will be sent to an outside supplier  

 The other items that (0, )(0, ) (0, )jj js I c   will be included in the same order 

 The replenishment quantity for item j , (0, )(0, ) (0, ) jj jQ S I   
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From the example,   
Until the end of the 4th day: 
At retailer echelon  
Retailer-item (1,1):  

(1,1) (1,1)2I s  , order is triggered (normal replenishment) with

(1,1)(1,1) (1,1)Q S I    8 units. 
Retailer-item (2,1):  

(2,1)(2,1) (2,1)4s I c   , retailer-item is included by this order  
(special replenishment) with 

(2,1)(2,1) (2,1)Q S I   11 units. 
Retailer-item (1,2):  

(1,2)(1,2) (1,2)3s I c   , retailer-item is included by this order  
(special replenishment) with (1,2)(1,2) (1,2)Q S I   5 units 

Retailer-item (2,2):  (2,2)(2,2) 6c I  , retailer-item is not included by this order. 
Total dispatch quantity of item 1 sent to the warehouse ( ,1)i

i N

Q


 = 19 units and total 

dispatch quantity of item 2 ( ,2)i

i N

Q


 = 5 units.  

At warehouse echelon 
Warehouse-item (0,1): (0,1) (0,1)6I s  , order is triggered (normal replenishment) with 

(0,1)(0,1) (0,1)Q S I    19 units. 
Warehouse-item (0,2): (0,2)(0,2) 14c I  , this item is not included by this order. 
Then, there is only replenishment quantity of item 1 sent to the outside supplier 
with 19 units. 
 
Until the end of the 6th day: 
At retailer echelon  
Retailer-item (2,2):  (2,2) (2,2)3I s  , order is triggered (normal replenishment) with 

(2,2)(2,2) (2,2)Q S I    9 units. 
Retailer-item (2,1):  (2,1)(2,1) (2,1)5s I c   , retailer-item is included by this order  

(special replenishment) with (2,1)(2,1) (2,1)Q S I   10 units. 
Retailer-item (1,1):  (1,1)(1,1) 6c I  , retailer-item is not included by this order. 
Retailer-item (1,2):  (1,2)(1,2) 4c I  , retailer-item is not included by this order. 
Total dispatch quantity of item 1 is 10 units and of item 2 is 9 units, respectively.  
At warehouse echelon 
Warehouse-item (0,2): (0,2) (0,2)5I s  , order is triggered (normal replenishment)  

with (0,2)(0,2) (0,2)Q S I    13 units. 
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Warehouse-item (0,1): 
(0,1)(0,1) (0,1)15s I c   , the item is included by this 

replenishment (special replenishment) with 
(0,1)(0,1) (0,1)Q S I   10 units. 

Then, replenishment quantity of item 1 and item 2 are 10 and 13 units, respectively. 

By this inventory process, when special replenishment is occurred 
there is a residual stock [48] which is a stock left above the must-order level 

ijs  at 
the order-triggered point. For example, at the end of the 4th day retailer-item (2,1) 
and retailer-item (1,2) happen the residual stocks since they are reordered before 
reaching their own must-order level. If this situation frequently happens, such two 
retailer-items have to hold more stock than the expectation. Therefore, setting the 
appropriate inventory policy at both echelons is an important procedure concerning 
a trade-off between all relevant inventory costs to balance between order frequency 
and inventory amount, and eventually to minimize the total-system wide cost.  

3) Relevant inventory costs 

Relevant inventory costs in the system are composed of holding costs 
and ordering costs; meanwhile penalty costs are estimated to service level which will 
be described later. Relevant inventory costs are demonstrated by echelon as 
follows: 
At retailer echelon  

1) Holding cost of retailer-item ij  
The holding cost occurs at each retailer-item having physical stock. 

The holding cost over the time period at retailer-item ij  (
ijHC ), can be determined 

from the unit holding cost (
ijh ) and the accumulated inventory over the time period  

(
ijINV ). The total holding cost at retailer echelon is a summation of all retailer-

items’ holding cost. 
2) Retailer echelon’s ordering cost 

It is composed of two types of ordering cost [20]: major ordering cost 
and minor ordering cost.  

Major ordering cost is the fixed cost occurring once an order is 
triggered. This cost includes administrative costs, material handling costs, and 
transportation costs not depended on the number of retailer-items in the order. So, 
the retailer-items in the system can share the major ordering cost together for 
replenishing in one round trip. The total major ordering cost over the time period at 
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retailer echelon ( rMJ ) is the retailers’ major ordering cost per an order ( rK ) 
multiplied by the number of dispatch cycle (

rND ).  
Minor ordering cost is an additional cost of each retailer-item when 

replenishing their inventories, such as additional transportation cost relating to 
distance or other charges, additional operations cost for managing different items. 
This cost depends on the number of involved retailer-items in that order. The total 
minor ordering cost over the time period ( rMN ) is accumulated from the involved 
retailer-items in each order multiplied by its minor ordering cost of retailer-item ij     
(

ij ) over the time period. 

At warehouse echelon  
1) Holding cost of item j  at the warehouse 

Similar to retailer echelon, the holding cost occurs at each item with 
physical stock. The warehouse’s holding cost over the time period for item j            
(

(0, )jHC ) can be calculated from the unit holding cost (
(0, )jh ) and the accumulated 

inventory over the time period (
(0, )jINV ). The total holding cost at warehouse 

echelon is a summation of all items’ holding cost. 
2) Warehouse echelon’s ordering cost  

According to multiple items, warehouse echelon has the same cost 
structure as retailer echelon composed of two types of ordering cost: major ordering 
cost and minor ordering cost. Major ordering cost is the fixed cost occurring once 
replenishment is occurred. It does not depended on the number of items in the 
replenishment. The involved items in the replenishment can share the major 
ordering cost in one round trip. The total major ordering cost over the time period at 
warehouse echelon ( wMJ ) is the warehouse’ major ordering cost per an order ( wK ) 
multiplied by the number of replenishment cycle ( wNR ). 

Minor ordering cost is an additional cost for managing different items. 
This cost depends on the number of involved items in that order. The total minor 
ordering cost over the time period ( wMN ) is accumulated from the involved items in 
each order multiplied by its minor ordering cost of item j  (

(0, )j ) over the time 
period. 

The concept of the can-order policy is balancing among reduced 
major ordering costs, varied minor ordering costs, and increased holding costs. 
Reduced major ordering cost occurs if special replenishment is included in an order. 
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On the other hand, from special replenishment there is a residual stock. Then, the 
involved location-items have to hold more stock increasing the holding cost. 
Meanwhile, the minor ordering costs can be either reduced or increased depending 
on order frequency at each location-item. Hence, we have to consolidate all 
relevant costs to determine the appropriate inventory policy setting under the total 
system-wide cost minimization. 

4) Lead time 

For the example shown in Fig.I-4 and Fig.I-5, lead time is negligible. If 
lead time is considered, the problem is more complicated because lead time will 
affect the inventory policy setting at all location-items. Generally, lead time is 
defined that the duration from the moment an order is placed to the warehouse 
(outside supplier) until the moment the order is received by the retailers 
(warehouse). The problem assumes constant lead time for each location-item (

ijL ). 
According to two-echelon system, the supplier can reduce and specify more certain 
lead time as our assumption. 

5) Target service level 

Under stochastic conditions it is unavoidable that in some periods the 
inventory on hand is not sufficient to deliver the complete demand and, as a 
consequence, that part of the demand is filled only after an inventory-related 
waiting time. The amount of late deliveries can be influenced through the penalty 
costs. Unfortunately, these costs are difficult to quantify in practice, hence, “Fill 
Rate” widely used in industrial practice [22, 50] is a measurement of service level to 
quantify the logistical performance. It is a quantity-oriented performance measure 
describing the proportion of total demand within a reference period delivered 
without delay from stock on hand. Normally, service is measured only at the lowest 
echelon since in a multi-echelon system a stockout at one of the higher echelons 
has only a secondary effect on service. Thus, service level will be considered only at 
the lowest echelon to avoid unnecessary duplication of safety stock. For the 
problem, service level is considered as a system constraint defined that is target 
service level (

ijTSL , i N ). Consequently, all retailer-items must concern this 
constraint for setting their inventory policy.  
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1.3.3 Problem discussion 

The can-order ( , ,ij ij ijs c S ) policy for OWNR initiates three main 
complications of the research problem to determine the appropriate inventory policy 
setting as follows: 

(1) Uncertainty of reorder epoch and order quantity at both echelons 
Since continuous replenishment at both echelons makes the 

problem encounter the uncertainty of reorder epoch. So, normal replenishment and 
special replenishment also create non-constant order quantities. For retailer echelon, 
each involved retailer-item’s order quantity in an order can be varied from 

ij ijS c  to 

ij ijS s . Thus, the total dispatch quantity of item j  issued to the warehouse can 
also be varied from min{ ; , }ij ijS s i j    to ( ) ( 1)ij ij

i N j M

S s n m
 

    . By this 

circumstance, the warehouse echelon encounters the uncertainty of lot-size 
demands. Hence, setting the inventory policies at all location-items directly affect 
each other.  

(2) Time synchronization 
Typically, the problem on OWNR faces time synchronization 

between warehouse echelon and retailer echelon. Transaction at each echelon also 
influences each other, so it needs to be consistent. For example, reorder epoch at 
retailer echelon affects inventory position and reorder epoch at warehouse echelon, 
then inventory on hand at warehouse also affects an outstanding order arrival to 
retailer echelon. According to the continuous replenishment with uncertainty of 
demands at both echelons, it makes this problem more complicated.  

(3) Interaction among location-items in each echelon 
Interaction among location-items is an important problem since a 

location-item’s inventory policy setting affects the probability of special 
replenishment for other location-items. Therefore, changing inventory policy of just 
one location-item has an effect to the whole system. 

In conclusion, our research problem focuses on the can-order ( , ,ij ij ijs c S ) 
policy for OWNR composing of one warehouse and multiple retailers with multiple 
items. Assuming that customer demands are Poisson distributed. Coordinated 
ordering decision within any echelon can be occurred according to such policy. There 
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are two types of cost components considered in the system: the holding costs at all 
location-items and the ordering costs at both echelons. All relevant inventory costs 
are traded off to minimize the total system-wide cost. Lead time and target service 
level (or target fill rate) are included. The system creates the complications of 
research problem that encounters the uncertainty of reorder epoch and order 
quantity at echelons, time synchronization, and interaction among location-items in 
each echelon. Hence, the dissertation will explore the considered system and 
significantly fulfill knowledge in the area of the inventory control and supply chain. 
 

1.4 Dissertation Objective 

 The objective of this dissertation is to develop the stochastic joint 
replenishment model and the solution approach for determining the best values of 
inventory policy parameters under the continuous can-order policy. The dissertation 
focuses on a multi-item two-echelon inventory problem structured as a warehouse 
n-retailer inventory system by considering the appropriate total system-wide cost. 

 
1.5 Dissertation Scope 

1) System structure and planning control: The study focuses on a multi-
item two-echelon inventory problem, known as one-warehouse n-retailer system. 
Inventory policy parameters are determined under the can-order ( , ,ij ij ijs c S ) policy 
which is considered at both echelons. Planning horizon is infinite and the objective 
function is to minimize the expected long-run total system-wide cost. Planner is 
responsible for inventory planning and control over both echelons considered as a 
single firm. 

2) Coordinated ordering decision: At retailer echelon, ordering decision can 
be jointly worked together for multiple retailer-items. Meanwhile, warehouse 
echelon can have coordinated ordering decision among various items.  

3) Replenishment process: Warehouse placed at the upper echelon holds 
inventories for supplying all retailers’ orders. Warehouse’s inventories are 
replenished by an outside supplier whose ample warehouse is not considered in the 
problem. Multiple retailers placed at the lower echelon have their own stores to 
keep multiple items supplied by the warehouse.  
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4) Distribution process: It is supposed that vehicle capacity is 
uncapacitated at both echelons to sufficiently supply all required items in an order. 
Multiple retailers are located in a close proximity to distribute all complete order in 
one round trip with a constant lead time. By this assumption,  

 No-split lot is allowed. This can simplify the problem not to 
concern the allocation problem.  

 Routing for distribution is not included in the problem. 
 Transshipment between retailers is not allowed in order to consider 

only customer demands for each retailer. 

5) Relevant inventory costs: They are composed of holding costs and 
ordering costs at both echelons. The research utilizes target service level (fill rate) 
instead of penalty costs as the system’s constraint at retailer echelon. 

6) Demand consideration: Each retailer holds inventories for serving 
customer demands. They are defined as stochastic demand represented by the 
stationary mean. The research assumes customer demands with Poisson distribution. 
Other probability distributions are not included in the study. 

7) Item characteristics: The considered items are merchandizing items, and 
their shelf-life is longer than dispatch (or replenishment) cycle, so the expiration can 
be ignorable. The correlation of product formulary is not concerned; on another 
hand, individual item’s demand is independent of the other items’ demands.  

8) Research methodology: The dissertation excludes the implementation 
phase into the industry and all inputs are based on the simulated data which is 
randomly generated. 
 

1.6 Dissertation Contribution 

1) Practical contribution  

The multi-item two-echelon inventory system is considered with 
global information and centralized control; the decisions are made with visibility to 
the entire system using information for all locations through the cooperation and 
coordination across multiple parties or across firms. This system significantly provides 
cost reduction and service quality improvement for all stakeholders. Additionally, 
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one-warehouse n-retailer inventory system is considered to represent general 
distribution in a supply chain, not limited to a serial inventory system. 

The multi-item two-echelon inventory problem is studied under taking 
the can-order ( , ,ij ij ijs c S ) policy into consideration. This policy is a kind of joint 
replenishment policies with stochastic demand and continuous replenishment. 
Comparing with the traditional inventory policies which are independent control on 
multi-echelon system (e.g. the ( ,s S ) policy, the ( ,R S ) policy, and the ( ,r Q ) policy), 
using the can-order policy may lead to substantial cost savings owning to the shared 
major ordering among location-items in the system. Moreover, as the can-order 
policy is a continuous review replenishment policy, it can react faster to new 
information than the periodic replenishment policies and it should intuitively 
perform better than the periodic replenishment policies as found in the previous 
researches.  

Inventory planner needs to control a number of items stored in both 
echelons. The dissertation will facilitate them to jointly determine the best inventory 
policy parameters for continuous replenishment under stochastic demand by 
employing the can-order policy for the general item case. As realistic situation has 
been concerned to develop the problem, the application of the dissertation can 
provide significant advantages into many industries. Moreover, interaction between 
multiple retailers in a close proximity is also considered to share retailer echelon’s 
ordering cost with a single round trip. The inventory total system-wide cost could be 
more saved relating to a number of retailer-items instead of considering multiple 
items only in a retailer. 

2) Academic contribution  

As most of previous researches have conducted on single-item two-
echelon inventory system under traditional inventory policies, the dissertation can 
extend knowledge of inventory control with joint replenishment policy called the 
can-order ( , ,ij ij ijs c S ) policy. This policy has not been profoundly studied on OWNR. 
Thus, the dissertation will explore insights of the inventory policy setting in widely 
various conditions on single-item two-echelon inventory system. Moreover, a new 
solution approach will be proposed to determine the appropriate inventory policy 
setting on the considered system. 



 28 

Additionally, a few of researches have been carried out on multi-item 
two-echelon inventory system. They studied multiple items under different 
conditions, i.e. periodic joint replenishment, integration of inventory and 
transportation problem with periodic joint replenishment, cross-docking inventory 
system, and other system constraints without joint replenishment consideration. The 
dissertation can fulfill research gap on another area of multi-item inventory control 
with joint replenishment policy named the can-order ( , ,ij ij ijs c S ) policy at both 
echelons under continuous replenishment and stochastic customer demand. This 
fulfillment also takes both echelons’ stocks into consideration which differentiates 
from other researches on continuous replenishment for the supply chain. The entire 
chain is considered to determine all location-items’ inventory policy setting for total 
system-wide cost minimization. Due to the system complication, decision variables 
between two echelons and among location-items are strong related and very 
difficult to find the (near) optimal solutions. Another new solution approach will be 
proposed for managing multiple items on OWNR with coordinated ordering decision. 
This facilitates inventory planner or related positions to understand and to determine 
the appropriate inventory policy setting. 

With the existing literatures on the can-order policy, decomposition 
technique for breaking the multi-item models into the single-item models and 
iterative algorithm for solving such models are widely utilized to determine the 
inventory policy setting. The important challenge is an integration of the existing 
formulation and heuristics into OWNR. This will provide the significant contribution to 
the multi-item two-echelon inventory problem. In addition, another challenge is how 
to simplify the complicated system, but yet obtain the appropriate inventory setting. 

The dissertation is expected to be a basis for other researches on joint 
replenishment policies. Since we study the insights of the can-order ( , ,ij ij ijs c S ) policy 
on OWNR and also provides the solution approaches for various situations. This 
knowledge is a valuable contribution to the field of inventory control and supply 
chain management.   
 

1.7 Dissertation Methodology  

To obtain insight of the can-order ( , ,ij ij ijs c S ) policy on OWNR, the dissertation 
methodology is divided into three phases as the following figure: 
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Single-Item Two-Echelon 
Inventory System 

with Zero Lead Time

Single-Item Two-Echelon 
Inventory System 

with Non-Zero Lead Time

Multi-Item Two-Echelon 
Inventory System 

with Non-Zero Lead Time

Phase I Phase II Phase III

 

 
Figure I-6 Three phases for dissertation methodology 

The first phase (Phase I) is the basic model for the can-order policy on OWNR. 
The system just has an interaction among retailers without joint ordering decision at 
warehouse echelon. The objective of this phase is to gain the insight of such policy 
on OWNR, and then to develop the heuristic approach for determining the 
appropriate inventory policy setting. There are three relevant factors considered, i.e. 
cost components, demand rates, and number of retailers. According to single item 
and zero lead time, only decision variables 0, ,i ic S S  are considered with 2 1n  
variables. This simplifies the can-order policy on OWNR which will be a basic 
knowledge for the next phase. 

The second phase (Phase II) is an extension of the basic model. The 
complication is added by non-zero lead time and service level constraint. Research 
remains taking single item into consideration to study an interaction among retailers 
without joint ordering decision at the warehouse echelon. The objective of this phase 
is to study inventory policy characteristics with the conditional relevant factors, i.e. 
lead time and target service level, as well as to develop the heuristic approach 
consistent with such characteristics provided. Relating to single-item consideration, 
decision variables are 0 0, , , ,i i is c S s S  with 3 2n  variables. More complexity of the 
model is contributed to the research. 

Lastly, the third phase (Phase III) is the widest system for OWNR. Coordinated 
ordering decisions are concerned at both echelons. The warehouse’s items are 
jointly replenished. Thus, decision variables are , ,ij ij ijs c S  with 3 ( 1)m n  variables. 
The ultimate objective of the research is provided by the most complication of the 
system. All valuable findings from phase I and II enable this phase to develop the 
heuristic approaches. 
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Based on the research process, all phases are carried out by the following 
methods as depicted in Fig. I-7. 
 

1. Identifying the problem

2. Formulating the model

3.1 Establishing the best-
known solution 

3.2 Developing the solution 
approach

3. Determining the inventory policy setting

4. Designing and conducting the 
experiment

5. Analyzing and concluding the 
experimental results

6. Improving the process

 
 

Figure I-7 Research process 

1) Identifying the problem: According to three phases as mentioned 
above, each phase deals with different problem. All considered problem should be 
clarified in order for conducting the research in later steps. 

2) Formulating the model: It is certain that different models are provided 
to serve three phases. In the dissertation, exact model and approximation model are 
combined to represent the system and simplified to determine the inventory policy 
setting. Due to the system complication, computer simulation becomes the most 
important tool in the dissertation. Hence, simulation model has the great importance 
on the research process. 

3) Determining the inventory policy setting: There are two sub-processes 
classified. Firstly, establishing the best-known solution utilizes computer simulation 
under multiple replications, and secondly, developing heuristic approach applies 
decomposition technique, iterative algorithm, and one-dimensional search for non-
derivative function. Decomposition technique and iterative procedure can be applied 
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to break multiple locations into single location and to recurrently find the minimum 
solution as far as the best solution has been found. Both techniques have been 
intensively used in stochastic joint replenishment problem [34, 48, 51-56]. One-
dimensional search called “golden section search” is a simple and efficient method 
for finding extremum of a unimodal function [48, 57, 58]. 

4) Designing and conducting the experiment: All relevant factors are 
considered in the experimental design. The dissertation concerns various situations to 
study the effect of the can-order policy and the proposed heuristic approaches 
including their performance. Additionally, a lot of experiments are conducted to 
validate the best solution.   

5) Analyzing and concluding the experimental results: This step is a 
general process of research methodology. All findings in the experiments will be 
analyzed and discussed in order to explicate the can-order policy’s characteristic and 
to evaluate the proposed heuristic approaches’ performance.  

6) Improving the process: The improvement process is provided for better 
solution approaches. The feedback from the 5th step leads to get back to the 
following activities: revising or simplifying model formulation, modifying the current 
solution approach or proposing the new one, redesigning the experiment to study in 
further details explicating the unclear circumstances.  

This section gives an introduction of dissertation methodology. A great depth 
of research process will be explained in each chapter since three phases of 
dissertation methodology are established in the different contexts. 

 
1.8 Dissertation Organization  

 There are six chapters organized in this research. Chapter I (Introduction) has 
already been mentioned above, and then the overview of the other chapters can be 
described as follows. The main contents are addressed following three phases of 
dissertation methodology:    

 Chapter II – Literature Review: This chapter reviews previous 
researches and explains the inventory theory relating to the dissertation. Main 
knowledge is associated with joint replenishment problem, two-echelon inventory 
problem, and modeling and solution approaches. All literatures are discussed to 
identify research gap, raise their useful methodologies and results. 
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 Chapter III – The Can-Order Policy for Single-Item Two-Echelon 
Inventory System with Zero Lead Time: This chapter presents the insight of the 
can-order policy on the uncomplicated system including the effect of the can-order 
policy, comparative analysis with other policies, and inventory policy characteristics. 
Research methodology for this phase is also provided in detail to study the can-order 
policy, to determine the best-known solution, and to measure the solution’s 
performance. All insights lead to develop the solution approaches. The experiment is 
designed and processed to study the heuristic’s performance in various situations. 
Then, discussion on the problem is demonstrated.    

 Chapter IV – The Can-Order Policy for Single-Item Two-Echelon 
Inventory System with Non-Zero Lead Time: Extending from phase I, this chapter 
describes the system characteristic and its complexity. The insight of the can-order 
policy is also provided as chapter III but not the same relevant factors (i.e. lead time 
and target service level). This chapter explains research methodology and proposes 
the heuristic approaches, as well as an improvement of the heuristic approach is 
demonstrated to reduce cost gap between the heuristic’s solution and the best-
known solution. The experiment with its result is analyzed and discussed.    

 Chapter V – The Can-Order Policy for Multi-Item Two-Echelon 
Inventory System with Non-Zero Lead Time:  This chapter combines all findings 
from phase I and phase II to extend the knowledge for controlling multiple items. 
Problem description is identified with the classification of inventory policy setting. 
The development of heuristic approaches conforms to the core context. Finally, 
comparative study of the classification is conducted in various situations.  

 Chapter VI – Conclusions: It is the summary of the research along with 
three phases of research methodology, as well as further researches are 
recommended for the future improvement. 
 



CHAPTER II 
LITERATURE REVIEW 

 

This chapter reviews previous researches and explains the inventory theory 
relating to the dissertation. The research considers two major areas of problem: joint 
replenishment problem and multi-echelon inventory problem, as well as interesting 
solution approaches are addressed. A review of joint replenishment problem 
demonstrates various joint inventory policies, specifically the can-order policy 
considered herein to continuously manage multiple items and other interesting 
policies. For the multi-echelon inventory problem, the literatures are divided into the 
single-item problem and the multi-item problem under both serial and arborescent 
system, like OWNR, to explore various inventory policies. We also present the 
interesting modeling and solution approaches for the problems. 

 
2.1 Joint Replenishment Problem  

   Joint replenishment problem (JRP) is the multi-product inventory problem of 
coordinating the replenishment of a group of items that may be jointly ordered from 
the same supplier. The objective of JRP is generally to minimize the total cost whilst 
satisfying demand. The total cost is mainly composed of two parts: the holding cost 
and the ordering cost [20].  

 The holding cost is the cost of holding inventory including the cost of 
capital tied up in inventory, taxes, and insurance.  

 The ordering cost is the cost of preparing and receiving an order, the 
cost of material handling and transportation. When placing the order to 
the supplier for a number of different items, two components of the 
ordering cost are occurred:  
 The major ordering cost which is independent of the number of 

different items in the order.  
 The minor ordering cost which depends on the number of 

different items in the order. 

The common decision on JRP is to determine the optimal quantities 
(generally relating to when and how much to order) for items ordered from the same 
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supplier by trading off between the holding cost and the ordering cost. Using group 
replenishment may lead to substantial cost savings because of the major ordering 
cost shared among items in the group. Many algorithms have been proposed to find 
quality solutions for the JRP. Typically, there are three types of replenishment 
pattern: type 1 – each item is independently ordered; type 2 – all items are jointly 
ordered in the same lot (or at the same cycle time); type 3 – each lot contains a 
selected subset of items (not every order contains every item). Figure II-1 illustrates 
the replenishment pattern of each type. In the figure, an example contains three 
items (A, B, and C) in the system. 

 

Item A

Item B

Item C

Type 1

Item A-B-CType 2

Item A

Item A-B

Item A-C

Type 3

Item A-B-C

 
 

Figure II-1 Three types of replenishment pattern 

According to grouping multiple items, strategy to solving the JRP can be 
classified into two types: A direct grouping strategy (DGS) and an indirect grouping 
strategy (IGS). Under DGS, items are partitioned into a predetermined number of sets 
and the items within each set are jointly replenished with the same cycle time. DGS 
is consistent with replenishment pattern type 2. IGS could be defined that not every 
order contains every items as consistent with replenishment pattern type 3. 
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The review is divided according to types of demand: deterministic demand 
and stochastic demand. Most of review are examined JRP with stochastic demand 
since it directly deals with the dissertation problem. Meanwhile the following review 
also gives a consideration on JRP with deterministic demand, though it indirectly 
relates with the dissertation. Hence, the review of deterministic part aims at providing 
an understanding of the basic concept and the approaches for finding quality 
solutions.  

The review on JRP with deterministic demand focuses on the classic joint 
replenishment problem (CJRP) which is similar to the economic order quantity (EOQ) 
including deterministic and uniform demand, no shortages allowed, no quantity 
discounts, and holding cost is linear. For DGS, CJRP can be solved under EOQ with 
the same cycle time for all items. For IGS, the cycle time for every item is an integer 
multiple 

jk  of the order cycle time T . Thus, the cycle time for item j  is 
j jT k T  

and the order quantity for item j  is 
j j j j jQ T D k TD   where 

jD  is demand per 
unit time for item j . The policy defined by the basic cycle time and a set of 
multipliers are known as the cyclic policy. Arkin, Joneja, and Roundy [59] provided a 
proof that the CJRP is an NP-hard problem. van Eijs, Heuts, and Kleijnen [60] 
compared the solutions of DGS and IGS for a set of randomly generated problems. 
The authors identified two factors that are important in determining the relative 
performance of the two strategies. The first factor is the ratio of the major ordering 
cost to the average minor ordering cost (called “the ordering cost ratio” for the 
entire of the dissertation), and the second factor is the number of items. The results 
indicated that IGS outperforms DGS but the differences are small. For values of the 
ordering cost ratio above 75, the IGS and DGS become the same because only a 
single group is created. 

Kaspi and Rosenblatt [61] proposed a simple heuristic algorithm (called RAND) 
by computing k  equally spaced values of the fundamental cycle T  within its lower 
bound and upper bound min max[ , ]T T . Then, Goyal and Deshmukh [62] introduced a 
new lower bound on minT  which reduces the range of T . Hariga [63] developed two 
heuristics for solving CJRP. Both procedures relax the order frequency in which the 
multipliers need not to be integer number. Ben-Daya and Hariga [64] conducted a 
numerical experiment to test the performance of Hariga [63]’s heuristic against Goyal 
and Deshmukh [62]. Hariga’s algorithm gives lower total cost for 86.9% of 24,000 
randomly generated problems. In addition, Hariga’s algorithm is 21 times faster for 
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10-product problems and 40 times faster for the 20-product problems. Viswanathan 
[65] proposed an algorithm which iteratively improves the bounds on T . The 
performance of the proposed algorithm relative to Goyal’s algorithm improves as the 
problem size increases. However, Goyal’s algorithm is faster when the major ordering 
cost is small. More details relating to other solution approaches can be seen in 
Khouja, Michalewicz, and Satoskarl [66], Lee and Yao [67], and Olsen [68]. 

Summarily, the basic concept of the JRP with deterministic demand is the use 
of the base period T  with integer multipliers for determining each order cycle of 
item j . The important relevant factors are the ratio of the major ordering cost to the 
average minor ordering cost, and the number of items. From this review of 
deterministic part, we raise the basic concepts and approaches for finding quality 
solutions in order to comprehend simple part of JRP. Then, the next issue continues 
to the main part of the dissertation which is more complicated. 

Focusing on JRP under stochastic demand (SJRP) which customer demand is 
stationary in the mean, a general application of SJRP has been developed on multi-
item single-location inventory system. The objective is to minimize the expected 
total cost per unit time. The optimal joint replenishment policy can theoretically be 
found by solving a huge Markov decision model. However, the size of the state and 
the decision space grow exponentially with the number of different items, it seems 
intractable to solve the model for obtaining the optimal solution. Ignall [69] solved 
the problem for two items and found that the optimal policy is in general 
unfortunately not a simple policy. Instead of focusing on the optimal policy, the 
literatures on the SJRP proposed the joint replenishment policies and heuristic 
approaches to determine the appropriate inventory policy setting. SJRP can be 
classified into two major streams based on the type of policy class under 
consideration as follows [3, 19, 20]: 

 
2.1.1 Can-order policies 

The general concept of the can-order policy is usually applied in a 
continuous review system as originally suggested by Balintfy [42]. Balintfy provided 
an initial insight into the problem with a queuing-based approach assuming no lead 
time and identical items. When the inventory position of any item drops to or below 
its must-order level 

js  an order is placed to bring its inventory level to order-up-to 
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level 
jS . For other items k j  with the inventory below the can-order level kc , its 

inventory level is replenished to kS . This is also known as a ( , ,j j js c S ) policy in 
common. So, it is composed of two reorder points: the must-order level occurring 
normal replenishment, and the can-order level occurring special replenishment. 
Special replenishment is an opportunity of a discount replenishment which an item 
is faced with when another item reaches its must-order level and places an order.  

Silver [70] analyzed a special case with 
j jc S - 1 and 

js  = 0 in a two-
item inventory system facing identical Poisson demands and zero lead time. Under 
the assumption that shortages are not allowed, Silver proved the can-order policy is 
always better than independent control. An exact analysis has been possible for this 
special case because the inventory levels of both items provide regeneration points 
at the order instances and, hence, the renewal reward theorem is applicable. 
However, the same approach cannot be used for the general case. Therefore, 
different approximate models and solution methods have been proposed later on. 

An approximation technique proposed by Silver [51] is to decompose 
the m -item problem into m  single-item problems facing Poisson demands and 
Poisson special replenishment opportunities. Assuming this process of discount 
opportunities is independent of item j , the multi-item inventory problem can be 
solved by successive iterations. The same decomposition technique has later been 
extended to compound Poisson demand by Thompstone and Silver [71] and Silver 
[52]. The popular method for computing the can-order policy referred in many 
comparisons is of Federgruen et al. [53]. They modeled the can-order policy as a 
semi-Markov decision problem with compound Poisson demands, and positive lead 
times. Poisson special replenishment opportunity was assumed as Silver [51]. They 
decomposed the multi-item model into single-item problems and used a policy-
iteration algorithm to solve for the best values of the control policy parameters. 
Policy-iteration algorithm searches for solutions of the single-item model and then 
extends this solution, to the multi-item case. 

Another approximation technique was proposed by Love [46] using 
the basis of single-item economic order quantity on deterministic model to 
determine the initial individual order cycle time of item j  with respect to its own 
minor ordering cost. The concept of periodic replenishment was applied to 
determine integer multiple of the minimum order cycle time. Then, each item can 
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be determined decision variables ( , ,j j js c S ) by a closed-form formula obtained from 
an approximation model. Comparing to Silver [51], the numerical result showed that 
Love [46]’s approach obtains lower total cost. 

Zheng [54] proved that if the discount opportunity process is Poisson 
then the can-order policy is optimal. After m  single-item problems are solved, the 
rate at which discount opportunities are generated is calculated and used in the next 
iteration. The procedure stops when the best policies are unchanged. On the other 
hand, van Eijs [48] and Schultz and Johansen [55] illustrated the assumption of a 
Poisson arrival process for the special replenishment opportunities could lead to 
poor performance of the can-order policies. Instead, they proposed using Erlang 
distributions. The best values of the policy parameters are obtained through policy 
iteration. van Eijs [48] also suggested a can-order policy where the can-order level 

jc  
is always equal to 

jS - 1 when the major ordering cost is high compared with the 
average of the minor ordering costs. For such a policy, whenever an item places an 
order, all other items join the order. He minimized the holding and ordering costs 
subject to a service level constraint. With decomposition technique and iterative 
procedure, the best policy can be determined.  

Melchiors [56] provided an improvement to the can-order policy using 
a compensation approach, where an item placing an order receives compensation 
from other items benefitting from the order opportunity, to improve the previous 
approximations of the can-order policy for Poisson special replenishment 
opportunity. The single-item model and decomposition procedure were developed. 
Melchiors observed that the can-order policy obtained from Federgruen et al. [53] 
gave a poor performance with high ordering cost ratio, as the same result of van Eijs 
[48]. The results showed that in cases of low ordering cost ratio the best can-order 
policy outperforms the periodic replenishment policy proposed by Viswanathan [44]. 
For higher ordering cost ratio, such periodic replenishment policy gains the lowest 
cost, but the difference is very small. The example clearly illustrated that the 
Federgruen’s can-order policy is far from the optimal can-order policy. However, at 
higher ordering cost ratio, the can-order policy can be solved under ( , 1,j j js S S ) 
policy as suggested by van Eijs [48]. Another conclusion from the results was that the 
periodic replenishment policy proposed by Viswanathan [44] should be used on the 
problem where demand variation is low, but the can-order policy should be used 
when demand variation is high. At low demand variation, the periodic replenishment 
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policy can reduce the holding cost by eliminating the small uncertainty of not 
knowing exactly when the next order is placed. Meanwhile, at high demand variation 
where the time between two consecutive replenishments is more unpredictable, the 
reaction time is much more significant and using the can-order policy would be 
better off. 

Kayiş, Bilgiç, and Karabulut [72] proposed a semi-Markov decision 
model for the can-order policy under two-item inventory system. Their main 
objective is to describe the whole system without decomposing it into two single-
item inventory systems. Since the dimension of the state space is larger than the 
single-item inventory problem, the problem is solved using an enumerative 
approach. The comparative result showed that the policy iteration algorithm of 
Federgruen et al. [53] does not always converge to the best can-order policy. 

The can-order policy has also been applied in periodic replenishment. 
Dellaert and van de Poel [34]. They derived a simple inventory ( , , ,j j jR s c S ) model. 
All items in the group are reviewed periodically at every R  period. They extended 
an EOQ model to ( , , ,j j jR s c S ) model, in which the values of the control parameters 
are determined in a simplistic manner. After this approach was implemented in the 
hospital over a year, it resulted in substantial gains, such as improved service levels, 
reductions in supplier orders, smaller total inventory levels and holding costs, and 
eventually lower system costs. Later, the compensation approach was extended by 
Johansen and Melchiors [73] but on the periodic review system by approximating the 
discount opportunities by a Bernoulli process with outcome 1 if a discount order 
opportunity occurs and 0 otherwise. The performance of the extended 
compensation can-order policy was compared to the periodic replenishment policy 
of Viswanathan [44]. The periodic can-order policy is advantageous on cost saving 
around 15% for the problem with high demand variation. Interesting issue is that the 
periodic replenishment policy of Viswanathan [44] and the new policy provide 
indifferent results for the problem with low demand variation.  

Additionally, the literatures on the can-order policy were extended in 
more complicated system. Duyn Schouten, Eijs, and Heuts [74] conducted a research 
on a framework of the can-order policies with quantity discounts. Liu and Yuan [75] 
studied the can-order policy for a two-item system with correlated Poisson demands. 
Tsai, Tsai, and Huang [76] proposed an association clustering algorithm to group 
multiple items based on the can-order policy. Nagasawa et al. [77] applied genetic 
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algorithm (GA) to set the optimal can-order level of many items on a given ( ,j js S ). 
The knowledge of the can-order policy is likely to be enhanced and taken into more 
consideration. 

