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CHAPTER |
INTRODUCTION

1.1 General Background

The growing trend of supply chain management (SCM) and supply
coordination has been paid more attention since the actions of one member in the
chain can influence the profitability of all others in the chain. Firms are focusing on
competing as part of a supply chain against other supply chains instead of a single
firm against other individual firms. Much research has been done to help companies
improve their SCM. The best solutions are obtained by using global information and
centralized control because the decisions are made with visibility to the entire
system using information for all locations. However, these solutions require
cooperation and coordination across multiple parties within operations, across
functions, and in some cases, across firms. An effective strategy of centralized control
using global information includes Vendor Managed Inventory (VMI), which is a specific
type of Outsourcing Inventory Management (OIM) [1-5]. Its importance has been
growing because there are several researches and case studies verifying that can help
control inventory cost and improve internal performance. Moreover the capabilities
of external sources are growing, so outsourcing becomes an increasingly attractive
option [2-13]. The vendor has the liberty of controlling the downstream re-supply
decisions. Consequently, VMI offers ample opportunities for synchronizing inventory
and outbound transportation decisions. In some VMI applications, the vendor not
only manages the retail inventory but also owns it, e.g. Procter & Gamble and Wal-
Mart, or even in the healthcare industry the vendor owns some inventories in the
hospitals’ warehouses and manages them as a single firm. So, centralized control has
also been used for managing all inventories in the chain to minimize the total
system-wide cost or maximize operational performance. By this reason, our research
mainly focuses on the centralized control strategy for managing overall inventories in

the system.

The dissertation considers one-warehouse n-retailer inventory system (OWNR)
which is a general pattern of two-echelon supply chain. We consider not only the

vendor and buyer coordination but also the internal supply coordination. Such



system confronts the uncertainty of demand in the reality. Centralized control
strategy can reduce demand variation because of the visibility of the entire system.
However, this strategy will be successful if and only if the update on information
technology is considered. The growing trend in the spinning world is the information
technology innovation; consequently, many companies apply the inventory planning
program into their system to automatically linking the information within a company
and also linking to their stakeholders in the chains. By this fascinating opportunity,
continuous replenishment has been paid more attention in order for customer
responsiveness. This can not only reduce their buffer stocks but also improve the
entire system’s performance. Hence, our research concerns OWNR under uncertainty

of demand and continuous replenishment.

There are a number of researches in both practical and academic aspects to
find the effective approaches for managing the entire inventories of OWNR (See e.g.
Silver, Pyke, and Peterson [1], Kelle et al. [4], and Williams and Tokar [12] which
demonstrate many researches of multi-echelon inventory management). Previous
researches in the multi-echelon inventory system can be divided into two streams
[14]: one concentrates on developing cost efficient replenishment policies by
minimizing the total system-wide cost, and the other proposes price adjustment
strategies which benefit both parties in the chains. However, the focus of this
dissertation is generally on the problem dealing with joint optimization of both

echelons’ inventory policies to minimize the total system-wide cost.

Many supply chains such as healthcare industry and retail industry need to
face the uncertainty of demand. Consequently, the stochastic demand is considered
to represent the realistic situation. Of course, this raises several new issues and
creates extreme modeling complexities in a two-echelon inventory situation. The
researches with stochastic demand on two-echelon inventory problem have been
intensively developed into a single-item two-echelon inventory problem. A number
of researches on OWNR with single commodity have been conducted under either
continuous or periodic replenishment. They proposed mathematical models and
solution approaches for setting an appropriate inventory policy. Most of previous
works studied two major types of the inventory policies: fixed-interval order-up-to
polices and stock-based batch-ordering policies, on different conditions and relevant
parameters. Further details can be seen in the reviews of Schneider, Rnks, and Kelle
[15], Axsater, Graves, and de Kok [16], and Wang, Choi, and Cheng [17]. Focusing on

continuous replenishment, most researches manage multiple retailers by individual



ordering decision. Factually, multiple retailers can coordinate their ordering decision
to share the ordering cost' when an order is triggered. It creates an opportunity of
reducing the total system-wide cost. We found that there have been a few works

concerning this cost-saving opportunity in their ordering decisions.

Regarding coordinated ordering decision on OWNR with single commodity,
most literatures applied joint replenishment problem (JRP) to OWNR due to the
similarity of cost functions and solution procedures [18, 19]. JRP is originally
developed for a multi-product single-location inventory problem with the
replenishment coordination of a group of items jointly ordered from the same
supplier. Under continuous replenishment and stochastic demand, there are many
joint replenishment policies developed on multi-item single-location inventory
problem. These policies can be classified into two major streams: the can-order
policy and others [3, 19, 20]. For two-echelon system, the existing joint
replenishment policies from multi-item single-location inventory problem were
extended into OWNR on different structures. We summarize some structures as the

following literatures under continuous replenishment and stochastic demand.

Cheung and Lee [21] employed a joint replenishment policy at the retailers
and a traditional reorder point-fixed order quantity policy at the warehouse. The
structure was composed of the holding costs at both echelons: the shared ordering
cost and the penalty cost at the retailers, and target service level at the warehouse.
Ozkaya [22] extended four joint replenishment policies at the retailers and a
traditional reorder point-based stock policy at the warehouse. Ozkaya [22] converted
the penalty cost into target service level occurred only at the retailers. Gou et al.
[14] applied a joint replenishment policy where the retailers utilize the can-order
policy and the warehouse takes a reorder point-based stock policy. However, Gou et
al. [14] studied OWNR under zero lead time, so there were only holding costs and
ordering costs taken into consideration. There have been other researches
considering the holding cost only one echelon, such as Ozkaya, Girler, and Berk [19],
Cetinkaya and Lee [23], and GuUrblz, Moinzadeh, and Zhou [24]. In addition, Axsater
and Zhang [25] developed a joint replenishment policy without concerning the
shared ordering cost at the retailers. They focused on a trade-off between the

holding costs and the penalty costs instead. Thus far, a few researches have

' Generally, the ordering cost includes administrative costs, material handling costs, and

transportation costs.



concerned coordinated ordering decision under stochastic demand and continuous
replenishment by considering all relevant costs on both echelons, i.e. the holding
costs, the ordering costs, and the penalty costs (or in terms of service levels). We
realize that all relevant costs on both echelons should be considered together to
determine the inventory policy parameters for all stores in the system. Hence, it is
interesting to further study the coordinated ordering decision for such structure to

determine a solution approach for inventory policy setting.

Previously, we mentioned only a single-item two-echelon inventory problem;
however, there are some other cases that multiple products should be considered
simultaneously as appeared in the realistic situation. For a multi-item two-echelon
inventory problem on stochastic demand and continuous replenishment, there have
been a small number of researches. Mostly, the existing literatures were carried out
on partial cost component or joint constraints. The researches considering partial
cost components mean that it does not include all inventory costs” in the system,
e.g. cross-docking system, inventory-transportation problem. According to the
literatures with joint constraints, they included, such as, capacity constraints, budget
constraints, aggregate time-based service level constraints. Further details about
multi-item two-echelon inventory problem can be seen in e.g. Cohen et al. [26],
Hopp, Zhang, and Spearman [27], Qu, Bookbinder, and lyogun [28], Sindhuchao [29],
Al-Rifai and Rosetti [30], Topan, BayIndlr, and Tan [31, 32], Zhou, Chen, and Ge [33].

Regarding a few of literatures studied on the shared ordering costs among
retailers/items, it is interesting to apply joint replenishment policy into OWNR under
stochastic demand and continuous replenishment. Then, the system including all
inventory costs should be more taken into consideration in order to determine the
inventory policy parameters which are suitable for all stores in the system.
Furthermore, multi-item model should be concerned, since the model could more
reduce the total system-wide cost from item joint replenishment not only at the
retailer echelon but also at the warehouse echelon. Hence, it is desirable to develop
an efficient joint replenishment policy for Multi-ltem Two-Echelon Inventory Problem
with stochastic demand and continuous replenishment for the general purpose of

the system-wide cost optimization.

“ Al inventory costs are the holding costs and the ordering costs at both echelons with either the

penalty costs or service levels as needed.



1.2 Example Industry

This dissertation is generalized for any industry which matches the considered
system. However, this section exemplifies a specific industry to show the real
situation. Since the research problem originally surveyed in the healthcare industry,
the following content will specify such industry. The research can be applied into
many parts of healthcare industry for pharmaceuticals and medical supplies
management such as hospital’s internal chain (central storeroom and multiple
departments), hospital network (central warehouse and multiple hospitals), and drug
store chain (central warehouse and multiple drug stores). The survey on healthcare
industry was conducted by two approaches: firstly, interviewing healthcare
organizations’ staffs and other related stakeholders; and secondly, surveying

literatures relating to healthcare industry and operations.

In the interview process, we visited various healthcare organizations according
to administration system and size of organization (measured from number of hospital
beds): three private hospitals with 300, 400 and 600 beds, and two public hospitals
with 300 and 800 beds. Interviewees comprise doctors, nurses, pharmacists, and
inventory planners in order to cover all main human resources in pharmaceuticals
and medical supplies management. For a survey on literatures, there are a wide
range of literatures about healthcare supply chain and operations, for example, Kim
[2], Kelle et al. [4], Woosley [5], Freudenheim [6], Jarrett [7], Rivard-Royer, Landry, and
Beaulieu [8], Nicholson, Vakharia, and Erenguc [9], Moschuris and Kondylis [10], Foxx,
Bunn, and McCay. [13], Dellaert and van de Poel [34], Totrakool [35], Rattanasin [36],
Belson [37], Tongrod [38], Rudeejaroensakul [39], Arshinder, Kanda, and Deshmukh
[40], as well as the information from Drugs and Medical Supplies Information Center
(DMSIC), and The Government Pharmaceutical Organization (GPO), Thailand.

Thailand’s healthcare supply chain, like other countries, consists of various
stakeholders. Figure |-1 which is adapted from Rivard-Royer et al. [8] demonstrates
the stakeholders at upstream and downstream levels, and also extensively focuses

on hospital’s internal supply chain to illustrate multi-echelon inventory system.
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Healthcare supply chain is formed into an arborescent distribution system
which is a multi-echelon system that each location receives input from an immediate

predecessor and supplies one or more immediate successors.

For an external chain, there are three partners at the upstream level:
vendors, manufacturers, and distributors. Vendors take responsibility for procuring
and providing items to their successors: manufacturers, distributors, or hospitals.
Manufacturers who produce pharmaceuticals or medical supplies and either
distribute their products directly to the hospitals or outsource this activity to
distributor companies. Subsequently, distributors supply items to the hospitals
according to stock replenishment system. Some companies perform as vendor,
manufacturer, and distributor at the same time. Each partner plans and controls their
inventories to supply the customers either separately or coordinately along the
chain. The dissertation defines “supplier” for a general term of vendor, manufacturer,

and distributor who directly supplies items to the hospitals.

With regard to an internal chain, the surveyed hospitals have commonly
three internal echelons: central storeroom (CS), patient care units (CU), and points of
care (PC). CS is in charge of purchasing all items from the suppliers, setting inventory
policies for all stores’ items in the hospital, planning, controlling, and monitoring its
own inventories, and replenishing required stocks at CUs. CU is pharmacy or medical
supplies substore located in a department or a region (group of departments). A
hospital has many CUs depending on, for example, the area of hospital including size
and layout, hospital specialization, administrative system. Inventory planners at each
CU are responsible for monitoring and controlling its own inventories under CS’s
policy, issuing the order to CS when any item is needed, and dispensing to PCs or
directly to patients when receiving request from doctors or nurses. PC including ward,
clinic, and laboratory directly services the customers or patients. It is supplied by CU
and keeps some small stocks. However, some units such as emergency room, X-ray
department, and check-up department have their own inventories provided by CS
and service patients as a PC; therefore, some stores perform as both CU and PC at

the same time.

Currently, there is not only hospital’s internal chain (central storeroom and
multiple CUs), but also hospital network comprising central warehouse and multiple
hospitals. An outsourced distributor manages its inventory and hospitals’ inventory

simultaneously. Some networks manage at CS level; the others manage at CU level



without CS. The distributor in hospital network owns all inventories in the network as
a single firm. Some hospital networks implement the VMI system to enhanced
material handling efficiency through a growing trend of information technology, i.e.
online procurement system and the real-time information sharing. The improved
information sharing throughout the supply chain provides more timely and accurate

inventory data resulted in better demand forecasts and materials management.

For the inventory policy setting, healthcare services have implemented both
types of inventory reviews: continuous review and periodic review. Each type is
considered depending on item types, demands, suppliers, replenishment and
distribution operations, and resource constraints. According to the information
technology, inventories are mostly reviewed continuously. The computer system
facilitates to monitor inventory level all the times and automatically notifies when
the inventory level is at or below reorder point, then items are ordered and
delivered at just the right time. Meanwhile, period review has been used in the
system which has strictly resource constraints (i.e. planners, transporters, budgets,
information). Mostly, healthcare inventory management has commmonly adopted “par
level” policy which is special feature only in healthcare. There are two kinds of par
levels. The minimum par level is equivalent to the reorder point and the maximum
par level is equivalent to the order-up-to level (or base stock). Each kind of par

levels can be used separately or together such as

® (s,S) policy where S represents the reorder point or the minimum par
level and S represents the based stock or the maximum par level.

® (r,Q) policy where r represents the reorder point or the minimum par

level and Q represents the fixed order quantity.

® (R,S) policy where R represents the length of review period and S
represents the based stock or the maximum par level.

The (s,S) policy is the most popular approach for planning and controlling
most of pharmaceutical and medical supplies inventories. Presently, several hospitals
employ a continuous review (S, S ) inventory control policy. When inventory level for
an item at a CU reaches a predetermined minimum level S, an order is
automatically generated and transmitted directly to the supplier. The supplier, in
turn, ships the amount necessary to refill to the maximum quantity S . Depending on
the specific circumstances, materials can be either sent to CS for repacking and
distribution or sent directly to CUs, which bypasses CS entirely. The central

warehouse at the supplier also employs a continuous review (S,S ) inventory control



policy to fast react in the replenishment process and reduce the inventory level

comparing to periodic stocking.

Pharmaceuticals and medical supplies are life-threatening products. They
need more restriction and condition for holding inventories than other products. A
variety of products is a complex issue as more than 2,000 specific items are
controlled under various policies and constraints to serve customers’ satisfaction,
employees’ efficiency and cost minimization. However, 40% — 60% of inventories are
high-demand items which are forecasted based on usage statistics. They are planned
and controlled as the same as general merchandizing items in other industries. In
practical situation according to continuous review, each item is individually reviewed.
Inventory replenishments are not considered jointly even though items are ordered
from the same supplier (i.e. generally, a supplier sells more than one product to a
hospital). Many times inventory managers and pharmacists find that they have to
place many orders for different items to the same supplier more than once a week.
Order frequency reflects the ordering costs not only charged at the hospitals but
also added up to the supplier. Therefore, under VMI system, total system-wide cost
is considered to compromise the holding costs and the ordering costs at both
echelons. On another hand, joint ordering should be operated to reduce ordering

costs, number of orders, and employees’ workloads [5, 9, 34].

At the downstream level, customers or patients are the last in supply chain;
they are served by the hospitals and their demands have shaped the system. In
healthcare demand is uncertainty; therefore, stochastic demand is better considered
to represent realistic healthcare demand. Patients’ demands are derived from item
usage at all points of care (the first echelon) whose stocks will be replenished by
their respective immediate predecessors (the upper echelons). In a traditional system
which supplier’s inventories and hospitals’ inventories are managed separately as
multiple firms, a supplier accounts for hospitals’ demands from their purchase orders
without supply coordination. On the other hand, under the VMI system the supplier

)

considers hospitals’ demands from the usage at hospitals’ stores instead of the
traditional system to reduce bullwhip effect where the orders’ variability is amplified
in each echelon of the supply chain: from retailer to distributor, from distributor to
manufacturer and from the manufacturer to the suppliers [41]. Moreover, the VMI
system can increase the accuracy of forecasted demand. In the healthcare industry

demand variation is one of the important characteristics which influence the
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inventory levels. High demand variation from uncertainty of customer arrival makes

planner build up the stock to support this circumstance to prevent shortage.

In replenishment process, lead time and service level are the important
factors influencing to the inventory level at both echelons. Traditionally, supplier’s
lead time of distributing products to CS is uncertain according to product availability,
document processing and financial activities, distribution schedule, and resource
constraints. Based on surveyed hospitals, lead time varies from 3 to 14 days for usual
order and three hours to one day for emergency order. However, according to VMI
the supplier can reduce and specify more certain lead time. In addition, lead time of
hospital’s internal chain is less than lead time of the supplier-hospital chain or
sometimes it can be negligible since the distance between CS and CUs are not
significant. In practical situation, there is a possibility of stock out but the backlog
must be replenished as soon as possible (emergency case). Thus, target service level
(TSL) is a key performance indicator required at higher rate than other industries.
Many organizations in the supply chain use TSL instead of the penalty cost as this

cost cannot simply formulate.

Generally, inventory costs consist of three components: holding cost, ordering
cost, and penalty cost. However, as mentioned above, penalty cost is transformed
into service level instead. Holding cost is the cost of keeping and maintaining a stock
of goods in storage. Healthcare industry encounters a huge of holding cost, since
many hospitals hold excessive stocks to prevent an occurrence of backlog reflecting
to patients’ perspective. Ordering cost is separated to two types: fixed ordering cost
and additional ordering cost. Fixed ordering cost includes administrative costs,
material handling costs, and transportation costs. It occurs once an order is triggered
and does not depend on the number of items (or locations) in the order. Meanwhile,
additional ordering cost depends on the number of involved items (or locations) in
that order, for example, additional operations cost for managing different items,
additional transportation cost relating to distance or other charges. However, some
hospitals do not concern additional ordering cost since it is difficult to identify in
detail. All relevant inventory costs are traded off to determine the inventory policy

setting to serve TSL.

In conclusion, healthcare industry is an example industry managing several
different products stored in their group of warehouses as well as customer demands

are uncertainty. Under OWNR, they can apply the continuous review to monitor all
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inventory levels as the real-time and fast react. Joint replenishment is able to apply
for multi-item multi-location inventory system with concerning lead time and target
service level. However, the inventory planning and control process needs to
encounter more complication of the system characteristics in order to set the best

inventory policy parameters for coordinated supply chain.

1.3 Statement of Problem

This section is separated to two sub-sections: inventory policy selection and
problem description. Since section 1.1 (general background) and 1.2 (example
industry) provide inventory policies in general and propose JRP but not yet identified
which inventory policy will be studied in the dissertation. Due to the fact that there
are various inventory policies under JRP, inventory policy selection will be analyzed
before describing the research problem in detail. Then, problem description is stated
following the selected inventory policy. It also shows the mechanism of such

inventory policy for multi-item two-echelon inventory system.