 
2.1.2 Other policies 

Besides the can-order policies, various joint replenishment policies 
were introduced in both periodic and continuous replenishment. The basic joint 
replenishment policies on periodic replenishment were developed by Atkin and 
Iyogun [47]. They proposed two periodic replenishment policies: ( ,jR T ) policy and 

( , )jMP R T  policy. The ( ,jR T ) policy is defined that the same review interval T  is 
used for all items and each item is brought up to order-up-to level 

jR  at review 
period. Then, the ( , )jMP R T  policy is a modified periodic review policy which items 
belonging to a base set are brought up to their 

jR  at every review interval T , while 
other items are brought up the their level 

jR  at every 
jk T  time units.  

Pantumsinchai [43] developed the continuous review ( , jQ S ) policy 
originally introduced by Renberg and Planche [78]. Under the ( , jQ S ) policy, 
aggregate consumption of all items is monitored and when it reaches a certain level 
Q , all items are replenished to their order-up-to level 

jS . Comparing the ( , jQ S ) 
policy to the ( , )jMP R T  policy and the can-order policy obtained by Federgruen et 
al. [53], the ( , jQ S ) policy performs well when high major ordering cost. 

Viswanathan [44] introduced the ( , )j jP s S  policy. It is a periodic 
reprenishment policy in which inventory level of all items are reviewed once every 
T  time units and an independent ( ,j js S ) policy is applied. Each item with inventory 
level below 

js  is replenished up to the order-up-to level 
jS . The ( , )j jP s S  policy 

was compared with the can-order policy obtained by Federgruen et al. [53], the 
( , )jMP R T  policy, and the ( , iQ S ) policy. These policies were tested on the data sets 

used by Atkin and Iyogun [47] and on some additional problems. The results 
indicated that the ( , )j jP s S  policy performs best overall with only a slight 
improvement over the ( , )jMP R T  policy. Cachon [79] proposed another periodic 
replenishment policy called the ( , | )jQ S T  policy which combines the ( , iQ S ) policy 
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to periodic replenishment. The system is reviewed every T  time units, and item j  is 
ordered up to level 

jS  if accumulated demands of all items reach at least Q  units.  

Nielson and Larson [45] studied the continuous ( , )j jQ s S  policy. 
Aggregate consumption is continuously reviewed, whereas item inventory levels are 
only reviewed when aggregated consumption of all items reaches or exceeds a 
certain level Q , each item with inventory level less than 

js  is replenished up to 
jS . 

They used Markov decision theory to develop an analytical solution procedure under 
Poisson demand process. Numerical tests indicated that the ( , )j jQ s S  policy 
outperforms the ( , )j jP s S  policy and the ( , jQ S ) policy. 

Özkaya et al. [19] introduced a new control policy denoted ( , ,jQ S T ) 
policy which is a hybrid of the continuous replenishment ( , jQ S ) policy, and the 
periodic replenishment ( ,jR T ) policy. The ( , ,jQ S T ) policy combines features of 
both periodic and continuous replenishment policies. Inventory positions are 
monitored continuously and when the aggregate demands since last replenishment 
reaches Q  units or the time elapsed since last replenishment reaches T , all items 
are replenished up to 

jS . The new policy identified overall average performance 
better than other existing policies, i.e. the ( , )j jP s S  policy, the ( , jQ S ) policy, the 

( , )j jQ s S  policy, the can-order policy by Federgruen et al. [53], and the can-order 
policy by Melchiors [56].  

Mustafa Tanrikulu, Şen, and Alp [80] proposed the ( ,js Q ) policy. A 
replenishment order of constant size Q  is triggered when the inventory position of 
any item drops to its reorder point 

js . The replenishment order is allocated to 
multiple items so that the inventory positions are equalized as much as possible. A 
numerical study showed that the ( ,js Q ) policy outperforms the ( , jQ S ) policy when 
high backorder cost and small lead time.  

Roushdy et al. [81] suggested the ( , ,j k kR s S ) policy. Item j  is defined 
that any item has the shortest order cycle among all items. Item j  is continuously 
replenished by triggering an order when its inventory position reaches the re-order 
level 

jR  and order quantity is equal to 
jQ . The other items k j  are periodically 

reviewed with the same interval as item j  and are included in the same order as 
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item j  if their inventory positions reach ks  denoted the re-order level for any item 
k j . Their inventories are ordered up to the order-up-to level 

kS . An inventory 
cost formula is similar to Axsäter [82] used to evaluate an approximate Poisson cost 
function. Iterative method is applied to determine the best solution. They compared 
the proposed policy with the independent ( ,j jR Q ) policy and the ( , )jMP R T  policy. 
The proposed policy outperforms for every instance in the experiment except when 
the major ordering cost is zero.  

The above review of the existing policies showed various policies and their 
mechanisms proposed until the present time. A lot of researches primarily focused 
on the can-order policy which is the basis of the coordinated replenishment decision, 
because it is straightforward and appealing to one’s common sense for practical use. 
Mostly the can-order policies were developed on the approximate models, except 
the special can-order policies on a given 

j jc S - 1 used the exact models. Many 
heuristics were developed to determine the best can-order policy instead of finding 
the optimal solution. However, general determination of the can-order policies needs 
to deal with 3N  control policy parameters for N - item setting. Therefore, other 
policies were proposed to reduce the complication with respect to the control 
policy parameters as follows:  

 The ( ,jR T ) policy, the ( , jQ S ) policy, and the ( ,js Q ) policy with N + 
1 control policy parameters;  

 The ( , | )jQ S T  policy and the ( , ,jQ S T ) policy with N + 2 control 
policy parameters; 

 The ( , ,j k kR s S ) policy with 2N  control policy parameters; 

 The ( , )jMP R T  policy, the ( , )j jP s S  policy, the ( , )j jQ s S  policy with 
2N + 1 control policy parameters.  

However, from the comparative results on the existing literatures an 
outstanding policy has beaten others in all situations do not appear. Therefore, 
selecting the policy to be studied on OWNR depends on the dissertation’s 
consideration (as mentioned in section 1.3). Even though the can-order policy is not 
the best policy in every situation, it performs well in the important circumstances 
relating to the example industry. Another important issue is that the can-order policy 
does not perform bad itself but depends on the heuristic approach to determine the 
appropriate inventory policy setting. As found in comparative results among the can-
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order policies developed by Federgruen et al. [53], van Eijs [48], and Melchiors [56], 
the experimental results indicated that the can-order policy can be more improved 
as long as the approximate model is closer to the actual model. Hence, recent 
researches have concentrated on an improvement of the can-order policy setting.  

 
2.2 Multi-Echelon Inventory Problem  

   More complex inventory systems are so called multi-echelon inventory 
systems. An echelon is referred to a single level in a supply chain. Multi-echelon 
inventory system is classified into three structures: the serial system (linear chain), 
the arborescent system (diverging chain), and the assembly system (converging chain) 
[1, 3, 83]. 

The serial system (linear chain) is the simplest system. All stocking points 
follow the same path or route as showed in Fig.II-2. This may occur in an 
environment with only sequential working. Usually, they are considered as a part of 
more complex chains. A serial system contains two or more stocking points coupled. 
For instance, a serial system where the first inventory holds the stock of a sub-
assembly and the second inventory holds the final parts. The second inventory can 
be considered as a customer of inventory one. 

 

 
Figure II-2 The serial system 

The arborescent system (diverging chain) is that each stocking point has one 
predecessor as depicted in Fig.II-3. A typical situation in practice is when a central 
warehouse supplies goods to several retailers. In other situation, the system occurs in 
factories where raw materials are cut into various part types and where semi-
manufactured items are made into various end products. With regard to a typical 
system which contains one warehouse and multiple retailers, the warehouse can 
perform as either a stocking point or a cross-docking point. Stocking point means that 
there is a physical inventory kept in the warehouse. On the other hand, cross-docking 
point means that the warehouse is a hub for unloading materials from an incoming 
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vehicle and loading these materials directly to outbound vehicle. So, the warehouse 
has a little or no storage in between process. 

 
 

Figure II-3 The arborescent system 

The assembly system (converging chain) is the opposite of a general 
distribution system. Each stocking point has one immediate successor. It occurs in 
factories where parts are assembled or in distribution from various factories to a 
single distribution center. 

 

 
Figure II-4 The assembly system 

General systems in a supply chain can of course be of more complex nature 
and be a combination of different systems described above. 

Two useful dimensions for inventory management in multi-echelon inventory 
problem are the visibility of information and the control of echelon [1].  

 Relating to the visibility of information, local information and global 
information are identified. Local information implies that each stocking 
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point knows demand in the form of the orders arriving from its 
immediate successor(s). Meanwhile, global information is an open of 
information through the supply chain where the planner has visibility 
of all information of all stocking points in the system.  

 The control of echelon is defined in terms of centralized versus 
decentralized control. Centralized control implies that decisions are 
made for the entire system to jointly optimize the advantage for all 
echelons. It is often identified with push system, because a central 
planner pushes stock to the locations that need it. Contrarily, 
decentralized control means that decisions are made independently 
by separate stocking points. It is associated with pull system because 
independent planners pull stock from their predecessor(s). 

The best solution is likely to use global information and centralized control 
verified by the success of Vendor Managed Inventory (VMI). The VMI system has 
heavily increased from the early 2000s, since the collaboration between internal and 
external firms is a significant key to improving a firm’s customer service [12]. The VMI 
system is a specific type of outsourcing inventory management (OIM). Outsourcing is 
a contractual agreement between the customer and one or more suppliers to 
provide services or processes that the customer is currently providing internally [84]. 
This logical approach has become attraction when 1) outside providers can produce 
needed products (services) more efficiently than internal departments or 2) outside 
providers can produce desired products (services) at a higher level of quality than an 
organization [85]. The growing importance of this strategy has emerged for many 
organizations, because several researches and case studies verified that OIM can help 
control inventory cost and improve internal performance influencing customer 
satisfaction and perception. Moreover, the capabilities of external sources are 
growing. Hence, outsourcing becomes an increasingly attractive option [2-11, 13, 86]. 
We recommend Arshinder et al. [87]’s work which is a review on supply chain 
coordination in aspect of mechanisms, managing uncertainty and research directions. 
Their work enables the reader to comprehend the overview and trend of supply 
chain coordination.  

The dissertation problem considers centralized control of OWNR, which is a 
general inventory system in supply chain, to minimize the total system-wide cost. In 
the next part of review, researcher restricts only the literatures on two-echelon serial 
and divergent inventory systems. Note that the serial system is studied herein as it is 
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a small part of the divergent inventory system. According to the existing literatures, 
most of the ordering policies are developed around two major policy classes: 
installation stock policies and echelon stock policies [22, 50, 88].  

 Installation stock policy: ordering decisions at each location are 
based on its own installation inventory position, which is equal to sum 
of its physical stock and on order minus the backlog. This policy acts 
as a common-sense approach to control overall inventories in the 
system. It employs together with the nested policy. The nested policy 
is an ordering policy for the warehouse (upper stream) where an order 
is triggered at the warehouse if and only if any retailer reaches its 
reorder point. By this policy, the warehouse cannot trigger an order at 
any other time of no demand arriving at the retailer echelon.  

 Echelon stock policy: the information of the down-stream locations is 
taken into account. Ordering decisions at each location are based on 
the echelon inventory position defined as sum of installation 
inventory positions at the location and all its down-stream locations. 
In the opposition to installation stock policy, the warehouse can trigger 
an order at any other time of no demand arriving at the retailer 
echelon. This pre-ordering decision expects that the retailers’ waiting 
time from insufficient stock at the warehouse would reduce.  

Axsäter and Juntti [88] compared two policies in both deterministic demand 
and stochastic demand. Even though in case of deterministic demand echelon stock 
policy dominates installation stock policy, in case of stochastic demand either 
installation stock or echelon stock policies may be advantageous depending on the 
structure of the inventory system. Cost difference between two policies is about 5%. 
Echelon stock policy seems to dominate installation stock policy for long 
warehouse’s lead times, while the opposite is true for short warehouse’s lead times. 
However, Axsäter and Juntti [88] stated that when ratio of the replenishment 
quantity at the warehouse to the dispatch quantity at the retailers (called the 

/w rQ Q  ratio) is not positive integer value, echelon stock policies could not be 
applied. The reason is that the warehouse echelon stock inventory position is 
decreasing continuously with the retailer demands, non-integer ratio of /w rQ Q  
cannot be duplicated by an echelon stock policy. Consequently, our dissertation 
cannot apply echelon stock policy due to the uncertainty of dispatch quantity issued 
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at the retailer echelon and non-integer ratio of /w rQ Q . Therefore, we mainly focus 
on installation stock policy to develop our joint replenishment models. 

Regarding our problem, we emphasize in both single-item and multi-item 
models following three phases of dissertation methodology. Hence, we review the 
interesting literatures according to such two models as follows: 

 
2.2.1 Single-item models 

According to the dissertation problem, the review in this section 
focuses on stochastic demand, which raises several new issues and creates extreme 
modeling complexities in a multi-echelon inventory situation. Not only the 
arborescent system is considered, but the serial system is examined as well since it 
usually is a part of more complex chains. As a matter of the fact that there have 
been a number of researches on single-item multi-echelon inventory problem 
conducted under either continuous or periodic replenishment. They proposed 
mathematical models and solution approaches for setting an appropriate inventory 
policy. Most of previous works studied two major types of the inventory policies: 
Fixed-interval order-up-to polices and Stock-based batch-ordering policies, on 
different conditions and relevant parameters. Further details can be seen in the 
reviews of Schneider et al. [15], Axsäter et al. [16], and Wang et al. [17] In our 
dissertation, we are interested in both order-up-to (base-stock) control policies and 
batch-ordering policies. For order-up-to polices which are related to the can-order 
policy employing an order-up-to level 

ijS , we consider them in both periodic and 
continuous replenishments. The following review is aimed at identifying various 
common inventory policies applied into single-item two-echelon inventory system. 

1)  The order-up-to control policies  

They are used in both periodic and continuous replenishment 
in different policy parameters. The most common order-up-to policies are:  

- The ( ,R S ) policy (some literatures use the ( ,S T ) 
policy) where all locations’ inventory position are reviewed at the same period R (or 
T ) and they replenish inventories to reach their respective order-up-to levels S .  
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- The ( ,s S ) policy is a traditional order-up-to policy 
where each location reviews its inventory position continuously when the reorder 
point s  is reached its inventory is replenished to the order-up-to level S .  

- The ( , ,R s S ) policy is a hybrid of periodic and 
continuous replenishments where all locations’ inventory position are reviewed at 
the same period R . If their inventory position reaches their respective reorder points 
s , they also replenish the inventories to their respective order-up-to levels S .   

- Another continuous policy is called a pure base stock 
policy or one-for-one replenishment policy, ( 1,S S ) policy. It is normally used for 
repairable items with a fixed unit of order quantity. When the warehouse receives 
the request from the retailer, it orders a new unit from the outside supplier. 

We demonstrate some interesting literatures herein to 
provide insights of their works. One of the first literatures relating to the base-stock 
policies is the METRIC (Multi-Echelon Technique for Recoverable Items Control) 
model of Sherbrooke [89]. The objective function in METRIC is to minimize the 
expected number of backorders at retailer echelon, subject to budget constraints. 
The METRIC approximation assumed that the lead time at any retailer is constant at 
the average lead time3, so the expected inventory levels and backorder units at the 
retailers can be easily evaluated. Later, METRIC is a basic model for several 
extensions of the order-up-to policies and the batch-ordering policies. For a more 
extensive review we refer Diks et al. [50] which provided the development of the 
METRIC model in two perspectives: repairable items and consumable items.  

Federgruen and Zipkin [90] studied the ( ,R S ) policy on 
OWNR with no stock at the warehouse. The warehouse places an order periodically; 
its order arrives after a fixed lead time and is allocated among several retailers who 
face normally distributed demand. So, the allocation problem was included in their 
study. Several approaches were proposed to approximate the dynamic program 
describing the problem, and then a near-optimal order policy was provided. Matta 
and Sinha [91] developed the two-echelon inventory problem on OWNR with stock 
at the warehouse. Each retailer orders from a single warehouse according to ( ,R S ) 

                                                           
3 The average lead time at any retailer is equal to its constant lead time plus the expected 
waiting time from the warehouse which can be determined by Little’s Law. 
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policy, and the warehouse employs ( , ,R s S ) policy. All locations use the same 
review period R . Demand is assumed to be normal distributed. The shortage cost 
per unit time and the procurement cost at the warehouse are applied, but the 
retailers’ ordering cost is negligible. The cost function and algorithm are approximate 
based on renewal theory and queuing theory. Cetinkaya and Lee [23] provided         
( , ,s S T ) policy to the warehouse (i.e. we categorized the ( , ,s S T ) policy as the          
( , ,R s S ) policy since both policies have their characteristics as time-based and 
quantity-based ordering decision). They considered VMI system with coordinating 
inventory and transportation decisions. Under the ( , ,s S T ) policy, the warehouse 
holds small orders until an agreeable dispatch time T  then dispatching to the 
retailers will be done. The retailers are willing to wait at the expense of waiting costs. 
For such a delivery policy, Cetinkaya and Lee [23] realized that larger loads could 
benefit the economies of scale in transportation problem.  

Recently, Chu and Shen [92] and Shang and Zhou [93, 94] 
studied periodic base-stock policies. Chu and Shen [92] studied OWNR with the so-
called power-of-two (POT) policy first introduced to stochastic demand. Shang and 
Zhou [93, 94] considered the integer-ratio of replenishment intervals at the 
warehouse and the retailers. Their numerical study suggested that the optimal policy 
tends to be an integer-ratio policy rather than POT policy under some conditions. 
According to the review on periodic base-stock policies, they were employed into 
various systems.  

More details of the fixed-interval order-up-to policies can be 
obtained from, for instance, Nicholson et al. [9], Schneider et al. [15], Eppen and 
Schrage [95], Rogers and Tsubakitani [96], Axsäter [97], Diks and de Kok [98], Axsäter 
[99], Rao [100], Li [101], Wang et al. [17, 102], Wang [103], Wang and Axsäter [104].  

For the continuous ( ,s S ) policy, most research interpreted to 
the reorder point batch-ordering policy due to their equivalent. Hence, this kind of 
policies will be included in the section of batch-ordering policies.  

2)  The batch-ordering policies  

Normally, the batch-ordering policy is able to be represented 
by ( ,r Q ) where each location reviews its inventory position continuously when the 
reorder point r  is reached order quantities Q  are issued to the upper echelon. 
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Some interesting literatures are demonstrated herein to raise various systems and 
significant insights of their works. 

Focusing on the serial system which is a smallest part of the 
supply chain, the following are a few notable examples. De Bodt and Grave [105] 
considered a multi-stage, serial inventory system under ( ,r Q ) policy facing stochastic 
and stationary demands at the lowest echelon. The installation stock policy was 
employed with the nested policy.  The relevant costs include the fixed ordering cost 
and the inventory holding cost for each echelon, and a backordering cost for the 
lowest echelon. The objective is to determine the inventory policy setting which 
obtain the minimum expected average total system-wide cost. Meanwhile, Chen and 
Zheng [106] first studied echelon stock ( ,r Q ) policy in a serial system. They also 
extended their work into compound Poisson process [107].  

Deuermeyer and Schwarz [108] presented an analytical 
model for the one-warehouse n -identical retailer inventory system facing stationary 
Poisson demand and operating under the ( ,r Q ) policy. They developed a 
decomposition technique for analyzing OWNR by finding inventory policies for each 
retailer independently and adapting the METRIC technique. Later, Deuermeyer and 
Schwarz [108]’s work was examined by Svoronos and Ziphin [109] in order for more 
accurate approximate solutions. Axsäter is one of the most popular researchers in 
the field of multi-echelon inventory system as he has been developing many papers 
continuously and his works have been cited in over 100 papers. He carried out many 
researches on both the base-stock policies and the batch-ordering policies. The 
following are some examples of his works specifically on the batch-ordering policies. 
Axsäter [110] considered one warehouse and n  identical retailers under the ( ,r Q ) 
policy. Lead times are constant and the retailers face independent Poisson demand. 
Axsäter [110] showed an extension of Axsäter [111] used for batch-ordering policies. 
Axsäter [112] proposed a generalized model of Axsäter [110] considering two non-
identical retailers.  

Further details of the batch-ordering policies can be found in 
various systems, for example, Wang et al. [17], Axsäter [99, 113, 114], Schwarz, 
Deuermeyer, and Badinelli [115], Ahire and schmidt [116], Chen and Zheng [117], Tee 
and Rossetti [118], Hill, Seifbarghy, and Smith. [119], Jha and Shanker [120]. 
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According to aforementioned policies, periodic based-stock policies 
enable the system to make coordinated ordering decision, whereas the continuous 
replenishment policies (including based-stock policies and batch-ordering policies) 
are independent ordering decision. We found that most of literatures studied the 
coordinated ordering decision for the continuous replenishment when employing 
joint replenishment policies (already mentioned in Section 2.1 on multi-item single-
location inventory system). We realize that continuous joint replenishment policies 
are a special group of inventory policies utilized for coordinated ordering decision. 
Therefore, we categorize them to the third group of inventory policies, besides the 
based-stock policies and the batch-ordering policies. Dealing with our dissertation’s 
consideration, the following are an extensive review on coordinated ordering decision 
for the continuous replenishment. 

3) The continuous joint replenishment policies 

A few of literatures on continuous joint replenishment 
policies on OWNR have been conducted. Focusing on our considered cost structure 
which includes the ordering costs and holding costs at both echelons, and either the 
penalty costs or service levels, the interesting literatures are reviewed as follows:  

Cheung and Lee [21] studied the ( ,Q S ) policy. When the 
cumulative demands over all retailers reach a given Q  units (i.e. truckload size for all 
retailers in single trip), an order is placed at the warehouse to replenish the retailer 
to their respective order-up-to levels S . The inventory policy at the warehouse is 
the ( ,r Q ) policy.  

Özkaya [22] proposed analytical models and heuristic 
approaches for four types of joint replenishment policies at the retailers, and utilized 
a traditional ( ,s S ) policy at the warehouse. Such four types of joint replenishment 
policies are the ( ,Q S ) policy, the ( , ,Q S T ) policy, the ( , |Q S T ) policy, and the (

, 1,s S S ) policy. The ( ,Q S ) policy of Cheung and Lee (2002) and Özkaya (2005) was 
studied on different structures. The former sets target service level at the warehouse 
and penalty cost at the retailers, meanwhile the latter sets target service level only 
at the retailers. The ( , ,Q S T ) policy is a hybrid of continuous and periodic 
replenishments. An order is placed at the warehouse either when the cumulative 
demands over all retailers reach Q  units or when at least one demand arrives in T

time units after the last ordering instance. The ( , |Q S T ) policy is a periodic 
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replenishment policy and the ordering decision arises every T time units. At the 
decision epoch, if at least Q  demands have accumulated for the retailers since the 
last ordering instance, an order is placed at the warehouse. The ( , 1,s S S ) policy is 
a special can-order policy which an order is triggered when any retailer’s inventory 
position reaches its must-order level s . Then other retailers in the system will be 
also included by this order if at least one demand arrives to each retailer. All 
proposed policies commonly have the retailer’s order-up-to level S  to which the 
warehouse replenishes all retailers’ inventories. Özkaya [22] showed comparative 
results among these policies without comparing to the lower bound or the best-
known solution.  

Gou et al. [14] introduced a joint replenishment policy where 
the warehouse takes a traditional ( ,s S ) policy and the retailers utilize the can-order (

, ,s c S ) policy. When an order is triggered by a retailer, other retailers whose 
inventory position reaches its can-order level c  will be included by this order as 
well. Even though zero lead time was assumed in their study, they cannot provide 
an analytical model due to the complication. Thus, computer simulation was used 
instead. Their result showed that about 5 to 20% of the cost can be saved as 
comparing with the independent ( ,s S ) policy at the retailers. Nevertheless, they did 
not provide a solution approach for setting the appropriate inventory policy.  

There are other researches on joint ordering decision 
conducted on different cost structures. Cross-docking system were carried out in 
Gürbüz [24] Axsäter and Zhang [25] developed joint ordering policy by not 
concerning the shared ordering cost. 

Thus far, a few researches have concerned coordinated ordering 
decision under continuous replenishment and stochastic demand with considering all 
relevant costs on both echelons. We recognize that all relevant costs on both 
echelons should be considered together in order to determine the inventory policy 
parameters for all stores in the system as the general inventory control process. 
Moreover, a very few of them focused on determining the appropriate inventory 
policy setting especially for the can-order policy in OWNR. Hence, it is interesting to 
develop a heuristic approach to determine the appropriate can-order policy in OWNR 
so as to extend the knowledge of the can-order policy into the two-echelon 
inventory system. 
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2.2.2 Multi-item models 

Number of researches on multi-item multi-echelon inventory problem 
is much smaller than the one on a single item case. We classify the existing 
literatures into two groups of multi-item problem: coordinated ordering decision and 
joint constraint. For coordinated ordering decision, periodic joint replenishment 
policies have been conducted. Some works have also included integration of 
inventory and transportation problem. Thus far, the continuous joint replenishment 
policies have not yet been found to employ into multi-item multi-echelon inventory 
problem. It appears that there is another research gap to extend the continuous joint 
replenishment policies into multi-item multi-echelon inventory problem. However, in 
this section we raise some literatures on periodic joint replenishment policies and 
also exemplify some with joint constraint in order to illustrate a direction of multi-
item multi-echelon inventory system. Note that this review is not limited to only two 
echelons. 

Relating to periodic joint replenishment policies on multi-item multi-
echelon inventory system, Qu et al. [28] dealt with an inbound material-collection 
problem. A central warehouse sends an uncapacitated vehicle to collect multiple 
items at geographically dispersed suppliers in a stochastic setting. They developed an 
integrated inventory and transportation system for joint replenishment with a 
modified periodic ( , )jMP R T  inventory policy originally proposed by Atkin and 
Iyogun [47]. Any item j  belonging to a base set is brought up to its 

jR  at every 
review interval T , while other items are brought up the their level 

jR  at every 
jk T  

time units where 
jk  is an integer value. Since the problem only focuses on holding 

stock at the warehouse echelon, so it is able to directly apply the ( , )jMP R T  
inventory policy which was initiated for a multi-item single-location inventory 
problem. A heuristic decomposition method was proposed to solve the problem by 
separating the model into two sub-problems namely conventional inventory and 
vehicle routing models. This modified periodic inventory policy has been extended 
into Zhou et al. [33] for controlling all inventories on the multi-echelon system. An 
algorithm designed by Genetic Algorithm (GA) is used for solving the problem. 

Sindhuchao [29] also studied an inbound material-collection problem 
with capacitated vehicle. The system consists of a set of geographically dispersed 
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suppliers producing one or more non-identical items and a central warehouse 
stocking these items. The problem is to partition items into a number of subsets. For 
each item, the replenishment quantity and the replenishment interval must be 
determined along with the efficient route for the vehicle. Thus, each subset concerns 
the same replenishment interval of all items and the aggregated replenishment 
quantity for all items in a subset. The integrated inventory-transportation problem 
was formulated as a set partitioning problem and a mathematical programming 
approach was developed for coordinating inventory and transportation decisions. 
Sindhuchao [29] decomposed problem into lot sizing problem and Vehicle routing 
problem (VRP), then various heuristic algorithms were used to solve this problem in 
small problem. See more review of inventory and transportation problem 
considering multiple items in Moin, and Salh [121]. 

Other literatures have been associated with the independent ordering 
policies under joint constraints for multiple items. For example, Cohen et al. [26] 
developed a multi-echelon inventory model for the IBM network in the United 
States. They developed and implemented a system called “Optimizer” to determine 
the inventory policy setting for each part at each location employing the ( ,s S ) 
policy. Joint service constraint for a product, which is composed of multiple parts, is 
concerned. They considered holding costs, replenishment costs, and emergency 
shipments. To solve the problem, they decomposed the model development into 
three stages; a one-part one-location model, a multi-product one-location model, 
and a multi-product multi-echelon model. Under decomposition, each facility is 
modeled under the assumption of ample supply at its supplier. Hopp et al. [27] and 
Al-Rifai and Rosetti [30] considered a system involving a target level on the aggregate 
ordering frequency to determine the ( ,r Q ) policy parameters. Topen et al. [31, 32] 
considered a multi-item two-echelon inventory system in which the central 
warehouse operates under the ( ,r Q ) policy, and each local warehouse implements 
one-for-one replenishment policy. The objective is to determine the inventory policy 
parameters minimizing the expected total system-wide cost subject to an aggregate 
mean response time constraint. 

According to a few literatures studied coordinated ordering decision under 
the continuous replenishment and stochastic demand on OWNR, it is an open 
research area for the development of the can-order policies into more complex 
system. 
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2.3 Modeling and Solution Approaches  

Previously, we reviewed a lot of literatures on various kinds of problem 
including the multiple-item single-location inventory problem, the single-item multi-
echelon inventory problem, and the multi-item multi-echelon inventory problem. 
Then, this section emphasizes on an interesting issue about modeling and solution 
approaches for determining the can-order policy parameters. 

Modeling the can-order policies can be classified into two approaches. The 
first approach is decomposition of a multi-item model into m  single-item models 
[34, 46, 51-56, 71, 73] and the second approach considers a multi-item model [22, 
48, 72]. The decomposed model has been extensively used in various literatures 
since it can reduce the dimension of search space. Focusing on a multi-item model, 
Kayiş et al. [72] concerned only two items, so it was able to formulate on a semi-
Markov model without decomposition. van Eijs [48] and Özkaya [22] considered the 
multi-item models with the fixed value of the can-order policy c  = S - 1. The 
dimension of search space can be reduced. Interesting that van Eijs [48] used 
decomposition technique into search algorithm instead, this can reduce the 
dimension of search space as well. 

Relating to search algorithm, iterative procedure is the most common 
approach to determine the appropriate inventory policy parameters. Iterative 
procedure is adopted to improve all inventory policy parameters determined from 
each iteration. After an iteration is executed, some considered values are updated for 
using in the next iteration. Terminate condition can employ when 1) inventory policy 
parameters are unchanged from previous adjacent iteration, 2) the current total cost 
is not reduced by more than pre-specified tolerance value as comparing to the last 
total cost considered as a minimum cost of previous iteration, or 3) number of 
iterations are exceeded the setting if computational time is too long.  

One-dimensional searches have been utilized together with iterative 
procedure. Exhaustive search (enumerative search) was typically used to search 
inventory policy parameters within a range of minimum and maximum values. This 
search seems not to enhance the heuristic algorithm in the aspect of computational 
time, since all possible values in the range must be considered. Advantageously, the 
best solution can be thoroughly determined. For two-echelon system, Özkaya [22] 
employed the exhaustive search into the special can-order ( , 1,s S S ) policy. 

http://dict.longdo.com/search/adjacent
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Another interesting search algorithm is “golden section search” which is a search 
method for finding extremum of a unimodal function in the case of non-derivative 
function. It is a simple and efficient method by successively narrowing the range of 
search space until the desired accuracy in minimum value of the objective function 
is achieved. A golden ratio, which is a constant reduction factor for the size of the 
interval, is utilized to maintain the successive range of dynamic triples of points (i.e. 
upper point, middle point, and lower point). Advantageously, each successive range 
we only want to perform one new function evaluation. From this algorithm, we can 
obtain the best policy parameters provided the satisfying total cost with the saved 
computational time. van Eijs [48] used the golden section search to determine the 
best value of   which is equal to S s . Recently, we found an interesting work of 
Nagasawa et al. [77]. They applied genetic algorithm (GA) to determine the can-order 
level on given s  and S . Further details about one-dimensional search can be seen 
in, for example, Antoniou and Lu [122], Rios and Sahinidis [123].  
 

2.4 Conclusion 

This chapter reviewed previous researches on two major areas of problem: 
joint replenishment problem and multi-echelon inventory problem. We 
demonstrated a review of according to various joint inventory policies, specifically 
the can-order policies developed by several approaches and other interesting 
policies. Comparative analyses among these joint inventory policies were provided.  

For multi-echelon inventory problem, the literatures were divided into the 
single-item models and the multi-item models. We identified two common types of 
inventory policies on the single-item models: the order-up-to (base-stock) policies 
and the batch-ordering policies. Additionally, continuous joint replenishment policies 
were raised into OWNR but there have been a few of literatures studied on this kind 
of system. For the multi-item models, Number of researches on multi-item multi-
echelon inventory problem has been much smaller than the one on a single item 
case. The existing literatures could be classified into two groups of multi-item 
problem: coordinated ordering decision and joint constraint. For coordinated ordering 
decision, periodic joint replenishment policies were conducted. Some works 
integrated inventory and transportation problems. However, the continuous joint 
replenishment policies have not yet been found to employ into multi-item multi-
echelon inventory problem.  
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In the last section, we summarized the interesting modeling and solution 
approaches for the can-order policies. Modeling the can-order policies could be 
classified into two approaches. The first approach was decomposition of a multi-item 
model into m  single-item models and the second approach considered a multi-item 
model with either the fixed value of the can-order level at S - 1 or only two items. 
With regard to search algorithm, iterative procedure was the most common approach 
to determine the appropriate inventory policy parameters. One-dimensional searches 
for non-derivative function were utilized, such as exhaustive search and golden 
section search.  

It is interesting that a few literatures studied coordinated ordering decision 
under the continuous replenishment and stochastic demand on OWNR. This is a 
great opportunity for the development of the can-order policies into more complex 
system so as to fulfill the knowledge in the area of inventory problem. 



CHAPTER III 
THE CAN-ORDER POLICY FOR SINGLE-ITEM TWO-ECHELON INVENTORY 

SYSTEM WITH ZERO LEAD TIME 
 

This chapter is related to the 1st phase of dissertation methodology. It is the 
most important chapter to build up a basic knowledge of the can-order policy which 
is used throughout the dissertation. For phase I, we study the basic model for the 
can-order policy on OWNR with single item and zero-lead time consideration. The 
system just has an interaction among retailers without joint ordering decision at the 
warehouse echelon. The objective of this phase is to gain the insight of such policy 
on OWNR, and then to develop the heuristic approaches for determining the 
appropriate inventory policy setting. 

 
3.1 Problem Description  

 

1st Echelon : 

Warehouse echelon
2nd Echelon:

Retailer echelon

Outside supplier

The Considered System

Warehouse

Retailers …

End Customers

Item

Item

demand demand demand demand

 
 

Figure III-1 Single-item two-echelon inventory system with zero lead time 
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The system consists of a warehouse and multiple retailers with single 
commodity. Let n  denote number of retailers and i  denote the location i  = {0, 1, 
2, ..., n } where the warehouse is set by i  = 0 and the retailer i N , N = {1, 2, ..., n }. 
The warehouse is assigned in the first echelon called warehouse echelon, and all 
retailers are assigned in the second echelon called retailer echelon. Demands come 
from each retailer’s customers defined as end customers. The warehouse and 
multiple retailers are cooperated as a single firm to concern the total system-wide 
cost under global information and centralized control. The warehouse is available to 
hold inventories for supplying all retailers’ orders. Inventories at the warehouse are 
fulfilled by an outside supplier whose ample stock is not considered in the problem. 
The warehouse distributes all required quantities to the retailers in a single trip 
without splitting lot. It is supposed that uncapacitated vehicle is available to supply 
all required quantities in the order. Multiple retailers have their own inventories to 
serve their customer demands. Poisson demand is assumed to represent the 
customer demands, denoted by i  which is a constant mean of customer demand 
at retailer i .  

  Regarding the can-order ( , ,i i is c S ) policy applied to the system, it has two 
reorder points: the must-order level is  providing normal replenishment, and the 
can-order level ic  making special replenishment. Special replenishment is an 
opportunity of a joint replenishment which a retailer is faced with when other 
retailers reach their must-order levels. When the inventory position of any retailer 
drops to or below its must-order level is , an order is triggered to create normal 
replenishment. Then, other retailers in the system can also be included by this order 
if their inventory position is at or below its can-order level ic ; a special 
replenishment is occurred. All the involved retailers’ inventories are fulfilled from 
the warehouse to their own order-up-to level iS . Considering single commodity, the 
warehouse modifies the can-order policy to a traditional ( 0 0,s S ) policy by setting its 
can-order level equals its must-order level. The warehouse issues an order when its 
inventory position reaches its must-order level 0s . Then the outside supplier will 
replenish the warehouse’s inventory to its order-up-to level 0S . The warehouse 
places an order to the outside supplier if and only if retailer echelon triggers an order 
to the warehouse. We differentiate between order cycle at retailer echelon and 
order cycle at warehouse echelon by defining “dispatch cycle” and “replenishment 
cycle” for retailer echelon and warehouse echelon, respectively.  
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  The system considers all inventory costs at both echelons. The inventory 
costs consist of 1) The holding costs at the warehouse and all retailers, 2) The major 
ordering costs for warehouse echelon and retailer echelon, and 3) The minor 
ordering costs for retailer echelon. The holding cost occurs at each location having 
physical stock. The total holding cost over the time period at location i  (

iHC ) can 
be determined from the unit holding cost (

ih ) and the accumulated inventory over 
the time period ( iINV ). The major ordering cost is the fixed cost occurring once an 
order is triggered. This cost includes administrative costs, material handling costs, and 
transportation costs which do not depended on the number of retailers in the order. 
So, the retailers in the system can share the major ordering cost together for 
replenishing in one round trip. The total major ordering cost over the time period at 
retailer echelon (

rMJ ) is the retailers’ major ordering cost per an order (
rK ) 

multiplied by the number of dispatch cycle (
rND ). Similarly, the total major ordering 

cost over the time period at warehouse echelon (
wMJ ) is the multiplication of the 

warehouse’ major ordering cost per an order (
wK ) and the number of replenishment 

cycle (
wNR ). The minor ordering cost is an additional cost of each retailer when 

replenishing their inventories, such as additional transportation cost relating to 
distance or other charges. This cost depends on the number of involved retailers in 
that order. The total minor ordering cost over the time period (

rMN ) is accumulated 
from the involved retailers in each order multiplied by its minor ordering cost of 
retailer i  (

i ) over the time period. Prior works on coordinated ordering decision 
ignored this additional cost in spite of the fact that this additional cost directly 
affects the inventory policy setting [48, 56, 60]. 