1.3.1 Inventory policy selection

Recall that JRP or joint replenishment problem is originally developed
for the multi-product single-location inventory problem by coordinating the
replenishment of a group of items that are jointly ordered from the same supplier.
Focusing on stochastic demand and continuous replenishment, there are four main
inventory policies proposed under JRP as follows: (Let j denote the item | stored
in a location)

(1) The can-order (s;,c;,S;) policy [42]

When the inventory position (on hand + on order — amount

backlogged) of any item drops to or below its must-order level s; an order is placed
to bring its inventory level to base stock S; and for all items j#k with the
inventory below can-order level ¢, inventory levels are also replenished to S, .

(2) The (Q,S;) policy [43]

Aggregate consumption of all items is monitored and when it

reaches a certain level Q, all items are replenished to their order-up-to level S. .

i
(3) The Q(s;,S;) policy [44, 45]
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Aggregate consumption is continuously reviewed whereas the
inventory level of item j are only reviewed when aggregated consumption of all
items reaches or exceeds a certain level Q. Any item has its inventory level less
than s;, its inventory level is brought up to its order-up-to level §;.

(@) The Q(S;,T) policy [19]

It is a hybrid inventory policy between continuous replenishment
and periodic replenishment. When the aggregate demand since last replenishment
reaches Q units or the time elapsed since last replenishment reaches T, all items

are replenished up to their order-up-to level §;.

Each policy has the advantages and disadvantages on different
situations. Considering the example industry, there are a number of items stored in
each store and high service level is required. Practically all policies can be applied

into the system; however, the can-order (sj,cj,Sj) policy seems to be more

practical by the reasons that
- Itis straightforward and appealing to one’s common sense [46]
- The study of Gou et al. [14] demonstrated that the can-order
(s;,c;,S;) policy can save the total system-wide cost on OWNR about 5-20% as

comparing with the independent controlled (s;,S;) policy at the retailers.
Additionally, Ozkaya [22] studied the special can-order (s;,S;-1S;) policy where
the can-order level ¢; equals to S;—1. The result showed that the total system-

wide cost can be saved up to 30% depending on relevant factors.

- Ozkaya [22] also showed that the special can-order policy
increases cost-saving when higher number of retailers in the system and/or higher
target service level. These situations are substantially consistent with the example
industry.

- From the example industry survey, compatibility of the can-
order policy with the current computer software for inventory management is
practically preferable because the computer software includes the can-order policy
into the system as an option. The software defines two levels for reorder policy as

demonstrated in the can-order policy, although it has never been used in reality.

Academically, all considered inventory policies are mostly compared

on the test beds [44, 47] which all parameters are identical for all items under single-
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location consideration. The results compared by Ozkaya et al. [19] are depicted in

the summary table.

Table I-1: Summary results of the comparison of the continuous joint inventory

policies

" Relevant Factors

]

v

E Major Unit holding Unit penalty Summary Results

(%]

£ | ordering cost cost cost

1 Low Low Low The can-order (s, C;, Sj ) policy
performs better than the others

High Low Low The Q(s;,S;) policy outperforms

3 Low High High The can-order (s, C;, S;) policy
performs better than the others

4 High High High The Q(S;,T) policy slightly
outperforms and followed by the
can-order (S;,C;, Sj) policy and
the Q(s;,S;) policy respectively.

The (Q,S;) policy is not raised in the table because it is beaten by
the other policies. According to the table, the can-order policy is interesting since it
outperforms the other policies in many instances. However, the can-order (s;,c;,S;)
policy analyzed in Ozkaya et al. [19] is developed under the approximate
mathematical model on the assumption that joint replenishment is Poisson
distributed. On the other hand, van Eijs [48] using the exact mathematical model
showed that the can-order (s;,c;,S;) policy performs well in the case of high major
ordering cost when using the special can-order (s;,S;-1S;) policy. Therefore, the
can-order policy in instances 2 and instance 4 is likely to perform better result than
the study of Ozkaya et al. [19]. Comparing the can-order (s;,c;,S;) policy with the
periodic joint replenishment, the P(s;,S;) policy is an outstanding periodic joint
replenishment policy where the inventory level of all items are reviewed once every

P time units and each item with the inventory level below s; is replenished up to
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level S;. The comparative result showed the similar pattern as Table I-1. For
instance 2, the P(s;,S;) policy is slightly better than the can-order (s;,c;,S;) policy.
However, the can-order (s;,c;,S;) policy is a continuous review replenishment policy

and therefore can react faster to new information than the periodic replenishment

policies, the can-order (s;,c;,S;) policy should intuitively perform better than the

periodic replenishment policies.

In conclusion, even though the can-order (Sj,Cj,Sj) policy is not the

best policy in every situation, it performs well in the important circumstances relating
to the example industry (e.g. high service level, hish number of retailers/items). The

can-order (s;,c;,S;) policy does not perform bad itself but depends on the heuristic

approach to determine the appropriate inventory policy setting [48]. Hence, this
dissertation focuses on the can-order (s;,c;,S;) policy which is an important class of
joint replenishment policy. Later section will combine the can-order (s;,c;,S;) policy
into OWNR, as well as describe the research problem with such policy relating to the

example industry with two-echelon inventory system.

1.3.2 Problem description

This dissertation considers inventory policy parameter setting under
joint replenishment policy called the continuous can-order (s;,c;,S;) policy in the
complicated system consisting of one warehouse and multiple retailers. It is an
arborescent distribution system or a well-known one warehouse n-retailer
distribution system. A warehouse and multiple retailers are cooperated as a single
firm to concern total system-wide cost under global information and centralized
control. So, inventory planner is in charge of planning and controlling overall
inventories of all locations in the system under certain circumstances to minimize
the total system-wide cost. Planner needs to determine the inventory policy
parameters for all items in all locations to usually plan and control them under this

predetermined setting.

1) System structure

A warehouse is placed at the upper echelon called “warehouse

echelon”. It holds inventories for supplying all retailers’ orders. Inventories at the
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warehouse are assumed to replenish by an outside supplier whose ample stock is
not considered in the problem. Although this assumption seems quite unrealistic
since normally the warehouse orders several items from various suppliers, the
problem only specifies the group of items supplied by the same outside supplier
(e.g. in healthcare industry, pharmaceuticals and medical supplies are often ordered
from the same manufacturer or vendor). The warehouse distributes required items to
retailers within the same lot (no-splitting lot) to reduce replenishment frequency
which directly reflects to reduce ordering costs as well. In this problem, it is
supposed that vehicle capacity is uncapacitated to sufficiently supply all required
items in an order. Multiple retailers are placed at the lower echelon called “retailer
echelon” and located in proximity. They have their own stores to keep multiple
items supplied by the warehouse. Each retailer holds inventories for serving
customer demands which are uncertainty but it can represent by the mean, thus
customer demands are defined as stochastic demand. This characteristic makes the
problem more realistic than considering with deterministic in the current situation

that customer requirements can be easily changed all the time.

Figure I-2 illustrates the structure of the multi-item two-echelon
inventory system. Information flows from the retailer echelon to the warehouse
echelon, whereas material flows from the warehouse echelon to the retailer
echelon. The warehouse gets information from retailers, aggregates all information,
create replenishment plan, and distributes the required items to the retailers.
According to the two-echelon arborescent distribution system, there is a location set
composed of n+1 locations; one location of warehouse and n locations of retailers.
Define that index 1 represents location I where 1 = 0 for the warehouse and ie N,
N = {1, 2, .., n} for the retailers. Considering the multi-item inventory system, such
system comprises an item set with m items. Let index j denote item | in the
system, so that jeM, M = {1, 2, .., m}. Thus, the whole system is composed of
multiple location-items indexed by ij representing item j at location 1. Totally, the
system has (n+1)xm location-items. Customer demands come from the end
customers at the retailers. In the dissertation, we assume that customer demands are

identical Poisson distributed with rate 4;.

Using Poisson process properties
facilitates the study of the complicated system as found in many researches on joint
replenishment policies. See e.g. a review of joint replenishment policies by Khouja

and Goyal [20].



16

Outside Location set i=1{0,1, 2, ..., n}
Item set j={1,2,...,m}

Location-Item set (i , j) = {(1,1), (1,2), ..., (n, m)}

Supplier

Warehouse Echelon

Warehouse
@=0)
Retailer Echel
R, . L . . R, Retailers
@(=1,2,...,n)

A, A, A, A, Retailer-Item demand (i, j)

Figure I-2 Multi-item two-echelon inventory system

2) Inventory policy

Inventory planner is in charge of planning and controlling overall
inventories of all locations in the system to minimize the total system-wide cost. At
the beginning of considered period (e.g. year, three months, month, twice weeks,
week), planner needs to determine the inventory policy parameters for all items in
all locations to usually plan and control them under the predetermined setting.
Planner uses input data for making decision, e.g. number of retailer-items considered
in the system, cost components, forecasted retailer-item demand characteristics,
location-items’ lead times, and target service levels. Planner needs to tradeoff
between the relevant costs at both echelons to minimize total system-wide cost.
Then, daily operations are executed with continuous review by utilizing the

predetermined inventory policy setting.