  The concept of the can-order policy is balancing among reduced major 
ordering costs, varied minor ordering costs, and increased holding costs. Reduced 
major ordering cost occurs if special replenishment is included in an order. On the 
other hand, from special replenishment there is a residual stock [48] which is a stock 
left above the must-order level at the order-triggered point. Then, the involved 
retailers have to hold more stock increasing the holding cost. Meanwhile, the minor 
ordering costs can be either reduced or increased depending on order frequency at 
each retailer. Hence, we have to consolidate all relevant costs to determine the 
appropriate inventory policy setting under the total system-wide cost minimization. 
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  It is, however, difficult to deal with the problem mainly because of demand 
uncertainty, variation of retailers’ order quantity, retailer’s two-order point setting, 
and order time synchronization at all locations. We simplify the problem by 
assuming zero lead time. Retailers’ order is instantly dispatched from the warehouse. 
All retailers’ must-order levels are then equal to zero ( is = 0, i N ), since shortage 
at the retailers are not allowed. The warehouse’s order is also replenished from the 
outside supplier immediately. In this case, warehouse’s must-order level is equal to -
1 because the warehouse is allowed to hold zero inventory level until the next 
replenishment will be issued. This uses the same setting as Gou et al. [14]. It can 
help the warehouse not to keep the excessive stock waiting for the next dispatch to 
retailer echelon. Therefore, decision variables are 

ic , iS  and 0S . This is a simple 
case of the can-order policy on OWNR. 

The notations and problem formulation are demonstrated as follows: 
 

n  = Number of retailers in the system 
i  = Index of the location i ; the warehouse i  = 0 and the retailer i N  
T  = The time period considered in the problem (time units) 

0s  = The must-order level at the warehouse (units);  
  (Assign 0s = -1 from the zero-lead time assumption) 

0S  = The order-up-to level at the warehouse (units) 

is  = The must-order level at retailer i  (units);  
  (Assign is = 0 from the zero-lead time assumption) 

ic  = The can-order level at retailer i  (units) 

iS  = The order-up-to level at retailer i  (units) 

i  = Demand rate of retailer i  (units/time unit) 

0h  =  The unit holding cost per unit time at the warehouse ($/unit – time unit) 

ih  =  The unit holding cost per unit time at retailer i  ($/unit – time unit) 

wK  = The warehouse’s major ordering cost per a replenishment cycle ($/time) 

rK  = The retailers’ major ordering cost per a dispatch cycle ($/time) 

i  = The minor ordering cost at retailer i  ($) 

0( , , )i iTC c S S  =  The total system-wide cost per unit time ($/time unit) 

iHC  = The total holding cost at location i  over the time T units ($) 

rMJ  = The total major ordering cost at retailer echelon over the time T units ($) 



 62 

rMN  = The total minor ordering cost at retailer echelon over the time T units ($) 

wOC  = The total major ordering cost at warehouse echelon over the time 
    T units ($) 

iINV  = The accumulated inventory over time period at location i  (unit – time unit) 

rND   = The total number of dispatch cycle over the time T units (times) 

wNR   = The total number of replenishment cycle over the time T units (times) 

( , )i j   = An indicator which equals 1 when retailer i  is included in the dispatch cycle 
j  and equals 0 otherwise 

 
Objective function: 

Minimize  0

0( , , )

n

i r r w

i

i i

HC MJ MN MJ

TC c S S
T



 
   

 


 (3.1) 

 
where  

i i iHC h INV   (3.2) 
 

 
r r rMJ K ND   (3.3) 

 

 ( , )

1 1

rND n

r i j i

j i

MN  
 

  (3.4) 

 
 

w w wMJ K NR   (3.5) 

The objective function of the problem is to minimize the total system-wide 
cost per unit time. Since is  and 0s  can be given by the zero-lead time assumption, 
the total system-wide cost per unit time can be a function of only three decision 
variables: 0, ,i ic S S . This is able to simpler manipulate the problem. However, the 
problem remains the complications, such as demand uncertainty, variation of 
retailers’ order quantity, and order-time synchronization at all locations. 
 

3.2 Research Methodology  

Dealing with the complication of the problem, the optimal solution cannot 
be simply derived from an analytical approach. Hence, we initially study the can-
order policy on OWNR by using computer simulation. Computer simulation is an 
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efficient approach representing the inventory process even in the complicated 
system [14, 88]. The preliminary study leads us to develop a heuristic approach. In 
addition, from the simulation we can determine the best-known solution used to 
measure the proposed heuristic approach’s performance. 

 
3.2.1 Computer simulation 

The computer algorithm representing the inventory process is 
illustrated in Fig. III-2. The inputs for simulating the system can be divided into three 
groups as follows:  

 
Input parameters

Relevant Factors:

n = Number of retailers

λi = Demand rate at retailer i

h0 = Unit holding cost at the warehouse

hi = Unit holding cost at retailer i 

Kw = Warehouse’s major ordering cost

Kr = Retailers’ major ordering cost 

кi = Minor ordering cost at retailer i

Decision variables:

Warehouse   s0  = -1

  S0 = [min,max]

Retailer i   si  = 0 

  ci  = [min,max]

  Si = [min,max]

Experiment setting:

I0(0) = Initial inventory level at the  

           warehouse; I0(0) = 0

Ii(0) = Initial inventory level at retailer i; 

           Ii(0) = 0

T = Time period; T = 10,000

Seed number = [0, 99] 

Computer algorithm

START

Set Dispatch cycle j = 1

Replenishment cycle r = 1

Output section

A report of inventory costs and 

transactions

Generate inter-arrival time of 

demands and sort all demands 

by arrival time

For each retailer i,

Monitor demand arrival 

of the system

Subtract demand from 

inventory position

Ii(t) = Ii(t) - demand

For retailer i who owns an arrived demand,

Is Ii(t) ≤ si ?

Yes

Record dispatch event and set 

dispatch cycle j = j+1

Dispatch quantity = Si - Ii(t), 

set Ii(t) = Si ,

and set δ(i,j) = 1

For each retailer k ≠ i,

Is Ik(t) ≤ ck ?

Yes

Dispatch quantity = Sk - Ik(t), 

set Ik(t) = Sk ,

and set δ(k,j)  = 1

Collect total dispatch quantity

Dispatch 

quantity = 0

and set 

δ(k,j)  = 0

No

Subtract total dispatch quantity 

I0(t) = I0(t) – total dispatch quantity

For warehouse,

Is I0(t) ≤ s0 ?

Yes
Record replenishment event and set 

replenishment cycle 

r = r +1

Replenishment quantity 

= S0 – I0(t) and set I0(t) = S0

No

No

END

No Is demand arrival time 

< T ?

Yes

Calculate inventory costs

Calculate total system-wide costs 

per unit time

 
 

Figure III-2 The computer algorithm for simulation of Phase I 

1) Decision variables ( 0, ,i ic S S ): Each variable is inputted as a range of 
minimum and maximum values. A combination of (

0, ,i ic S S ) is called “solution”. A 
solution provides a value of the total system-wide cost and its transaction (e.g. 
number of dispatch cycles, number of replenishment cycles).  
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2) Relevant factors (i.e. cost parameters, demand rates, and number of 
retailers): We set a combination of relevant factors to “scenario”. A scenario contains 
different solutions. The best solution providing the minimum total system-wide cost 
is selected for each scenario.  

3) Experiment setting: Let ( )iI t  denote the inventory level of location 
i  at time t . At the beginning of running period, all locations’ initial inventory levels 
start at zero, (0)iI  = 0. According to the pilot testing, the stability of the system 
occurred after the first 8,000 running periods. So, we chose 10,000 running periods to 
provide the steady state for the system. The difference of computational time 
between the 10,000-running period and some other running periods in the range 
(8000, 10000) is too small and the 10,000-running period is a sufficient number to 
assure of the stability of the system. Additionally, various seed numbers are tested to 
verify the solutions since different seed numbers generate different inter-arrival time 
sets.  

Finally, we obtain a report of the inventory costs and its transaction. 
In consequence, we can find the minimum total system-wide cost for each range of 
decision variables inputted under a given scenario. 

 
3.2.2 The best solution finding 

The best solution finding is composed of two steps: Input parameters 
and output validation. The following sub-sections explain each step in sequence. 

3.2.2.1 Input parameters 

First of all, we randomly select a seed number between [0, 
99] to use for first replication (i.e. a replication comes from a seed number). Decision 
variables are inputted as a range of minimum and maximum values. The range is 
dynamic depending on our setting. In the experiment, we set the width of range are 
5 units for ic  and iS  and 20 units for 0S . Since over 5 units of ic and iS  creates 
multiplied combinations spending more running time. Whereas 0S  range is larger 
because 0S  linearly creates combinations. The first range can be set from the initial 

point of 0S and iS  calculated by 0 02 w i

i N

S K h


   and 2i r i iS K h due to 

the zero-lead time assumption and the concept of economic order quantity. For 
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example, initial 0S = 45 and initial iS = 14, the first ranges are identified as 0S  [41, 
60], iS  [11, 15], and ic  [10, 14].  

The next step is the process of moving the ranges until the 
solution seems to be worse continuously. The 0S  range is moved upward and 
downward by fixing the range at all retailers. For example, the next range varied 

0S  [21, 40], and fixed iS  [11, 15] and ic  [10, 14]. Therefore, minimum and 
maximum values for inputting can be changed for each round of the simulation. 
Later, we determine the ic  and iS  ranges at the retailer i  by keeping the same 
range of 0S and the 

jc  and 
jS  ranges at the retailer j i . 0S , ic  and iS  ranges are 

changed repeatedly. We select the best solution providing the minimized total 
system-wide cost for the first replication. After that, the validation process showed in 
the next part is utilized to get the typical best solution. 

3.2.2.2 Output validation 

The typical best solution is a representative of the best 
solutions from various replications. We define the typical best solution as “the best-
known solution” to generally use in later sections. Since abundant combinations are 
run in the first replication, in this process we can reduce unnecessary ranges by 
starting at the best solution’s range from the first replication. By this process, we can 
find the best solution for other replications faster. If there is an error from the first 
replication, cross-checking is occurred. 

In the pilot testing (10 scenarios), we tested on ten random 
seed numbers to determine the best solution for each seed number. We found that 
the best-known solution appeared since the first three random seed numbers were 
conducted. However, we chose to test on five random seed numbers instead to 
confirm the experimental results. Instead of a number of the experiments, we could 
save the computational time on five random seed numbers for determining each 
seed number’s best solution. 

Consequently, we test another four replications on different 
seed numbers (after the first replication has been done previously). The first two 
seed numbers are randomized, whereas the last two seed numbers are fixed.  We 
use this method to study two dimensions of the best solutions.  
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 For the first dimension, we aim at studying mean and 
variation of all best solutions’ the total system-wide 
cost under the same scenario. The result of this study 
should provide indifferent total system-wide costs of 
the group if the best solutions are in the steady state. 
This process is to confirm that our experiments are 
conducted in the appropriate condition.  

 For the second dimension, we fix seed numbers at 1 
and 2 to study characteristics of the inventory policy 
parameters on different scenarios. For example, we vary 
the holding cost ratio ( 0 / ih h ) from 0.1 to 1 and then we 
monitor trend of the inventory policy parameters on 
each scenario under the same seed number.  

Most replications provide the same best solution; however, 
some different solutions can be appeared. Then, for each best solution we 
determine the average total system-wide cost by additional 10 random seed 
numbers. The best-known solution is provided by the best solution with the 
minimum of average total system-wide cost.  

We handle all experiments by using methodology of the best solution 
finding as mentioned above. To gain more efficiency, all experiments are 
simultaneously run on 8 computers (Intel® Core™ i7-2600 CPU@ 3.4GHz. RAM 8 GB 
64-bit Operating System). Simulation programming uses visual C# (2010). By the 
aforementioned methodology coupled with the efficient computers and 
programming, we are able to conduct various experiments. 
 

3.2.3 Performance measurement 

We use two measurements in the dissertation. The first one is a cost-
saving measurement. We use it for evaluating the performance of the can-order 
policy as comparing to an independent ( ,s S ) policy (called SI case in the 
dissertation). SI case meets stochastic demand and independent replenishment 
where each retailer is dispatched individually, so the major ordering cost of each 
retailer occurs without sharing. We determine the best solution of SI case by utilizing 
computer simulation. According to zero lead time, all retailers’ reorder points (

is ) 
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are equal to zero. Meanwhile, warehouse’s reorder point (
0s ) is less than zero 

owning to retailers’ batch-order size (
0s = -1). Zero inventory position at warehouse 

can be occurred until the next order is replenished from the outside supplier. Thus, 
we can determine only the base-stock levels ( iS ) for all retailers, and the base-stock 
level for the warehouse ( 0S ). From simulation, SI case can use the data from the 
can-order policy by 

ic = -1.  

Cost saving can be calculated by comparing the can-order policy with 
the SI case using the following equation: 
 

( ) ( )

( )

( ) 100
( . .)

SI CAN

SI

TC TC
Cost Saving C S

TC

 
  (3.6) 

 
where ( )SITC  and ( )CANTC are the average total system-wide cost per unit time of SI 
case and the can-order policy, respectively. 

Since this paper’s objective is to propose a heuristic approach for 
setting the appropriate can-order policy, the best-known solution is utilized to 
compare with the heuristic’s best solution. Heuristic’s performance is measured in 
terms of the cost gap calculated from the following equation. 
 

( ) ( )

( )

( ) 100
( . .)

HRT BS

BS

TC TC
Cost Gap C G

TC

 
  (3.7) 

 
where ( )HRTTC  and ( )BSTC are the average total system-wide cost per unit time of 
the heuristic approach and the average total system-wide cost per unit time of the 
best-known solution, respectively. 

 
3.3 Preliminary Analysis  

 In the preliminary study, our experiments were conducted to study the 
relationship between relevant factors on 253 scenarios as showed in Table III-1 and 
Table III-2.  
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Table III-1: Numerical input for preliminary experiment under identical retailers  

 
The asterisk (*) in the table means that parameter is varied. 

Scenario 
No. 

Fixed Parameters 
Varied Parameters 

wK  
rK  

i  0h  
ih  

0 ih h  
i  n  

1) Relationship between 
0h and 

ih  (80 scenarios) 

1-50 100 50 0 * * * 20 2 ih  {10, 25, 50, 100, 250}; 

0 ih h {0.1, 0.2, ...,1} 

51-80 100 50 0 * * * 20 2 ih  {0.1, 0.5, 1, 2.5, 5};  

0 ih h {0.1, 0.3, 0.5, 0.7, 0.9, 1} 

2) Relationship between 
0h , 

ih  and 
rK  (20 scenarios) 

81-92 100 * 0 * 25 * 20 2 rK {10, 90};  

0 ih h {0.1, 0.3, 0.5, 0.7, 0.9, 1} 

93-100 100 * 0 * 10 * 20 2 rK {10, 90};  

0 ih h {0.2, 0.4, 0.6, 0.8} 

3) Relationship between 
0h , 

ih  and 
wK  (20 scenarios) 

101-112 * 50 0 * 25 * 20 2 wK  {75, 200};  

0 ih h {0.1, 0.3, 0.5, 0.7, 0.9, 1} 

113-120 * 50 0 * 10 * 20 2 wK  {125, 250};  

0 ih h {0.2, 0.4, 0.6, 0.8} 

4) Relationship between 
0h , 

ih , and /w rK K  (14 scenarios) 

121-134 * 50 0 * * 0.5 20 2 
/w rK K {1.5, 3, 4, 5, 10, 100, 

1500}; 
ih {1, 25} 

5) Relationship between 
0h , 

ih , and i  (10 scenarios) 

135-142 100 50 0 * 25 0.5 * 2 i {0.5, 1, 3, 5, 10, 40, 100, 500} 

143-144 100 50 0 * 10 0.2 * 2 i {0.5, 10} 

6) Relationship between 
0h , 

ih , i and n  (10 scenarios) 

145-148 100 50 0 * 25 0.5 20 * n{4, 8, 12, 20} 
149-154 100 50 0 * 10 0.2 * * i {0.5, 10}; n{4, 8, 12} 

7) The effect of i  (54 scenarios) 

155-208 100 50 * * 10 * * * 
i {5, 10, 25}; 

i {0.5, 20}; 

0 ih h {0.2, 0.4, 0.6};  
n{2, 4, 8} 
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Table III-2: Numerical input for preliminary experiment under non-identical retailers 
on two-retailer scenarios and three-retailer scenarios  

 
All scenarios set identical cost components by 

wK = 100, 
rK = 50, i = 0, 

0h = 2, and 
ih = 10. 

Demand rate ratio be abbreviated to “DRR” in the table. 

 

Demand Rate 

 

 

Demand Rate  

 

Demand Rate 

1  
2  

3  DRR 1  
2  

3  DRR 
 
 1   

2  
3  DRR 

1 20 20 - 
1 

 16 20 1 - 
20 

 31 20 0.67 0.67 30 
2 10 10 -  17 10 0.5 -  32 20 0.5 0.5 40 
3 40 40 -  18 40 2 -  33 20 20 10 2 
4 20 10 - 

2 
 19 20 0.67 - 

30 
 34 20 20 5 4 

5 10 5 -  20 10 0.33 -  35 20 20 2.5 8 
6 40 20 -  21 40 1.33 -  36 20 20 2 10 
7 20 5 - 

4 
 22 20 0.5 - 

40 
 37 20 20 1 20 

8 10 2.5 -  23 10 0.25 -  38 20 20 0.67 30 
9 40 10 -  24 40 1 -  39 20 20 0.5 40 
10 20 2.5 - 

8 
 25 20 20 20 1  40 20 10 5 2, 4 

11 10 1.25 -  26 20 10 10 2  41 20 10 0.5 2, 20, 40 
12 40 5 -  27 20 5 5 4  42 40 20 10 2, 4 
13 20 2 - 

10 
 28 20 2.5 2.5 8  43 40 20 1 2, 20, 40 

14 10 1 -  29 20 2 2 10  44 20 2 0.5 4, 10, 40 
15 40 4 -  30 20 1 1 20  45 40 4 1 4, 10, 40 

 

We primarily analyze the experiments on identical retailers to study the 
effect of the relevant factors on the can-order policy. Specifically, from the existing 
literatures, the ratio of the major ordering cost and the minor ordering cost is one of 
the most significant factors for the can-order policy’s performance, since such ratio 
affects the can-order level ic  to create a combination of retailers in an order. 

Therefore, we considered the experiments on identical retailers in case of zero minor 
ordering cost and non-zero minor ordering cost. To extend the experiment on non-
identical retailers, we aimed at studying the can-order policy on the retailers’ 
different demand rates because in reality we frequently encounter such situation. In 
addition, non-identical demands can create the different discount opportunities from 
the shared ordering cost. So, it is interesting to investigate and this inquiry has not 
been studied in the existing literatures. 
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Relating to the experimental design, we did not test on full combination of 
all factors, since each experiment was focused on different parameters. For example 
of scenario 1 – 50, we varied 

ih  {10, 25, 50, 100, 250} and 
0 ih h  {0.1, 0.2, ..., 1} 

and fixed the other parameters to study the relationship between 
0h  and 

ih . In 
multi-echelon inventory problem, the relationship between 

0h  and 
ih  directly 

affects stocking decisions of the warehouse and of the retailers. After first 50 
scenarios, we also tested on the lower 

ih  {0.1, 0.5, 1, 2.5, 5} but 
0 ih h  can be 

reduced to smaller set 
0 ih h  {0.1, 0.3, 0.5, 0.7, 0.9, 1} as we found similar 

characteristics on the solutions. Similarly, other parameters were varied 
corresponding with the purpose of any experiment. 

In reality, the ratio of 
0 ih h always appeared in the existing literatures is likely 

not over 1 since value of product increases from the warehouse echelon to retailer 
echelon according to, for instance, additional operations cost charged into product 
price, retail store rental price. If  

0 1ih h   means that all inventories should be hold 
at retailer echelon to reduce an expensive holding cost at warehouse echelon, 
except the case that there is any constraint for the warehouse’s supplies. Similarly, 
the ratio of 

w rK K is always equal or more than 1 because, in fact, warehouse’s 
ordering cost deals with the external firms so that administrative and transportation 
costs are always more than internal management costs.  

According to a study of non-identical demand rates for two-retailer scenarios 
and three-retailer scenarios as showed in Table III-2, we defined the demand rate 
ratio as the proportion of different retailers’ demand rates. Demand rate ratio is used 
to analyze the effect of non-identical demand rates on the can-order policy.  

For two-retailer scenarios, demand rate ratio can be simply identified as a 
proportion of the first retailer’s fixed demand rate to the second retailer’s varied 
demand rate (e.g. 

1 220, 10    then the demand rate ratio is equal to 2).  
For three-retailer scenarios, demand rate ratio is formed into three patterns: 

 A proportion of a retailer’s fixed demand rate to the other retailers’ 
identically varied demand rates (e.g. fixed 

1 20   and varied 

2 310, 10   ; the demand rate ratio is equal to 2) 

 A proportion of a retailer’s varied demand rate to the other retailers’ 
identically fixed demand rates (e.g. fixed 

1 220, 20    varied 

3 10  ; the demand rate ratio is equal to 2) 
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 A proportion of one retailer’s varied demand rate to another retailer’s 
varied demand rate (e.g. 

1 2 340, 4, 1     ; three demand rate 
ratios for this case – 

1 2/  = 10, 
1 3/  = 40, and 

2 3/  = 4) 

For each scenario, we found that the best solutions from various seed 
numbers had the same means proved by one way ANOVA (single factor) with 95% 
confidence interval4. In addition, trend of the inventory policy parameters seems not 
different even if random seed numbers were utilized. For example, a scenario at 

wK

= 100, 
rK = 50, i = 0, 

0h = 1, 
ih = 10, i = 20, n = 2, we found two best solutions 

from five replications. The best solutions (
0 , ,i iS c S ) are (67,11,12) for replication 1, 2, 

4, 5 and (67,10,12) for replication 3. Then, we determined ten total system-wide 
costs of two best solutions as demonstrated in Table III-3. We used these data for 
ANOVA. The ANOVA result is depicted in Table III-4. From Table III-4, F-critical value is 
less than F value, so we accept null hypothesis that all best solutions have 
indifferent means. 

 
Table III-3: Ten total system-wide costs of two best solutions  

 
Replication No. (with random seed numbers) 

Best 
Solution 

1 2 3 4 5 6 7 8 9 10 

(67,11,12) 329.80 330.35 330.26 330.46 330.24 330.16 330.52 329.26 330.62 329.39 
(67,10,12) 330.47 329.37 330.51 330.06 330.32 329.19 330.34 328.76 331.20 331.18 

 
  

                                                           
4 For each best solution, we used ten values of total system-wide costs from ten seed numbers. 
Such costs of all best solutions are analyzed by ANOVA. Function “DATA ANALYSIS” from 
Microsoft Excel 2010 was utilized for ANOVA testing. 
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Table III-4: An example result of ANOVA testing 

  
SUMMARY       

Groups Count Sum Average Variance   
Solution 1: (67,11,12) 10 3301.066 330.1066 0.219774   
Solution 2: (67,10,12) 10 3301.407 330.1407 0.657857   
       
ANOVA       
Source of Variation SS df MS F P-value F-critical 
Between Groups 0.005836 1 0.005836 0.0133 0.909465 4.413873 
Within Groups 7.898677 18 0.438815    
Total 7.904514 19         

 

The significant findings are classified into three groups: 1) the effect of the 
can-order policy, 2) comparative analysis with an independent policy, and 3) 
inventory policy characteristics. Thus,  

 
3.3.1 The effect of the can-order policy 

From the general concept of the can-order policy, the major and 
minor ordering cost and the holding cost are traded off. The can-order level affects 
reduced major ordering costs, varied minor ordering costs, and increased holding cost 
from special replenishment. Hence, it is important to find a balance among all 
inventory costs. 

For the experiment of identical retailers with zero minor ordering cost, 
it shows that when 

ic  increases, the retailers’ holding cost increases, while the 
retailers’ total major ordering cost decreases. Then, the total inventory cost at 
retailers also decreases when 

ic  increases. For warehouse echelon, the value of 
ic  

affects its dispatch quantity and frequency, and therefore affects the warehouse’s 
inventory costs. At the low level of 

0S , increasing 
ic  can reduce the warehouse’s 

inventory costs since higher 
ic  generates lower dispatch frequency. This also causes 

lower replenishment frequency at the warehouse. However, there is no obvious 
pattern reflecting relationships between all decision variables at the high level of 

0S . 
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Considering the case of identical retailers with minor ordering cost, it 
directly affects the can-order level. If the minor ordering cost 

i  is large enough 
when comparing with the major ordering cost 

rK , the retailers’ total minor ordering 
cost is observed to be a convex function of the can-order level 

ic . The increase of 

ic  reduces the retailers’ total minor ordering cost until a value of 
ic , that cost is 

then increased when 
ic  is large as too many retailers are included in an order. The 

ic value affects number of retailers jointly replenished in the order, so it influences 
the retailers’ total ordering cost per order and the retailers’ total holding cost per 
dispatch cycle.   

With regard to the case of non-identical retailers, different retailer’s 
demand rates were tested. The minor ordering cost is neglectable to study only 
impact of non-identical demand rates. When retailer’s demand rates are significantly 
different, the retailers with higher demand rates attempt to reduce 

ic  in order to 
have less residual stock, while the retailers with lower demand rates attempt to 
increase 

ic  in order to have more joint replenishment opportunity. Hence, all the 
can-order levels have to be traded off between the cost of residual stock and the 
cost of joint replenishment.    

As these results, the can-order policy has an effect on the inventory 
costs at both echelons. It is related to retailers’ residual stock, dispatch quantity and 
frequency at retailers, as well as replenishment quantity and frequency at the 
warehouse. All are necessary to be traded off to determine the best solution. 

 
3.3.2 Comparative analysis 

To study the can-order policy’s performance and identify for which 
situation this policy is suitable, we compare the can-order policy with an 
independent ( ,s S ) policy (called SI case). It has already been mentioned in section 
3.2.3 in detail. From simulation, SI case can use the data from the can-order policy 
by 

ic = -1. We vary a wide range of relevant factors according to various tested 
values showed in Table III-1 and Table III-2. Cost-saving measurement can use 
Equation (3.6). Figure III-3, Fig.III-4, and Fig.III-5 show experimental results in cases of 
identical retailers and non-identical retailers, in sequence.  
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Figure III-3 The cost saving of the can-order policy: Identical retailers  
with zero minor ordering cost 
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Figure III-4 The cost saving of the can-order policy: Identical retailers  
with non-zero minor ordering cost 
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(b) Three retailers 

 
Figure III-5 The cost saving of the can-order policy: Non-identical retailers 

According to the experiments, we found that the can-order policy 
could reduce the total system-wide cost from the SI case for all scenarios. The 
amount of cost saving is depends on scenarios. The best (or useful) scenarios are 
identified that can save the greatest amount of the total system-wide cost. In the 
opposite way, the can-order policy does not outperform SI case when the total 
system-wide costs obtained by the can-order policy and by SI case are not different. 
The independent ordering decision by SI case should be a satisfactory policy for ease 
of control parameter determination.  

The best scenarios for the can-order policy are addressed as follows: 
 Identical retailers: The best scenario is when large /r iK h  ratio, 

large /r iK   ratio, high demand rate, and high number of retailers. High 
0 / ih h  ratio 

is likely to gain more cost saving but it has to be high enough for trading off with 
other relevant factors. 

Large /r iK h  ratio and large /r iK   ratio creates a large shared 
major ordering cost among retailers. High number of retailers also increases the 
opportunity to share the major ordering cost. High demand rate allows high level of 

 
0100, 50, 2, 10, 2w r rK K h h n    

 
0100, 50, 2, 10, 3w r rK K h h n    
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iS  so that the opportunity of joint replenishment can increase (i.e. longer dispatch 
cycle time makes the other retailers have a more change to include in an order), 
However, in the opposite way the can-order policy seems to be useless when small 

/r iK h  ratio and low demand rate because both factors reduce the opportunity to 
share the major ordering cost. Both factors make very low level of 

iS  from which 
short dispatch cycle time happens. Total system-wide costs obtained by the can-
order policy and by the (

0,iS S ) policy are not different.  

 Non-identical retailers: The can-order policy is useful when low 
demand rate ratio. From low demand rate ratio, each retailer can create its own 
normal replenishment5 nearly be about the same cycle time. So, it has more 
opportunity to share the major ordering cost with small residual stock6.  On the 
other hand, high demand rate ratio might influence the can-order policy to be 
useless since a huge difference of normal replenishment cycle times reduces the 
sharing opportunity. We found that a retailer with higher demand rate reduced the 
can-order level near to the must-order level in order to reduce its order frequency 
together with another retailer with lower demand rate. The retailer with high 
demand rate has to tradeoff between the reduced ordering cost and the increased 
residual stock. 

 Like identical retailers, high demand rate and high number of 
retailers increase the opportunity to share the major ordering cost. Each factor allows 
high level of 

iS  so that the opportunity of joint replenishment can increase. 

The can-order policy builds up cost saving at over 30%, compared to 
SI case. So, the application of the can-order policy into OWNR is considerably 
valuable. 

 
  

                                                           
5 When the inventory position of retailer i  drops to or below its must-order level is , an order is 
triggered to create normal replenishment. 
6 Residual stock is a stock left above the must-order level at the order-triggered point. 
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3.3.3 Inventory policy characteristics 

This section is separated into three sub-sections to elaborate the 
characteristic of each decision variable 0, ,i ic S S  for the considered system.  

3.3.3.1 The order-up-to level at the warehouse  

For a given 
0S , we can find the solution of ( ,i ic S ) providing 

the minimum average total system-wide cost as illustrated in Fig.III-6. There are two 
local minimum solutions located into two ranges: Range I – the solution occurs at 

0S = 0 and Range II – it occurs at 
0S > 0. For the Range I, 

0S  starts from zero and 
then increases to reach the last value before the cost line turns to a convex 
function. For the Range II, it is defined after that last value to positive infinity. The 
best-known solution (global minimum solution) definitely occurs in either Range I or 
Range II.  

For Range I, none of holding stock at the warehouse provides 
the lowest total system-wide cost since the increasing 

0S  creates the excessive 
stock. Whenever retailer echelon triggers an order all excessive stock is consumed 
and the warehouse’s must-order level is always reached. The warehouse is 
replenished every dispatch cycle; therefore, it is not necessary to keep stock waiting 
for the next dispatch cycle. For Range II, a trade-off between the increasing holding 
costs and the reduced ordering costs when increasing 

0S is occurred as found in the 
economic order quantity. 

We can set 
0S = 0 when high 

0 / ih h  ratio, since more stock 
creates more inventory cost (i.e. the increased holding cost is larger than the 
reduced ordering cost). However, there is a possibility that the best-known solution 
can move from Range I to Range II when relevant factor is changed, such as smaller 

0 / ih h  ratio, higher wK , or higher number of retailers since smaller 
0 / ih h  ratio, 

higher wK , or higher number of retailers affect the warehouse to hold inventories to 
reduce the frequency of replenishment. 
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Figure III-6 Two ranges of the best-known solution 

 

3.3.3.2 The order-up-to level at the retailers  

When we fix inventory policy at the warehouse, the average 
total system-wide cost at retailer i  is a convex (unimodal) function of iS  as showed 
in Fig. III-7. Figure III-7(a) and Fig.III-7(b) illustrate different scenarios but provide the 
same pattern. The convex function occurs from a trade-off between the increasing 
holding costs and the reduced ordering costs when increasing iS , then the economic 
order quantity is determined. 
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(a) Scenario at wK = 100, rK = 50, i = 0, 0h = 2.5, ih = 25, i = 20, n = 2, 0S = 48 
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Figure III-7 Convex function of iS on given 0S  

 

3.3.3.3 The can-order level at the retailers  

From the existing literatures, the ratio of the major ordering 
cost and the minor ordering cost is one of the most significant factors for the can-
order policy’s performance, since such ratio affects the can-order level 

ic  to create 
a combination of retailers in an order. Therefore, we considered the experiments on 
identical retailers in case of zero minor ordering cost and non-zero minor ordering 
cost. 

Considering the case of zero minor ordering cost (154 
scenarios), a result demonstrates that 87.66% of all scenarios (135 scenarios) the 
value 

ic  = 
iS  - 1, where 

ic and 
iS denote the optimal can-order level and the 

optimal order-up-to level of retailer i . This result is consistent with the study of van 
Eijs [48] showed that when /r iK  ratio is approaching infinity, then 

ic = 
iS  - 1 for all 
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items. It implies that all items are jointly replenished as soon as an item triggers an 
order. Other items are not ordered if there has been no demand after the preceding 
order. This concept’s purpose is to most reduce the ordering cost from jointly 
replenishing all items in the order. For other 19 scenarios occurring the best solution 
at 

ic   
iS  - 1, the result indicates that *

( 1)iS
TC


 is greater than TC 0.01% on average 

with a standard deviation 0.02% where TC is the optimal average total system-wide 
cost and *

( 1)iS
TC


 is the minimum average total system-wide cost of the solution at 

ic = 
iS - 1.  

In case of non-zero minor ordering cost (54 scenarios), smaller 
/r iK   ratio influences father difference between *

ic  and *

iS  as showed in Fig.III-8(a). 
Since such difference can reduce the number of involved retailers in the order and 
dispatch quantity, but increase dispatch frequency. In multi-item single location 
problem, van Eijs [48] ruled that if /r iK   ratio is less than 5, the can-order policy 
might not happen to be 

ic = 
iS  - 1. Additionally, high demand rate affects higher 

level gap between *

ic  and *

iS .  Comparing *

( 1)iS
TC


and TC , the result indicates that 

*

( 1)iS
TC


 is greater than TC by 0.91% on average with a standard deviation of 1.85%. 

Smaller /r iK   ratio increases cost gap as showed in Fig.III-8(b). Setting 
ic  near 

iS

increases the total ordering cost because of too many retailers included in an order.  

As the results, we can simplify mathematical model by using 
the can-order level 

ic = iS - 1 since small average cost gap between *

( 1)iS
TC


and 

TC is occurred. Additionally, a convex function of iS  enable us to develop heuristic 
approach at ease with one-dimensional search. 
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Figure III-8 The effect of ratio on the can-order level at the retailers 

However, computer simulation seems not to be an appropriate method for 
determining the best-known solution if the problem includes the large-size problem 
(e.g. number of retailers, high demand rates) and/or non-identical retailers (e.g. non-
identical demand rates, non-identical cost components) because of a huge search 
space inputted in the simulation. Therefore, heuristic approach is interesting to 
systematically reduce the search space for determining the appropriate inventory 
policy parameters. As found in many literatures relating to the can-order policy, they 
used heuristics to accomplish their studies. 
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3.4 Heuristic I – Modified Deterministic Joint Replenishment (DJ) 

Our purpose of developing heuristic approach is to provide an appropriate 
inventory policy (

0, ,i ic S S ). The total system-wide cost of mathematical model is 
able to be approximated as long as the acceptable solution is provided. This can 
reduce the complexity of our model. According to zero lead time and stationary 
demand, we consider an existing deterministic model to determine the best solution 
due to the same cost structure composed of the holding costs and ordering costs at 
both echelons. Schwarz [124] developed an analytical model for OWNR under 
deterministic demand for determining the optimal inventory policy, and then it has 
become a classical model referred in a lot of literatures.   

In the pilot testing, we consider the case of identical retailers with zero minor 
ordering cost as we can simply modify Schwarz [124]’s model by jointly fulfilling all 
retailers’ inventories in one order. This modification is consistent with the concept of 
van Eijs [48] and preliminary analysis (Section 3.3.3.2) mentioned previously. When 

/r iK   ratio is approaching infinity, then 
ic = 

iS  - 1 for all items. It implies that all 
items are jointly replenished as soon as an item triggers an order. This concept’s 
purpose is to most reduce the ordering cost from jointly replenishing all items in the 
order.  

 
3.4.1 Mathematical model and analytical approach  

Since Schwarz [124]’s model is based on batch-ordering policies, we 
use terms of batch size to determine the minimum total system-wide cost and 
convert 

0,iS S  consistently to the batch-ordering policies. The deterministic model is 
developed under the property that the delivery to warehouse occurs only when the 
warehouse and at least one retailer have zero inventory. Relating to identical 
retailers with zero minor ordering cost, the cost model can be formulated for a given 
(

0,iS S ) policy by using the following equations. 
 

0 0( )
( , )

2 2

w r r r r r rr r
r r

r r r

K nh m Q n h h Q nhK
TC m Q

m Q Q

   
    
 

 (3.8) 
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( , )r rTC m Q  =  The total system-wide cost per unit time respecting the batch-sizing 
model ($/unit time) 

n  = Number of retailers in the system 
rQ   = A lot size of each identical retailer replenished by the warehouse 

(units) 
rm  = Number of dispatch from the warehouse echelon to retailer 

echelon (times) 
r  = Demand rate of an identical retailer (units/time unit) 

0h  =  The unit holding cost per unit time at the warehouse ($/unit – time 
unit) 

rh  =  The unit holding cost per unit time at an identical retailer ($/unit – 
time unit) 

wK  = The warehouse’s major ordering cost per a replenishment cycle 
($/time) 

rK  = The retailers’ major ordering cost per a dispatch cycle ($/time) 

According to Equation (3.8), the first term is the warehouse’s ordering 
cost per unit time and the second term is the retailers’ ordering cost per unit time. 
The third term is the warehouse’s holding cost per unit time considering the stock 
for all n  identical retailers. The last term is the total retailers’ holding cost 
accumulated on all n  identical retailers.  

The optimal solution can be determined by using the first order 
differential Equation (3.8) with respect to rQ  and rm . It follows that, 

 

*

0

2 ( )

( 1)

r r w

r

r

r r

K K

nm
Q

m h h

 
 
 

 
 (3.9) 

 
* 0

0

( )w r
r

r

K h h
m

K h


  (3.10) 

 
where *

rQ  is the optimal lot size of each identical retailer replenished by the 
warehouse and *

rm  is the optimal number of dispatch from the warehouse echelon 
to retailer echelon. From Equation (3.10), the value of  *

rm  and *

rQ can be non-
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integer value. Therefore, we find the integer value of *

rm  by rounding down and 
rounding up them identified as 

rm  and 
rm respectively. Similarly, we find the integer 

value of *

rQ  by rounding down and rounding up them identified as 
rQ  and 

rQ  
respectively. Comparing ( , )r rTC m Q  , ( , )r rTC m Q  , ( , )r rTC m Q  , and ( , )r rTC m Q  , 
we select the solution providing the minimum total system-wide cost and assign new 

integer *

rm and *

rQ . We found that 
2

rnh  of the last term could be ignorable since it 

does not affect to the optimal solution. 

Consequently, iS  and 0S  can be determined by *

i rS Q  for all 
identical retailers and * *

0 ( 1) r rS n m Q   for the warehouse. For any retailer, *

i rS Q  
occurs when unit Poisson demand. The replenishment quantity at warehouse is 
equal to * *

r rm Q . Since in our system, warehouse inventory level can drop below zero 
( *

0( ) rI t Q  ) when issuing a dispatch order (identified as pre-replenishing point) and 
then instant replenishment fulfills the warehouse’s inventory level up to 0S  
(identified as post-replenishing point). Thus, the order-up-to level at warehouse has 
to be subtracted *

rQ  from the replenishment quantity.  

Lastly, we can determine the solution for the can-order policy from 
the modified Schwarz [124]’s model. Let DJ  denote the case of determining the 
solution by using the modified Schwarz’s model. Let ( )DJCAN denote the can-order 
policy which sets ( ) ( )

0 0

CAN DJS S ,  ( ) ( )CAN DJ

r rS S , and ( ) ( ) 1CAN DJ

r rc S   according to 
the preliminary analysis.  

 
3.4.2 Pilot testing 

We explore the cost gap when the modified Schwarz’s solution is 
used in the can-order policy. The goal is to identify cost gap when ( )DJCAN  is 
utilized. The cost gap can be calculated by using Equation (3.7). We tested on 20 
scenarios following Table III-5. In consequence, the testing result can be summarized 
as showed in Fig.III-9. 
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Table III-5: Numerical input for pilot testing of the DJ heuristic 

 
Scenario 

No. 
Relevant Parameters 

wK  
rK  

0h  
ih  

0 ih h  
i  n  

1 100 50 20 100 0.2 20 2 
2 100 50 40 100 0.4 20 2 

3 100 10 20 100 0.2 20 2 

4 100 90 20 100 0.2 20 2 

5 75 50 20 100 0.2 20 2 

6 500 50 20 100 0.2 20 2 

7 100 50 20 100 0.2 20 4 

8 100 50 20 100 0.2 20 8 

9 100 50 2 10 0.2 20 2 

10 100 50 4 10 0.4 20 2 

11 100 10 2 10 0.2 20 2 

12 100 90 4 10 0.2 20 2 

13 125 50 2 10 0.2 20 2 

14 250 50 2 10 0.2 20 2 

15 100 50 2 10 0.2 20 4 

16 100 50 2 10 0.2 20 8 

17 100 50 2 10 0.2 20 12 

18 100 50 2 10 0.2 10 4 

19 100 50 2 10 0.2 10 8 

20 100 50 2 10 0.2 10 12 
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Figure III-9 Heuristic’s performance on pilot testing 

We found that this heuristic approach was not appropriate for the 
problem at higher number of retailers. Trend of cost gap is an exponential increase. 
The reason is that DJ case considers all retailers without uncertainty of demand, so 
zero residual stock occurs at every triggered order including all retailers, thus 

( ) ( )

0 0

BS DJS S  and ( ) ( )BS DJ

r rS S . Higher number of retailers increases the difference of 
holding amount between the best solution and DJ’s solution due to residual stock. 
Similarly, higher number of retailers also increases the difference of retailers’ major 
ordering cost per order-retailer between the best solution and DJ’s solution. 
Meanwhile, other parameters cannot be clearly summarized because there is no 
obvious trend of cost gap.  

This simple policy is useful in the case of identical retailers with low number 
of retailers (i.e. from the pilot test number of retailers should not be over 4 retailers). 
According to its limitation, we attempt to develop another heuristic approach to 
obtain better quality solution as demonstrated in the next solution.    

 
3.5 Heuristic II – Approximate Mathematical Model based on EOQ (EOQ-Z) 

 We propose a new heuristic approach to determine an appropriate inventory 
policy. The approximate mathematical model is able to be employed as long as the 
acceptable solution is obtained. From the preliminary analysis, various interesting 
issues can be interpreted into the mathematical model and heuristic algorithm.  
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3.5.1 Mathematical model 

Our purpose of developing heuristic approach is to provide an 
appropriate inventory policy (

0, ,i ic S S ). The total system-wide cost of mathematical 
model is able to be approximated as long as the acceptable solution is provided. 
This can reduce the complexity of our model. Hence, relating to the preliminary 
analysis our mathematical model utilizes the can-order level at 

ic = iS - 1. Then, 
there exists only two decision variables (

0,iS S ) concerned in the mathematical 
model. van Eijs [48] developed exact equations by using 

ic = iS - 1 for non-identical 
items on single location. His model used the exact probability of the special 
replenishment, unlike other models assuming Poisson distributions. It performed very 
well when /r iK   ratio is more than 5. Hence, we adapt his work into our 
consideration. 

Based on van Eijs [48], we can calculate the inventory cost at the 
retailer echelon close to the exact value. However, determination of inventory cost 
at warehouse is another difficult part. The warehouse’s inventory level is consumed 
by an uncertain lot-sizing order from retailer echelon. From preliminary testing, we 
determine the expected dispatch quantity at retailer echelon by using the exact 
model of van Eijs [48]. We found that the expected dispatch quantity per dispatch 
cycle was always equal to the cumulative demand from all retailers. Thus, we 
simplify this part by assuming that the warehouse’s inventory level is consumed  
continuously following the total Poisson demand cumulated from all retailers, 

0 i

i N

 


 . By this assumption, warehouse echelon and retailer echelon are 

independent to find the minimum inventory costs at each echelon. Even though the 
assumption provides the approximate warehouse’s inventory cost higher than the 
warehouse’s actual inventory cost, we compensate the approximate value by 
utilizing the minimum inventory cost at retailer echelon.  

The cost model can be formulated for a given (
0,iS S ) policy. It 

follows that, 
 

  
0

0

1 ( ) ) [ ]
[ ]

( , )
[ ] [ ]

r i i i

i N w
i

K S E H
K E H

TC S S
E DT E RT




   


 


 (3.11) 
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0( , )iTC S S  =  The long-run average total system-wide cost per unit time  
  ($/unit time) 
i  = Index of the location i ; the warehouse i  = 0 and the retailer i N  

0S  = The order-up-to level at the warehouse (units) 

iS  = The order-up-to level at retailer i  (units) 

i  = Demand rate of retailer i  (units/time unit) 

0h  =  The unit holding cost per unit time at the warehouse  
  ($/unit – time unit) 

ih  =  The unit holding cost per unit time at retailer i  ($/unit – time unit) 

wK  = The warehouse’s major ordering cost per a replenishment cycle 
  ($/time) 

rK  = The retailers’ major ordering cost per a dispatch cycle ($/time) 

i  = The minor ordering cost at retailer i  ($) 
( )iS   = The probability that no demand arrives for retailer i  during  

  a dispatch cycle 
[ ]iE H  = The expected holding cost of retailer i  during a dispatch cycle ($) 

0[ ]E H  = The expected holding cost of the warehouse during a replenishment 
  cycle ($) 

[ ]E DT  = The expected length of a dispatch cycle (unit time) 
[ ]E RT  = The expected length of a replenishment cycle (unit time) 

According to Equation (3.11), we consider the probability that at least 
one demand arrives for retailer i  during a dispatch cycle to be consistent with the 
value 

ic = iS - 1. Such probability affects the occurrence of the minor ordering cost. 

Retailer Echelon 

The model is developed according to the independent Poisson 
process of demands for individual retailers, so inter-arrival times of demands are 
exponentially distributed. Suppose a dispatch cycle starts at time 0. We define the 
following variables according to stochastic process: 

iDT  =  Time until retailer i  triggers an order to the warehouse 
DT  =  Time until any retailer triggers an order to the warehouse;  
  min( )iDT DT  

( )if t  = Probability density function of 
iDT  
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( )iF t  = Distribution function of 
iDT  

( )f t  = Probability density function of DT  
( )F t  = Distribution function of DT  

Retailer i  will trigger an order if the total demand for retailer i  from 
time 0 equals 

iS . Thus, according to exponential distribution of inter-arrival times of 
demands, 

iDT  follows Erlang distribution with parameters 
i  and 

iS . The value of 
( )if t  and ( )iF t  are determined by the general formula of Erlang distribution [125]. 

Then, the probability density function and distribution function of DT can be 
calculated by 
 

 ( ) ( ) 1 ( )i i

i N j i

f t f t F t
 

    (3.12) 

 
 ( ) 1 1 ( )i

i N

F t F t


    (3.13) 

 
Thus, the expected length of a dispatch cycle is  
 

   
0 0 0

[ ] ( ) 1 ( ) 1 ( )i

i Nt t t

E DT tf t dt F t dt F t dt

  

  

        (3.14) 

The expected holding cost of retailer i  during a dispatch cycle is 
associated with the retailer’s inventory on hand at the beginning and at the end of 
the dispatch cycle. At the beginning of the cycle, setting 

ic = iS - 1 makes all 
retailers’ inventory on hand equal 

iS . At the end of the cycle, the inventory on 
hand depends on the residual stock level, which is a stock above the must-order 
level when an order is triggered. Thus, we define ( )i x  as the probability that at 
time DT  the residual stock of retailer i  equals x . There are two cases for 
determining ( )i x . The first case is when the residual stock level of retailer i  is 
equal to zero; only retailer i  triggers an order. The second case is when the residual 
stock level of retailer i  is positive. So, an order is triggered by retailer j i . Thus, the 
value of ( )i x can be calculated by the following expressions: 
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 
0

( )

0

( ) 1 ( ) 0,

( )

( , ) ( ) 0

i j

j it

i

i

i i i

t

f t F t dt if x

x

Pois t S x f t dt if x S












 


  


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

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

 (3.15) 

 

( , )
!

b aa e
Pois a b

b



  (3.16) 

 
 ( )

,

( ) ( ) 1 ( )i

j k

j i k j i

f t f t F t

 

    (3.17) 

 
where ( , )Pois a b  is the probability density function of Poisson demand with 
parameter ( ,a b ), and ( ) ( )if t  is the probability density function that at time t  any 
retailer j i  triggers an order. Thus, ( )iS illustrated in Equation (3.11) can be 
calculated by using Equation (3.15) as well. 

The expected holding cost of retailer i  during a dispatch cycle is then given by 
 

0 0

( )
[ ] ( ) ( )

2

iS

i i
i

x t

h S x t
E H x f t dt



 

  
  

  
   (3.18) 

 
According to Equation (3.14) and (3.18), we transform the expression to determine 
the expected holding cost of retailer i  per unit time instead. Thus,    
 

0

[ ] ( )
( )

[ ] 2

iS

i i i

x

E H h S x
x

E DT 

 
  

 
  (3.19) 

 

Warehouse Echelon 

To simplify this part, we assume that the warehouse’s inventory level 
is consumed continuously by all retailers’ Poisson demands with rate 0 . Inter-arrival 
times of demands are exponentially distributed, and then the distribution of time 
until warehouse triggers an order to an outside supplier is Erlang, similar to the 
retailer echelon. Let RT  denote time until warehouse triggers an order to an outside 
supplier. The warehouse will trigger an order if the total demand from time 0 equals 
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0S , so the distribution of RT  is Erlang with parameters 
0  and 

0S . The expected 
length of a replenishment cycle is mean of Erlang distribution. Thus, 0 0[ ]E RT S  . 

In case of holding inventory at the warehouse, the expected holding 
cost of the warehouse during a replenishment cycle is estimated following the 
continuous demands from the retailer echelon. Then, we can determine the 

expected holding cost of the warehouse per unit time by 0 0 0[ ]

[ ] 2

E H h S

E RT
 . According 

to the expression at the warehouse, we can find the optimal order-up-to level at the 
warehouse *

0S  from the derivative of the cost function with respect to 0S . We found 
that *

0S  could be easily calculated from EOQ  formula. Then, *

0 0 02 wS K h  

Consequently, we can figure out the long-run average total system-
wide cost per unit time for a given (

0,iS S ) policy. Then, the next section will 
demonstrate the algorithm of heuristic approach to determine the appropriate 
decision variables by using the cost model. 
 

3.5.2 Heuristic algorithm 

With regard to the preliminary analysis and the mathematical model, 
the following analyses demonstrate our concept for developing heuristic approach. 

1) According to two local minimum solutions located into two 
ranges, we can identify the value of 

0S  to 
0S = 0 for Range I and 0 0 02 wS K h

for Range II. 
2) To develop initial solution at retailer echelon by assuming 

ic = 

iS - 1, we can use deterministic model to find economical joint ordering time when 
every retailer is replenished in an order. 

3) Fixing inventory policy at retailer j i  and at the warehouse, 
the total inventory cost at retailer i  is a convex function of iS . We can find the local 
minimum 

0( , )iTC S S at the given 
j iS 

 and 
0S . Therefore, Decomposition technique 

and iterative procedure can be applied to break multiple locations into single 
location and to recurrently find the minimum solution as far as the best solution has 
been found. Both techniques have been extensively used in JRP [34, 46, 51-56, 71, 
73]. 
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4) Since the total inventory cost at retailer i  is a unimodal function 
under one-dimensional unconstrained problem. We apply the concept of line search 
called “golden section search” into discrete function [126]. Golden section search is 
a simple and efficient method for finding extremum of a unimodal function [48, 57, 
58, 122]. Golden section search is suitable for the case of non-derivative function, 
like our model, by successively narrowing the range of search space until the desired 
accuracy in minimum value of the objective function is achieved. A golden ratio, 
which is a constant reduction factor for the size of the interval, is utilized to maintain 
the successive range of dynamic triples of points (i.e. upper point, middle point, and 
lower point). Advantageously, each successive range we only want to perform one 
new function evaluation. From this technique, we can determine the optimal *

iS for 
the given 

j iS 
 and 

0S and save computational time. 

Hence, the heuristic approach is outlined in the following algorithm 
illustrated in Fig.III-10. 

 
START

Step 1: 

Determine initial Solution Si at 

retailer echelon

Step 2: 

Determine the local optimal 

solution Si for each range 

Rk: k = {1,2}

Step 1

Step 1.1: 

Calculate joint dispatching time 

(Td)

Step 1.2: 

Find initial Si from Td 

by using Poisson probability function

Step 2

Step 2.1: 

(A) Set values at the warehouse for range Rk: k = {1,2}

(B) Calculate TCinitial(Si,S0)

Step 3: 

Select the best solution at

TCmin(Si,S0)= 

min{TCminR1(Si,S0), TCminR2(Si,S0)} 

Output: 

Si

Output: 

TCminRk(Si,S0)

END

For range R1, set S0 = 0 and 

E[RT] = E[DT]

For range R2, set S0 = √2Kwλ0/h0 and 

E[RT] = S0 / λ0

Step 2.2: Iterative procedure for determining 

the local optimal solution (Si) for each range Rk

(A) Set initial value: 

- Set loop y = 0, iteration m = 0, and assign TCminRk(Si,S0) = TCinitial(Si,S0) for such 

initial value

- Assign retailer i = 0 

(B) Set retailer i = i +1, fix Sj≠i and S0

(C) Use golden section search for determining the optimal Si under given Sj≠i and S0

(D) Update TCminRk(Si,S0) and Si  if the better solution has been found

(E) Count iteration m = m +1, go back to step (B) until i = n 

If i = n , count loop y = y +1 

(F) Stop if 

- Si for i ={1,...,n} does not change n iterations in a row, or

- TCminRk(Si,S0) of loop y and TCminRk(Si,S0) of loop y - 1 does not decrease by 

more than ε%

Otherwise go back to step (B)

   
 

Figure III-10 The algorithm of the heuristic approach – EOQ-Z 
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In step 1 – determination of the initial solution iS , we calculate joint 
dispatching time ( dT ) by deterministic model according to the following expression: 
 

2( )w i

i N
d

i i

i N

K

T
h














 (3.20) 

Then, the initial iS  for retailer i  is determined by adapting Love [46]’s 
method. It is selecting iS  which provides the minimum gap between two 
probabilities: 1) the probability that demand for retailer i  during time dT  is less than 
or equal to such iS  and 2) the probability that an order is triggered by any retailer 
(i.e. including normal replenishment and special replenishment). Thus, 
 

( , 1) ( , )
1 1

1

i d i d

i

n n
u if Pois T u Pois T u

S n n

u Otherwise

 
       

           
         
  

 (3.21) 

 
The initial iS  from Equation (3.18) is closer to the optimal solution than iS  obtained 
from i i dS T  . 

Step 2 is the most important procedure for the heuristic in order to 
determine the optimal iS  for each range of range 1R  and 2R  (note that for range 1R , 
the local optimal solution occurs at 

0S = 0 and [ ] [ ]E RT E DT , and for range 2R , it 
occurs at 0 0 02 wS K h  and 0 0[ ]E RT S  ). We use 0S and initial iS  from step 
1 to calculate the initial long-run average total system-wide cost per unit time, 

0( , )initial iTC S S . The next step (2.2) is an iterative procedure containing step (A) to (F). 
For each iteration, the golden section search is carried out for retailer i : vary iS  and 
fix other retailers 

j iS 
 given from the previous iteration. 

0( , )iTC S S  is an objective 
function for the golden section search. The iterative process terminates as soon as 
every iS  does not change n  iterations in a row, or the minimum long-run average 
total system-wide cost per unit time, 

min 0( , )Rk iTC S S , from the current loop does not 
decrease from the previous loop by more than %  (i.e. when all retailers have been 
run, one loop is counted). From step 2, we obtain the local minimum cost 

min 0( , )Rk iTC S S  for k{1, 2}.  
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Lastly, the comparison of 
min 0( , )Rk iTC S S for k{1, 2} is carried out in 

step 3. The minimum long-run average total system-wide cost per unit time is equal 
to  min 1 0 min 2 0min ( , ), ( , )R i R iTC S S TC S S .  

To summarize, our heuristic approach (called EOQ-Z) is developed by using 
approximate mathematical model with heuristic algorithm to determine the 
appropriate inventory policy parameters. The mathematical model is formulated 
based on two compositions. The first one is the exact model for retailer echelon 
with relaxing synchronization of the dispatch cycle time between echelons. The 
other one is the EOQ model for warehouse echelon. We can interpret preliminary 
analysis into the heuristic algorithm consisting of decomposition technique, iterative 
procedure, and one-dimensional search called the golden section search. To 
measure heuristic’s performance, we continue to the next section which various 
experiments are conducted and the findings are analyzed.   

 
3.6 Experimental Results 

 In this section, we experimented on the EOQ-Z heuristic on various scenarios 
following Table III-1 and Table III-2. The experiments on identical retailers were 
analyzed, specifically in case of zero minor ordering cost and non-zero minor 
ordering cost. Since both cases affects the can-order policy at given 

ic = iS - 1 on 
different results as showed in the preliminary analysis.  In addition, the experiment 
on non-identical retailers was also conducted to measure the heuristic’s 
performance on the dissimilar situation. Moreover, we compared computational time 
between computer simulation and our EOQ-Z heuristic on the cases of identical and 
non-identical retailers.  

 
3.6.1 Identical retailers with zero minor ordering cost 

According to three relevant factors (i.e. cost parameters, demand 
rates, and number of retailers), they were designed to examine the heuristic’s 
performance under 154 scenarios (showed in Table III-1). Table III-6 shows some 
numerical examples relating to the best-known solution of the system and the best 
solution from the heuristic approach. We found that the performance of heuristic 
approach depended on all relevant factors. It provided an average cost gap at 1.05% 



 95 

with standard deviation 1.11% over various scenarios. Our approach performed well 
when high number of retailers, high /w rK K  ratio, and high 0 / ih h  ratio. 

 
Table III-6: Numerical examples for comparison of the best-known solution and the 
heuristic’s best solution under identical retailers with zero minor ordering cost 

 

Instance 
Relevant factors Best-known Solution Heuristic Approach 

wK  
rK  

0h  
ih  

i  n  0 , ,i iS c S  ( )BSTC  0 , ,i iS c S  . .C G
 

1 100 50 20 100 20 2 13,3,4 1,280.75 20,3,4 0.52% 
2 100 50 40 100 20 2 0,5,6 1,420.94 0,5,6 0.00% 
3 100 50 2 10 20 2 45,9,12 359.73 63,10,11 2.03% 
4 100 50 4 10 20 2 25,12,13 392.37 0,18,19 1.88% 
5 100 10 2 10 20 2 58,4,5 244.97 63,4,5 0.05% 
6 100 90 2 10 20 2 31,15,16 424.21 63,14,15 4.34% 
7 125 50 2 10 20 2 49,12,13 376.43 71,10,11 2.50% 
8 250 50 2 10 20 2 86,11,12 436.63 100,10,11 0.98% 
9 100 50 2 10 10 4 42,6,7 427.16 63,5,6 0.36% 
10 100 50 2 10 10 8 78,4,5 697.16 89,4,5 0.11% 
11 100 50 2 10 10 12 93,4,5 932.60 110,4,5 0.15% 
12 100 50 2 10 20 4 79,8,9 576.83 89,8,9 1.03% 
13 100 50 2 10 20 8 100,6,7 925.98 126,6,7 0.29% 
14 100 50 2 10 20 12 142,5,6 1,230.39 155,5,6 0.17% 
 

Let ( )BS

iS and ( )

0

BSS denote the best-known order-up-to level at retailer 
i  and at the warehouse determined from the computer simulation. Let ( )HRT

iS  and 
( )

0

HRTS  denote the best order-up-to level at retailer i  and at the warehouse and they 
were calculated by the heuristic approach. Theoretically, when the number of 
retailers increases, it also increases the joint replenishment opportunity from special 
replenishment, which makes iS  decrease. Thus, higher number of retailers reduces 

( )BS

iS  to be closer to ( )HRT

iS and also increases ( )

0

BSS  to be closer to ( )

0

HRTS . 
Therefore, the cost gap can reduce. For higher /w rK K ratio, 

iS and 
0S are affected in 

a similar pattern.  

Regarding 0 / ih h  ratio, higher ratio influences the warehouse’s stock 
equal to zero. Consequently, the inventory cost at retailer echelon becomes the 
main part of the system. Our mathematical model provided cost expression at 
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retailer echelon near the exact value and heuristic approach could determine the 
minimum solution at retailer echelon. Then, the heuristic approach provided the 
(near) best-known solution. 
 

3.6.2 Identical retailers with non-zero minor ordering cost 

Although the can-order level is not necessary to be equal to iS - 1 
when there is a minor ordering cost, our heuristic approach can be applied into this 
problem in some situations. To identify such situation, we tested on 54 scenarios 
(showed in Table III-1) by mainly varying the minor ordering cost 

i . The value of 
/r iK  ratio are identified following van Eijs [48]’s work. The experimental results are 

depicted in Fig.III-11.  
 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

2 5 10

A
v
e
ra

g
e
 P

e
rc

e
n

ta
g

e
 o

f
 C

o
st

 G
a
p

Kr /i ratio

Simulation

Heurtistic

  
(a) Heuristic’s performance and simulation’s performance when fixing ic = iS - 1 

 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

3.5%

4.0%

4.5%

5.0%

2 5 10

A
v
e
ra

g
e
 P

e
rc

e
n

ta
g

e
 o

f
 C

o
st

 G
a
p

Kr /i ratio

0.2

0.4

0.6

The h0 /hi  ratio

 
(b) The effect of 0 / ih h  ratio 

 
Figure III-11 The effect of /r iK   ratio on the can-order level at the retailers 
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We found that the heuristic approach provided an average cost gap at 
1.64% with standard deviation at 2.03% over various scenarios. Heuristic’s 
performance is associated with two reasons. Firstly, our heuristic assumes ic = iS - 1. 
As showed in Fig.III-11(a). Relating to computer simulation, we compared the best-
known solution with the best solution fixing 

ic = 
iS - 1. Average percentage of cost 

gap provides in simulation’s line. Smaller /r iK  ratio provided larger cost gap in 
simulation’s line, consequently our heuristic also performed in the same way. 
Secondly, the inventory cost at the warehouse is approximate. Cost gap of the 
heuristic’s line is also added from the simulation’s line. 

Considering 0 / ih h  ratio, higher ratio ( 0 / ih h  is 0.4 and 0.6) influences 
the warehouse’s stock equal to zero. Then, the heuristic approach provided the 
(near) best-known solution. On the other hand, higher cost gap at the lower 0 / ih h  
ratio comes from an approximate inventory cost at the warehouse, especially when 
small demand rate and high number of retailers by the reason that our heuristic 
obtains 

0S = 0 whereas the best-known solution is 
0S > 0. The difference of solution 

creates larger cost gap. 

 
3.6.3 Non-identical retailers 

To extend the experiment on non-identical retailers, we aim at 
studying the can-order policy on the retailers’ different demand rates because in 
reality we frequently encounter such situation. In addition, non-identical demands 
can create the different discount opportunities from the shared ordering cost. Hence, 
it is interesting to investigate and this inquiry has not been studied in the existing 
literatures. We tested on two-retailer scenarios and three-retailer scenarios (showed 
in Table III-2). Figure III-12 depicts the cost gap from our heuristic approach, as 
compared to the best-known solutions.  

The heuristic approach provided an average cost gap at 2.18% with 
standard deviation 0.82% for two-retailer scenarios, and an average cost gap at 1.80% 
with standard deviation 0.51% for three-retailer scenarios. At small demand rate ratio 
the heuristic approach performed well because order cycle of each retailer was quite 
not different. So, the retailers’ ordering cost can be more shared with the balancing 
holding costs. However, at the higher demand rate ratio heuristic’s performance does 
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not depend on the different of demand rates (i.e. there is no trend of the cost gap 
following demand rate ratio). 
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(b)     

Figure III-12 Heuristic’s performance under non-identical retailers 

 
3.6.4 Computational times 

For the experiments on identical retailers as shown in Table III-1, 
computational time of our EOQ-Z heuristic was 2.37 seconds on average with a 
standard deviation at 0.78 seconds. EOQ-Z heuristic’s computational times were 
much faster than computer simulation’s computational times. Minimum time saving 
was 297 times and maximum time saving was 8722 times where time saving can be 
calculated by the following equation 
 

( ) ( )

( )
( . .)

SIM HRT

HRT

CPU CPU
Time Saving T S

CPU


  (3.22) 
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( )SIMCPU  and ( )HRTCPU are the computational time of computer simulation and our 
heuristic, respectively. 

We found how much the EOQ-Z heuristic could save computational 
time from computer simulation depended on various relevant factors. High value of 

0S and 
iS affected a huge computational time of computer simulation, since we had 

to search on larger search space. Larger search space was associated with relevant 
factors at high 

wK and 
rK , low 

i , low 
0h  and 

ih , high i , and high n . 
Consequently, a lot of policy combinations were examined. Some examples of 
computational times between EOQ-Z heuristic and computer simulation are shown 
in Table III-7. It demonstrates trend of relevant factors affecting computational times. 

 
Table III-7: Numerical examples for comparison of computational time between the 
EOQ-Z heuristic and computer simulation under identical retailers 

 
All examples fixed 

wK = 100, 
rK = 50, 0 / ih h = 0.2 

Relevant Factors Computational Times (seconds) Time Saving 
(times) i  n  ih  

i  EOQ-Z Simulation 

0.5 2 10 - 1.58 473 297 
10 2 10 - 2.04 1,702 833 
20 2 10 - 2.89 4,131 1,429 
0.5 4 10 - 3.05 946 322 
10 4 10 - 2.92 2,269 757 
20 4 10 - 2.99 6,262 1,742 
0.5 8 10 - 3.22 2,837 881 
10 8 10 - 3.18 5,949 1,871 
20 8 10 - 3.17 7,502 2,364 
20 2 100 - 2.26 836 836 
20 4 100 - 3.02 1,249 1,249 
20 8 100 - 3.18 1,783 1,783 
20 8 10 5 3.24 27,358 8,446 
20 8 10 10 3.35 27,580 8,722 
20 8 10 25 3.79 27,593 7,276 
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Relating to the experiments on non-identical retailers as shown in 
Table III-2, average computational times of our EOQ-Z heuristic were 4.10 seconds 
(standard deviation at 2.87 seconds) for two-retailer scenarios and 37.84 seconds 
(standard deviation at 33.47 seconds) for three-retailer scenarios. Non-identical 
demand rates had a significant effect on computer simulation’s computational time 
since huge combinations of inventory policy parameters were created. For our 
experiments, we spent more than 40 hours to determine the best solution of any 
scenario from computer simulation. As the results, the EOQ-Z heuristic’s 
computational times were much faster than computer simulation’s computational 
times.   

 
3.7 Discussion 

The EOQ-Z heuristic is based on preliminary analysis as shown in section 3.3. 
The important characteristics of inventory policy parameters are 1) two ranges of the 
warehouse’s order-up-to level and 2) the fixed retailer’s can-order level at the 
retailer’s order-up-to level minus one. Such two characteristics can be intuitively 
described as the following contents. 

The warehouse’s order-up-to level 
0S  is relative to the retailers’ order-up-to 

level 
iS . If 0 iS S , the warehouse’s inventory is replenished every time when any 

retailer’s triggers an order, because dispatch quantity is always larger than the 
warehouse’s inventory level. So, the minimum total system-wide cost of this 
condition occurs at 0 0S  . Meanwhile, if 0 iS S , it means that the warehouse 
holds stock for dispatching to the retailers more than one order. Trading off between 
the holding costs and the ordering costs has to be considered to decide how many 
order cycle the warehouse should serve retailer echelon. Then, there is a solution (or 
more than one solution) which 0 0iS S   providing the minimum total system-wide 
cost of this condition. According to these conditions, we can generally divide the 
system into two cases: case I – Cross-docking system, and case II – Stocking system at 
the warehouse. Therefore, our search algorithm can also be divided into two ranges 
(as described in section 3.5.2) to determine the minimum total system-wide cost of 
each case. Finally, we are able to decide for a given situation that the warehouse 
should apply either case I or case II, and then how the appropriate inventory policy 
parameters should be set.       
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Relating to the fixed retailer’s can-order level at 1i ic S  , the retailers’ 
major ordering cost can be most shared if all retailers are included in an order to 
minimize the total system-wide cost [48]. The fixed retailer’s can-order level at 

1i ic S   can create the maximum opportunity of joint replenishment for all 
retailers. Unless all retailers are replenished, the total ordering cost will increase from 
the increased total ordering cost or/and the increased total holding cost. We call this 
concept as “All joint concept” in this dissertation. Then, the holding cost is traded 
off with the shared ordering cost in order to balance order frequency and holding 
stock. In the case of zero minor ordering cost, only the fixed ordering cost occurs 
once an order is triggered. The most sharing such cost among retailers according to 
the all joint concept is preferable. We also applied the all joint concept in the case 
of non-zero minor ordering cost. If the ratio of the major ordering cost to the minor 
ordering cost is not too small, this all joint concept can be utilized as van Eijs [48] 
recommended. Since the minor ordering cost has less effect on the total system-
wide cost as comparing to the major ordering cost. If the minor ordering cost has 
major effect, not every retailer should be included in an order, since less number of 
retailers in an order might reduce the total system-wide cost from the reduced total 
ordering cost. 

From preliminary analysis (section 3.3), our results were absolutely consistent 
with the all joint concept especially in the case of zero minor ordering cost. Whereas 
we tested the case of non-zero minor ordering cost by varying the ratio of the major 
ordering cost to the minor ordering cost from 2 to 10. The results were still 
consistent with the all joint concept. However, it seems that if such ratio is less than 
2 the cost gap might be more than 1.67% on average. This means that the minor 
ordering cost has more effect on the system-wide cost. The fixed can-order level on 
the EOQ-Z heuristic has a very small effect on the cost gap in case of the zero minor 
ordering cost. The cost gap in this case majorly came from the fixed order-up-to 
level 

0S  of Range II. Since we applied EOQ concept to determine the best value of 

0S . However, we found that the cost gap from EOQ was not much (0.96% on 
average with standard deviation at 1.08%). Even though the fixed can-order level on 
the EOQ-Z heuristic influences the cost gap in case of non-zero minor ordering cost, 
we found that the cost gap was only 2.85% on average. It implies that EOQ 
application builds up the cost gap at 1.18% on average. If the ratio of the major 
ordering cost to the minor ordering cost is less than 2, the cost gap might be more 
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than 2.85%. Neither the fixed can-order level nor the fixed order-up-to level at EOQ 
value might be applicable.  

In addition, the fixed can-order level on the EOQ-Z heuristic has a significant 
effect on the cost gap in case of non-identical demand rates among retailers. From 
the best-known solutions, the retailers with higher demand rates attempt to reduce 

ic  under high iS  in order to have less residual stock, while the retailers with lower 
demand rates attempt to increase 

ic  in order to have more joint replenishment 
opportunity. Hence, all the can-order levels have to be traded off between the cost 
of residual stock and the cost of joint replenishment. It seems that the EOQ-Z 
heuristic is not consistent with this phenomenon. In our experiments, we varied 
demand rate ratios from 2 to 40. We found small cost gap (2.01% on average with 
standard deviation at 0.71%) under two-retailer scenarios and three-retailer scenarios. 
Interestingly, the EOQ-Z heuristic attempts to reduce iS  for less residual stock 
instead of reducing 

ic  as the best-known solutions. According to this mechanism, the 
EOQ-Z heuristic can provide the quality solutions.    

Significant finding is an integration of the classical EOQ and the can-order 
policy for two-echelon inventory system. We simplified the EOQ concept to 
determine the warehouse’s order-up-to level 

0S . It relaxed dispatch quantity and 
frequency synchronized with retailer echelon, but utilized total demand rate which is 
a summation of all retailers’ demand rates. From the experimental results, we found 
that  ( )

0

HRTS  was always higher than ( )

0

BSS  where ( )

0

HRTS  denote the best order-up-to 
level at the warehouse calculated by the heuristic approach and ( )

0

BSS  denote the 
best-known order-up-to level at the warehouse determined from the computer 
simulation. It seems that holding cost at the warehouse obtained from the heuristic 
approach is higher than the best-known solution. However, the mechanism of trading 
off between warehouse echelon and retailer echelon occurs to rebalance with EOQ. 
Additionally, the EOQ concept has more performance for higher number of retailers.        
Theoretically, when the number of retailers increases, it also increases the joint 
replenishment opportunity from special replenishment, which makes iS  decrease. 
Thus, higher number of retailers reduces ( )BS

iS  to be closer to ( )HRT

iS and also 
increases ( )

0

BSS  to be closer to ( )

0

HRTS . So, the cost gap is less. Even though we study 
the complicated system, the simple concept of EOQ remains useful and applicable 
for the case of zero lead time. 
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Another crucial finding is a characteristic of the retailer’s order-up-to level iS . 
Trading off between the holding costs and the ordering costs makes the total 
system-wide cost perform as a convex function relative to the value of iS . So, we 
can determine the value of iS  providing the minimum total system-wide cost on 
one-dimensional search. Since our cost formulation is non-derivative function, we 
utilized a search algorithm called “Golden section search” by adapting for integer 
variable. This search algorithm performs better than other search algorithms, such as 
Fibonacci search and Half-interval search.7 Previously, most researches used 
exhaustive search to determine the best solution, therefore large search space and 
long computational time occurred. Using one-dimensional search can reduce search 
space and computational time, especially when high number of non-identical 
retailers. 