“Inventory position” is used for ordering decision. This quantity
includes the outstanding orders that have not yet arrived and backorders which units

have been demanded but not yet delivered [49]. Thus,

Inventory position = stock on hand + outstanding orders — backorders
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The can-order (s,c;,

S;) policy is selected to apply into the
considered system and used at all locations (i.e. warehouse and retailers). For each
location, it has two reorder points: the must-order level for location-item ij

represented by S; providing normal replenishment, and the can-order level C;

making special replenishment. For retailer echelon (retailer ie N, N ={1, 2, .., n}),
an order will be triggered to create normal replenishment when the inventory

position of any retailer-item drops to or below its must-order level §;. Then, other

retailer-items in the system will be also included by this order if their inventory

position is at or below its can-order level C;

ij ; @ special replenishment is occurred. All

the involved retailer-items’ inventory will be fulfilled from the warehouse to their

own order-up-to level Sij. Summiarily, at the retailer echelon coordinated ordering

decision can be occurred among retailer-items. Figure -3 shows an example of joint

ordering model which an order is replenished from the warehouse. Suppose that

[anjina]

Retailer 1

there are four retailers and three items.

orders (1,1) and (1,2)

An order includes Retailer-Item .. m ..

) =10, (1), @1, G.1), G} Retailer 2
orders (2,1)
[T1 QOO

Ilmll

Note that the example has total 12 Retailer-Items: -
Retailer 3
LD, (12), (13), .1, 2.2), 2.3), orders G3.1) and (3.3)

(3.1, (3.2), 3.3), (4,1), (4.2), 4.3)}
Illﬁlll

Retailer 4

No order

Figure I-3 Example of the joint ordering model at the retailer echelon

For the warehouse, it also employs the can-order (s ;),Cq )+ S0 5))

policy using for coordinating multiple items at single location I = 0. Warehouse will
issue an order when the inventory position of any item reaches its must-order level

S(0.j) - Meanwhile if other items’ inventory position reach their can-order level Cg ;y;

they will be also included in the order sent to the outside supplier who sells a group
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of items. All the involved items’ inventory will be fulfilled to their own order-up-to

level S(O,j)- Therefore, at warehouse echelon coordinated ordering decision can be

occurred among items. Factually, Fig.l-3 can represent joint ordering model at the
warehouse as well by adapting to multi-item single location model. Since there are
two levels of order cycle in the system, we differentiate between order cycle at
retailer echelon and order cycle at warehouse echelon by defining “dispatch cycle”

and “replenishment cycle” for retailer echelon and warehouse echelon, respectively.

An example of the can-order (s;,c;,S;) policy is shown in Fig.l-4 and

ij 1
Fig.l-.5 to express the inventory process of the can-order policy for OWNR. The
example sets the policy for the warehouse and the retailers. In this example, it is
assumed that lead time is zero at both echelons and shortage is not allowed. There
are two retailers and two items, so four retailer-items are considered as defined

index (i, J) =1{(1,1), (1,2), (2,1), (2,2)}.

Item 1 2

Retailer Inventory Position (Units) Inventory Position (Units)

7 Time (dayS)“-.\ 77— Time (days)

“':.. Inventory Positiqt; (Units)
4 14— /
SJ71 27

Time (days)

rDispatch cycle 1%+
T

Dispatch_Dispatch

Retailer |
cycle2 cycle3
T T T

Echelon

Time (days)

UL 1
I 2 3 4 5 6 7 8

Figure I-4 Example of the inventory process: Retailer echelon
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Figure I-5 Example of the inventory process: Warehouse echelon

At each location-item, inventory position continuously reduces when
demand is arrived and increase when order is triggered. To explain the example, let

1 and 1; represents the inventory position before demand arrival and after

demand arrival of item | at location 1, respectively. Let Q, denote the dispatch (or

replenishment) quantity of item j at location 1.

The replenishment policies at retailer echelon
® At least one retailer-item that 1; <'s;, the order will be triggered
® The other retailer-items that s; <I; <c; will be included in the same order
® Thus, the dispatch quantity of item j at retailer ie N is equal to Q; =S; —1;

® The total dispatch quantity of item j sent to warehouse is equal to ZQ“—
ieN

The replenishment policies at warehouse echelon

® Inventory position of item j at the warehouse |, = 1.j) _ZQij
ieN

® At least one item that | <S(,j)» an order will be sent to an outside supplier

=(0.)) = 0’

® The other items that s ;) <1 ;) <€, ;) Will be included in the same order

® The replenishment quantity for item j, Qg =S, — Lo
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From the example,
Until the end of the 4" day:

At retailer echelon

Retailer-item (1,1): Lyy =2<s,, order is triggered (normal replenishment) with
Quy =Suy — 1Ly = 8 units.

Retailer-item (2,1): Sy < L1 =4=<Cy , retailer-item is included by this order
(special replenishment) with Q) =S ,;, — 155 =11 units.

Retailer-item (1,2): Suz) <laz =3=Cy,, retailer-item is included by this order
(special replenishment) with Q) =S, — 14, =5 units

Retailer-item (2,2): Ciz) <122 =6, retailer-item is not included by this order.

Total dispatch quantity of item 1 sent to the warehouse ZQ(M) = 19 units and total
ieN
dispatch quantity of item 2 ZQ(LZ) = 5 units.
ieN

At warehouse echelon

Warehouse-item (0,1): 14, =6<5,,,, order is triggered (normal replenishment) with
Qo1 = Si01y —Loy = 19 units.
Warehouse-item (0,2): Cy,, <1, =14, this item is not included by this order.

Then, there is only replenishment quantity of item 1 sent to the outside supplier
with 19 units.

Until the end of the 6th day:

At retailer echelon

Retailer-item (2,2): 15, =3<5,,, order is triggered (normal replenishment) with
Q2 =Sz —laz = 9 units.

Retailer-item (2,1): s, <15 =5=C,, retailer-item is included by this order
(special replenishment) with Q) =S, — 1,2 =10 units.

Retailer-item (1,1): Cay <lay =6, retailer-item is not included by this order.

Retailer-item (1,2): Caz < luz =4, retailer-item is not included by this order.

Total dispatch quantity of item 1 is 10 units and of item 2 is 9 units, respectively.
At warehouse echelon
Warehouse-item (0,2): 15, =5<5,,,, order is triggered (normal replenishment)

with Q2 = S0 — L2 = 13 units.
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Warehouse-item (0,1): 84, <15 =15<C;,, the item is included by this
replenishment (special replenishment) with
Qo1 = Si01) — Loy =10 units.

Then, replenishment quantity of item 1 and item 2 are 10 and 13 units, respectively.

By this inventory process, when special replenishment is occurred

there is a residual stock [48] which is a stock left above the must-order level s; at

the order-triggered point. For example, at the end of the q" day retailer-item (2,1)
and retailer-item (1,2) happen the residual stocks since they are reordered before
reaching their own must-order level. If this situation frequently happens, such two
retailer-items have to hold more stock than the expectation. Therefore, setting the
appropriate inventory policy at both echelons is an important procedure concerning
a trade-off between all relevant inventory costs to balance between order frequency

and inventory amount, and eventually to minimize the total-system wide cost.

3) Relevant inventory costs

Relevant inventory costs in the system are composed of holding costs
and ordering costs; meanwhile penalty costs are estimated to service level which will
be described later. Relevant inventory costs are demonstrated by echelon as
follows:

At retailer echelon

1) Holding cost of retailer-item ij
The holding cost occurs at each retailer-item having physical stock.

The holding cost over the time period at retailer-item ij (HC;), can be determined
from the unit holding cost (h;) and the accumulated inventory over the time period
(INV;). The total holding cost at retailer echelon is a summation of all retailer-

items’ holding cost.
2) Retailer echelon’s ordering cost

It is composed of two types of ordering cost [20]: major ordering cost
and minor ordering cost.

Major ordering cost is the fixed cost occurring once an order is
triggered. This cost includes administrative costs, material handling costs, and
transportation costs not depended on the number of retailer-items in the order. So,
the retailer-items in the system can share the major ordering cost together for

replenishing in one round trip. The total major ordering cost over the time period at
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retailer echelon (MJ,) is the retailers’ major ordering cost per an order (K,)
multiplied by the number of dispatch cycle (ND, ).

Minor ordering cost is an additional cost of each retailer-item when
replenishing their inventories, such as additional transportation cost relating to
distance or other charges, additional operations cost for managing different items.
This cost depends on the number of involved retailer-items in that order. The total
minor ordering cost over the time period (MN, ) is accumulated from the involved
retailer-items in each order multiplied by its minor ordering cost of retailer-item ij

(x;) over the time period.

At warehouse echelon

1) Holding cost of item j at the warehouse
Similar to retailer echelon, the holding cost occurs at each item with
physical stock. The warehouse’s holding cost over the time period for item |j
(HC

) can be calculated from the unit holding cost (h, ;) and the accumulated

0.1) (0,J)

inventory over the time period (INV, .,). The total holding cost at warehouse

©.J)
echelon is a summation of all items’ holding cost.
2) Warehouse echelon’s ordering cost

According to multiple items, warehouse echelon has the same cost
structure as retailer echelon composed of two types of ordering cost: major ordering
cost and minor ordering cost. Major ordering cost is the fixed cost occurring once
replenishment is occurred. It does not depended on the number of items in the
replenishment. The involved items in the replenishment can share the major
ordering cost in one round trip. The total major ordering cost over the time period at

warehouse echelon (MJ,,) is the warehouse’ major ordering cost per an order (K, )
multiplied by the number of replenishment cycle (NR,,).

Minor ordering cost is an additional cost for managing different items.
This cost depends on the number of involved items in that order. The total minor
ordering cost over the time period (MN,,) is accumulated from the involved items in

each order multiplied by its minor ordering cost of item j (x ;) over the time

period.

The concept of the can-order policy is balancing among reduced
major ordering costs, varied minor ordering costs, and increased holding costs.