Decomposition technique and iterative procedure are the most common 
approach for the can-order policy determination. Decomposition technique helps 
breaking the complicated system (multiple retailers) into smaller part (single retailer). 
Determination of the can-order policy parameters seems easier than consideration of 
the whole parts together. However, this technique should be utilized with iterative 
procedure to consolidate all single retailers consistently. The solution can move to 
the better one and do until the best solution has been found for the whole system. 
From both techniques integrated with one-dimensional search, we can determine 
the best solution easier and faster than other approaches, especially computer 
simulation.   

As the experimental results in various scenarios, the EOQ-Z heuristic provided 
the best solutions at a small average cost gap comparing to the best-known solution. 
Moreover, the heuristic approach’s computational time can be saved from the 
reduced search space as comparing to the computer simulation’s computational 
time. The EOQ-Z heuristic is a satisfactory approach to use for the can-order policy 
setting under OWNR with zero lead time. Note that the zero lead time assumption 

                                                           
7 Golden section search is simpler than Fibonacci search whereas their computational time is not 
different in case of integer variable. Since Fibonacci search needs to know number of searching 
loops before starting search algorithm. Meanwhile number of searching loops between the 
golden section search and Fibonacci search is not different for integer variable. For half-interval 
search, the golden section search is faster than half-interval search because less number of 
variables has to be calculated. 
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can be interpreted and applied in the situation when the ratio of lead time to order 
cycle duration is very small. 
 

3.8 Conclusion 

This phase considered the basic model for the can-order policy on OWNR. 
The system assumed zero lead time to reduce decision variables remaining 0, ,i ic S S . 
Single item consideration raised an interaction among retailers without joint ordering 
decision at the warehouse echelon. We studied the insight of the can-order policy on 
OWNR with three relevant factors, i.e. cost components, demand rates, and number 
of retailers. Then, we used the aforementioned insight to develop two heuristic 
approaches for determining the appropriate inventory policy setting.  

The can-order policy had an effect on all inventory costs. It was connected 
with retailers’ residual stock, dispatch quantity and frequency at retailers, as well as 
replenishment quantity and frequency at the warehouse. All are necessary to be 
traded off to determine the best solution. The can-order policy could save the total 
system-wide cost from an independent ( ,s S ) policy at over 30%. Interestingly, 
application of this policy into such system is considerably valuable. 

From preliminary analysis by computer simulation, the average total system-
wide cost was a unimodal function of the retailer’s order-up-to level iS , when given 

j iS 
 and 0S  were fixed. Decomposition technique was applied to break multiple 

retailers into single retailer, as well as iterative procedure was utilized to successively 
find the best solution. Since our mathematical model was a non-derivative function, 
we utilized the golden section search for finding minimum of a unimodal function. 
This could save our computational time to find the appropriate inventory policy 
setting. The heuristic approach under simplified mathematical model and fixed 

1i ic S   performed very well, especially in case of high /r iK  ratio. Overall, the 
experiments tested on the wide range of data provided the cost gap of heuristic 
approach less than 2% on average. With satisfactory computational time and small 
cost gap, the heuristic approach is well worth using for the can-order policy setting 
under OWNR. 



CHAPTER IV 
THE CAN-ORDER POLICY FOR SINGLE-ITEM TWO-ECHELON INVENTORY 

SYSTEM WITH NON-ZERO LEAD TIME 
  

The 2nd phase (Phase II) of dissertation methodology is addressed in this 
chapter. It is an extension of the basic model describe in previous chapter. Mostly, 
general industries encounter non-zero lead time which is the duration from the 
moment an order is placed to the warehouse (outside supplier) until the moment 
the order is received by the retailers (warehouse). Moreover, lead time can lead the 
system to occur backorder units. Thus, service level constraint is utilized to serve 
end customers with an acceptable service level. Research remains taking single item 
into consideration to study an interaction among retailers without joint ordering 
decision at warehouse echelon. The objective of this phase is to study inventory 
policy characteristics with the conditional relevant factors, as well as to develop the 
heuristic approach consistent with such characteristics provided. More complexity of 
the model is contributed to the research. 

 
4.1 Problem Description  

1st Echelon : 

Warehouse echelon
2nd Echelon:

Retailer echelon

Outside supplier

The Considered System

Warehouse

Retailers …

End Customers

Item

Item

demand demand demand demand

Lead time for warehouse’s replenishment

Lead time for retailers’ replenishment

Target 

service level

Target 

service level

Target 

service level

Target 

service level

 

Figure IV-1 Single-item two-echelon inventory system with non-zero lead time 
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The system considers single commodity on a warehouse and multiple 
retailers. There are warehouse echelon and retailer echelon as described in Chapter 
III.  Let n  denote number of retailers and i  denote the location i  = {0, 1, 2, ..., n } 
where the warehouse is set by i = 0 and the retailer i N , N  = {1, 2, ..., n }. Poisson 
demand is assumed to represent the end customer demands, denoted by i  which 
is a constant mean of customer demand at retailer i .  

In the considered system, ordering process and replenishment process are 
more complicated as comparing to the basic model described in the Chapter III. First 
of all, there are four terms used throughout the dissertation [49]. 

(1) Inventory on-hand is the quantity of physical inventories at each 
location i . 

(2) Backorder is the quantity that supplier8 (predecessor) cannot fill a 
customer (successor)’s order, and then the customer is prepared to wait for some 
time. 

(3) Net inventory level is the quantity representing the inventory status 
which is either available or reserved. Thus, 

 
Net inventory level = Inventory on hand – Backorder 
 

(4) Inventory position is the quantity includes the outstanding orders 
that have not yet arrived and backorders which units have been demanded but not 
yet delivered. Thus, 

 
Inventory position = Inventory on hand + Outstanding order – Backorder 

In Phase I – zero lead time, it is not necessary to identify various terms of 
inventory level because the zero-lead time condition allows the inventory position 
and net inventory level to be the same value. Backorder is not occurred due to 
instant replenishment. Similarly, outstanding order can be fulfilled immediately at 
once without waiting process. Unlike phase I, phase II need to differentiate these four 
terms since ordering process and replenishment process have more complexities. 
Each term is used in different purposes. 
  

                                                           
8 The definition of supplier and customer in the context means about two levels of service: the 
first level – Warehouse and retailer, and the second level – Retailer and end customer. 
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The system employs the can-order ( , ,i i is c S ) policy for ordering process. In 
the ordering process, we use the term of inventory position to determine the 
triggered point. At retailer echelon, the can-order ( , ,i i is c S ) policy is applied into the 
system by coordinated ordering decision among retailers. When the inventory 
position of any retailer reaches its must-order level is , an order is triggered. Then, 
other retailers in the system can also be included by this order if their inventory 
position is at or below its can-order level ic . All the involved retailers’ inventories 
are fulfilled from the warehouse to their own order-up-to level iS . Considering single 
commodity, the warehouse modifies the can-order policy to a traditional ( 0 0,s S ) 
policy by setting its can-order level equals its must-order level. The warehouse 
issues an order when its inventory position reaches its must-order level 0s . Then the 
outside supplier will replenish the warehouse’s inventory to its order-up-to level 0S . 
For the system, we use the nested policy which the warehouse places an order to 
the outside supplier if and only if retailer echelon triggers an order to the warehouse 
[50, 88]. Note that we differentiate between order cycle at retailer echelon and order 
cycle at warehouse echelon by defining “dispatch cycle” and “replenishment cycle” 
for retailer echelon and warehouse echelon, respectively. 

Whenever any retailer (warehouse) triggers an order to the warehouse 
(outside supplier), it needs to wait for some time that order arrives. The waiting time 
is called “lead time”. In the problem, we assume constant lead time for each 
location ( iL ). Relating to centralized control, the supplier can reduce and specify 
more certain lead time, so this assumption seems reasonable. However, the retailer’s 
total lead time ( ,iTL i N ) can be longer than iL  depending on the warehouse’s 
inventories. Meanwhile, the warehouse’s total lead time ( 0TL ) is equal to 0L  due to 
ample stock of the outside supplier. 

According to lead time, it can lead the system to occur backorder units which 
are the quantity that supplier9 (predecessor) cannot fill a customer (successor)’s 
order, and then the customer is prepared to wait for some time. Thus, service level 
constraint is utilized to serve end customers with an acceptable service level. We 
measure such service level in term of “Fill Rate” widely used in industrial practice 
[22, 50]. Fill rate ( FR ) is a quantity-oriented performance measure describing the 

                                                           
9 The definition of supplier and customer in the context means about two levels of service: the 
first level – Warehouse and retailer, and the second level – Retailer and end customer. 
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proportion of total demand within a reference period delivered without delay from 
stock on hand. FR  is measured only at retailer echelon since in a multi-echelon 
system the backorder at warehouse echelon has only a secondary effect on service. 
For this problem, retailer echelon must serve the end customer following a service 
constraint defined as target service level (

ijTSL , i N ). By this constraint, the setting 
of the must-order levels at all locations is related.   

On the assumption about no-splitting order, when the warehouse has 
insufficient inventory on-hand for dispatching all required quantities in an order to 
retailer echelon at once, the retailers have to wait for the next warehouse’s order is 
arrived. It implies that the dispatching for that order is occurred if and only if there is 
sufficient inventory on-hand for all required quantities. Normally, the warehouse 
serve an order follows the First-In First-Out System (FIFO) except if there is an order 
issued to the warehouse and inventory on-hand is enough for this order we allow 
the warehouse to deliver it as special case to reduce the opportunity of stock-out at 
the retailers. This creates higher service level than FIFO. We illustrate the inventory 
process following this statement in Fig.IV-2. Let RkO  represent a triggered order 
number k  by retailer echelon, and RkA  represent an arrived order number k  
fulfilled to retailer echelon. Similarly, let WkO  represent a triggered order number k  
by warehouse echelon, and WkA  represent an arrived order number k  fulfilled to 
warehouse echelon. For retailer echelon, we use net inventory level to represent 
inventory on-hand if net inventory level is positive ( 0 ) and represent backorder if 
net inventory level is negative ( 0 ). On the other hand, for warehouse echelon net 
inventory level cannot be used for inventory on-hand since splitting lot is not 
allowed. The warehouse has to hold such inventory on-hand as soon as the next 
dispatch is occurred. Meanwhile backorders at the warehouse are accumulated from 
net inventory level as usual.  
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Figure IV-2 The inventory process of Phase II’s problem 

The system considers all inventory costs at both echelons. The inventory 
costs are composed of 1) The holding costs at the warehouse and all retailers, 2) The 
major ordering costs for warehouse echelon and retailer echelon, and 3) The minor 
ordering costs for retailer echelon. The holding cost occurs at each location having 
physical stock. The total holding cost over the time period at location i  ( iHC ) can 
be determined from the unit holding cost ( ih ) and the accumulated inventory on-
hand over the time period ( iINV ). The major ordering cost, not depended on the 
number of retailers in the order, is the fixed cost occurring once an order is 
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triggered10. The retailers can share the major ordering cost together for replenishing in 
one round trip. The total major ordering cost over the time period at retailer echelon 
( rMJ ) is the retailers’ major ordering cost per an order ( rK ) multiplied by the 
number of dispatch cycle ( rND ). Similarly, the total major ordering cost over the 
time period at warehouse echelon ( wMJ ) is the multiplication of the warehouse’ 
major ordering cost per an order ( wK ) and the number of replenishment cycle         
( wNR ). The minor ordering cost depending on the number of involved retailers in 
that order is an additional cost of each retailer when replenishing their inventories, 
such as additional transportation cost relating to distance or other charges. The total 
minor ordering cost over the time period ( rMN ) is accumulated from the involved 
retailers in each order multiplied by its minor ordering cost of retailer i  ( i ) over the 
time period. According to the system, target service level and retailers’ lead time 
directly affect the must-order levels at the retailers. Hence, we have to consolidate 
all relevant costs to determine the appropriate inventory policy setting under the 
total system-wide cost minimization.  

  The notations and problem formulation are demonstrated as follows: 
 

n  = Number of retailers in the system 
i  = Index of the location i ; the warehouse i  = 0 and the retailer i N  
T  = The time period considered in the problem (time units) 

0s  = The must-order level at the warehouse (units)  

0S  = The order-up-to level at the warehouse (units) 

is  = The must-order level at retailer i  (units) 

ic  = The can-order level at retailer i  (units) 

iS  = The order-up-to level at retailer i  (units) 

i  = Demand rate of retailer i  (units/time unit) 

0h  =  The unit holding cost per unit time at the warehouse ($/unit – time unit) 

ih  =  The unit holding cost per unit time at retailer i  ($/unit – time unit) 

wK  = The warehouse’s major ordering cost per a replenishment cycle ($/time) 

                                                           
10 Even though the problem enable more than an order to be dispatched together in a trip, the 
major ordering cost is assumed that it occurs once an order is triggered, not once at the 
dispatching time. The problem relating to the shared major ordering cost at the dispatching time 
is in the area of shipment scheduling. It has been studied in one echelon holding stock.  
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rK  = The retailers’ major ordering cost per a dispatch cycle ($/time) 

i  = The minor ordering cost at retailer i  ($) 

0L  =  Lead time for the warehouse (time unit) 

iL  =  Lead time for the retailer i  (time unit)  

iFR   =  Fill rate of the retailer i  

iTSL  =  Target service level of the retailer i  

0 0( , , , , )i i iTC c s S s S  =  The total system-wide cost per unit time ($/time unit) 

iHC  = The total holding cost at location i  over the time T units ($) 

rMJ  = The total major ordering cost at retailer echelon over the time T units ($) 

rMN  = The total minor ordering cost at retailer echelon over the time T units ($) 

wMJ  = The total major ordering cost at warehouse echelon over the time 
   T units ($) 

iINV  = The accumulated inventory on-hand over time period at location i   
   (unit – time unit) 

iBO   = The accumulated backorder unit over time period at location i  (units) 

rND   = The total number of dispatch cycle over the time T units (times) 

wNR   = The total number of replenishment cycle over the time T units (times) 

( , )i j   = An indicator which equals 1 when retailer i  is included in the dispatch cycle 
j  and equals 0 otherwise 

 
Objective function: 

Minimize  0

0 0( , , , , )

n

i r r w

i

i i i

HC MJ MN MJ

TC c s S s S
T



 
   

 


 (4.1) 

 
where  i i iHC h INV   (4.2) 

 
 r r rMJ K ND   (4.3) 

 

 ( , )

1 1

rND n

r i j i

j i

MN  
 

  (4.4) 

 
 w w wMJ K NR   (4.5) 
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Constraint 1 i
i

i

BO
FR

T
   (4.6) 

 
 i iFR TSL  (4.7) 

The objective function of the problem is to minimize the total system-wide 
cost per unit time. The total system-wide cost per unit time can be a function of five 
decision variables: 0 0, , , ,i i ic s S s S . This problem has more complicated than the 
problem in Phase I by the reason that it is a constraint problem with demand 
uncertainty, variation of retailers’ order quantity, and order-time synchronization at 
all locations.  

 
4.2 Research Methodology  

According to the complication of the problem, we primarily study the can-
order policy on OWNR by using computer simulation as utilized in Phase I. Computer 
simulation can represent the inventory process by inputting relevant parameters. The 
preliminary study leads us to develop a heuristic approach. We also determine the 
best-known solution used to measure the proposed heuristic approach’s 
performance from the simulation. 

 
4.2.1 Computer simulation 

The computer algorithm representing the inventory process is 
illustrated in Fig.IV-3. The inputs for simulating the system can be divided into three 
groups: decision variables, relevant factors, and experiment setting. We use the same 
experiment setting as described in Chapter III (Section 3.2.1), and then only two 
groups are explained as follows:  
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Input parameters

Relevant Factors:

n = Number of retailers

λi = Demand rate at retailer i

h0 = Unit holding cost at the warehouse

hi = Unit holding cost at retailer i 

Kw = Warehouse’s major ordering cost

Kr = Retailers’ major ordering cost 

кi = Minor ordering cost at retailer i

L0 = Lead time for the warehouse
Li = Lead time for retailer i
TSLi = Targer service level at retailer i

Computer algorithm

START

Set Dispatch cycle j = 1

Replenishment cycle r = 1
Inventory on-hand at warehouse (OH0) = I0(0)
Inventory on-hand at retailer i (OHi) = Ii(0)
Inventory position at warehouse (IP0) = I0(0)
Inventory position at retailer i (IPi) = Ii(0)
Net inventory level at warehouse (NET0) = I0(0)
Net inventory level at retailer i (NETi) = Ii(0)

Output section

A report of inventory costs and 

transactions

No Is an event 
arrival time < T ?

Yes

Generate inter-arrival time of demands (di) and sort 

all demands by arrival time

Check which kind of events is arrived:
Event(A) Demand arrival at retailer echelon 
Event(B) Arrival of dispatch order to retailer echelon
Event(C) Arrival of replenishment order to 
warehouse echelon

For retailer i who own this 
demand, calculate
(1) IPi = IPi – di

(2) OHi = min(OHi – di, 0)
(3) NETi = NETi – di

IPi ≤ si ?

Event(A)

If OHi > 0 counted for INVi 
otherwise not counted
If NETi < 0 counted for BOi 
otherwise not counted

Yes

No

Record ordering time and 
assign j = j + 1

Order Quantity (OQi) 
= Si – IPi

Set IPi = Si 

For retailer  j ≠ i
OQj = Sj – IPj

IPj = Sj

IPj ≤ cj ?

No

Yes

Event(B)

For retailer i included in this order, 
calculate
(1) OHi = OHi + On Order (ORi)
(2) NETi = NETi + ORi

Collect total dispatch 

quantity (TDQ)

OQj = 0

For the warehouse

Calculate
(1) IP0 = IP0 – TDQ
(2) OH0 = min(OH0 – TOQ, 0)
(3) NET0 = NET0 – TOQ

Identification of arrival time of dispatch order (AR)[used information from the warehouse]

Yes

No

AR = ordering time 
+ L0 + Li

NET0 < TDQ ?

Yes

No
AR = ordering time + Li

OH0 < TDQ ?
NoAR = latest arrival of 

replenishment order at 
warehouse + Li

Special order
AR = ordering time + Li

and rearranging AR of 
previous orders according to 

this special order

Yes

Record AR 

If OH0 > 0 counted for INV0 
otherwise not counted
If NET0 < 0 counted for BO0 
otherwise not counted

IP0 ≤ s0 ?

Yes

No

Calculate inventory costs

Record ordering time and 
set  r = r + 1

OQ0 = S0 – IP0

IP0 = S0 

Record arrival time of 
replenishment order

Event(C)

For the warehouse, calculate 
(1) OH0 = OH0 + OR0

(2) NET0 = NET0 + OR0

Cont.

Cont.

Calculate total 
system-wide 

cost

END

IP0 < TDQ ?

Decision variables:

Warehouse   s0  = [min,max]

  S0 = [min,max]

Retailer i   si  = [min,max] 

  ci  = [min,max]

  Si = [min,max]

Experiment setting:

I0(0) = Initial inventory level at the  

           warehouse; I0(0) = 0

Ii(0) = Initial inventory level at retailer i; 

           Ii(0) = 0

T = Time period; T = 10,000

Seed number = [0, 99] 

For each retailer i,

For retailer  j ≠ i

 
 

Figure IV-3 The computer algorithm for simulation of Phase II 
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1) Decision variables ( 0 0, , , ,i i ic s S s S ): Each variable is inputted as a 
range of minimum and maximum values. A combination of ( 0 0, , , ,i i ic s S s S ) is a 
solution providing a value of the total system-wide cost and its transaction. The 
transaction includes number of dispatch cycles, number of replenishment cycles, fill 
rate at each location, number of replenishment event for various situations11.  

2) Relevant factors: We consider five factors. Three factors are cost 
parameters, demand rates, and number of retailers already experimented in Phase I, 
as well as additional two factors are lead time and target service level. We set a 
combination of relevant factors to a scenario containing different solutions. The best 
solution providing the minimum total system-wide cost is selected for each scenario.  

For the output section, we obtain a report of the inventory costs and 
its transaction. In consequence, we can find the minimum total system-wide cost for 
each range of decision variables inputted under a given scenario. 

 
4.2.2 The best solution finding 

This process has already been introduced in Chapter III (Section 3.2.2). 
So, we additionally elaborate some important features which are different from 
previous content. The best solution finding is composed of two steps: Input 
parameters and output validation. In this section we focus on the input parameters 
since there are additional two variables from Phase I. It makes the finding process 
more complicated. Meanwhile the output validation can follow in Chapter III (Section 
3.2.2.2). It is a general procedure used for validation process throughout the 
dissertation. 

With regard to the step of input parameters, we use a replication 
method for running simulation, so we randomly select a seed number between [0, 
99] for first replication. Decision variables are inputted as a range of minimum and 
maximum values. In the experiment, we set the width of range are 5 units for 
                                                           
11 Various situations are identified as follows: 
1) Situation that warehouse has sufficient stock to dispatch all lot and has not reached the 
reorder point,  
2) Situation that warehouse has sufficient stock to dispatch all lot and also reached the reorder 
point, 
3) Situation that warehouse has insufficient stock to dispatch all lot, 
4) Situation that warehouse has no sufficient stock to dispatch all lot but enough for some 
retailers included in the order. 
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0, , ,i i is c S s  and 20 units for 0S . Since over 5 units of 0, , ,i i is c S s  creates multiplied 
combinations spending more running time. Whereas 0S  range is larger because 0S  
linearly creates combinations. The first range can be set from the initial point of 

0 0, , ,i is S s S  calculated by 
 

1

( ) ( , )

min :1
2 ( )

i

i i i
initial y s
i i i

i r i i

i N

y s Pois L y

s s TSL
K h



 



 



 
  

   
 
  




 (4.8) 
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0 0

( ) ( , )
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:1 max( )
2
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y s

i

w

y s Pois L y
s

s TSL
K h







 

 
 

   
 
 

  (4.9) 

 
where ( , )Pois a b  is the probability density function of Poisson demand with 
parameter ( ,a b ) (using Equation (3.16) to calculate this term). 

Then, 0,iS S  can be determined by 
0 0 02 w i

i N

S s K h


    

and 2i i r i iS s K h  due to the concept of economic order quantity.  

The next step is the process of moving the ranges until the 
solution seems to be worse continuously. The 0 0,s S  ranges are moved upward and 
downward by fixing the range at all retailers. Later, we determine the 0, ,i is c S  ranges 
at the retailer i  by keeping the same range of 0 0,s S  and the , ,j j js c S  ranges at the 
retailer j i . All ranges are changed repeatedly. We select the best solution 
providing the minimized total system-wide cost for the first replication. Then, the 
validation process is utilized to get the best-known solution. 

 
4.3 Preliminary Analysis  

 In the preliminary study, our experiments were conducted to study the 
relationship between relevant factors on 87 scenarios as showed in Table IV-1.   
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Table IV-1: Numerical input for preliminary experiment under identical retailers  

 
The asterisk (*) in the table means that parameter is varied. 

Scenario 
No. 

Fixed Parameters 
Varied Parameters 

wK  rK  i  0h  ih  i  n  iL  

1-45 100 50 0 * 10 10 2 0.2 
0 ih h {0.3, 0.5, 0.7} 

0 iL L {0.25, 0.5, 1, 2, 4} 

iTSL {0.90, 0.95, 0.99} 

46-75 100 50 0 * 10 10 2 1 
0 ih h {0.3, 0.5} 

0 iL L {0.25, 0.5, 1, 2, 4} 

iTSL {0.90, 0.95, 0.99} 

76-87 100 50 25 3 10 10 2 * 
iL {2, 0.1} 

0 iL L { 0.5,  4} 

iTSL {0.90, 0.95, 0.99} 
 

We primarily analyze the experiments on identical retailers to study the 
effect of the relevant factors on the can-order policy, since the case of non-identical 
retailers is very difficult to determine the best-known solution. Relating to the 
experimental design, the tested problem is generated according to Phase I’s results 
which already studied insight of some relevant factors. From the Phase I, we 
recognize that the 

0 ih h ratio is one of the most important factors because it affects 
a decision whether holding stock at the warehouse should be occurred or not. 
Certainly, stock held at the warehouse bears upon retailer’s lead time and service 
level. Therefore, the experiment is designed by mainly considering the following 
factors: 

0 ih h ratio, iL ,  0 iL L ratio, and iTSL . 

According to the minor ordering cost, Phase I indicated that the small ratio of 
the major ordering cost and the minor ordering cost has an important effect on the 
coordinated ordering decision. Thus, we extend this finding into the experiment with 
low 

0 ih h ratio to study a change of decision variables (i.e. at high 
0 ih h ratio 

decision variables 0 0,s S  are fixed at -1 and 0, respectively, so we cannot clearly 
investigate the policy setting).  

The significant findings are demonstrated as follows: 
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4.3.1 The effect of the can-order policy 

From the general concept of the can-order policy, the major and 
minor ordering cost and the holding cost are traded off. The can-order level ic  
affects reduced major ordering costs, varied minor ordering costs, and increased 
holding cost from special replenishment. However, ic  must consider target service 
level since cost saving can be reduced as much as the constraint is unmet. Hence, it 
is important to find a balance among all inventory costs with a service constraint. 

The experiment shows that ic  can help the system sharing the 
ordering cost among retailers. The increase of ic  reduces the total system-wide cost 
until a value of ic , that cost is then increased when ic  is large. The main factors 
affecting such results are    

1) Target service level ( iTSL )  
The decrease of ic  creates a possibility of reducing the 

retailer’s fill rate ( iFR ) since the average remnant inventory level decreases. The 
average remnant inventory level is the stock left when normal replenishment occurs 
as showed in Fig.IV-4 (referring to Fig.IV-2). It implies that the average reorder level 
occurs at the average remnant inventory level [46]. Therefore, the decrease of the 
average remnant inventory level increases the opportunity of stock-out influencing to 
reduce iFR . Figure IV-5 also illustrates this statement. According to the effect on 
total system-wide cost, the best-known solution decides to reduce ic  to obtain 
smallest difference between iFR and iTSL  ( i iFR TSL ) providing lower total 
system-wide cost. 

2) Minor ordering cost ( i ):  
If i is large enough when comparing with the major ordering 

cost rK , the increase of ic  reduces the retailers’ total minor ordering cost until a 
value of ic , that cost is then increased when ic  is large, by the reason that too 
many retailers are included in an order. The ic  value affects number of retailers 
jointly replenished in the order, so it influences all relevant inventory costs in the 
system. 
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Figure IV-4 The effect of the can-order policy on target service level 
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Figure IV-5 The effect of the can-order policy on target service level 
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As these results, the can-order policy has an effect on the inventory 
costs at both echelons. It is related to the average remnant inventory level directly 
associated with retailers’ residual stock, as well as dispatch quantity and frequency 
at retailers. In addition, inventory process at retailer echelon also affect to the 
warehouse echelon in terms of replenishment quantity and frequency. All are 
necessary to be traded off with concerning a service constraint to determine the best 
solution. An interesting issue is that the average reorder level occurs at the average 
remnant inventory level, therefore  ( )CAN

is  can be lower than ( )SI

is , where ( )CAN

is  and 
( )SI

is are the must-order level at retailer i  of the can-order policy and the SI12 case, 
respectively. 

 
4.3.2 The best-known solutions 

4.3.2.1 The inventory policies at the warehouse  

For a given 0S , we can find the best solution of ( 0, , ,i i is c S s ) 
providing the minimum average total system-wide cost as illustrated in Fig.IV-6. There 
are at least two local minimum solutions located into two ranges: Range I – one 
solution occurs at 0S = 0 and Range II – at least one solution occurs at 0S > 0. For the 
Range I, 0S  starts from zero and then increases to reach the last value before the 
cost line turns to resemble a convex function. For the Range II, it is defined after that 
last value to positive infinity. The best-known solution (global minimum solution) 
definitely occurs in either Range I or Range II. As a result, this phase provides two 
ranges as Phase I. 

Relevant factors have an effect on determination of the best-
known solution occurring in either range. For Range I, zero stock at the warehouse 
provides the lowest total system-wide cost since the increasing 0S  creates the 
excessive stock which should not be kept to wait for the next dispatch cycle. Since 
the warehouse’s must-order level is always reached whenever retailer echelon 
triggers an order. For Range II, a trade-off between the increasing holding costs and 
the reduced ordering costs when increasing 0S  is occurred as found in the economic 

                                                           
12 SI case called in the dissertation is an independent ( ,s S ) policy. SI case meets stochastic 
demand and independent replenishment where each retailer is dispatched individually, so the 
major ordering cost of each retailer occurs without sharing. 
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order quantity. However, this trade-off is restricted by a service constraint which 
provides the cost line in Fig.IV-6 not to be smooth as the curve found in Phase I. 
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Figure IV-6 Two ranges of the best-known solution 

At high 0 / ih h  ratio, we can set 0S = 0 since increasing stock 
creates more total system-wide cost (i.e. the increased holding costs is larger than 
the reduced ordering costs). However, there is a possibility that the best-known 
solution can move from Range I to Range II when relevant factor is changed, such as 
smaller 0 / ih h  ratio, higher 0L , and higher iTSL .  At higher 0L , and higher iTSL , they 
force the warehouse to hold more stocks to prevent the opportunity of stock-out. 

Considering the value of 0s , it can be located in range 
max

0[0, ]s  where max

0s  is the maximum value of the must-order level at the 
warehouse to serve end customers’ demand. Therefore, iL  is included to allow the 
warehouse having sufficient stock for end customers. max

0s  can be determined by 

Equation (4.10). Note that 
0

1

n

i

i

 


 with Poisson distribution.  
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0 0 max( )iTL L L   (4.11) 
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4.3.2.2 The inventory policies at the retailers 

From the experiment (87 scenarios), a result demonstrates 
that 21.84% of all scenarios (19 scenarios) the value 

ic  = 
iS  - 1, where 

ic and 
iS 

denote the optimal can-order level and the optimal order-up-to level of retailer i . 
This result is different from Phase I due largely to target service level and the ratio 
between the major ordering cost and the minor ordering cost as mentioned in 
Section 4.3.1. However, the result indicates that *

( 1)iS
TC


 is greater than TC 0.15% 

on average with a standard deviation 0.34% where TC is the optimal average total 
system-wide cost and *

( 1)iS
TC


 is the minimum average total system-wide cost of the 

solution at 
ic = 

iS - 1. Therefore, the setting of 
ic = 

iS - 1 is still interesting for 
Phase II. The value of is   is strongly related to  iL  and iTSL , as well as decision 
variables at the warehouse 0 0,s S . We deal with the value of is  in more detail in the 
Section 4.3.3. Additionally, there is no obvious pattern for iS  because it depends on 
other decision variables. However, we can find some relationship between decision 
variables which will be explained in the Section 4.3.4. 

 
4.3.3 Relationship between relevant factors 

In this section, we consider the relationship between 
0 ih h ratio, iL , 

0 iL L ratio, and iTSL . The result demonstrates that these factors mainly affect the 
value of 0 0, ,is s S  as depicted in Fig.IV-7.  

Comparing Fig.IV-7(a) and Fig.IV-7(b), high value of iL  forces 0s  to 
increase even in low 0 iL L  ratio. Meanwhile, is  increases following higher iL  to 
maintain service fill rate as targeted but it has to balance with increasing 0s  as well. 
At low value of iL , the value of 0s  is close to zero and the warehouse keep a stock 
with the order-up-to at 0 0S  . This stock compensates the fill rate from 0 0s  . 

In case of Fig.IV-7(b) and Fig.IV-7(c), iTSL  affects not only at the 
retailer echelon but also at the warehouse echelon. Higher iTSL  is able to increase 
the value of 0s  because it makes less holding costs than an increase of only 0s  due 
to the 0 / ih h  ratio. 
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     (a) 0 / ih h = 0.3, iL = 0.2, iTSL = 0.95    (b) 0 / ih h = 0.3, iL = 1, iTSL = 0.95 
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 (c) 0 / ih h = 0.3, iL = 1, iTSL = 0.99    (d) 0 / ih h = 0.5, iL = 1, iTSL = 0.95 
 

Figure IV-7 Relationship between relevant factors 

 

Considering 0 / ih h  ratio in Fig.IV-7(c) and Fig.IV-7(d), the 0 / ih h  ratio 
largely influences the decision at the warehouse. When higher 0 / ih h  ratio, the 
warehouse should not keep stock in order to obtain the minimum total system-wide 
cost (i.e. 0S = 0 and 0s = -1). Thus, increasing is  is executed to maintain service fill 
rate as targeted. The best-known solution can be moved from Range I to Range II 
when lower 0 / ih h  ratio (as stated in the Section 4.3.2.1). 

 
4.3.4 Relationship between decision variables 

All decision variables are associated with each other, so it is hard to 
analyze their relationship obviously. In deterministic model, the major ordering cost 
and the holding cost are traded off to obtain economical order quantity as a classic 
EOQ. Thus, we consider k k kS s    to represent location k  including the 
warehouse and the retailers; for the warehouse 0 0 0S s    and for the retailers 

is0S0s
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,i i iS s i N    . We analyze each decision variable by either fixing other variables 
or varying some needed variables. The results show various graphs as depicted in 
Fig.IV-8. Each point in the graph is the best solution on a given value on the 
horizontal axis. We can draw up a curve across most points in each graph. According 
to these curves, it is interesting to be a guideline for developing the heuristic 
approach.  
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(c) Varied 0s on which the best solution of ( 0, ,i is S S ) is provided 
 

Figure IV-8 Relationship between decision variables 

Due to the laborious process to determine the best-known solutions from 
computer simulation, an application of heuristic approach is more interesting to 
systematically reduce the search space for determining the appropriate inventory 
policy parameters. A lot of existing literatures on the can-order policy used heuristics 
to accomplish their studies. Section 4.4 and 4.5 will proposed our heuristic 
approaches with their performances and limitations. 
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4.4 Heuristic III – Joint Replenishment Model for Single Item and Non-Zero Lead 
Time 

 The retailers’ major ordering cost can be most shared if all retailers are 
included in an order to minimize total system-wide cost as we discussed in section 
3.7. Preliminary analysis also provided the results as this rationale. Therefore, to 
develop heuristic approach for the can-order policy we assume that all retailers are 
replenished together in an order to minimize the major ordering cost per retailers.  
Then, we can fix the retailer’s can-order level at 1i ic S   to create the maximum 
opportunity of joint replenishment for all retailers. By the fixed retailer’s can-order 
level, we can focus on determining other decision variables 0 0( , , , )i is S s S .     

  
4.4.1 Approximate mathematical model with non-zero lead time (MMNZ) 

From Phase I, we obtained two heuristics abbreviated to DJ and EOQ-
Z (expressed in Section 3.4 and Section 3.5, respectively). EOQ-Z provides more 
efficient approach and preferable results than DJ does, so we extend EOQ-Z 
approach into non-zero lead time system. 

4.4.1.1 Mathematical model 

Our purpose of developing heuristic approach is to provide an 
appropriate inventory policy ( 0, ,i ic S S ). The total system-wide cost of mathematical 
model is able to be approximated as long as the acceptable solution is provided. 
Hence, relating to the preliminary analysis our mathematical model utilizes the can-
order level at ic = iS - 1. This fixed value of ic  can simplify the can-order policy into 
the regenerative process [22, 48, 127]. Each dispatch cycle is independently 
generated at the same starting point, which is the order-up-to level iS  for all 
retailers. In consequence, the cost model can be formulated for a given ( 0 0, , ,i is S s S ) 
policy. 

We simplify this part by assuming the warehouse’s inventory 
level is consumed  continuously following total Poisson demand cumulated from all 
retailers, 

0 i

i N

 


 . Some equations in EOQ-Z (from the 1st phase) can be utilized. 

The cost model can be used Equation (3.10) for a given ( 0 0, , ,i is S s S ) policy, and also 
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added the service constraint to the model. Note that Equation (4.7) can be reused. 
Thus, 
 

  
0

0 0

1 ( ) ) [ ]
[ ]

( , , , )
[ ] [ ]

r i i i

i N w
i i

K S E H
K E H

TC s S s S
E DT E RT




   


 


 (4.12) 

 

Constraint [ ]
1

[ ]

i
i

i

E SH
FR

E Q
   (4.13) 

 
 i iFR TSL  (4.7) 

 
0 0( , , , )i iTC s S s S  =  The long-run average total system-wide cost per unit time 

    ($/unit time) 
i  = Index of the location i ; the warehouse i  = 0 and the retailer i N  

0s  = The must-order level at the warehouse (units) 

is  = The must-order level at retailer i  (units) 

0S  = The order-up-to level at the warehouse (units) 

iS  = The order-up-to level at retailer i  (units) 

i  = Demand rate of retailer i  (units/time unit) 

0h  =  The unit holding cost per unit time at the warehouse  
  ($/unit – time unit) 

ih  =  The unit holding cost per unit time at retailer i  ($/unit – time unit) 

wK  = The warehouse’s major ordering cost per a replenishment  
  cycle ($/time) 

rK  = The retailers’ major ordering cost per a dispatch cycle ($/time) 

i  = The minor ordering cost at retailer i  ($) 

0L  =  Lead time for the warehouse (time unit) 

iL  =  Lead time for the retailer i  (time unit)  

iTSL  =  Target service level at the retailer i  
[ ]E WT  =  The expected waiting time at retailer echelon when the warehouse is 

unable to dispatch according to the committed lead time (time unit)  
[ ]iE L  =  The expected total lead time for retailer i  (time unit) 
( )iS   = The probability that no demand arrives for retailer i  during  

  a dispatch cycle 
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[ ]iE H  = The expected holding cost of retailer i  during a dispatch cycle ($) 

0[ ]E H  = The expected holding cost of the warehouse during  
  a replenishment cycle ($) 

[ ]E DT  = The expected length of a dispatch cycle (unit time) 
[ ]E RT  = The expected length of a replenishment cycle (unit time) 

iFR  =  Long run fraction of demand satisfied from stock on-hand of  
  the retailer i .  

[ ]iE SH  = The expected number of shortage per dispatch cycle of the retailer i   
  (units/time unit) 

0[ ]E SH  = The expected number of shortage per replenishment cycle of  
   the warehouse (units/time unit) 

[ ]iE Q  = The expected dispatch quantity per dispatch cycle of the retailer i   
  (units/time unit) 

Retailer Echelon 

The model is developed according to the independent 
Poisson process of demands for individual retailers, so inter-arrival times of demands 
are exponentially distributed. Thus, time until retailer i  triggers an order to the 
warehouse ( iDT ) follows Erlang distribution with parameters i  and i . We can 
determine related probability function of iDT  and DT , where DT  is time until any 
retailer triggers an order to the warehouse, by using Equation (3.12) and  (3.13). Then, 
we are able to calculate the expected length of a dispatch cycle, [ ]E DT , by using 
Equation (3.14). 

The expected holding cost of retailer i  during a dispatch 
cycle is associated with the retailer’s inventory on hand at the beginning and at the 
end of the dispatch cycle. At the beginning of the cycle, setting ic = iS - 1 makes all 
retailers’ inventory on hand equal iS y  where y  is total demands during lead 
time. At the end of the cycle, the inventory on hand depends on the residual stock. 
Thus, we define ( )i x  as the probability that at time DT  the residual stock of 
retailer i  equals x . There are two cases for determining ( )i x . The first case is when 
the residual stock level of retailer i  is equal to zero; only retailer i  triggers an order. 
The second case is when the residual stock level of retailer i  is positive. So, an order 
is triggered by retailer j i . From EOQ-Z, the value of ( )i x can be calculated by 
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the following expressions reused Equation (3.16) and (3.17) for ( , )Pois a b  and 
( ) ( )if t , respectively: 

 

 
0

( )

0

( ) 1 ( ) 0,

( )

( , ) ( ) 0

i j

j it

i

i

i i i

t

f t F t dt if x

x

Pois t x f t dt if x












 


  


    








 (4.14) 

 

Since any retailer’s order has to wait until the warehouse’s 
inventory on-hand is available. In case of sufficient stock on-hand at the warehouse, 
the retailer’s replenishment just depends on its lead time iL . On the other hand, if 
the warehouse has not enough stock on-hand, the retailer has to wait longer. The 
expected waiting time can be calculated by using Little’s formula [50, 128]. However, 
in case of special order which does not follow FIFO as explained in Section 4.1 the 
waiting time might be shorter than FIFO. Therefore, we define the proportion of 
waiting time as comparing to FIFO case ( p ). This value is in a range of  [0, 1]; it is 
defaulted at 1. We can determine the expected total lead time for retailer i  by the 
following expressions. 
 

0

0

[ ]
[ ]FIFO E SH

E WT


  (4.15) 

 
[ ] [ ]FIFOE WT pE WT  (4.16) 

 
[ ] [ ]i iE L L E WT   (4.17) 

 

The expected holding cost of retailer i  during a dispatch cycle is then given by 
 

0 0 0

[ ] ( [ ], ) ( ) ( , , ) ( )
i

i i i i i i

y x t

E H Pois E L y x H S y s x y t f t dt


  

   
          
    (4.18) 
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2

( )
0, 0

2

( , , ) 0, 0
2( )
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i

i
i
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if z q
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H z q t if z q

z q

otherwise
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 




  






 (4.19) 

where ( , , )iH z q t  is the expected total holding cost for retailer i  during a dispatch 
cycle of t periods given that the inventory on hand equals z  at the beginning and 
equals q  at the end of the cycle. 

According to Equation (3.14), (4.18) and (4.19), we can reduce the expression to 
determine the expected holding cost of retailer i  per unit time by    
 

 
0 0

[ ]
( [ ], ) ( ) ( , )

[ ]

i

i
i i i i i

y x

E H
Pois E L y x H S y s x y

E DT
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
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 
     
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   (4.20) 
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
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 (4.21) 

To determine long run fill rate at retailer i , the expected 
number of shortage per dispatch cycle of the retailer i , [ ]iE SH  , and the expected 
dispatch quantity per dispatch cycle of retailer i , [ ]iE Q , are given by 

 

0

[ ] ( ) ( ) ( [ ], )
i

i

i i i i

x y s x

E SH x y s x Pois E L y
 

  

  
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 
0

[ ] ( )( )
i

i i

x

E Q x x




     (4.23) 

Warehouse Echelon 

We assume that the warehouse’s inventory level is 
consumed continuously by all retailers’ Poisson demands with rate 0 . Inter-arrival 
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times of demands are exponentially distributed, and then the distribution of time 
until warehouse triggers an order to an outside supplier is Erlang, similar to the 
retailer echelon. Let RT  denote time until warehouse triggers an order to an outside 
supplier. The warehouse will trigger an order if the total demand from time 0 equals 

0 , so the distribution of RT  is Erlang with parameters 0  and 0 . The expected 
length of a replenishment cycle is mean of Erlang distribution. Thus, 0 0[ ]E RT   . 

Similar to retailer echelon, we determine the expected 
holding cost of the warehouse per unit time by 
 

0 0 0 0

0

[ ]
( , ) ( , )

[ ]

i
i

y

E H
Pois L y H S y s y

E RT






    (4.24) 
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 (4.25) 

The expected number of shortage per dispatch cycle of the 
warehouse is then given by 

 

0 0

1

[ ] ( ) ( , )
i

i i

y s

E SH y s Pois L y


 

   (4.26) 

Consequently, we can figure out the long-run average total 
system-wide cost per unit time for a given ( 0 0, , ,i is S s S ) policy. Later, the algorithm of 
heuristic approach is demonstrated to determine the appropriate decision variables 
by using the cost model mentioned above. 
 

4.4.1.2 Heuristic algorithm 

We use the concept of the EOQ-Z heuristic to develop 
heuristic algorithm for non-zero lead time consideration by the reason that the 
preliminary study provides the similar results. Therefore, the design of heuristic 
approach (named MMNZ for Phase II) is based on the following concept. 
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Table IV-2: Additional concept for developing the MMNZ heuristic as comparing to 
the EOQ-Z heuristic 

 
Concept of the EOQ-Z heuristic (Phase I) Concept of the MMNZ heuristic (Phase II) 
1) The value of 

0S is identified to 
0S = 0 

for Range I and 0 0 02 wS K h for 
Range II. 

1) Regarding at least two local minimum 
solutions located into two ranges, 
procedure for determining the value of 

0S  can be divided into such ranges. For 
Range I, the value of 

0S is set at 0 and 
then 

0s  is also assigned to -1. For Range 
II, we apply a search algorithm to 
determine the value of 

0S  which is more 
than 0. 

2) To develop initial solution at retailer 
echelon, deterministic model is used to 
find economical joint ordering time when 
every retailer is replenished in an order. 

2) We use the same concept as EOQ-Z to 
find out initial 0  and i  

3) Decomposition technique and iterative 
procedure are applied to break multiple 
locations into single location and to 
recurrently find the minimum solution as 
far as the best solution has been found. 

3) We use the same concept as EOQ-Z to 
break multiple locations into single 
location and to recurrently determine 
the local minimum 0 0( , , , )i iTC s S s S at 
the given 

j i  and 
0 . 

4) The concept of the golden section 
search is applied to determine the 
minimum value of iS . 

4) We apply the concept of the golden 
section search to determine the (near) 
minimum value of 0 , i , and 0s . 

Hence, the heuristic approach is outlined in the following 
algorithm illustrated in Fig.IV-9. 
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START

Step 1: 

Determine initial Solution (Δ0,Δi)

Step 2: 

Determine the local optimal 

solution for range R1

Step 2

Step 2.1: 

- Calculate TCinitialR1(s0,S0,si,Si) 

by setting s0=-1, S0 =0 and E[RT] = E[DT]

- Set TCminR1(s0,S0,si,Si) = TCinitialR1(s0,S0,si,Si)

Step 4: 

Select the best solution at

TCmin(s0,S0,si,Si) = 

min{TCminR1(s0,S0,si,Si), 

TCminR2(s0,S0,si,Si)} 

Output: 

Δ0,Δi

Output: 

TCminR1(s0,S0,si,Si)

END

Step 2.2: Iterative procedure for determining 

the local optimal solution (s0,S0,si,Si) 

Procedure 1

Algorithm-Procedure 

relationship

Main algorithm

Procedure 2

Procedure 3 

by skipping Δ0 

determination

Step 3: 

Determine the local optimal 

solution for range R2

Output: 

TCminR2(s0,S0,si,Si)

Step 3

Step 3.1: Set initial s0

Step 3.3: Iterative procedure for determining 

the local optimal solution (s0,S0,si,Si) 

Procedure 4

Procedure 3

Step 3.2: 

- Calculate TCinitialR2(s0,S0,si,Si) by E[RT] = Δ0 / λ0

- Set TCminR2(s0,S0,si,Si) = TCinitialR2(s0,S0,si,Si)
Procedure 2

Procedure 4

Step 3.4: 

- Search next s0 and step back to step 3.3 

- Update TCminR2(s0,S0,si,Si) on given s0 if the better 

solution has been found

- Stop if the best s0 has been found according to 

terminate condition

 

Figure IV-9 The algorithm of the heuristic approach – MMNZ 

 

Procedure 1 – Determination of the initial solution 0  and i   

For the initial value of 0 ,  we simply determine by using 
EOQ formula, then 0 0 02 wK h  .  

For the initial value of i , we calculate joint dispatching time 
( dT ) by deterministic model according to the following expression. 
 

2( )w i

i N
d

i i

i N

K

T
h














 (4.27) 

Later, the initial i  for retailer i  is determined by adapting 
Love [46]’s method. It is selecting i  which provides the minimum gap between two 
probabilities: 1) the probability that demand for retailer i  during time dT  is less than 
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or equal to such i  and 2) the probability that an order is triggered by any retailer 
(i.e. including normal replenishment and special replenishment). Thus, 
 

( , 1) ( , )
1 1

1

i d i d

i

n n
u if Pois T u Pois T u

n n

u Otherwise

 
       

           
          

  

 (4.28) 

 
The initial i  from Equation (4.28) is closer to the optimal solution than i  obtained 
from i i dT   . 

Procedure 2 – Determination of retailer’s must-order level is   

According to a service constraint, the value of is  must be 
high enough to serve target service level ( iTSL ).  Whenever a change of 0  or i  is 
occurred, this procedure is needed to find out updated is . Therefore, the procedure 
is also used together with Procedure 3. It can be divided into 4 sub-procedures as 
follows:  

Procedure 2.1: Determine the initial value of is  for retailer i  and repeat until all 
retailers has been done. 
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i
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 

  (4.29) 

 

Start at retailer i  = 1 and follow operations below, then repeat until all retailers 
have been done. 

Procedure 2.2: Calculate iFR  for each retailer by using Equation (4.13) and check the 
difference between iFR  and iTSL  with the tolerance ̂ . If ˆ

i iFR TSL    go to 
Procedure 2.3, else go to Procedure 2.4. In case that i iFR TSL , select the current 

is  to the solution, and then terminate Procedure 2. 

Procedure 2.3: Compare iFR  with iTSL  and use “Sequential Search” to find is . 
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- If i iFR TSL , increase is  by 1 until obtain i iFR TSL . Select the current is  
to the solution, and then terminate Procedure 2. 

- If i iFR TSL , decrease is  by 1 until obtain i iFR TSL . Select the last is  
providing i iFR TSL to the solution, and then terminate Procedure 2. 

Procedure 2.4: Compare iFR  with iTSL  and use “Half-Interval Search” to reduce 
search space. 

- Set initial boundary of is by the following conditions:  
- If i iFR TSL , set A

i is s  and 0B

is   
- If i iFR TSL , increase i is s R   where ( )i iR round L  to integer 

number until obtain i iFR TSL . Assign the current is  to  A

is  and the 
last is  providing i iFR TSL  to B

is  
- Then, the initial boundary of is ( R ) is equal to A B

i is s  

- Repeat the operations below and simultaneously evaluate with Procedure 
2.2’s condition. 

- If i iFR TSL , assign 2A

i is s R  , else 2A

i is s R   
- Set new value of A

is , B

is  by assigning B A

i is s  and A

i is s  
- Update new R  from new value of A

is , B

is  
- Range R  is reduced until Procedure 2.2’s condition is met                

( ˆ
i iFR TSL   ), then go to Procedure 2.3. 

Procedure 3 – Iterative procedure for finding the best combination of ( 0 , i  ) 
on given 0s  

This procedure applies Step 2.2 of EOQ-Z’s heuristic algorithm 
which is an iterative procedure containing step (A) to (F) illustrated in Fig.III-10. Step 
2.2 of EOQ-Z’s heuristic algorithm is used for retailer echelon, but in Procedure 3 we 
extend to warehouse echelon as well.  

We consider k k kS s    to represent location k  including 
the warehouse and the retailers; for the warehouse 0 0 0S s    and for the retailers 

,i i iS s i N    . We modify Step 2.2(A) by setting location k  = -1 to cover both 
echelons, and Step2.2(B) set location k k  + 1 by fixing other locations 

j k  given 
from the previous iteration. For each iteration, the golden section search is carried 



 134 

out for location k : vary k  and fix 
j k . 0 0( , , , )i iTC s S s S  is an objective function 

for the golden section search. The iterative process terminates as soon as every k  
does not change 1n  iterations in a row, or the minimum long-run average total 
system-wide cost per unit time from the current loop does not decrease from the 
previous loop by more than % . From Procedure 3, we get the local minimum long-
run average total system-wide cost per unit time for either Range I or Range II on 
given 0s .  

Procedure 4 – Determination of the warehouse’s must-order level 0s   

Procedure 4 includes 2 sub-procedures, the first is 
determination of the initial value of 0s  and the second is search algorithm for the 
best 0s . The initial 0s  is defined as the maximum value of 0s , so Equation (4.10) and 
(4.11) are utilized. Then, search space for 0s  is restricted within max

0[0, ]s . Then, we 
apply gold section search to determine the best 0s .   

In the last step of algorithm, the minimum long-run average 
total system-wide cost per unit time is equal to the minimum value of either ranges,  

 min 1 0 0 min 2 0 0min ( , , , ), ( , , , )R i i R i iTC s S s S TC s S s S .  

To summarize, our heuristic approach (called MMNZ) is 
developed by using approximate mathematical model with heuristic algorithm to 
determine the appropriate inventory policy parameters. The mathematical model is 
extended from EOQ-Z integrating lead time consideration and service level. We can 
interpret preliminary analysis into the heuristic algorithm consisting of decomposition 
technique, iterative procedure, and one-dimensional search called the golden 
section search. To measure heuristic’s performance, we carry out a pilot testing 
demonstrated in the next section. 

4.4.1.3 Pilot testing 

We explore the cost gap of the MMNZ heuristic and the best-
known solution obtained from computer simulation by using Equation (3.7). We 
tested on 29 scenarios selected from Table IV-1 under considering zero minor 
ordering cost. Consequently, the testing result can be summarized as showed in 
Table IV-3 and Table IV-4.  
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Let ( )HRTFR  is the average fill rate obtained from the best 
solution of heuristic approach. We found some limitations of the heuristic MMNZ as 
follows: 

1) High cost gap (with maximum at 54.04%) was occurred 
when the best solution falls in Range II, i.e. min 2 0 min 1 0( , ) ( , )R i R iTC S S TC S S . It 
seemed that approximate mathematical model on the warehouse echelon was poor 
for the situations that have high iL , high  0 / iL L , and low 0 / ih h . Cost gap was huge 
because  

(1) The approximate mathematical model influenced 
the warehouse to hold more cycle stock and to 
reduce safety stock; therefore retailer’s must-order 
level was higher than actual due to target service 
level or  

(2)  The approximate mathematical model provided 
lower cost than actual, so the best solution 
preferably fell into Range II instead of Range I. Range 
I used the (near) exact model which provided the 
total system-wide cost close to actual cost as van 
Eijs [48]’s formulation. 

2) The best solution of heuristic approach provided the 
average total system-wide cost ( )HRTTC  lower than the best-known solution’s cost 

( )BSTC  due to the average fill rate.  

The MMNZ heuristic seems to be useful if the cross-docking 
system performs better, but there is a possibility that the average fill rate is less than 
target service level. For pilot testing, average fill rate is less than target service level 
0.29% on average with a standard deviation 0.32%. According to its limitation, we 
attempt to develop another heuristic approach to obtain better quality solution as 
demonstrated in the next solution. 
 

4.4.2 Simulation cost model for single item and non-zero lead time 
(SIM/S/NZ) 

We propose a new heuristic approach to determine an appropriate 
inventory policy. Since the approximate mathematical model is not suitable for the 
complicated system, we use the simulation cost model instead. This can reduce the 



 138 

cost error from an approximation. However, we apply heuristic algorithm from 
Section 4.4.1.2 into this approach called SIM/S/NZ.  

The simulation cost model follows the algorithm illustrated in Fig.IV-3. 
Then, the total system-wide cost and fill rate from the simulation cost model are 
used in the heuristic algorithm instead of approximate mathematical model (Section 
4.4.1.2). However, there are some equations of approximate mathematical model 
utilized to find out the initial values of is , 0s , i , and 0 . They have to be inputted 
in the simulation cost model to initiate the first solution for iterative procedure. The 
heuristic algorithm exists but we add the part of simulation cost model as depicted 
in Fig.IV-10. 

 
 

START

Step 1: 

Determine initial Solution (Δ0,Δi)

Step 2: 

Determine the local optimal 

solution for range R1

Step 2

Step 2.1: 

- Calculate TCinitialR1(s0,S0,si,Si) 

by setting s0=-1, S0 =0 

- Set TCminR1(s0,S0,si,Si) = TCinitialR1(s0,S0,si,Si)

Step 4: 

Select the best solution at

TCmin(s0,S0,si,Si) = 

min{TCminR1(s0,S0,si,Si), 

TCminR2(s0,S0,si,Si)} 

Output: 

Δ0,Δi

Output: 

TCminR1(s0,S0,si,Si)

END

Step 2.2: Iterative procedure for determining 

the local optimal solution (s0,S0,si,Si) 
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Algorithm-Procedure 

relationship

Main algorithm

Procedure 2
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by skipping Δ0 

determination

Step 3: 

Determine the local optimal 

solution for range R2

Output: 

TCminR2(s0,S0,si,Si)

Step 3

Step 3.1: Set initial s0

Step 3.3: Iterative procedure for determining 

the local optimal solution (s0,S0,si,Si) 

Procedure 4

Procedure 3

Step 3.2: 

- Calculate TCinitialR2(s0,S0,si,Si) 

- Set TCminR2(s0,S0,si,Si) = TCinitialR2(s0,S0,si,Si)
Procedure 2

Procedure 4

Step 3.4: 

- Search next s0 and step back to step 3.3 

- Update TCminR2(s0,S0,si,Si) on given s0 if the better 

solution has been found

- Stop if the best s0 has been found according to 

terminate condition

STC 
& 

SFR

STC

STC 
& 

SFR

STC

STC

STC = Simulated total system-wide cost per unit time obtained from the simulation cost model

SFR = Simulated fill rate obtained from the simulation cost model  
 

Figure IV-10 The algorithm of the heuristic approach – SIM/S/NZ 

Summarily, we conducted the research continuously to find out an 
appropriate solution approach. We first developed an approximate mathematical 
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model and heuristic algorithm called “MMNZ” heuristic. We interpreted preliminary 
analysis into the heuristic algorithm consisting of decomposition technique, iterative 
procedure, and one-dimensional search called the golden section search. Its result 
provides huge cost gap in some situations because approximate mathematical model 
might not reflect actual process. Therefore, another approach was introduced by 
using simulation cost model instead of approximate mathematical model. It is called 
“SIM/S/NZ” heuristic. It could reduce cost error from approximation. To measure 
heuristic’s performance, we continue to the next section which various experiments 
are carried out and the analysis of the results is demonstrated herein.   

 
4.5 Experimental Results 

 The SIM/S/NZ heuristic was experimented on various scenarios following the 
Table IV-1 (87 scenarios). The experiments focused on identical retailers with and 
without minor ordering cost, since both cases affects the can-order policy at given ic

= iS - 1 on different results as showed in the preliminary analysis. According to using 
simulated total system-wide cost and simulated fill rate, seed number is an 
important input to generate inter-arrival time of demand. Thus, we conducted the 
research by using the same method of output validation described in Section 3.2.2.2. 
We tested on five replications with different random seed numbers. Then, for each 
best solution we determined the average total system-wide cost by additional 10 
random seed numbers. We define “the minimum solution” provided by the best 
solution with the minimum of average total system-wide cost. We use Equation (3.7) 
to measure heuristic’s performance.  

 
4.5.1 Identical retailers with zero minor ordering cost 

According to 75 scenarios tested, Table IV-5 concludes the 
experimental result in four dimensions: the 0 / ih h  ratio, iL , the 0 / iL L ratio, and iTSL

. The SIM/S/NZ heuristic provides an average cost gap at 1.22% with standard 
deviation 1.52% over various scenarios. The obvious good performance of this 
heuristic was when high 0 / ih h  ratio providing cost gap only 0.81% on average. 
Moreover, at high iTSL  this heuristic performed well not depending on the 0 / ih h  
ratio. However, for the situations having cost gap higher than 2% we found that the 
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minimum solutions were 
0s = 0 and 

0S  0 happening at low 0 / ih h  ratio together 
with low 

iL  or low 
0 / iL L ratio. However, the average cost gap of such situations was 

only 2.73% with standard deviation 2.03%.  
 

Table IV-5: Cost gap between the best-known solution and the SIM/S/NZ heuristic’s 
minimum solution under identical retailers with zero minor ordering cost 
 

 
The 0 / ih h  ratio 

Low ( 0 / 0.5ih h  ) High ( 0 / 0.5ih h  ) 

iL  
Low ( iL = 0.2) 2.38% (2.74%) 0.70% (1.30%) 
High ( iL = 1) 1.24% (0.74%) 0.96% (1.49%) 

0 / iL L  
Low ( 0 / iL L  1) 2.05% (1.32%) 1.44% (1.88%) 
High ( 0 / iL L  1) 1.59% (1.92%) 0.33% (0.34%) 

iTSL  
Low ( iTSL = 0.90) 1.46% (1.25%) 1.25% (1.79%) 

Middle ( iTSL = 0.95) 3.45% (2.31%) 1.09% (1.49%) 
High ( iTSL = 0.99) 1.07% (1.14%) 0.08% (0.16%) 

 Average 1.72% (1.62%) 0.81% (1.31%) 
The percentage values in the table is the average cost gap (standard deviation) 

 
4.5.2 Identical retailers with non-zero minor ordering cost 

In case of non-zero minor ordering cost, we tested on 12 scenarios 
(Scenario no. 76-87 in Table IV-1) to observe the minimum solution’s trend and the 
cost gap as comparing to the best-known solution. Then, we illustrate the 
experimental result in Table IV-6.  

The result showed that when considering the minor ordering cost the 
SIM/S/NZ heuristic provided an average cost gap at 0.93% with standard deviation 
1.31% over various scenarios. An interesting issue was that the best-known solution 
moves from Range II to Range I when considering non-zero minor ordering cost, for 
example of Instance 1, the best-known solution 0 0( , , ), ( , )i i is c S s S when zero minor 
ordering cost was (1,12,13),(0,24), whereas the best-known solution when non-zero 
minor ordering cost was (0,13,21),(-1,0). To explain this circumstance, when each 
retailer had the minor ordering cost charged into an order, the system attempted to 
rebalance new inventory policy by two mechanisms. The first mechanism was 
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reducing number of dispatch cycle and holding more stock, and the second one was 
reducing its can-order level in order to reduce the opportunity of special 
replenishment. By this circumstance, cost gap seemed to be smaller as our heuristic 
could provide a little cost gap when the solution fell into Range I. Search algorithm 
on dimension of 0s  was not included for Range I, so the effect of search algorithm 
on multiple variables appears to diminish. 
 
Table IV-6: Cost gap between the best-known solution and the SIM/S/NZ heuristic’s 
minimum solution under identical retailers with non-zero minor ordering cost 

 

Instance 
Relevant 

Parameters 
Best-known Solution Heuristic Approach 

iL  0 / iL L  iTSL  0 0( , , ), ( , )i i is c S s S  ( )BSTC  0 0( , , ), ( , )i i is c S s S  . .C G
 

1 0.2 0.5 0.90 (0,13,21),(-1,0)  290.49  (0,20,21),(-1,0) 0.11% 
2 0.2 0.5 0.95  (2,12,19),(-1,0)   314.16  (2,18,19),(-1,0) 0.05% 
3 0.2 0.5 0.99 (4,13,18),(0,28)   365.57  (4,24,25),(-1,0) 0.72% 
4 0.2 4.0 0.90  (8,19,27),(-1,0)    301.89  (8,26,27),(-1,0) 0.15% 
5 0.2 4.0 0.95  (10,21,29),(-1,0)    339.59  (10,28,29),(-1,0) 0.15% 
6 0.2 4.0 0.99  (4,12,15),(20,42)  383.69  (4,15,16),(18,46) 1.83% 
7 1 0.5 0.90 (13,26,34),(-1,0)    311.72  (14,30,31),(-1,0) 1.66% 
8 1 0.5 0.95  (16,30,34),(-1,0)    356.99  (16,33,34),(-1,0) 0.02% 
9 1 0.5 0.99  (20,30,37),(-1,0)   432.81  (20,36,37),(-1,0) 0.04% 
10 1 4.0 0.90  (11,20,26),(78,114)   356.42  (10,25,26),(75,119) 0.63% 
11 1 4.0 0.95  (12,22,28),(88,120)   401.48  (35,55,56),(40,41) 4.52% 
12 1 4.0 0.99  (16,24,29),(87,118)   483.20  (15,25,26),(95,121) 1.23% 
 

4.5.3 Computational times 

For the experiments as shown in Table IV-1, computational time of 
our SIM/S/NZ heuristic was 811.90 seconds on average with a standard deviation at 
521.78 seconds depending on lead times for the warehouse and the retailers. Longer 
lead time for the warehouse (retailers) increased the search range of the must-order 
level 0s  ( is ), so this also increased our heuristic’s computational time. However, 
there was no obvious trend of computational times relative to target service level 

iTSL  ranged from 0.90 to 0.99. Most scenarios provided indifferent computational 
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times among iTSL  values since numbers of iteration for each scenario were not 
different.   

For our experiments, most scenarios spent more than 40 hours to 
determine the best solution of any scenario from computer simulation. As the 
results, the SIM/S/NZ heuristic’s computational times were much faster than 
computer simulation’s computational times. We found how much the SIM/S/NZ 
heuristic could save computational time from computer simulation majorly 
depended on lead times for the warehouse and for the retailers. Normally, longer 
lead times for the warehouse and for the retailers increase time saving. In some 
scenarios, although there were longer lead times for the warehouse and for the 
retailers, computational times of computer simulation were unchanged due to equal 
number of combinations. So, time saving of such scenarios could be reduced. 
However, time saving might increase again if number of combinations increases.  

According to above result, it was only the case of identical retailers. 
Hence, for more complex case of non-identical retailers, we presume that the 
SIM/S/NZ heuristic’s computational times are extremely much faster than computer 
simulation’s computational times.  

 
4.5.4 Comparative analysis 

Dealing with the existing literatures, an interesting work being close to 
our problem is Özkaya [22]. Özkaya [22] proposed analytical models and heuristic 
approaches for four types of joint replenishment policy at the retailers, and utilized a 
traditional reorder point-based stock policy at the warehouse. At retailer echelon, 
zero minor ordering cost and target service level in terms of fill rate are also 
considered. Four types of joint replenishment policy are the ( ,Q S ) policy, the          
( , ,Q S T ) policy, the ( , |Q S T ) policy, and the ( , 1,s S S ) policy. More details of all 
policies already explained in Chapter II. Özkaya [22] showed comparative results 
among these policies without comparing to the lower bound or the best-known 
solution. Therefore, in this section we attempt to compare his heuristic approach 
with the SIM/S/NZ heuristic.  

Based on Özkaya [22]’s results, they can be separated into two groups: 
Group I – Cross-docking system and Group II – Holding stock at the warehouse. For 
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Group II, we cannot quantitatively compare our heuristic with Özkaya [22] since his 
system is different from ours. Özkaya [22]’s system applied First-In First-Out System 
(FIFO) for the warehouse replenishing to retailer echelon. Meanwhile, our system 
allows the warehouse to serve an order follows FIFO except if there is an order 
issued to the warehouse and inventory on-hand is enough for this order the 
warehouse can deliver it as special case to reduce the opportunity of stock-out at 
the retailers. This creates higher service level than FIFO. According to different 
systems, in case of holding stock at the warehouse Özkaya [22]’s cost and policy 
cannot compare with ours in detail. However, for the cross-docking system we can 
compare our heuristic with Özkaya [22] since no available stock at the warehouse 
allows FIFO for all orders. Therefore, our system acts as Özkaya [22]’ system and 
they are comparable. Hence, the following content will demonstrate comparative 
analysis in case of the cross-docking system to illustrate our heuristic’s performance 
over Özkaya [22].       

For the cross-docking system, Group 1 of Özkaya [22] is consistent with 
Range I of our approach. Under this system, we can identify a simple lower bound 
determined by two steps. The first step is to find the order quantity iQ  for all 
retailers by assuming that they are replenished at the same order interval.  
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Thus, the order quantity for each retailer is i i dQ T  . Determination of is  can apply 
Equation (4.8) with considering total lead time for each retailer 0i iTL L L  . 
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Therefore, the total system-wide cost is given by 
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The comparative results are depicted in Table IV-7 – Table IV-10. 
Different comparative analyses are illustrated by using the following equations.  

For Table IV-7 and IV-9 we use the following equation to compare 
Özkaya [22]’s results with our heuristic approach. 
 

( ) ( )

( )

( ) 100
( . .)

OZ HRT

HRT

TC TC
Cost Gap C G

TC

 
  (4.33) 

where ( )HRTTC  and ( )OZTC are the average total system-wide cost per unit time of 
the heuristic approach and the average total system-wide cost per unit time of 
Özkaya [22]’s policies, respectively. 

For Table IV-8 and IV-10, we use Equation (4.32) to compare lower 
bound with proposed heuristics: SIM/S/NZ and Özkaya [22]’s the minimum result. 
 

( ) ( )

( )

( ) 100
( . .)

hrt LB
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where ( )LBTC  and ( )hrtTC are the total system-wide cost per unit time of lower 
bound and the average total system-wide cost per unit time of heuristic approach, 
respectively. 
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Table IV-7: Comparison of heuristics with the warehouse employing cross-docking at 

w rK K , 0 ih h , 
0L = 5, 

iL = 1, and 
iTSL = 0.95 

 
Relevant Parameters ( )HRTTC  Cost Gap (C.G.) 

i  rK  ih  n  SIM/S/NZ ( , ,Q S T ) ( , |Q S T ) ( ,Q S ) ( , 1,s S S ) 

1 50 1 2 25.48 -40% -40% -38% -37% 
   4 42.43 -41% -40% -38% -38% 
   8 70.07 -33% -32% -31% -31% 
   16 123.00 -25% -25% -23% -23% 
1 50 1.2 2 29.30 -36% -35% -33% -33% 
   4 48.58 -34% -33% -32% -32% 
   8 80.22 -14% -13% -11% -11% 
   16 142.38 -23% -23% -21% -20% 
1 100 1 2 33.27 0% 1% 3% 3% 
   4 51.73 25% 26% 28% 28% 
   8 86.45 44% 44% 47% 46% 
   16 145.56 64% 64% 66% 66% 
1 100 1.2 2 36.95 21% 22% 25% 25% 
   4 60.25 44% 46% 48% 48% 
   8 98.90 90% 92% 95% 94% 
   16 167.94 102% 102% 105% 105% 

10 50 1 2 74.68 71% 73% 77% 79% 
   4 120.07 81% 84% 87% 89% 
   8 196.72 86% 87% 91% 92% 
   16 339.01 120% 119% 124% 124% 

10 50 1.2 2 83.64 88% 91% 95% 97% 
   4 135.91 95% 98% 102% 103% 
   8 225.15 151% 153% 157% 159% 
   16 394.53 119% 118% 124% 126% 

10 100 1 2 97.50 187% 189% 193% 195% 
   4 151.92 256% 257% 262% 264% 
   8 241.80 331% 332% 337% 338% 
   16 398.01 396% 394% 400% 401% 

10 100 1.2 2 109.93 246% 249% 254% 256% 
   4 171.29 321% 324% 329% 330% 
   8 274.54 495% 498% 505% 505% 
   16 454.01 533% 532% 539% 540% 
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Table IV-8: Comparison of lower bound and heuristics with the warehouse 
employing cross-docking at 

w rK K , 0 ih h , 
0L = 5, 

iL = 1, and 
iTSL = 0.95 

 
Relevant Parameters 

( )LBTC  
Cost Gap (C.G.) 

i  rK  ih  n  SIM/S/NZ Özkaya (2005) 
1 50 1 2 24.00 6% -37% 
   4 36.28 17% -30% 
   8 64.00 9% -27% 
   16 104.57 18% -12% 
1 50 1.2 2 26.71 10% -30% 
   4 40.58 20% -21% 
   8 72.62 10% -5% 
   16 119.57 19% -8% 
1 100 1 2 30.28 10% 10% 
   4 48.00 8% 35% 
   8 72.57 19% 71% 
   16 128.00 14% 86% 
1 100 1.2 2 33.38 11% 34% 
   4 53.42 13% 63% 
   8 81.17 22% 132% 
   16 145.24 16% 133% 

10 50 1 2 71.25 5% 79% 
   4 113.44 6% 92% 
   8 190.49 3% 92% 
   16 322.89 5% 130% 

10 50 1.2 2 81.28 3% 93% 
   4 126.78 7% 109% 
   8 215.36 5% 162% 
   16 368.76 7% 134% 

10 100 1 2 93.44 4% 199% 
   4 142.49 7% 279% 
   8 226.89 7% 359% 
   16 380.98 4% 416% 

10 100 1.2 2 105.18 5% 262% 
   4 162.56 5% 343% 
   8 253.56 8% 544% 
   16 430.73 5% 566% 
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Table IV-9: Comparison of heuristics with the warehouse employing cross-docking at 

w rK K , 0 ih h , 
0L = 5, 

iL = 1, and 
iTSL = 0.99 

 
Relevant Parameters ( )HRTTC  Cost Gap (C.G.) 

i  rK  ih  n  SIM/S/NZ ( , ,Q S T ) ( , |Q S T ) ( ,Q S ) ( , 1,s S S ) 

1 50 1 2 32.19 -29% -28% -26% -28% 
   4 53.61 -24% -24% -22% -23% 
   8 93.79 -17% -17% -15% -17% 
   16 165.52 -6% -6% -4% -6% 
1 50 1.2 2 36.33 -27% -26% -24% -26% 
   4 61.29 -17% -16% -14% -16% 
   8 108.75 -7% -6% -4% -6% 
   16 192.35 -17% -17% -15% -17% 
1 100 1 2 39.40 17% 18% 20% 19% 
   4 65.99 43% 44% 46% 44% 
   8 112.20 58% 59% 62% 60% 
   16 196.14 81% 82% 84% 81% 
1 100 1.2 2 46.14 32% 33% 36% 34% 
   4 74.58 66% 68% 71% 69% 
   8 127.70 117% 118% 122% 119% 
   16 223.59 131% 132% 135% 132% 

10 50 1 2 90.57 104% 106% 110% 108% 
   4 150.79 120% 123% 127% 124% 
   8 254.28 137% 139% 143% 140% 
   16 453.68 184% 184% 189% 184% 

10 50 1.2 2 102.01 133% 137% 142% 139% 
   4 172.17 157% 160% 164% 161% 
   8 295.79 230% 233% 237% 235% 
   16 524.86 214% 216% 220% 214% 

10 100 1 2 115.70 235% 238% 243% 240% 
   4 186.14 324% 327% 332% 329% 
   8 303.28 424% 426% 432% 427% 
   16 511.91 509% 508% 514% 507% 

10 100 1.2 2 129.43 303% 307% 313% 309% 
   4 209.57 398% 402% 408% 404% 
   8 346.08 518% 523% 530% 524% 
   16 595.07 572% 571% 579% 571% 
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Table IV-10: Comparison of lower bound and heuristics with the warehouse 
employing cross-docking at 

w rK K , 0 ih h , 
0L = 5, 

iL = 1, and 
iTSL = 0.99 

 
Relevant Parameters 

( )LBTC  
Cost Gap (C.G.) 

i  rK  ih  n  SIM/S/NZ Özkaya (2005) 
1 50 1 2 28.00 15% -19% 
   4 48.28 11% -16% 
   8 80.00 17% -3% 
   16 136.57 21% 14% 
1 50 1.2 2 31.51 15% -16% 
   4 54.98 11% -8% 
   8 91.82 18% 10% 
   16 177.17 9% -10% 
1 100 1 2 36.28 9% 27% 
   4 56.00 18% 68% 
   8 96.57 16% 84% 
   16 160.00 23% 122% 
1 100 1.2 2 40.58 14% 50% 
   4 63.02 18% 97% 
   8 109.97 16% 152% 
   16 183.64 22% 181% 

10 50 1 2 85.25 6% 116% 
   4 141.44 7% 135% 
   8 238.49 7% 153% 
   16 418.89 8% 207% 

10 50 1.2 2 98.08 4% 143% 
   4 160.38 7% 175% 
   8 272.96 8% 257% 
   16 483.96 8% 240% 

10 100 1 2 109.44 6% 254% 
   4 170.49 9% 363% 
   8 282.89 7% 462% 
   16 476.98 7% 552% 

10 100 1.2 2 121.98 6% 328% 
   4 196.16 7% 432% 
   8 320.76 8% 567% 
   16 545.93 9% 631% 
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As the experimental results, our heuristic extremely outperformed all 
policies proposed by Özkaya [22] when higher number of retailers and higher target 
service level together with the increase of major ordering costs, unit holding costs, 
and demand rates. However, the results seemed unusual because the cost gap was 
very huge. We inquired whether some errors arise on either our heuristic or Özkaya 
[22]’s. Hence, Table IV-8 and IV-10 were carried out on the cross-docking system and 
the results proved that the errors arise on Özkaya [22]’s work. Özkaya [22]’s result 
provided the total system-wide cost less than lower bound in the situation that our 
heuristic was beaten. According to the error of Özkaya [22]’s cost model along with  
insufficient information, it was not worth comparing our heuristic’s performance with 
Özkaya [22]’s by quantitative analysis. Then, we will compare them by qualitative 
analysis instead in the next paragraph. However, specifically comparing our heuristic’s 
result with lower bound, the SIM/S/NZ heuristic provided less cost gap when higher 
demand rate and/or higher major ordering costs. The reason is that such situations 
create more opportunity of special replenishment, so the SIM/S/NZ heuristic can 
share the major ordering costs as much as lower bound obtains.   