Reduced major ordering cost occurs if special replenishment is included in an order.
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On the other hand, from special replenishment there is a residual stock. Then, the
involved location-items have to hold more stock increasing the holding cost.
Meanwhile, the minor ordering costs can be either reduced or increased depending
on order frequency at each location-item. Hence, we have to consolidate all
relevant costs to determine the appropriate inventory policy setting under the total

system-wide cost minimization.
4) Lead time

For the example shown in Fig.-4 and Fig.I-5, lead time is negligible. If
lead time is considered, the problem is more complicated because lead time will
affect the inventory policy setting at all location-items. Generally, lead time is
defined that the duration from the moment an order is placed to the warehouse
(outside supplier) until the moment the order is received by the retailers

(warehouse). The problem assumes constant lead time for each location-item (L; ).

According to two-echelon system, the supplier can reduce and specify more certain

lead time as our assumption.

5) Target service level

Under stochastic conditions it is unavoidable that in some periods the
inventory on hand is not sufficient to deliver the complete demand and, as a
consequence, that part of the demand is filled only after an inventory-related
waiting time. The amount of late deliveries can be influenced through the penalty
costs. Unfortunately, these costs are difficult to quantify in practice, hence, “Fill
Rate” widely used in industrial practice [22, 50] is a measurement of service level to
quantify the logistical performance. It is a quantity-oriented performance measure
describing the proportion of total demand within a reference period delivered
without delay from stock on hand. Normally, service is measured only at the lowest
echelon since in a multi-echelon system a stockout at one of the higher echelons
has only a secondary effect on service. Thus, service level will be considered only at
the lowest echelon to avoid unnecessary duplication of safety stock. For the
problem, service level is considered as a system constraint defined that is target

service level (TSLij, ieN). Consequently, all retailer-items must concern this

constraint for setting their inventory policy.
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1.3.3 Problem discussion
The can-order (s;,c;,S;) policy for OWNR initiates three main
complications of the research problem to determine the appropriate inventory policy

setting as follows:

(1) Uncertainty of reorder epoch and order quantity at both echelons

Since continuous replenishment at both echelons makes the

problem encounter the uncertainty of reorder epoch. So, normal replenishment and
special replenishment also create non-constant order quantities. For retailer echelon,

each involved retailer-item’s order quantity in an order can be varied from §; —¢; to
S; —s;- Thus, the total dispatch quantity of item j issued to the warehouse can

also be varied from min{S; —s;;Vi,Vj} to ZZ(Sij—Sij)—(nxm—l). By this

ij
ieN jeM

circumstance, the warehouse echelon encounters the uncertainty of lot-size

demands. Hence, setting the inventory policies at all location-items directly affect

each other.

(2) Time synchronization
Typically, the problem on OWNR faces time synchronization
between warehouse echelon and retailer echelon. Transaction at each echelon also
influences each other, so it needs to be consistent. For example, reorder epoch at
retailer echelon affects inventory position and reorder epoch at warehouse echelon,
then inventory on hand at warehouse also affects an outstanding order arrival to
retailer echelon. According to the continuous replenishment with uncertainty of

demands at both echelons, it makes this problem more complicated.

(3) Interaction among location-items in each echelon
Interaction among location-items is an important problem since a
location-item’s inventory policy setting affects the probability of special
replenishment for other location-items. Therefore, changing inventory policy of just

one location-item has an effect to the whole system.

In conclusion, our research problem focuses on the can-order (s;,¢;,S;)

policy for OWNR composing of one warehouse and multiple retailers with multiple
items. Assuming that customer demands are Poisson distributed. Coordinated

ordering decision within any echelon can be occurred according to such policy. There
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are two types of cost components considered in the system: the holding costs at all
location-items and the ordering costs at both echelons. All relevant inventory costs
are traded off to minimize the total system-wide cost. Lead time and target service
level (or target fill rate) are included. The system creates the complications of
research problem that encounters the uncertainty of reorder epoch and order
quantity at echelons, time synchronization, and interaction among location-items in
each echelon. Hence, the dissertation will explore the considered system and

significantly fulfill knowledge in the area of the inventory control and supply chain.

1.4 Dissertation Objective

The objective of this dissertation is to develop the stochastic joint
replenishment model and the solution approach for determining the best values of
inventory policy parameters under the continuous can-order policy. The dissertation
focuses on a multi-item two-echelon inventory problem structured as a warehouse

n-retailer inventory system by considering the appropriate total system-wide cost.

1.5 Dissertation Scope

1)  System structure and planning control: The study focuses on a multi-
item two-echelon inventory problem, known as one-warehouse n-retailer system.
Inventory policy parameters are determined under the can-order (s;,c;,S;) policy
which is considered at both echelons. Planning horizon is infinite and the objective
function is to minimize the expected long-run total system-wide cost. Planner is
responsible for inventory planning and control over both echelons considered as a

single firm.

2) Coordinated ordering decision: At retailer echelon, ordering decision can
be jointly worked together for multiple retailer-items. Meanwhile, warehouse

echelon can have coordinated ordering decision among various items.

3) Replenishment process: Warehouse placed at the upper echelon holds
inventories for supplying all retailers’ orders. Warehouse’s inventories are
replenished by an outside supplier whose ample warehouse is not considered in the
problem. Multiple retailers placed at the lower echelon have their own stores to

keep multiple items supplied by the warehouse.
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4) Distribution process: It is supposed that vehicle capacity is
uncapacitated at both echelons to sufficiently supply all required items in an order.
Multiple retailers are located in a close proximity to distribute all complete order in
one round trip with a constant lead time. By this assumption,

® No-split lot is allowed. This can simplify the problem not to
concern the allocation problem.
® Routing for distribution is not included in the problem.

® Transshipment between retailers is not allowed in order to consider

only customer demands for each retailer.

5) Relevant inventory costs: They are composed of holding costs and
ordering costs at both echelons. The research utilizes target service level (fill rate)

instead of penalty costs as the system’s constraint at retailer echelon.

6) Demand consideration: Each retailer holds inventories for serving
customer demands. They are defined as stochastic demand represented by the
stationary mean. The research assumes customer demands with Poisson distribution.

Other probability distributions are not included in the study.

7) Item characteristics: The considered items are merchandizing items, and
their shelf-life is longer than dispatch (or replenishment) cycle, so the expiration can
be ignorable. The correlation of product formulary is not concerned; on another

hand, individual item’s demand is independent of the other items’ demands.

8) Research methodology: The dissertation excludes the implementation
phase into the industry and all inputs are based on the simulated data which is

randomly generated.

1.6 Dissertation Contribution

1)  Practical contribution

The multi-item two-echelon inventory system is considered with
global information and centralized control; the decisions are made with visibility to
the entire system using information for all locations through the cooperation and
coordination across multiple parties or across firms. This system significantly provides

cost reduction and service quality improvement for all stakeholders. Additionally,
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one-warehouse n-retailer inventory system is considered to represent general

distribution in a supply chain, not limited to a serial inventory system.

The multi-item two-echelon inventory problem is studied under taking

the can-order (s;,c;,

S;) policy into consideration. This policy is a kind of joint
replenishment policies with stochastic demand and continuous replenishment.
Comparing with the traditional inventory policies which are independent control on
multi-echelon system (e.g. the (S,S) policy, the (R,S) policy, and the (r,Q) policy),
using the can-order policy may lead to substantial cost savings owning to the shared
major ordering among location-items in the system. Moreover, as the can-order
policy is a continuous review replenishment policy, it can react faster to new
information than the periodic replenishment policies and it should intuitively
perform better than the periodic replenishment policies as found in the previous

researches.

Inventory planner needs to control a number of items stored in both
echelons. The dissertation will facilitate them to jointly determine the best inventory
policy parameters for continuous replenishment under stochastic demand by
employing the can-order policy for the general item case. As realistic situation has
been concerned to develop the problem, the application of the dissertation can
provide significant advantages into many industries. Moreover, interaction between
multiple retailers in a close proximity is also considered to share retailer echelon’s
ordering cost with a single round trip. The inventory total system-wide cost could be
more saved relating to a number of retailer-items instead of considering multiple

items only in a retailer.

2)  Academic contribution

As most of previous researches have conducted on single-item two-
echelon inventory system under traditional inventory policies, the dissertation can
extend knowledge of inventory control with joint replenishment policy called the

can-order (s, ¢y,

S;;) policy. This policy has not been profoundly studied on OWNR.
Thus, the dissertation will explore insights of the inventory policy setting in widely
various conditions on single-item two-echelon inventory system. Moreover, a new
solution approach will be proposed to determine the appropriate inventory policy

setting on the considered system.
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Additionally, a few of researches have been carried out on multi-item
two-echelon inventory system. They studied multiple items under different
conditions, i.e. periodic joint replenishment, integration of inventory and
transportation problem with periodic joint replenishment, cross-docking inventory
system, and other system constraints without joint replenishment consideration. The
dissertation can fulfill research gap on another area of multi-item inventory control
with joint replenishment policy named the can-order (s;,c;,S;) policy at both
echelons under continuous replenishment and stochastic customer demand. This
fulfillment also takes both echelons’ stocks into consideration which differentiates
from other researches on continuous replenishment for the supply chain. The entire
chain is considered to determine all location-items’ inventory policy setting for total
system-wide cost minimization. Due to the system complication, decision variables
between two echelons and among location-items are strong related and very
difficult to find the (near) optimal solutions. Another new solution approach will be
proposed for managing multiple items on OWNR with coordinated ordering decision.
This facilitates inventory planner or related positions to understand and to determine

the appropriate inventory policy setting.