We make a qualitative comparison between the SIM/S/NZ heuristic 
and Özkaya [22]’s approach by considering their search algorithms. Özkaya [22]’s 
approach uses a combination of the iterative and the exhaustive search procedures. 
His approach sets search ranges for each variable 0 0, , ,i is S s S . It seems that our 
heuristic is better than Özkaya [22]’s because 

1) Our heuristic contains smaller search ranges than Özkaya [22]’s.   
For example, search range for 0s – denote that  0

hrts  and 0

OZs  are the warehouse’s 
order-up-to level for the SIM/S/NZ heuristic and for Özkaya [22]’s approach, 
respectively. Under a scenario at i = 10, 0L = 1, iTSL  = 0.90, and n  = 2, search 
range for 0

hrts  has 39 values obtained by equation (4.10) and (4.11) whereas search 

range for 0

OZs  has 200 values obtained by 0

1

10
n

i

i

L 


 
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 
 .  

2) Since Özkaya [22]’s approach uses the exhaustive search 
procedures. It means that all values over search ranges need to be calculated. Thus, 
a lot of combinations have to be considered. On the contrary, our search algorithm 
applies the golden section search to reduce number of search points. Therefore, our 
heuristic with smaller search ranges and the golden section search can reduce the 
computational time from Özkaya [22]’s approach. According to the exhaustive search 
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used by Özkaya [22], it should bring to the better solution which provides lower  
total system-wide cost than our heuristic. This statement is not always correct 
because of iterative procedure. There is a possibility that the solution is unable to 
the optimal solution.     

According to this comparative analysis, the SIM/S/NZ heuristic appears 
to be better than the existing research. It can save the computational time by 
reducing number of search space. However, the best solutions obtained from the 
SIM/S/NZ heuristic and Özkaya [22] cannot be guaranteed as the optimal solutions. 

 
4.6 Discussion 

For this phase, the SIM/S/NZ Heuristic extends search algorithm from the 
EOQ-Z heuristic. Decomposition technique, iterative procedure, and golden section 
search are utilized. We added two procedures to determine the retailers’ must-order 
levels is  and the warehouse’s must-order level 0s . Since all values of is  
interrelate with 0s , searching the best values of is  and 0s  together is quite hard. 
We set a search range for 0s , and then varied 0s  until the best value of 0s  has 
been found. Under a fixed value of 0s , the best values of is are determined. This 
algorithm can simplify the complication from interrelationship between is  and 0s . 

In deterministic model, the major ordering cost and the holding cost are 
traded off to obtain economical order quantity as a classic EOQ. Thus, we considered 

k k kS s    to represent an order quantity for location k  including the warehouse 
and the retailers; the warehouse 0 0 0S s    and the retailers ,i i iS s i N    . 
We found the characteristic of 

k  by trading off between the holding cost and the 
ordering cost. The total system-wide cost performs as a curve containing the 
minimum point relative to the value of 

k  as shown in Fig.IV-8. Interestingly, even 
though the curves are not unimodal continuous function because of discrete 
numbers and the must-order levels, the golden section search with iterative 
procedure can be applied to determine the appropriate value of 

k . The reason is 
that the cost difference between two connected points is small enough to lead the 
successive search ranges from the golden section search meet the minimum point.  
Similarly, we also used the golden section search for determining the best values of 

0s . Based on the same reason of small cost difference between two connected 
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points, the best values of 
0s  can be reached. According to the experimental results, 

it is fascinating to apply the golden section search into our system in order to 
shorten the computational time with the appropriate inventory system-wide cost.   

For determining the retailers’ must-order level 
is , most previous researches 

used the exhaustive search. Certainly, it is not worth using this search for high value 
of 

is . Therefore, we combined a half-interval search to the exhaustive search (also 
called sequential search in the dissertation). We used the half-interval search to find 
an acceptable search range of 

is  which provides the fill rate iFR  to be close to the 
target service level iTSL  (by %tolerance). Then, we applied the sequential search to 
determine the best value of 

is . According to this mixed approach, it can reduce the 
successive search range of 

is , thus it can reduce the computational time as well.  

The SIM/S/NZ heuristic assumes the fixed retailer’s can-order level at 
1i ic S   as the rationale that the retailers’ major ordering cost can be most shared 

if all retailers are included in an order to minimize the total system-wide cost.   
Then, the holding cost is traded off with the shared ordering cost in order to balance 
order frequency and holding stock. The fixed retailer’s can-order level at 1i ic S   
can create the maximum opportunity of joint replenishment for all retailers. From 
Phase I, this assumption performs well for non-zero lead time. According to our 
experiments on identical retailers as shown in Table V-1, we found that service fill 
rate iFR  affected number of retailers included in an order. Most of the best-known 
solutions occur at 1i ic S  . The decrease of ic  creates a possibility of reducing 

iFR  since the average remnant inventory level decreases. The average remnant 
inventory level is the stock left when normal replenishment occurs. It implies that 
the average reorder level occurs at the average remnant inventory level [46]. 
Therefore, the decrease of the average remnant inventory level increases the 
opportunity of stock-out influencing to reduce iFR . According to the effect on total 
system-wide cost, the best-known solution chooses to reduce ic  to obtain the 
smallest difference between iFR  and iTSL  ( i iFR TSL ) providing lower total 
system-wide cost. However, the cost gap between TC  and *

( 1)iS
TC


 is very small 

(0.15% on average) where TC is the optimal average total system-wide cost and 
*

( 1)iS
TC


 is the minimum average total system-wide cost of the solution at 

ic = 
iS - 1. 

The reason is that difference between FR  and *

( 1)iS
FR


 is very small (0.05% on 
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average) where FR  is the average fill rate of the best-known solution and *

( 1)iS
FR


 

is the average fill rate of the solution at 
ic = 

iS - 1. In conclusion, the fixed retailer’s 
can-order level at 1i ic S   is applicable. As the experimental results in various 
scenarios, the SIM/S/NZ heuristic provided the best solutions at a small average cost 
gap comparing to the best-known solution. 

 
4.7 Conclusion 

Phase II studied an extension of the basic model from the first phase by 
considering non-zero lead time and target service level as found in general industry. 
Research remained taking single item into consideration to study an interaction 
among retailers without joint ordering decision at the warehouse echelon. The 
objective of this phase was to study the can-order policy characteristics with the 
conditional relevant factors, as well as to develop the heuristic approach consistent 
with such characteristics provided.  

The objective function of the problem was to minimize the total system-wide 
cost per unit time. The total system-wide cost per unit time could be a function of 
five decision variables: 0 0, , , ,i i ic s S s S . This problem had more complicated than the 
problem in Phase I by the reason that was a constraint problem with a service 
constraint. We provided insight of the can-order policy through preliminary analysis. 
Like the first phase, the fixed can-order level 1i ic S   was applicable (i.e. all 
retailers were replenished together in an order). The relationship between decision 
variables could be analyzed. We found the curve patterns of the total system-wide 
cost relative to decision variables. It was interesting to apply one-dimensional search 
with them.   

Consequently, we developed the SIM/S/NZ heuristic with an extension of the 
EOQ-Z heuristic’s search algorithm. The SIM/S/NZ heuristic used decomposition 
technique, iterative procedure, and one-dimensional search called golden section 
search. We also added two procedures to determine the retailers’ must-order levels 
and the warehouse’s must-order level. In comparison with the best-known solution 
obtained from computer simulation, the SIM/S/NZ heuristic provided an average cost 
gap at 1.01% on average. The good performance of this heuristic was when high 

0 / ih h  ratio and high iTSL . Additionally, the SIM/S/NZ heuristic spent the 
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computational time less than computer simulation more than 177 times on average. 
We also provided comparative analysis with Özkaya [22]. We used the golden section 
search with smaller search range, whereas Özkaya [22] used the exhaustive search. 
Hence, the SIM/S/NZ heuristic should be better than Özkaya [22]’s approach. 

Advantageously, the SIM/S/NZ gave small cost gap as comparing to the best-
known solution obtained from computer simulation. The SIM/S/NZ heuristic also 
provided less computational time than computer simulation and the existing 
approach. We proposed the systematic approach to reduce search space by 
synchronizing with the inventory policy characteristics. Hence, the SIM/S/NZ heuristic 
is interesting for the can-order policy setting under OWNR with single-item and non-
zero lead time consideration. 



CHAPTER V 
THE CAN-ORDER POLICY FOR MULTI-ITEM TWO-ECHELON INVENTORY 

SYSTEM WITH NON-ZERO LEAD TIME 
  

According to Phase I and Phase II, we obtained the single-item two-echelon 
inventory models and heuristic approaches to determine the appropriate inventory 
policy setting. Later, we extend the single-item model into the multi-item model in 
order to consider coordinated ordering decisions at both echelons. So, this chapter 
demonstrates Phase III’s system which comprises multiple items on OWNR. The 
warehouse’s items are jointly replenished. However, the structure of the ordering 
cost is different from previous chapters since we consider the ordering cost following 
location-item ij  instead of only location i . To determine the inventory policy 
parameters for controlling multiple items, we propose three models of joint 
replenishment described in the section of problem description. Throughout this 
chapter, we present such three models comparatively. The aim of this chapter is to 
analyze the proposed models and identify the relationship of such models and the 
significant relevant factors.   

 
5.1 Problem Description  

The system considers multiple commodities on a warehouse and multiple 
retailers. Let index i  represents location i  where i = 0 for the warehouse and i N , 
N = {1, 2, …, n } for the retailers. Considering multi-item inventory system, such 
system comprises an item set with m  items. Let index j  denote item j  in the 
system, so that j M , M = {1, 2, …, m }. Thus, the whole system is composed of 
multiple location-items indexed by ij  representing item j  at location i . Totally, the 
system has ( 1)n m   location-items. The customer demands are identical Poisson 
distributed with rate 

ij .  

In general, the system employs the can-order ( , ,ij ij ijs c S ) policy for ordering 
process at both echelons. At retailer echelon, the can-order ( , ,ij ij ijs c S ) policy is 
applied into the system by coordinated ordering decision among retailer-items. When 
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the inventory position of any retailer-item reaches its must-order level ijs , an order is 
triggered. Then, other retailer-items in the system can also be included by this order 
if their inventory position is at or below its can-order level ijc . All the involved 
retailer-items’ inventories are fulfilled from the warehouse to their own order-up-to 
level ijS . Similarly, the warehouse employs the can-order ( (0, ) (0, ) (0, ), ,j j js c S ) policy. 
Coordinated ordering decision occurs when any warehouse-item triggers an order by 
the must-order level (0, )js  and when other warehouse-items’ inventory position is at 
or below its can-order level (0, )jc . All the involved warehouse-items’ inventories are 
fulfilled from the outside supplier to its order-up-to level (0, )jS . For this phase, we 
assume that for each echelon all location-items are replenished together in an order. 
Then, we can fix the can-order level at 1c S   to create the maximum opportunity 
of joint replenishment for all location-items. By the fixed can-order level, we can 
focus on determining other decision variables (0, ) (0, )( , , , )ij ij j js S s S .  

Whenever an order is triggered at an echelon, such echelon needs to wait for 
some time that order arrives called “lead time”. In the problem, we assume 
constant lead time for each location-item (

ijL ). For the retailer echelon, the total 
lead time ( ,ijTL i N j M  ) can be longer than 

ijL  depending on the warehouse’s 
inventories. Meanwhile, the warehouse’s total lead time ( (0, )jTL ) is equal to 

(0, )jL  
due to ample stock of the outside supplier. Lead time enable the system to face 
backorder units. Then, service level constraint is utilized to serve end customers with 
an acceptable service level. We measure such service level in term of “Fill Rate”      
( FR ) which is a quantity-oriented performance measure describing the proportion of 
total demand within a reference period delivered without delay from stock on hand. 
FR  is measured only at retailer echelon since in a multi-echelon system the 
backorder at warehouse echelon has only a secondary effect on service. For this 
problem, retailer echelon must serve the end customer following a service constraint 
defined as target service level ( ,ijTSL i N ). 

We assume the system with no-splitting order, when the warehouse has 
insufficient inventory on-hand for dispatching all required quantities in an order to 
retailer echelon at once, the retailers have to wait for the next warehouse’s order is 
arrived. It implies that the dispatching for that order is occurred if and only if there is 
sufficient inventory on-hand for all required quantities. Normally, the warehouse 
serve an order follows the First-In First-Out System (FIFO) except if there is an order 



 156 

issued to the warehouse and inventory on-hand is enough for this order we allow 
the warehouse to deliver it as special case to reduce the opportunity of stock-out at 
the retailers. This creates higher service level than FIFO.  

The system considers all inventory costs at both echelons. We concern 
different cost structure as comparing to Phase I and II, since the major and minor 
ordering costs are identified following the location-item ij . In general, the inventory 
costs are composed of 1) The holding costs at the warehouse and all retailers, 2) The 
major ordering costs for warehouse echelon and retailer echelon, and 3) The minor 
ordering costs for warehouse echelon and retailer echelon. The structure of cost 
component is illustrated as Fig.V-1. 

As usual, the warehouse’s cost structure comprises 1) The holding cost 
occurring for each item, 2) The major ordering cost which is a fixed cost occurring 
once any item triggers an order, and 3) the minor ordering cost which is an additional 
cost of item j when it is included in the order. So, multiple items at the warehouse 
enable the system to share its major ordering cost by coordinated ordering decision. 

Unlike Phase I and II, the retailer echelon has to concern two types of the 
major ordering cost and the minor ordering cost which is charged at the retailer-item 
instead of the retailer as in the single-item model. To define each type of the major 
ordering cost, the major ordering cost Type I is the fixed ordering cost occurring once 
any retailer-item in the system triggers an order. So, the major ordering cost Type I is 
a typical of fixed ordering cost mentioned in Phase I and Phase II. All retailer-items 
can be shared the major ordering cost Type I together. Meanwhile, the major 
ordering cost Type II is an additional fixed ordering cost when retailer i  is included 
by this order (e.g. transportation cost or additional charge when visiting retailer i ). 
Even though it looks like the minor ordering cost in previous phases, but it can be 
shared among items of such retailer. Hence, we assume it as a type of the major 
ordering cost according to the main character of the fixed ordering cost. However, we 
can manage the major ordering cost Type II in different ways following the joint 
replenishment model proposed in the next section. The minor ordering cost at the 
retailers is an additional cost of retailer-item ij  when it is included in the order. This 
additional cost is considered like other literatures relating to the multi-item single-
location inventory system.  
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Warehouse’s 
Inventory Costs

Retailer Echelon

Warehouse  Echelon

The holding cost The ordering cost

Major ordering cost

For each item

Fixed ordering cost for 
replenishing any item

Minor ordering cost
Additional ordering cost 
for replenishing item j

Retailers’ 
Inventory Costs

The holding cost The ordering cost

Major ordering cost

For each retailer-item

Minor ordering cost

Major ordering cost 
Type I

Major ordering cost 
Type II

Additional fixed ordering cost for 
replenishing any item of retailer i

Fixed ordering cost for replenishing 
any retailer-item

Additional cost for replenishing 
retailer-item ij

 
 

Figure V-1 Cost structure for Phase III 

In consequence, the holding cost occurs at each location-item having physical 
stock. The total holding cost over the time period at location-item ij (

ijHC ) can be 
determined from the unit holding cost (

ijh ) and the accumulated inventory on-hand 
over the time period ( ijINV ). The major ordering cost Type I and Type II can be 
generalized into a term of the major ordering cost (More detail of generalization will 
be explained in Section 5.1.4). The total major ordering cost over the time period at 
retailer echelon (

rMJ ) is the retailers’ major ordering cost per an order (
rK ) 

multiplied by the number of dispatch cycle (
rND ). Similarly, the total major ordering 

cost over the time period at warehouse echelon (
wMJ ) is the multiplication of the 

warehouse’ major ordering cost per an order (
wK ) and the number of replenishment 

cycle (
wNR ). At the retailer echelon, the total minor ordering cost over the time 



 158 

period (
rMN ) is accumulated from the involved retailer-items in each order 

multiplied by its minor ordering cost of retailer-item (
ij ) over the time period. In the 

same way, at the warehouse the total minor ordering cost over the time period        
(

wMN ) is collected from the involved warehouse-items in each order multiplied by 
its minor ordering cost of warehouse-item (

(0, )j ) over the time period. Hence, we 
have to consolidate all relevant costs to determine the appropriate inventory policy 
setting under the total system-wide cost minimization. 

The notations and problem formulation are demonstrated as follows: 
 

n  = Number of retailers in the system 
m  = Number of items in the system 
i  = Index of the location ; the warehouse i  = 0 and the 

retailer i N  
j  = Index of the item j M  
T  = The time period considered in the problem (time units) 

ijs  = The must-order level at location-item ij  (units)  

ijc  = The can-order level at location-item ij  (units); assign 1ij ijc S   

ijS  = The order-up-to level at location-item ij  (units) 

ij  = Demand rate of retailer-item ij  (units/time unit) 

ijh  =  The unit holding cost per unit time at location-item ij  ($/unit – time unit) 

wK  = The warehouse’s major ordering cost per a replenishment cycle ($/time) 

rK  = The retailers’ major ordering cost per a dispatch cycle ($/time) 

ij  = The minor ordering cost at location-item ij  ($) 

ijL  =  Lead time for location-item ij  (time unit) 

ijFR  =  Fill rate of retailer-item ij  

iTSL  =  Target service level of retailer-item ij  
( , , )ij ij ijTC s c S  =  The total system-wide cost per unit time ($/time unit) 

ijHC  = The total holding cost of location-item ij  over the time T units ($) 

rMJ  = The total major ordering cost at retailer echelon over the time T units ($) 

rMN  = The total minor ordering cost at retailer echelon over the time T units ($) 

wMJ  = The total major ordering cost at warehouse echelon over the time  
   T units ($) 
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wMN  = The total minor ordering cost at warehouse echelon over the time 
   T units ($) 

ijINV   = The accumulated inventory on-hand over time period at location-item ij   
  (unit – time unit) 

ijBO   = The accumulated backorder unit over time period at location-item ij  
(units) 

rND   = The total number of dispatch cycle over the time T units (times) 

wNR   = The total number of replenishment cycle over the time T units (times) 

( , )ij x   = An indicator which equals 1 when retailer-item ij  is included in the 
dispatch cycle x  and equals 0 otherwise 

( , )ij y   = An indicator which equals 1 when warehouse-item (0, j ) is included in 
the replenishment cycle y  and equals 0 otherwise 

 
Objective function: 

Minimize  
   

0
( , , )

n

ij r r w w

j M i

ij ij ij

HC MJ MN MJ MN

TC s c S
T

 

   




 (5.1) 

 
where  

ij ij ijHC h INV   (5.2) 
 

 
r r rMJ K ND   (5.3) 

 

 ( , )

1 1

rND n

r ij x ij

x j M i

MN  
  

  (5.4) 

 
 

w w wMJ K NR   (5.5) 
 

 (0, , ) (0, )

1

wND

r j y j

y j M

MN  
 

  (5.6) 

 
 

Constraint  1
ij

ij

ij

BO
FR

T
   (5.7) 

 
 

ij ijFR TSL  (5.8) 
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The interesting issue is how to coordinate multiple items and multiple 
retailers in order to minimize the total system-wide cost, since the ordering cost 
structure has been changed and it is very significant to decide how to manage our 
considered system. For example questions according to the new ordering cost 
structure,  

- Is it worth managing all retailer-items together due to a lot of decision 
variables concerned in the system? 

- In case of large value of the major ordering cost Type II, do we prefer to 
manage each retailer individually and coordinate only multiple items?  

- In case of large value of the minor ordering cost of retailer-item ij , do 
we prefer to manage each item individually and coordinate only multiple 
retailers? 

These questions issued from the new ordering cost structure lead us to 
develop three joint replenishment models. We aim at analyzing the proposed 
models and identifying the relationship of such models and the significant relevant 
factors. Ultimately, we expect to clarify which joint replenishment model is 
preferable to any situation. Consequently, the proposed models are demonstrated 
as follows:  
 

5.1.1 Model 1 – Joint replenishment with item-based model 

 

1st Echelon : 

Warehouse echelon
2nd Echelon:

Retailer echelon

Outside supplier

The Considered System

Warehouse

Retailer

Warehouse-Items

Major ordering costs

Minor ordering costs

Retailer-Items

 
Figure V-2 Model 1 – Joint replenishment with item-based model 
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This model considers each retailer individually and coordinates only 
multiple items under such retailer. It appears to a serial system as one warehouse, 
one retailer, and multiple items. At retailer echelon, the retailers’ major ordering cost 
can be shared among multiple items. In the same way, the warehouse’s major 
ordering cost can be also shared among multiple items. According to this model, we 
can determine the inventory policy parameters by considering only individual 
retailer, and the warehouse’s inventory is individually stocked for that retailer. Thus, 
sum of n  serial systems is the total system-wide cost. The following expressions 
demonstrate the model formulation to determine the inventory policy setting. 
Equation (5.2) – (5.8) can be used for the Equation (5.9). 

 
For retailer i , 
Objective function: 

Minimize   
   (0, )( )

( , , )

j ij r r w w

j M

i ij ij ij

HC HC MJ MN MJ MN

TC s c S
T



    




 (5.9) 

 
The total system-wide cost is then given by 
 

  ( , , ) ( , , )ij ij ij i ij ij ij

i N

TC s c S TC s c S


  (5.10) 

 
5.1.2 Model 2 – Joint replenishment with retailer-based model 

 

1st Echelon : 

Warehouse echelon
2nd Echelon:

Retailer echelon

Outside supplier

The Considered System

Warehouse

Retailers …

Warehouse-Item

Major ordering costs

Minor ordering costs

Retailer-Item

 
Figure V-3 Model 2 – Joint replenishment with retailer-based model 
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The model considers each item individually and coordinates only 
multiple retailers. It has the same structure as single-item two-echelon inventory 
system demonstrated in Phase II. Therefore, sum of m  single-item systems is the 
total system-wide cost. The model is formulated to determine the inventory policy 
setting as follows. Equation (5.2) – (5.8) can be used for the Equation (5.11). 

 
For item j , 
Objective function: 

Minimize  
   

0( , , )

n

ij r r w w

i
j ij ij ij

HC MJ MN MJ MN

TC s c S
T



   




 (5.11) 

 

The total system-wide cost is then given by 
 

  ( , , ) ( , , )ij ij ij j ij ij ij

j M

TC s c S TC s c S


  (5.12) 

 
5.1.3 Model 3 – Completely joint replenishment model 

 

1st Echelon : 

Warehouse echelon
2nd Echelon:

Retailer echelon

Outside supplier

The Considered System

Warehouse

Retailers …

Warehouse-Items

Major ordering costs

Minor ordering costs

Retailer-Items

 
 

Figure V-4 Model 3 – Completely joint replenishment model 

The model includes all location-items to determine the inventory 
policy setting. So, the retailers’ major ordering cost can be shared among multiple 
retailer-items, as well as the warehouse’ major ordering cost can also be shared 
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among multiple warehouse-items. Thus, we can formulate the model to determine 
the inventory policy setting as Equation (5.13). 

 
Objective function: 

Minimize  
   

0
( , , )

n

ij r r w w

j M i

ij ij ij

HC MJ MN MJ MN

TC s c S
T

 

   




 (5.13) 

 

5.1.4 Generalization of the major ordering cost at the retailers 

Due to the new ordering cost structure, we need to make some 
assumptions to generalize the major ordering cost Type I and Type II for each joint 
replenishment model into a term of the major ordering cost, rK .  The generalization 
is used for integrating the major ordering cost Type I and Type II into our models. The 
following table summarizes the value of rK  for each model. Given that major order 
cost Type I and Type II are represented by TypeIK and TypeII

iK , respectively. 
  

Table V-1: Generalization of the ordering cost structure 

 
Model rK  

1 TypeIK + TypeII

iK  
2 TypeIK + TypeII

i

i N

K


  
3 

 

For Model 1, it is not complicated to set rK  since only single retailer 
is considered in the optimization model. Thus, the major order cost Type I and Type 
II can be combined to set TypeI TypeII

r iK K K  . 
Differently, Model 2 and Model 3 coordinate all retailers into the 

optimization model. Even though in the reality there is a possibility that not every 
retailer is included in an order, we assume that in ordering decision all retailers are 
considered to jointly replenish once an order is triggered. Therefore, the major order 
cost Type I and Type II can be transformed into TypeI TypeII

r i

i N

K K K


  . 
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To summarize this section, three joint replenishment models are proposed 
for managing multiple items and multiple retailers in OWNR. All proposed models 
will be analyzed to identify the relationship of such models and the significant 
relevant factors. This enables us to clarify which joint replenishment model is 
preferable to any situation. Definitely, before obtaining any results we will address 
our research methodology utilized throughout this phase in the next section. 

 
5.2 Research Methodology  

Like previous chapters, we use computer simulation to represent the 
inventory process of the system containing multiple items and multiple retailers 
coordinated replenishment. Due to the extremely complicated system, it is 
herculean task to find out the best-known solution from computer simulation. 
However, we integrate the simulation cost model obtained from computer 
simulation into our heuristic approach to determine the appropriate inventory policy 
setting. Another methodology is determination of lower/upper bound for Model 1 
and Model 2. Since such two models are decomposed into smaller parts (i.e. Model 
1 – n  serial systems implying there are n -warehouse for all retailers, and Model 2 –  
m  single-item systems implying there are m -warehouse for all items), meanwhile 
our computer simulation is based on single warehouse. Therefore, we need to figure 
out lower bound and upper bound to represent a range of the total system-wide 
cost instead of any point value.  

 
5.2.1 Computer simulation 

The computer algorithm representing the inventory process is 
illustrated in Fig.V-5. The inputs for simulating the system can be divided into three 
groups: decision variables, relevant factors, and experiment setting. We use the same 
experiment setting as described in Chapter III (section 3.2.1), and then only two 
groups are explained as follows:  
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Input parameters

Relevant Factors:

n = Number of retailers

m = Number of items

λij = Demand rate of retailer-item ij

hij = Unit holding cost at location-item ij 

Kw = Warehouse’s major ordering cost

Kr = Retailers’ major ordering cost 

кij = Minor ordering cost at 

        location-item ij 
Lij = Lead time for location-item ij 
TSLij = Targer service level of 
             retailer-item ij

Computer algorithm

START

Set Dispatch cycle x = 1

Replenishment cycle y = 1

For location-item ij,
Inventory on-hand (OHij) = Iij(0)
Inventory position (IPij) = Iij(0)
Net inventory level (NETij) = Iij(0)

Output section

A report of inventory costs and 

transactions

No Is an event 
arrival time < T ?

Yes

Generate inter-arrival time of demands (dij) and sort 

all demands by arrival time

Check which kind of events is arrived:
Event(A) Demand arrival at retailer echelon 
Event(B) Arrival of dispatch order to retailer echelon
Event(C) Arrival of replenishment order to 
warehouse echelon

For retailer-item ij who own 
this demand, calculate
(1) IPij = IPij – dij

(2) OHij = min(OHij – dij, 0)
(3) NETij = NETij – dij

IPij ≤ sij ?

Event(A)

If OHij > 0 counted for 
INVij , otherwise not 
counted
If NETij < 0 counted for 
BOij , otherwise not counted

Yes

No

Record ordering time and 
assign x = x + 1

Order Quantity (OQij) 
= Sij – IPij

Set IPij = Sij 

For other retailer-item  z ≠ ij
OQz = Sz – IPz

IPz = Sz

IPz ≤ cz ? No

Yes

Event(B)

For retailer-item ij included in this 
order, calculate
(1) OHij = OHij + On Order (ORij)
(2) NETij = NETij + ORij

Collect total dispatch 

quantity for each item j 

(TDQj)

OQz = 0

For the warehouse

Calculate
(1) IP(0,j) = IP(0,j) – TDQj

(2) OH(0,j) = 
min(OH(0,j) – TDQj, 0)
(3) NET(0,j) = NET(0,j) – TDQj

Identification of arrival time of dispatch order (AR)[used information from the warehouse]

Yes

No

AR = ordering time 
+ L(0,,j) + Lij

Yes

No
AR = ordering time + Lij

NoAR = latest arrival of 
replenishment order at 

warehouse + Lij

Special order
AR = ordering time + Lij

and rearranging AR of 
previous orders according to 

this special order

Yes

Record AR 

If OH(0,j) > 0 counted for 
INV(0,j) , otherwise not 
counted
If NET(0,j) < 0 counted for 
BO(0,j) , otherwise not counted

IP(0,j) ≤ s(0,j) ?

Yes

No

Calculate inventory costs

Record ordering time and 
set  y = y + 1

OQ(0,j) = S(0,j) – IP(0,j)

IP(0,j) = S(0,j) 

Record arrival time of 
replenishment order

Event(C)

For the warehouse, calculate 
(1) OH(0,j) = OH(0,j) + OR(0,j)

(2) NET(0,j) = NET(0,j) + OR(0,j)

Cont.

Cont.

Calculate total 
system-wide 

cost

END

IP(0,j) < TDQj ?

Decision variables:

Warehouse-Item (0,j)   

s(0,j)  = [min,max] 

c(0,j)  = [min,max]

S(0,j) = [min,max]

Retailer-Item ij

s(i,j)  = [min,max] 

c(i,j)  = [min,max]

S(i,j) = [min,max]

Note that each decision variable can 
be inputted as a given value by 
letting min = max

Experiment setting:

Iij(0) = Initial inventory level of 

           location-item ij ; Iij(0) = 0

T = Time period; T = 10,000

Seed number = [0, 99] 

For each retailer-item ij,

For other retailer-item  z ≠ ij

NET(0,j) < TDQj ?

OH(0,j) < TDQj ?

 
 

Figure V-5 The computer algorithm for simulation of Phase III 
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1) Decision variables ( , ,ij ij ijc s S ) where the warehouse i  = 0 and the 
retailer i N : Each variable is inputted either as a range of minimum and maximum 
values or a point value by setting identical minimum and maximum values. A 
combination of ( , ,ij ij ijc s S ) is a solution providing a value of the total system-wide 
cost and its transaction. The transaction includes, for example, number of dispatch 
cycles, number of replenishment cycles, and fill rate at each location.  

2) Relevant factors: we consider five basic factors as previous phase, 
i.e. cost parameters, demand rates, number of retailers, lead time and target service 
level. We set a combination of relevant factors to a scenario containing different 
solutions. Specifically, cost parameters are different from prior chapters as we 
mentioned the new ordering cost structure. However, in computer simulation we 
only input the major ordering cost rK after generalizing the major ordering cost Type 
I and Type II.  

For the output section, we obtain a report of the inventory costs and 
its transaction if we input decision variables as a range. On another hand, we get the 
total system-wide cost for a combination of ( , ,ij ij ijc s S ) which is a feasible solution 
under a given scenario. Then, we use the heuristic approach to determine the best 
solution among these feasible solutions. 
 

5.2.2 Determination of lower/upper bound for Model 1 and Model 2 

Model 1 and Model 2 are decomposed into n  serial systems and m  
single-item systems respectively. It implies that Model 1 has n -warehouse for all 
retailers and Model 2 has m -warehouse for all items, but our computer simulation is 
based on only one warehouse. Then, we need to figure out lower bound and upper 
bound to represent a range of the total system-wide cost instead of any point value. 
This range is used to compare with the total system-wide cost obtained from Model 
3 so as to measure each model’s performance.  

The warehouse’s major ordering cost wK  is necessary to be 
transformed to a decomposed value of wK . Let wK  denote the warehouse’s major 
ordering cost for determining lower bound and wK   denote the warehouse’s major 
ordering cost for determining upper bound. Then, we replace wK  with either wK or 

wK in Equation (5.5). The largest cost-saving of the warehouse’s major ordering cost 
is when all items at the warehouse are jointly replenished. So, we identify such 
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situation to a lower bound case. On the contrary, when each item is separately 
replenished bring the non-shared warehouse’s major ordering cost to an upper 
bound case. The above concept assumes that the warehouse’s minor ordering cost 
is small as comparing to the warehouse’s major ordering cost, Table V-2 summarizes 
the calculation of lower and upper bounds for such two models.  

 
Table V-2: The calculation of lower/upper bound for Model 1 and Model 2 
 

Model Lower Bound Upper Bound 
1 /w wK K n  

w wK K  
2 /w wK K m  

w wK K  
 

5.3 Heuristic IV – Joint Replenishment Model for Multiple Location-Items and 
Non-Zero Lead Time (SIM/M/NZ)  

To develop this phase’s heuristic called SIM/M/NZ, we use the same concept 
as the SIM/S/NZ heuristic mentioned in the Phase II for the single-item two-echelon 
inventory system. Decomposition technique, iterative procedure and one-
dimensional search are employed into the SIM/M/NZ heuristic. The SIM/S/NZ 
heuristic is used as a part of the proposed SIM/M/NZ heuristic for determining 
decision variables of each item j . We utilize the simulation cost model to reduce the 
cost error from an approximation. The simulation cost model follows the algorithm 
illustrated in Fig.V-5. Then, the total system-wide cost and fill rate from the 
simulation cost model are used in the heuristic algorithm. However, there are some 
equations of approximate mathematical model utilized to find out the initial values 
of related decision variables. They have to be inputted in the simulation cost model 
to initiate the first solution for iterative procedure.  

With regard to the single-item model dividing two ranges for determining the 
value of 0S , in this phase we use the same two ranges applied for all items. It 
means that we consider all items controlled in either Range I or Range, for example, 
we determine the inventory policy setting for item 1 and item 2 in case of the cross-
docking system (Range I) and also determine the setting for both items in case of 
which the warehouse is allowed to hold stock (Range II). We do not concern the 
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combination of Range I and Range II, such as Range I for item 1 and Range II for item 
2 and vice versa.  

Additionally, we set the can-order level for all location-items equal to 
ijc = ijS - 1. Then, we can determine only ( , )ij ijTC s S on given ijc = ijS - 1. We use the 

same concept as the SIM/S/NZ heuristic to determine ij ij ijS s    for location-item 
ij , and decompose multiple location-items into single location-item to recurrently 
determine the local minimum ( , )ij ijTC s S at the given k ij . We also apply the 
concept of the golden section search to determine the (near) minimum value of ij  
and (0, )js . Hence, the SIM/M/NZ heuristic is outlined in the following algorithm 
illustrated in Fig.V-6. 

The SIM/M/NZ heuristic still use the same structure as the single-item 
heuristic, but we need to add some steps for this multi-item heuristic: Step 3.0 and 
Step 3.5 showed in Fig.V-6. Step 3.0 defines item j  concerned in the loop number
AL , then the given item j  is processed according to Step 3.1 – 3.4 as the single-
item heuristic (already described in Section 4.4.2). Step 3.0 is repeated until all items 
have been done. Step 3.5 is a conditional step of termination. The iterative process 
terminates as soon as the minimum long-run average total system-wide cost per unit 
time of Range II, 

min 2( , )R ij ijTC s S , from the current loop AL  does not decrease from 
the previous loop 1AL  by more than % . Meanwhile, Procedure 1 – 4 are the 
same as the single-item heuristic on a given item j .   