With the existing literatures on the can-order policy, decomposition
technique for breaking the multi-item models into the single-item models and
iterative algorithm for solving such models are widely utilized to determine the
inventory policy setting. The important challenge is an integration of the existing
formulation and heuristics into OWNR. This will provide the significant contribution to
the multi-item two-echelon inventory problem. In addition, another challenge is how

to simplify the complicated system, but yet obtain the appropriate inventory setting.

The dissertation is expected to be a basis for other researches on joint

replenishment policies. Since we study the insights of the can-order (s;,¢;,S;;) policy
on OWNR and also provides the solution approaches for various situations. This
knowledge is a valuable contribution to the field of inventory control and supply

chain management.

1.7 Dissertation Methodology

To obtain insight of the can-order (s;,c;,S;) policy on OWNR, the dissertation

=g

methodology is divided into three phases as the following figure:
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Phase I Phase I1 Phase 111
v
Single-Item Two-Echelon Single-Item Two-Echelon Multi-Item Two-Echelon
Inventory System Inventory System Inventory System
with Zero Lead Time with Non-Zero Lead Time with Non-Zero Lead Time
4

Figure I-6 Three phases for dissertation methodology

The first phase (Phase 1) is the basic model for the can-order policy on OWNR.
The system just has an interaction among retailers without joint ordering decision at
warehouse echelon. The objective of this phase is to gain the insight of such policy
on OWNR, and then to develop the heuristic approach for determining the
appropriate inventory policy setting. There are three relevant factors considered, i.e.
cost components, demand rates, and number of retailers. According to single item

and zero lead time, only decision variables ¢,,S;,S, are considered with 2n+1

variables. This simplifies the can-order policy on OWNR which will be a basic

knowledge for the next phase.

The second phase (Phase Il) is an extension of the basic model. The
complication is added by non-zero lead time and service level constraint. Research
remains taking single item into consideration to study an interaction among retailers
without joint ordering decision at the warehouse echelon. The objective of this phase
is to study inventory policy characteristics with the conditional relevant factors, i.e.
lead time and target service level, as well as to develop the heuristic approach
consistent with such characteristics provided. Relating to single-item consideration,
decision variables are s;,c;,S;,s,,S, with 3n+2 variables. More complexity of the

model is contributed to the research.

Lastly, the third phase (Phase Ill) is the widest system for OWNR. Coordinated
ordering decisions are concerned at both echelons. The warehouse’s items are

jointly replenished. Thus, decision variables are s;,c;,S; with 3m(n+1) variables.

The ultimate objective of the research is provided by the most complication of the
system. All valuable findings from phase | and Il enable this phase to develop the

heuristic approaches.
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Based on the research process, all phases are carried out by the following

methods as depicted in Fig. I-7.

1. Identifying the problem

S

2. Formulating the model <

B

3. Determining the inventory policy setting

)

(]

:

+ | 3.1 Establishing the best- 3.2 Developing the solution
H known solution approach
]

:

(]

ss9001d o) Suraoxdwy "9

4. Designing and conducting the | g
. .
experiment

B

5. Analyzing and concluding the
experimental results

Figure I-7 Research process

1) Identifying the problem: According to three phases as mentioned
above, each phase deals with different problem. All considered problem should be
clarified in order for conducting the research in later steps.

2) Formulating the model: It is certain that different models are provided
to serve three phases. In the dissertation, exact model and approximation model are
combined to represent the system and simplified to determine the inventory policy
setting. Due to the system complication, computer simulation becomes the most
important tool in the dissertation. Hence, simulation model has the great importance
on the research process.

3) Determining the inventory policy setting: There are two sub-processes
classified. Firstly, establishing the best-known solution utilizes computer simulation
under multiple replications, and secondly, developing heuristic approach applies
decomposition technique, iterative algorithm, and one-dimensional search for non-

derivative function. Decomposition technique and iterative procedure can be applied
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to break multiple locations into single location and to recurrently find the minimum
solution as far as the best solution has been found. Both techniques have been
intensively used in stochastic joint replenishment problem [34, 48, 51-56]. One-
dimensional search called “golden section search” is a simple and efficient method
for finding extremum of a unimodal function [48, 57, 58].

4) Designing and conducting the experiment: All relevant factors are
considered in the experimental design. The dissertation concerns various situations to
study the effect of the can-order policy and the proposed heuristic approaches
including their performance. Additionally, a lot of experiments are conducted to
validate the best solution.

5) Analyzing and concluding the experimental results: This step is a
general process of research methodology. All findings in the experiments will be
analyzed and discussed in order to explicate the can-order policy’s characteristic and
to evaluate the proposed heuristic approaches’ performance.

6) Improving the process: The improvement process is provided for better
solution approaches. The feedback from the 5" step leads to get back to the
following activities: revising or simplifying model formulation, modifying the current
solution approach or proposing the new one, redesigning the experiment to study in

further details explicating the unclear circumstances.

This section gives an introduction of dissertation methodology. A great depth
of research process will be explained in each chapter since three phases of

dissertation methodology are established in the different contexts.

1.8 Dissertation Organization

There are six chapters organized in this research. Chapter | (Introduction) has
already been mentioned above, and then the overview of the other chapters can be
described as follows. The main contents are addressed following three phases of

dissertation methodology:

® Chapter Il - Literature Review: This chapter reviews previous
researches and explains the inventory theory relating to the dissertation. Main
knowledge is associated with joint replenishment problem, two-echelon inventory
problem, and modeling and solution approaches. All literatures are discussed to

identify research gap, raise their useful methodologies and results.
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® Chapter Il - The Can-Order Policy for Single-ltem Two-Echelon
Inventory System with Zero Lead Time: This chapter presents the insight of the
can-order policy on the uncomplicated system including the effect of the can-order
policy, comparative analysis with other policies, and inventory policy characteristics.
Research methodology for this phase is also provided in detail to study the can-order
policy, to determine the best-known solution, and to measure the solution’s
performance. All insights lead to develop the solution approaches. The experiment is
designed and processed to study the heuristic’s performance in various situations.
Then, discussion on the problem is demonstrated.

® Chapter IV - The Can-Order Policy for Single-ltem Two-Echelon
Inventory System with Non-Zero Lead Time: Extending from phase |, this chapter
describes the system characteristic and its complexity. The insight of the can-order
policy is also provided as chapter Ill but not the same relevant factors (i.e. lead time
and target service level). This chapter explains research methodology and proposes
the heuristic approaches, as well as an improvement of the heuristic approach is
demonstrated to reduce cost gap between the heuristic’s solution and the best-
known solution. The experiment with its result is analyzed and discussed.

® Chapter V - The Can-Order Policy for Multi-ltem Two-Echelon
Inventory System with Non-Zero Lead Time: This chapter combines all findings
from phase | and phase Il to extend the knowledge for controlling multiple items.
Problem description is identified with the classification of inventory policy setting.
The development of heuristic approaches conforms to the core context. Finally,
comparative study of the classification is conducted in various situations.

® Chapter VI — Conclusions: It is the summary of the research along with
three phases of research methodology, as well as further researches are

recommended for the future improvement.



CHAPTER Il
LITERATURE REVIEW

This chapter reviews previous researches and explains the inventory theory
relating to the dissertation. The research considers two major areas of problem: joint
replenishment problem and multi-echelon inventory problem, as well as interesting
solution approaches are addressed. A review of joint replenishment problem
demonstrates various joint inventory policies, specifically the can-order policy
considered herein to continuously manage multiple items and other interesting
policies. For the multi-echelon inventory problem, the literatures are divided into the
single-item problem and the multi-item problem under both serial and arborescent
system, like OWNR, to explore various inventory policies. We also present the

interesting modeling and solution approaches for the problems.

2.1 Joint Replenishment Problem

Joint replenishment problem (JRP) is the multi-product inventory problem of
coordinating the replenishment of a group of items that may be jointly ordered from
the same supplier. The objective of JRP is generally to minimize the total cost whilst
satisfying demand. The total cost is mainly composed of two parts: the holding cost

and the ordering cost [20].

® The holding cost is the cost of holding inventory including the cost of

capital tied up in inventory, taxes, and insurance.

® The ordering cost is the cost of preparing and receiving an order, the

cost of material handling and transportation. When placing the order to
the supplier for a number of different items, two components of the
ordering cost are occurred:

®  The major ordering cost which is independent of the number of

different items in the order.

® The minor ordering cost which depends on the number of

different items in the order.

The common decision on JRP is to determine the optimal quantities

(generally relating to when and how much to order) for items ordered from the same
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supplier by trading off between the holding cost and the ordering cost. Using group
replenishment may lead to substantial cost savings because of the major ordering
cost shared among items in the group. Many algorithms have been proposed to find
quality solutions for the JRP. Typically, there are three types of replenishment
pattern: type 1 — each item is independently ordered; type 2 - all items are jointly
ordered in the same lot (or at the same cycle time); type 3 — each lot contains a
selected subset of items (not every order contains every item). Figure II-1 illustrates
the replenishment pattern of each type. In the figure, an example contains three

items (A, B, and C) in the system.

Item A

!

Type 1 Item B

i

Item C

[

Type 2 Item A-B-C

!

Iltem A
OO

Item A-B

i

OO
Type 3 ——__
Item A-C .. Iﬁl ..

i

OO
Item A-B-C

!

Figure II-1 Three types of replenishment pattern

According to grouping multiple items, strategy to solving the JRP can be
classified into two types: A direct grouping strategy (DGS) and an indirect grouping
strategy (IGS). Under DGS, items are partitioned into a predetermined number of sets
and the items within each set are jointly replenished with the same cycle time. DGS
is consistent with replenishment pattern type 2. IGS could be defined that not every

order contains every items as consistent with replenishment pattern type 3.
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The review is divided according to types of demand: deterministic demand
and stochastic demand. Most of review are examined JRP with stochastic demand
since it directly deals with the dissertation problem. Meanwhile the following review
also gives a consideration on JRP with deterministic demand, though it indirectly
relates with the dissertation. Hence, the review of deterministic part aims at providing
an understanding of the basic concept and the approaches for finding quality

solutions.

The review on JRP with deterministic demand focuses on the classic joint
replenishment problem (CJRP) which is similar to the economic order quantity (EOQ)
including deterministic and uniform demand, no shortages allowed, no quantity
discounts, and holding cost is linear. For DGS, CJRP can be solved under EOQ with
the same cycle time for all items. For IGS, the cycle time for every item is an integer

multiple k; of the order cycle time T . Thus, the cycle time for item j is T, =k;T
and the order quantity for item j is Q; =T,D; =k, TD; where D; is demand per

unit time for item j. The policy defined by the basic cycle time and a set of
multipliers are known as the cyclic policy. Arkin, Joneja, and Roundy [59] provided a
proof that the CJRP is an NP-hard problem. van Eijs, Heuts, and Kleijnen [60]
compared the solutions of DGS and IGS for a set of randomly generated problems.
The authors identified two factors that are important in determining the relative
performance of the two strategies. The first factor is the ratio of the major ordering
cost to the average minor ordering cost (called “the ordering cost ratio” for the
entire of the dissertation), and the second factor is the number of items. The results
indicated that IGS outperforms DGS but the differences are small. For values of the
ordering cost ratio above 75, the IGS and DGS become the same because only a

single group is created.

Kaspi and Rosenblatt [61] proposed a simple heuristic algorithm (called RAND)
by computing k equally spaced values of the fundamental cycle T within its lower
bound and upper bound [T, T,e]- Then, Goyal and Deshmukh [62] introduced a

new lower bound on T_;, which reduces the range of T . Hariga [63] developed two

n
heuristics for solving CJRP. Both procedures relax the order frequency in which the
multipliers need not to be integer number. Ben-Daya and Hariga [64] conducted a
numerical experiment to test the performance of Hariga [63]’s heuristic against Goyal
and Deshmukh [62]. Hariga’s algorithm gives lower total cost for 86.9% of 24,000

randomly generated problems. In addition, Hariga’s algorithm is 21 times faster for
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10-product problems and 40 times faster for the 20-product problems. Viswanathan
[65] proposed an algorithm which iteratively improves the bounds on T. The
performance of the proposed algorithm relative to Goyal’s algorithm improves as the
problem size increases. However, Goyal’s algorithm is faster when the major ordering
cost is small. More details relating to other solution approaches can be seen in
Khouja, Michalewicz, and Satoskarl [66], Lee and Yao [67], and Olsen [68].

Summarily, the basic concept of the JRP with deterministic demand is the use
of the base period T with integer multipliers for determining each order cycle of
item j. The important relevant factors are the ratio of the major ordering cost to the
average minor ordering cost, and the number of items. From this review of
deterministic part, we raise the basic concepts and approaches for finding quality
solutions in order to comprehend simple part of JRP. Then, the next issue continues

to the main part of the dissertation which is more complicated.

Focusing on JRP under stochastic demand (SJRP) which customer demand is
stationary in the mean, a general application of SJIRP has been developed on multi-
item single-location inventory system. The objective is to minimize the expected
total cost per unit time. The optimal joint replenishment policy can theoretically be
found by solving a huge Markov decision model. However, the size of the state and
the decision space grow exponentially with the number of different items, it seems
intractable to solve the model for obtaining the optimal solution. Ignall [69] solved
the problem for two items and found that the optimal policy is in general
unfortunately not a simple policy. Instead of focusing on the optimal policy, the
literatures on the SJRP proposed the joint replenishment policies and heuristic
approaches to determine the appropriate inventory policy setting. SIRP can be
classified into two major streams based on the type of policy class under

consideration as follows [3, 19, 20]:

2.1.1 Can-order policies

The general concept of the can-order policy is usually applied in a
continuous review system as originally suggested by Balintfy [42]. Balintfy provided
an initial insight into the problem with a queuing-based approach assuming no lead
time and identical items. When the inventory position of any item drops to or below

its must-order level s; an order is placed to bring its inventory level to order-up-to
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level §;. For other items k# J with the inventory below the can-order level c,, its
inventory level is replenished to S, . This is also known as a (s;,c;,S;) policy in

common. So, it is composed of two reorder points: the must-order level occurring
normal replenishment, and the can-order level occurring special replenishment.
Special replenishment is an opportunity of a discount replenishment which an item

is faced with when another item reaches its must-order level and places an order.

Silver [70] analyzed a special case with ¢; =S;-1and s; = 0 in a two-

item inventory system facing identical Poisson demands and zero lead time. Under
the assumption that shortages are not allowed, Silver proved the can-order policy is
always better than independent control. An exact analysis has been possible for this
special case because the inventory levels of both items provide regeneration points
at the order instances and, hence, the renewal reward theorem is applicable.
However, the same approach cannot be used for the general case. Therefore,

different approximate models and solution methods have been proposed later on.

An approximation technique proposed by Silver [51] is to decompose
the m-item problem into m single-item problems facing Poisson demands and
Poisson special replenishment opportunities. Assuming this process of discount
opportunities is independent of item j, the multi-item inventory problem can be
solved by successive iterations. The same decomposition technique has later been
extended to compound Poisson demand by Thompstone and Silver [71] and Silver
[52]. The popular method for computing the can-order policy referred in many
comparisons is of Federgruen et al. [53]. They modeled the can-order policy as a
semi-Markov decision problem with compound Poisson demands, and positive lead
times. Poisson special replenishment opportunity was assumed as Silver [51]. They
decomposed the multi-item model into single-item problems and used a policy-
iteration algorithm to solve for the best values of the control policy parameters.
Policy-iteration algorithm searches for solutions of the single-item model and then

extends this solution, to the multi-item case.

Another approximation technique was proposed by Love [46] using
the basis of single-item economic order quantity on deterministic model to
determine the initial individual order cycle time of item j with respect to its own
minor ordering cost. The concept of periodic replenishment was applied to

determine integer multiple of the minimum order cycle time. Then, each item can
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be determined decision variables (sj,cj,Sj) by a closed-form formula obtained from

an approximation model. Comparing to Silver [51], the numerical result showed that

Love [46]’s approach obtains lower total cost.

Zheng [54] proved that if the discount opportunity process is Poisson
then the can-order policy is optimal. After m single-item problems are solved, the
rate at which discount opportunities are generated is calculated and used in the next
iteration. The procedure stops when the best policies are unchanged. On the other
hand, van Eijs [48] and Schultz and Johansen [55] illustrated the assumption of a
Poisson arrival process for the special replenishment opportunities could lead to
poor performance of the can-order policies. Instead, they proposed using Erlang
distributions. The best values of the policy parameters are obtained through policy

iteration. van Eijs [48] also suggested a can-order policy where the can-order level c;
is always equal to S;- 1 when the major ordering cost is high compared with the

average of the minor ordering costs. For such a policy, whenever an item places an
order, all other items join the order. He minimized the holding and ordering costs
subject to a service level constraint. With decomposition technique and iterative

procedure, the best policy can be determined.

Melchiors [56] provided an improvement to the can-order policy using
a compensation approach, where an item placing an order receives compensation
from other items benefitting from the order opportunity, to improve the previous
approximations of the can-order policy for Poisson special replenishment
opportunity. The single-item model and decomposition procedure were developed.
Melchiors observed that the can-order policy obtained from Federgruen et al. [53]
gave a poor performance with high ordering cost ratio, as the same result of van Eijs
[48]. The results showed that in cases of low ordering cost ratio the best can-order
policy outperforms the periodic replenishment policy proposed by Viswanathan [44].
For higher ordering cost ratio, such periodic replenishment policy gains the lowest
cost, but the difference is very small. The example clearly illustrated that the
Federgruen’s can-order policy is far from the optimal can-order policy. However, at

higher ordering cost ratio, the can-order policy can be solved under (s;,S; -1S;)

policy as suggested by van Eijs [48]. Another conclusion from the results was that the
periodic replenishment policy proposed by Viswanathan [44] should be used on the
problem where demand variation is low, but the can-order policy should be used

when demand variation is high. At low demand variation, the periodic replenishment
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policy can reduce the holding cost by eliminating the small uncertainty of not
knowing exactly when the next order is placed. Meanwhile, at high demand variation
where the time between two consecutive replenishments is more unpredictable, the
reaction time is much more significant and using the can-order policy would be
better off.

Kayis, Bilgic, and Karabulut [72] proposed a semi-Markov decision
model for the can-order policy under two-item inventory system. Their main
objective is to describe the whole system without decomposing it into two single-
item inventory systems. Since the dimension of the state space is larger than the
single-item inventory problem, the problem is solved using an enumerative
approach. The comparative result showed that the policy iteration algorithm of

Federgruen et al. [53] does not always converge to the best can-order policy.