Model 1 applies the SIM/M/NZ heuristic for a given retailer i  . The 
best solution is determined for such retailer, and then the heuristic is repeated until 
all retailers have been done. Similarly, Model 2 utilizes the SIM/M/NZ heuristic for a 
given item j . We find out the best solution is found for such item, and repeat the 
heuristic until all items have been done. Alternatively, Model 2 is able to employ the 
SIM/S/NZ heuristic from the single-item model. Model 3 uses the SIM/M/NZ heuristic 
for full combination of retailer-item ij . According to the aim of this chapter which is 
to analyze the proposed models and identify the relationship of such models and 
the significant relevant factors, we continue to the next section. Various experiments 
are carried out and the analysis of the results is demonstrated herein. 
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START

Step 1: 

Determine initial Solution (Δij)

Step 2: 

Determine the local optimal 

solution for range R1

Step 2

Step 2.1: 

- Calculate TCinitialR1(sij,Sij) 

by setting s(0,j)=-1, S(0,j) =0

- Set TCminR1(sij,Sij) = TCinitialR1(sij,Sij)

Step 4: 

Select the best solution at

TCmin(sij,Sij) = 

min{TCminR1(sij,Sij), TCminR2(sij,Sij)} 

Output: 

Δij

Output: 

TCminR1(sij,Sij)

END

Step 2.2: Iterative procedure for determining 

the local optimal solution (sij,Sij) 

Procedure 1

Algorithm-Procedure 

relationship

Main algorithm

Procedure 2

Procedure 3 

by skipping Δ(0,j) 

determination

Step 3: 

Determine the local optimal 

solution for range R2

Output: 

TCminR2(sij,Sij)

Step 3

Step 3.1: Set initial s(0,j)

Step 3.3: Iterative procedure for determining 

the local optimal solution (sij,Sij) 

Procedure 4

Procedure 3

Step 3.2: 

- Calculate TCinitialR2(sij,Sij)

- Set TCminR2(sij,Sij) = TCinitialR2(sij,Sij)
Procedure 2

Procedure 4

Step 3.4: 

- Search next s(0,j) and step back to step 3.3 

- Update TCminR2(sij,Sij) on given s(0,j) if the better 

solution has been found

- Go back to step 3.0 for the next j if the best s(0,j) 

has been found

STC 
& 

SFR

STC

STC 
& 

SFR

STC

STC

STC = Simulated total system-wide cost per unit time obtained from the simulation cost model

SFR = Simulated fill rate obtained from the simulation cost model

Step 3.0: 

- Start at item j = 0 and set AL = 1

- Set item  j = j + 1 and follow step 3.1 – 3.4 

- Repeat until all items have been done

Step 3.5: 

- Update TCminR2(sij,Sij) for given AL = 1 

- Set AL = AL + 1, go back to step 3.0, and 

restart at item j = 0 

- Stop if 

TCminR2(sij,Sij) of loop AL and TCminR2(sij,Sij) of 

loop AL - 1 does not decrease 

by more than ε%

Otherwise go back to step 3.0 for next AL

 
 

Figure V-6 The algorithm of the heuristic approach – SIM/M/NZ 

   
5.4 Experimental Results 

 The SIM/S/NZ heuristic was experimented on various scenarios shown in 
Table V-3 (35 scenarios). The experiments focused on identical items and identical 
retailers, thus an identical inventory policy is employed to all identical retailer-item 
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ij as well as at the warehouse an identical inventory policy is used for all identical 
item j .  

We tested each scenario on five replications with different random seed 
numbers. Then, for each best solution we determined the average total system-wide 
cost by additional 10 random seed numbers. We defined “the minimum solution” 
provided by the best solution with the minimum of average total system-wide cost. 
For Model 1 and Model 2, we first determined the lower bound. If the minimum of 
average total system-wide costs obtained from these lower bounds are less than the 
minimum of average total system-wide costs obtained from Model 3, the upper 
bound will be determined later. The experimental results are demonstrated in Table 
V-4 – Table V-6. 

 
Table V-3: Test problems for the multi-item one-warehouse n-retailer inventory 
system with identical items and identical retailers 

 
Fixed identical parameters for retailer echelon ij = 1, ijTSL = 0.95, ijh = 10  

Fixed identical parameters for warehouse echelon (0, )jh = 3  

Fixed identical parameters for both echelons ijL = 1  

Scenario 
No. 

Varied Parameters 

wK  TypeIK  
TypeII

iK  
( i N ) 

ijk  
( i N ) 

Combination of parameter  
n  and m  

1-5 100 50 5 0 
n  m  
2 2 
2 8 
4 4 
8 2 
8 8 

 

6-10 100 50 5 5 
11-15 100 50 5 25 
16-20 100 50 500 0 
21-25 100 50 500 25 
26-30 100 100 5 0 
31-35 500 50 5 0 
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According to the scenario 1 – 15, the result is showed in Table V-6. We found 
that Model 3 outperformed other models in almost all scenarios except some 
scenarios that Model 1 seemed to be more interesting (i.e. Model 3 provides the 
minimum of average total system-wide cost in the bounds of Model 1). Model 1 is 
interesting in any scenario with low number of retailers and in the scenario of high 
minor ordering cost, high number of items, and high number of retailers. Due to low 
number of retailers, Model 3 appears to share the fixed ordering cost among retailers 
indifferent from Model 1. Furthermore, in case of high minor ordering cost, high 
number of items and high number of retailers the total ordering cost including the 
major and minor ordering cost seems not different. Even though Model 3 can save 
the fixed ordering cost, it can increase the minor ordering cost as well. So, all 
components have to be traded off.  

We then analyzed the scenario 16 – 25 with higher the retailers’ major 
ordering cost Type II, TypeII

iK . Model 1 is preferable when high minor ordering cost. It 
can provide the lower average total system-wide costs than other models, since 
coordinated ordering decision among retailer-items of Model 3 produces larger total 
minor ordering cost rMN . Additionally, we tested on the scenario 26 – 30 with 
higher retailers’ major ordering cost Type I, TypeIK , and on the scenario 31 – 35 with 
higher warehouse’s major ordering cost wK . The results showed that Model 3 
outperforms the others. Mostly, the minimum solutions allow the warehouse to hold 
stock for all retailer-items.  

An interesting issue is which scenario Model 2 is suitable for. We found that 
Model 2 could not outperform Model 3 in any scenarios. However, Model 2 was 
more interesting when low number of items and high number of retailers, because it 
provided lower minimum of average total system-wide cost than that of Model 1. 
Advantageously, Model 2 could be used in such scenarios if Model 3’s 
computational time is too long.  

According to our experiments, we found that Model 1 and Model 2 spent 
computational times less than Model 3, especially for the scenarios having high 
number of retailers and high number of items. For eight retailers and eight items, 
Model 3’s computational time was found to be 3.77 hours on average. Then, for 
such scenarios Model 1’s computational time was around 52 times faster than Model 
3’s, and Model 2’s computational time was around 40 times faster than Model 3’s. 
The reason is that Model 3 has a lot of interactions for joint replenishment (64 
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interactions among location-items). Meanwhile, Model 1 and Model 2 have a few 
interactions for joint replenishment (8 interactions among locations or items). 
Certainly, if number of retailers and number of items are more than 8, Model 1 and 
Model 2 are more interesting. As comparison between Model 1 and Model 2, Model 
1’s computational time is faster than Model 2’s for high number of retailers. On the 
other hand, Model 1’s computational time is slower than Model 2’s for high number 
of items. It is not surprising because Model 2 is based on interaction among retailers 
and Model 1 is based on interaction among items. High number of retailers (items) 
increases more interactions, and then increases computational time. Since we tested 
only the case of identical retailers, we presume that for more complex case of non-
identical location-items, Model 1 or Model 2 can be a good choice for managing the 
multi-item system under OWNR. 

We can identify the relationship of such models and the significant relevant 
factors by considering the lowest total system-wide costs among three models. 
Figure V-7 illustrates the relationships of three models and the relevant factors to 
decide which model is suitable for given relevant factors. As comparing to the other 
models, although Model 3 provides the smallest minimum of average total system-
wide cost, it spends a lot of computational time especially for high number of items 
and high number of retailers. Therefore, which model is suitable for any scenario 
should be measured not only by costs but also by computational times.  

According to Fig.V-7, it can be explained as follows: 
(1) Model 3 provided low total system-wide cost on any values of wK . 

Meanwhile Model 1 should be interesting for the low value of wK  
and Model 2 should be interesting for the high value of wK . The 
reason is that Model 2 influences the warehouse to hold stock for all 
retailers, then the high value of wK  could be saved from the reduced 
replenishment frequency. Model 1 is suitable for the lower value of

wK  because the best solutions often occur for the cross-docking 
system (i.e. high replenishment frequency).   

(2) Then, for the high value of wK , Model 2 and 3 are considered. We 
found that for low number of retailers and low number of items, 
Model 2 could be a good choice since it provided low total system-
wide cost as Model 3. Small effect of sharing the ordering costs 
between items provides Model 2’s performance be close to Model 
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3’s. However, other situations for the high value of wK , Model 3 still 
outperforms. 

(3) We found that for the low value of wK  along with the low value of 
TypeIK , Model 1’s and model 3’s performances were not difference 

because the ordering costs shared among location-items were small. 
However, we could not summarize to select either model from only 
the values of wK  and TypeIK .  

(4) Then, we analyzed the relationships between the values of TypeII

iK  
and ijk . Model 1 performs well for high value of TypeII

iK  along with 
high value of ijk . The reasons are that Model 3 considers too many 
retailers in an order might increase the total ordering cost from the 
high value of TypeII

iK , and the high value of ijk  also affects high total 
ordering cost from all retailer-items included in an order. However, for 
the low value of ijk , Model 3 outperforms due to small effect of all 
retailer-items’ total minor ordering costs. 

(5) Interestingly, for the low value of TypeII

iK  and the high value of ijk , 
Model 1 and 3 should be considered together since each model takes 
an effect of either TypeII

iK  or ijk . We found that for such situation 
along with high number of items, Model 1 could be a good choice 
since it provided low total system-wide cost as Model 3. The reason is 
that Model 1 can more reduce the major ordering costs due to the 
high number of items. High effect of sharing the major ordering costs 
between items provides Model 1’s performance be close to Model 
3’s.  

In conclusion, considering all location-items together for the whole system is 
the best option as shown in Model 3. However, we provide other options for some 
situations in order to save computational times from high interrelationships between 
all location-items. Model 1 should be interesting for 1) the scenarios having low wK , 
high ijk , high TypeII

iK , and 2) the scenarios having low wK , high ijk , low TypeII

iK , and 
high number of items. Meanwhile, Model 2 should be interesting for the scenarios 
having high wK , low number of retailers, and low number of items. 
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Figure V-7 Relationship of the proposed models and the significant relevant factors 

 
5.5 Discussion 

Under multi-item OWNR system, we are interested how to coordinate 
multiple items and multiple retailers in order to minimize the total system-wide cost. 
According to the ordering cost structure as shown in Fig.V-1, it is very significant to 
decide how to manage our system. Some questions have been raised, e.g. 

- Is it worth managing all retailer-items together due to a lot of decision 
variables concerned in the system? 

- If there are large values of the major ordering cost Type II, do we prefer 
to manage each retailer individually?  
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- If there are large values of the minor ordering cost of retailer-item ij , do 
we prefer to manage each item individually but coordinate all retailers 
for economic order quantities? 

These questions lead us to develop three joint replenishment models: Model 
1 – joint replenishment with item-based model, Model 2 – joint replenishment with 
retailer-based model, and Model 3 – completely joint replenishment model (more 
details of each model have already been mentioned in section 5.1). One hypothesis 
is that Model 3 should provide better performance than others since all location-
items are coordinated to share all ordering costs. Disadvantageously, Model 3 
contains a lot of interrelationship between decision variables, so it takes a lot of 
computational time to determine the best solution. Consequently, the above 
questions motivate us to study other models if they provide indifferent results as 
comparing to Model 3.    

We extended the SIM/S/NZ heuristic from Phase II to the SIM/M/NZ heuristic. 
Dimension of multiple items was added into search algorithm. We still applied 
decomposition technique, iterative procedure, and golden section search, by the 
reason that inventory policy characteristics of each location-item have not been 
changed. For Model 2, the SIM/S/NZ heuristic can also be applied because Model 2 
is based on the single-item multi-retailer model.   

From the experimental results, it was not surprising that Model 3 provided 
the lowest total system-wide cost in many scenarios since all location-items were 
coordinated to share all ordering costs. However, huge number of interrelated 
decision variables is the weakness of Model 3. In consequence, Model 3 takes a lot 
of computational times, especially for the scenarios at high number of retailers and 
high number of items. For eight retailers and eight items, Model 3’s computational 
time is 3.77 hours on average. Whereas for such scenarios Model 1’s computational 
time is faster than Model 3’s around 52 times, and Model 2’s computational time is 
faster than Model 3’s around 40 times. Certainly, if number of retailers and number 
of items are more than 8, Model 3 will spend even more computational times than 
other models due to multiplication of interrelated decision variables.  

Focusing on Model 1, it should be suitable for a scenario under high major 
ordering cost Type II, since considering too many retailers in an order might increase 
the total ordering cost (instead of taking an advantage from sharing the fixed ordering 
costs). From the experimental results, Model 1 performs well for high major ordering 
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cost Type II along with high retailer-item’s minor ordering cost. Whereas Model 3 
performs better if there are high major ordering cost Type II and low retailer-item’s 
minor ordering cost. The reason is that high retailer-item’s minor ordering cost affects 
high total ordering cost from all retailer-items included in an order. Hence, Model 1 
decomposes all retailer-items into single retailer with multiple items to determine 
the best solutions of all items for such retailer. Interestingly, when there are high 
number of items along with low major ordering cost Type II, Model 1 should be 
replaceable Model 3 to save computational times with the maximum cost gap13 at 
5.19% (based on our experiments). The reason is that for Model 1 high number of 
items can more reduce the major ordering costs. 

Even though Model 2 does not outperform other models, especially for 
Model 3, it still is interesting for the situation under high warehouse’s major ordering 
cost, low number of items, and high number of retailers. Under such situation, Model 
2 performs quite well because high number of retailers can more reduce the major 
ordering costs and there is more possibility that the warehouse is allowed to hold 
stock. Moreover, it has less effect of low number of items; therefore its performance 
is close to Model 3’s. Since the warehouse has high value of 0 , the opportunity of  
joint replenishment is very high in spite of low number of items. Therefore, the 
upper bound should not be used to compare with Model 3 due to overestimate.     
Hence, the lower bound should be used instead. Under such situation, Model 2 can 
save computational times 10 with the cost gap at 5.67% (based on our experiments).  

For more complex case, such as high number of retailers, high number of 
items, non-identical location-items, the decomposed models like Model 1 or Model 
2 should be another good choice for managing the multi-item system under OWNR. 
However, Model 1 and Model 2 were developed based on the simulation model as 
shown in Fig.V-5, the warehouse cannot identify an exact number of retailers (or 
number of items) included in an order sent to the outside supplier. We have to 
estimate number of retailers per order (or number of items per order) to use for the 
models.   
                                                           
13 The largest cost-saving of the warehouse’s major ordering cost is when all items at the 
warehouse are jointly replenished. So, such situation can be identified to a lower bound case. On 
the contrary, when each item is separately replenished bring the non-shared warehouse’s major 
ordering cost to an upper bound case (already mentioned in section 5.2.2). By this concept, the 
maximum cost gap is a comparative measurement between an upper bound from Model 1 (or 2) 
and the lowest total system-wide cost from Model 3.   
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5.6 Conclusion 

This chapter demonstrated Phase III’s system comprising multiple items on 
OWNR. The warehouse’s items were jointly replenished, and then the can-order 
level at the warehouse was employed. Unlike Phase I and Phase II, we considered 
the ordering cost following location-item ij  instead of only location i . The ordering 
costs were restructured to be consistent with multiple items and multiple retailers.    

We proposed three joint replenishment models to manage multiple items 
and multiple retailers: Model 1 was a joint replenishment with item-based model, 
Model 2 was as joint replenishment with retailer-based model, and Model 3 was a 
completely joint replenishment model for all retailer-items. Comparative analysis on 
three joint replenishment models was conducted.  

Heuristic algorithm called SIM/M/NZ was developed to determine the 
inventory policy setting for location-item ij . We extended the SIM/S/NZ heuristic 
which was proposed in Phase II into this SIM/M/NZ heuristic. Decomposition 
technique, iterative procedure, and one-dimensional search were still applied by 
adding a dimension of multiple items. The experimental results showed that Model 
3 provided the lowest total system-wide cost in many scenarios, but it spent much 
more computational time specifically high number of items and high number of 
retailers. By this result, a selection of joint replenishment model (three proposed 
models) employing to the multi-item inventory system should be based on the 
compromise between “total system-wide cost” and “computational time”.   
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CHAPTER VI 
CONCLUSION 

 

This chapter summarizes the dissertation deliverables: analyses of the can-
order policies as well as joint replenishment models and solution approaches. 
Moreover, the future research directions are also provided to fulfill the research gaps 
in the area of an integration of joint replenishment problem and multi-echelon 
inventory system. 

 
6.1 Dissertation Deliverables  

In this dissertation, we studied the can-order policies employed into two-
echelon inventory system composing of one warehouse and multiple retailers with 
multiple commodities. Regarding a few of literatures studied on the shared ordering 
costs among retailers/items, it was interesting to apply joint replenishment policy 
into the one-warehouse n-retailer inventory system (OWNR) under continuous 
replenishment and stochastic demand. Then, the system including all inventory costs 
were taken into consideration in order to determine the inventory policy parameters 
for all stores in the system as the general inventory control process. Our objective 
was to develop the stochastic joint replenishment model and the solution approach 
for determining inventory policy parameters under such system so as to obtain the 
expected minimum total system-wide cost. 

We conducted the research by using two methods: computer simulation and 
heuristic approach. Due to the system’s complexity, computer simulation was an 
efficient approach representing the complicated inventory process. We used 
computer simulation to preliminarily study the can-order policy, and also to obtain 
the best-known solution providing the minimum of average total system-wide cost. 
We made an effort to determine the best-known solution due to a large search 
space; therefore, the heuristic approaches were proposed to solve this problem. Lot 
of literatures on the can-order policy used the heuristic approach to determine the 
appropriate inventory policy setting as it was an NP-hard problem.  
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To obtain insights of the can-order policy on OWNR, the dissertation 
methodology is divided into three phases: Phase I – The single-item model with zero 
lead time, Phase II – The single-item model with non-zero lead time, and Phase III – 
The multi-item model with non-zero lead time. We studied the can-order policy on 
each Phase, observed its characteristics, and analyzed what we found to develop the 
joint replenishment models and heuristic approaches following each phase.  

Hence, we summarize the significant deliverables of our dissertation as 
follows: 

 
6.1.1 Analyses of the can-order policies 

We studied the can-order policy on six relevant factors which are the 
most important as found in many kinds of inventory problem. There were cost 
components, demand rates, lead times, target service levels (fill rates), number of 
retailers, and number of items. Specifically, cost components were classified into 
three components, i.e. unit holding cost per unit time, major ordering cost per order, 
and minor ordering cost per location-item. The experimental results showed that all 
relevant factors had an effect on the can-order policy, especially for the holding cost 
ratio which is a ratio of unit holding cost per unit time at the warehouse echelon to 
unit holding cost per unit time at the retailer echelon. We found that it highly 
affected the decision on the warehouse echelon whether or not the warehouse 
would employ the cross-docking system.  

Rationally, the warehouse’s order-up-to level 
(0, )jS  is relative to the 

retailers’ order-up-to level 
ijS . If 

(0, ) ( , )j i jS S , the warehouse’s inventory is 
replenished every time when any retailer’s triggers an order, because dispatch 
quantity is always larger than the warehouse’s inventory level. So, the minimum 
total system-wide cost of this condition occurs at 

(0, ) 0jS  . Meanwhile, if 
(0, )j ijS S , 

it means that the warehouse holds stock for dispatching to the retailers more than 
one order. Trading off between the holding costs and the ordering costs has to be 
considered to decide how many order cycle the warehouse should serve retailer 
echelon. Then, there is a solution (or more than one solution) which 0 0iS S   
providing the minimum total system-wide cost of this condition. According to these 
conditions, we could generally divide the system into two cases: case I – Cross-
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docking system, and case II – Stocking system at the warehouse. The best-known 
solution definitely occurred in either case I or II. 

The fixed can-order level at 1c S   can create the maximum 
opportunity of joint replenishment for all retailers (items). The major ordering cost 
can be most shared if all retailers (items) are included in an order to minimize the 
total system-wide cost [48]. Unless all retailers (items) are replenished, the total 
ordering cost will increase from the increased total ordering cost or/and the 
increased total holding cost. Then, the holding cost is traded off with the shared 
ordering cost in order to balance order frequency and holding stock. We found that 
the experimental results were consistent with this joint replenishment concept. The 
can-order level could be approximated to ijS - 1 since *

( 1)ijS
TC


 was greater than TC

not over 1% on average where TC was the optimal average total system-wide cost 
and *

( 1)ijS
TC


 was the minimum average total system-wide cost of the solution at ijc

= ijS - 1. Even though the minor ordering costs and target service levels influenced 
the can-order level is not equal to ijS - 1, we obtained a small cost gap between 
TC  and *

( 1)ijS
TC


. Mainly, if the ratio of the major ordering cost to the minor 

ordering cost was not too small, this all joint concept could be utilized as van Eijs 
[48] recommended. Since the minor ordering cost had less effect on the total 
system-wide cost as comparing to the major ordering cost.  

All decision variables were associated with each other. For example, 
the retailers’ must-order level affected the warehouse’s must-order level to hold 
sufficient stock for serving target service levels, each location’s order-up-to level was 
relative to its must-order level. Therefore, it was hard to analyze their relationship 
obviously. Thus, we considered ij ij ijS s    where index ij  represents location-item 
ij . The value of ij  was originated from an economical order quantity as a classic 
EOQ which the ordering cost and the holding cost were traded off. We analyzed 
each decision variable by either fixing other variables or varying some needed 
variables. The results showed that the total system-wide cost line turns to resemble 
a curve containing a minimum point. The knowledge from this study was very 
significant for solution approaches. 
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6.1.2 Joint replenishment models and solution approaches 

We proposed various joint replenishment models and solution 
approaches to solve the inventory problems for each phase. To illustrate the overall 
of what we developed for each phase, Fig.VI-1 shows a summary of the dissertation 
with our aimed deliverables. The existing research and the best-known solutions 
obtained from computer simulation were compared with our heuristics for 
performance evaluation. The best-known solution can be determined by systematic 
approaches: input determination and output validation. 

From Fig.V-1, each phase was related to indifferent number of decision 
variables reflecting indifferent dimensions. Since the fixed can-order level ijc = ijS - 1 
was utilized, we could reduce number of decision variables. It was an easier 
approach to develop the can-order policy according to a regenerative process. The 
simple phase was Phase I. We developed two heuristic approaches, and each 
approach employed its joint replenishment model. 

 Heuristic I called DJ was proposed by using the concept of a 
classical deterministic model of Schwarz [124]. The pilot testing 
on DJ showed this simple policy was useful in the case of 
identical retailers with low number of retailers.  

 We attempted to develop heuristic II called EOQ-Z to obtain 
better quality solution than the DJ heuristic. We modified the 
model of van Eijs [48] which was developed following Erlang 
distribution. We approximated continuous arrival of demand at 
warehouse echelon, so it enabled us to use EOQ. Decomposition 
technique, iterative procedure, and one-dimensional search 
called golden section search were employed into the heuristic 
algorithm. Overall, the experiments provided the cost gap of 
heuristic approach less than 2% on average as compared to the 
best-known solution. With satisfactory computational time and 
small cost gap, heuristic II (EOQ-Z) is well worth using for the 
can-order policy setting under OWNR with zero lead time.  
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Significant finding was an integration of the classical EOQ and the can-
order policy for two-echelon inventory system. We simplified the EOQ concept to 
determine the warehouse’s order-up-to level 

0S . It relaxed dispatch quantity and 
frequency synchronized with retailer echelon, but utilized total demand rate which is 
a summation of all retailers’ demand rates. From the experimental results, the 
mechanism of trading off between warehouse echelon and retailer echelon occurred 
to rebalance with EOQ. The research showed that even though we studied the 
complicated system, the simple concept of EOQ remained useful and applicable for 
the case of zero lead time (i.e. the zero lead time assumption could be interpreted 
and applied in the situation when the ratio of lead time to order cycle duration was 
very small). 

Later, Phase II was examined to determine the appropriate inventory 
policy setting by heuristic III. We classified heuristic into two sub-approaches: heuristic 
3.1 and 3.2. 

  Firstly, we proposed heuristic 3.1 named MMNZ. Approximate 
mathematical model extended the concept of the EOQ-Z 
heuristic from Phase I added lead time and target service level. 
We extended an application of decomposition technique, 
iterative procedure, and golden section search to heuristic 
algorithm. The MMNZ heuristic was useful if the cross-docking 
system was preferable, but it was quite poor if the warehouse 
was allowed to hold stock.  

 Heuristic 3.2 called SIM/S/NZ was introduced. We used 
simulation cost model instead of approximate mathematical 
model, but yet the same heuristic algorithm. It could reduce the 
cost error from an approximation. The performance of the 
SIM/S/NZ heuristic was measured into two methods. The first 
method was a comparison with the best-known solution 
obtained from computer simulation. The SIM/S/NZ heuristic 
provided an average cost gap not over 2% on average. The 
second method was a comparison with Özkaya [22]. Qualitative 
analysis was provided that the SIM/S/NZ heuristic should be 
better than Özkaya [22]’s approach. 
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Advantageously, the SIM/S/NZ heuristic gave the best performance in 
terms of cost gap and their computational time could be saved from the reduced 
search space as comparing to the computer simulation’s computational time. We 
provided systematically reduced search space. Hence, the SIM/S/NZ heuristic was 
interesting for the can-order policy setting under OWNR with single-item and non-
zero lead time consideration. 

For the last phase, we proposed three joint replenishment models to 
manage multiple items and multiple retailers: Model 1 was a joint replenishment 
with item-based model, Model 2 was as joint replenishment with retailer-based 
model, and Model 3 was a completely joint replenishment model for all retailer-
items. We developed mathematical models with a generalization of the ordering cost 
structure, and extended the heuristic algorithm from SIM/S/NZ into the multi-item 
model. We called the SIM/M/NZ heuristic. Dimension of multiple items was added 
into search algorithm. We still applied decomposition technique, iterative procedure, 
and golden section search, by the reason that inventory policy characteristics of each 
location-item have not been changed. For Model 2, the SIM/S/NZ heuristic can also 
be applied because Model 2 is based on the single-item multi-retailer model. 

From the experimental results, it is not surprising that Model 3 
provided the lowest total system-wide cost in many scenarios since all location-
items are coordinated to share all ordering costs. However, huge number of 
interrelated decision variables is the weakness of Model 3. In consequence, Model 3 
takes a lot of computational times, especially for the scenarios at high number of 
retailers and high number of items. Certainly, in reality there are many retailers or 
items considered in the system, Model 3 will spend even more computational times 
than other models due to multiplication of interrelated decision variables. Hence, we 
provided insights of which situation is suitable for each joint replenishment model. 
Some situations, Model 3 could be replaced by Model 1 or Model 2 by making a 
decision based on “total system-wide cost” and “computational time”.   

The most significant deliverable of our dissertation was the proposed 
solution approaches for determining the appropriate inventory policy parameters. 
Each approach was consistent with the inventory policy characteristics obtained from 
preliminary analyses. For all phases, we used the same basis for developing the 
solution approaches: decomposition technique, iterative procedure, and golden 
section search. Decomposition technique and iterative procedure were the most 
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common approach for the can-order policy determination. Decomposition technique 
helped breaking the complicated system (multiple location-items) into smaller part 
(single location-item). Determination of the can-order policy parameters seems easier 
than consideration of the whole parts together. However, this technique should be 
utilized with iterative procedure to consolidate all single location-items consistently. 
The solution could move to the better one until the best solution has been found 
for the whole system. From both techniques integrated with one-dimensional search, 
we can determine the best solution easier and faster than other approaches, 
especially computer simulation and the exhaustive search (e.g. Özkaya [22]).   

From the first phase, trading off between the holding costs and the 
ordering costs makes the total system-wide cost performed as a convex function 
relative to the value of iS . So, we could determine the value of iS  providing the 
minimum total system-wide cost on one-dimensional search. Since our cost 
formulation was non-derivative function, we utilized a search algorithm called 
“Golden section search” by adapting for integer variable. This search algorithm 
performed better than other search algorithms, such as Fibonacci search and Half-
interval search. Later phases, we considered k k kS s    to represent an order 
quantity for location k  including the warehouse and the retailers; for the warehouse,  

0 0 0S s    and for the retailers, ,i i iS s i N    . We found the characteristic of 

k  by trading off between the holding cost and the ordering cost. The total system-
wide cost performed as a curve containing the minimum point relative to the value 
of 

k . Interestingly, even though the curves were not unimodal continuous function 
because of discrete numbers and the must-order levels, the golden section search 
with iterative procedure was applicable for determining the appropriate value of 

k . 
The reason was that the cost difference between two connected points was small 
enough to lead the successive search ranges from the golden section search meet 
the minimum point. Similarly, we also used the golden section search for 
determining the best values of 

0s . Based on the same reason of small cost 
difference between two connected points, the best values of 

0s  could be reached. 
According to the experimental results, it was fascinating to apply the golden section 
search into our system in order to shorten the computational time with the 
appropriate inventory system-wide cost. 

Advantageously, the dissertation provided various joint replenishment 
models and heuristic approaches suitable for each part of the OWNR. We considered 
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the warehouse and the retailers from the small part of OWNR as the single-item 
model to the multi-item model. Therefore, we believe that our contribution is not 
only limited to a specific area but also a good starting point for a research of more 
complex environment such as the joint replenishment policies in multi-echelon 
inventory systems. 

 
6.1.3 Application of the can-order policy 

This dissertation is generalized for any industry which matches the 
considered system. However, this section exemplifies a specific industry to show the 
real situation. Since the research problem originally surveyed in the healthcare 
industry, we would apply the can-order policy for such industry (or others which 
have the similar system) to express the employment and its limitation. The research 
can be applied into many parts of healthcare industry for pharmaceuticals and 
medical supplies management such as hospital’s internal chain (central storeroom 
and multiple departments), hospital network (central warehouse and multiple 
hospitals), and drug store chain (central warehouse and multiple drug stores).  

For the inventory policy setting, healthcare services have 
implemented both types of inventory reviews: continuous review and periodic 
review. Each type is considered depending on item types, demands, suppliers, 
replenishment and distribution operations, and resource constraints. Mostly, 
healthcare inventory management has commonly adopted “par level” policy which 
is special feature only in healthcare. There are two kinds of par levels. The minimum 
par level is equivalent to the reorder point and the maximum par level is equivalent 
to the order-up-to level (or base stock). Each kind of par levels can be used 
separately or together such as  

 The ( ,s S ) policy where s  represents the reorder point or the 
minimum par level and S represents the based stock or the 
maximum par level. 

 The ( ,r Q ) policy where r  represents the reorder point or the 
minimum par level and Q  represents the fixed order quantity.  

 The ( ,R S ) policy where R  represents the length of review 
period and S  represents the based stock or the maximum par 
level.  
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Focusing on continuous review, the ( ,s S ) policy and the ( ,r Q ) policy 

are based on independent ordering decision. Instead of both policies, we can 
employ the can-order policy to coordinate multiple items and/or multiple locations 
(e.g. departments, patient care units, hospitals, drug stores). Since we consider the 
OWNR system, central warehouse can also employ the can-order policy to 
coordinate multiple items. 

The can-order policy is not suitable for a large group of items 
(locations) since there are a lot of interactions between items (locations). 
Decomposing a large group into various small groups is preferable to reduce 
interactions. In addition, due to the fixed can-order level ijc = ijS - 1, all items 
(locations) in a group have to be replenished in the same order. Therefore, small 
groups are also useful to apply our heuristics. We suggest to group items (locations) 
which have minor variation of demand rates in order to synchronize the same order 
cycles.  

For some systems, periodic review seems to be more popular than 
continuous review, because it is easier to set joint replenishment period. However, a 
lot of stock has to be hold to cover the review period. Therefore, the can-order 
policy is able to use for specific group of items, such as items with high service level, 
in order to reduce safety stock.  
 

6.2 Future Research Directions  

In this section, we recommend some possible research extensions. We 
categorize the interesting research into three groups as follows:  

1) Heuristic approach 

According to the golden section search which is actually used for 
unimodal function, we attempted to apply its concept to our problem even the 
function seems to be multimodal as depicted in Fig.IV-8. The experimental results 
provide a quality solution, so we chose to use only simple method to determine the 
appropriate inventory policy setting. However, to verify the can-order policy’s 
performance without heuristic’s error, global search methods with derivative-free 
optimization might be another option to conduct a research. A review of Rios and 
Sahinidis [123] is recommended to study the derivative-free optimization with 
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comparison of software implementation. They provided the insights of the derivative-
free optimization in both academic and practical aspects. Finally, comparative 
analysis between global search methods and our approach should also be carried 
out.  

Even though fixing the can-order level at 1ijS   provides a small cost 
gap as comparing to the best-known solution, it seems not suitable if the minor 
ordering cost is quite large when comparing to the major ordering cost. Thus, our 
heuristics can be extended to the search of the can-order level on given ijs  and ijS . 
Recently, we found an interesting work of Nagasawa et al. [77]. They applied genetic 
algorithm to determine the can-order level on given ijs  and ijS . This work is a 
starting point to extend our heuristic for determining the can-order level. 

In this study, location-items are jointly ordered according to the 
predetermined inventory policy setting. Interaction among location-items is one of 
the most important effects to the system. If number of items and/or number of 
retailers are large, the system needs a lot of computational time to determine the 
appropriate inventory policy setting. So, it can reduce the efficiency and advantage of 
the multi-item multi-location inventory control. Clustering location-items into small 
groups is important to reduce the complexity of the joint ordering decision. Tsai et al. 
[76] proposed an association clustering algorithm applying to the can-order policy for 
multi-item single-location inventory system to evaluate the correlated demands 
among items. Clustering method was developed to group items with close demand 
in a hierarchal way. The results of the experiments showed that the proposed 
method outperformed several replenishment models. Therefore, the extension of 
clustering location-items would be an interesting issue to focus on. Moreover, from 
our experiment results the considered system seems to contain two sub-systems: 
the cross-docking system (with no stock at the warehouse) and the stocking system 
(allowing the warehouse to stock). It is possible that some location-items are stored 
at the warehouse and the others utilize the cross-docking system. Hence, clustering 
location-items can be applied for coordinated ordering decision and choose the 
proper system for each location-item. 

2) System complexities 

According to the growing trend of information technology, the 
warehouse can obtain the real time information about the status of the retailers and 
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also be in charge of the allocation of goods to the retailers. Therefore, it is possible 
to split lot to allocate the units in an order to the involved retailers according to a 
predetermined allocation rule. Since a joint order has larger lot size than an 
independent order, the average waiting time from the warehouse to retailer echelon 
for all-lot replenishment is much longer. Consequently, an integration of allocation 
problem into joint replenishment model is able to reduce the average waiting time 
and it can be interesting to study in more details for a future research extension.  

With regard to centralized control for OWNR, there are various options 
to practically increase service level. An outside supplier can directly deliver to the 
retailers with an additional cost in case of insufficient stock at the warehouse. 
Another option is that the warehouse replenishes the involved retailers with an 
emergency order immediately dispatched to the retailers ( ijL ), and an additional 
cost is charged. Such two options have to concern the additional costs charged to 
the system. The system needs to tradeoff between the holding costs and the 
additional costs under target service levels at the retailers.  

In determining which the cross-docking system is preferable, it is 
interesting to include truck capacity constraint (i.e. limited dispatch quantity is 
needed) in order to synchronize with shipment scheduling problem.  

3) Other joint replenishment policies 

According to the can-order policy selected in our dissertation, we raise 
its advantages in practical and academic aspects as mainly demonstrated in Section 
1.3.1. Moreover, we compared our approach to Özkaya [22] proposed four joint 
replenishment policies, and we evaluated that our heuristic approach has an 
advantage over Özkaya [22]’s approach. Later, to enhance our approach’s 
performance and to identify which situation is suitable for each joint replenishment 
policy considered on OWNR, it is interesting to analyze our can-order policy on 
OWNR with other joint replenishment policies, especially periodic replenishment 
policies would be focused on both the single-item and multi-item models. 

As various directions recommended, the integration of joint replenishment 
problem and multi-echelon inventory system is extended into more complex 
system. In addition, comparative analyses with other joint replenishment policies or 
other heuristic approach would be focused on. These are great opportunities to 
enhance the knowledge in the field of inventory problem. 
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