The can-order policy has also been applied in periodic replenishment.
Dellaert and van de Poel [34]. They derived a simple inventory ( R,sj,cj,Sj) model.
All items in the group are reviewed periodically at every R period. They extended
an EOQ model to (R,sj,cj,Sj) model, in which the values of the control parameters
are determined in a simplistic manner. After this approach was implemented in the
hospital over a year, it resulted in substantial gains, such as improved service levels,
reductions in supplier orders, smaller total inventory levels and holding costs, and
eventually lower system costs. Later, the compensation approach was extended by
Johansen and Melchiors [73] but on the periodic review system by approximating the
discount opportunities by a Bernoulli process with outcome 1 if a discount order
opportunity occurs and 0 otherwise. The performance of the extended
compensation can-order policy was compared to the periodic replenishment policy
of Viswanathan [44]. The periodic can-order policy is advantageous on cost saving
around 15% for the problem with high demand variation. Interesting issue is that the
periodic replenishment policy of Viswanathan [44] and the new policy provide

indifferent results for the problem with low demand variation.

Additionally, the literatures on the can-order policy were extended in
more complicated system. Duyn Schouten, Eijs, and Heuts [74] conducted a research
on a framework of the can-order policies with quantity discounts. Liu and Yuan [75]
studied the can-order policy for a two-item system with correlated Poisson demands.
Tsai, Tsai, and Huang [76] proposed an association clustering algorithm to group

multiple items based on the can-order policy. Nagasawa et al. [77] applied genetic
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algorithm (GA) to set the optimal can-order level of many items on a given (s;,S;).

The knowledge of the can-order policy is likely to be enhanced and taken into more

consideration.

2.1.2 Other policies

Besides the can-order policies, various joint replenishment policies
were introduced in both periodic and continuous replenishment. The basic joint
replenishment policies on periodic replenishment were developed by Atkin and

lyogun [47]. They proposed two periodic replenishment policies: (R;,T ) policy and
MP(R;,T) policy. The (R;,T) policy is defined that the same review interval T s
used for all items and each item is brought up to order-up-to level R; at review
period. Then, the MP(R;,T) policy is a modified periodic review policy which items
belonging to a base set are brought up to their R; at every review interval T, while

other items are brought up the their level R; at every k;T time units.

Pantumsinchai [43] developed the continuous review (Q,S;) policy
originally introduced by Renberg and Planche [78]. Under the (Q,S;) policy,

aggregate consumption of all items is monitored and when it reaches a certain level

Q, all items are replenished to their order-up-to level S;. Comparing the (Q,S;)
policy to the MP(R;,T) policy and the can-order policy obtained by Federgruen et
al. [53], the (Q, S;) policy performs well when high major ordering cost.

Viswanathan [44] introduced the P(s;,S;) policy. It is a periodic

reprenishment policy in which inventory level of all items are reviewed once every

T time units and an independent (s;,S;) policy is applied. Each item with inventory
level below s; is replenished up to the order-up-to level S;. The P(s;,S;) policy

was compared with the can-order policy obtained by Federgruen et al. [53], the

MP(R;,T) policy, and the (Q,S;) policy. These policies were tested on the data sets

used by Atkin and lyogun [47] and on some additional problems. The results

indicated that the P(s;,S;) policy performs best overall with only a slight
improvement over the MP(R;,T) policy. Cachon [79] proposed another periodic
replenishment policy called the (Q,S;|T) policy which combines the (Q,S;) policy
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to periodic replenishment. The system is reviewed every T time units, and item j is

ordered up to level S; if accumulated demands of all items reach at least Q units.

Nielson and Larson [45] studied the continuous Q(s;,S;) policy.

Aggregate consumption is continuously reviewed, whereas item inventory levels are
only reviewed when aggregated consumption of all items reaches or exceeds a

certain level Q, each item with inventory level less than s, is replenished up to S;.

They used Markov decision theory to develop an analytical solution procedure under

Poisson demand process. Numerical tests indicated that the Q(s;,S;) policy

outperforms the P(s;,S;) policy and the (Q,S;) policy.

Ozkaya et al. [19] introduced a new control policy denoted (Q,S;,T)
policy which is a hybrid of the continuous replenishment (Q,S;) policy, and the
periodic replenishment (R;,T) policy. The (Q,S;,T) policy combines features of

both periodic and continuous replenishment policies. Inventory positions are
monitored continuously and when the aggregate demands since last replenishment
reaches Q units or the time elapsed since last replenishment reaches T, all items

are replenished up to §;. The new policy identified overall average performance
better than other existing policies, i.e. the P(s;,S;) policy, the (Q,S;) policy, the
Q(s;,S;) policy, the can-order policy by Federgruen et al. [53], and the can-order
policy by Melchiors [56].

Mustafa Tanrikulu, Sen, and Alp [80] proposed the (s;,Q) policy. A

replenishment order of constant size Q is triggered when the inventory position of

any item drops to its reorder point s;. The replenishment order is allocated to

multiple items so that the inventory positions are equalized as much as possible. A

numerical study showed that the (s;,Q) policy outperforms the (Q, S;) policy when

high backorder cost and small lead time.

Roushdy et al. [81] suggested the (R;,s,,S, ) policy. ltem j is defined
that any item has the shortest order cycle among all items. Iltem | is continuously

replenished by triggering an order when its inventory position reaches the re-order

level R; and order quantity is equal to Q;. The other items k# ] are periodically

reviewed with the same interval as item | and are included in the same order as



a2

item j if their inventory positions reach s, denoted the re-order level for any item
k# . Their inventories are ordered up to the order-up-to level S,. An inventory
cost formula is similar to Axsater [82] used to evaluate an approximate Poisson cost
function. Iterative method is applied to determine the best solution. They compared
the proposed policy with the independent (R;,Q;) policy and the MP(R;,T) policy.
The proposed policy outperforms for every instance in the experiment except when

the major ordering cost is zero.

The above review of the existing policies showed various policies and their
mechanisms proposed until the present time. A lot of researches primarily focused
on the can-order policy which is the basis of the coordinated replenishment decision,
because it is straightforward and appealing to one’s common sense for practical use.
Mostly the can-order policies were developed on the approximate models, except

the special can-order policies on a given ¢; =S;- 1 used the exact models. Many

heuristics were developed to determine the best can-order policy instead of finding
the optimal solution. However, general determination of the can-order policies needs
to deal with 3N control policy parameters for N - item setting. Therefore, other
policies were proposed to reduce the complication with respect to the control

policy parameters as follows:
® The (R;,T) policy, the (Q,S;) policy, and the (s;,Q) policy with N +
1 control policy parameters;
® The (Q,S,;|T) policy and the (Q,S;,T) policy with N + 2 control
policy parameters;

® The(R;,s,,S,) policy with 2N control policy parameters;
® The MP(R;,T) policy, the P(s;,S;) policy, the Q(s;,S;) policy with

2N + 1 control policy parameters.

However, from the comparative results on the existing literatures an
outstanding policy has beaten others in all situations do not appear. Therefore,
selecting the policy to be studied on OWNR depends on the dissertation’s
consideration (as mentioned in section 1.3). Even though the can-order policy is not
the best policy in every situation, it performs well in the important circumstances
relating to the example industry. Another important issue is that the can-order policy
does not perform bad itself but depends on the heuristic approach to determine the

appropriate inventory policy setting. As found in comparative results among the can-
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order policies developed by Federgruen et al. [53], van Eijs [48], and Melchiors [56],
the experimental results indicated that the can-order policy can be more improved
as long as the approximate model is closer to the actual model. Hence, recent

researches have concentrated on an improvement of the can-order policy setting.

2.2 Multi-Echelon Inventory Problem

More complex inventory systems are so called multi-echelon inventory
systems. An echelon is referred to a single level in a supply chain. Multi-echelon
inventory system is classified into three structures: the serial system (linear chain),
the arborescent system (diverging chain), and the assembly system (converging chain)
(1, 3, 83].

The serial system (linear chain) is the simplest system. All stocking points
follow the same path or route as showed in Figll-2. This may occur in an
environment with only sequential working. Usually, they are considered as a part of
more complex chains. A serial system contains two or more stocking points coupled.
For instance, a serial system where the first inventory holds the stock of a sub-
assembly and the second inventory holds the final parts. The second inventory can

be considered as a customer of inventory one.

Figure II-2 The serial system

The arborescent system (diverging chain) is that each stocking point has one
predecessor as depicted in Fig.ll-3. A typical situation in practice is when a central
warehouse supplies goods to several retailers. In other situation, the system occurs in
factories where raw materials are cut into various part types and where semi-
manufactured items are made into various end products. With regard to a typical
system which contains one warehouse and multiple retailers, the warehouse can
perform as either a stocking point or a cross-docking point. Stocking point means that
there is a physical inventory kept in the warehouse. On the other hand, cross-docking

point means that the warehouse is a hub for unloading materials from an incoming
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vehicle and loading these materials directly to outbound vehicle. So, the warehouse

has a little or no storage in between process.

Figure 1I-3 The arborescent system

The assembly system (converging chain) is the opposite of a general
distribution system. Each stocking point has one immediate successor. It occurs in
factories where parts are assembled or in distribution from various factories to a

single distribution center.

NS N

Figure ll-4 The assembly system

General systems in a supply chain can of course be of more complex nature

and be a combination of different systems described above.

Two useful dimensions for inventory management in multi-echelon inventory
problem are the visibility of information and the control of echelon [1].
® Relating to the visibility of information, local information and global

information are identified. Local information implies that each stocking
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point knows demand in the form of the orders arriving from its
immediate successor(s). Meanwhile, global information is an open of
information through the supply chain where the planner has visibility

of all information of all stocking points in the system.

® The control of echelon is defined in terms of centralized versus
decentralized control. Centralized control implies that decisions are
made for the entire system to jointly optimize the advantage for all
echelons. It is often identified with push system, because a central
planner pushes stock to the locations that need it. Contrarily,
decentralized control means that decisions are made independently
by separate stocking points. It is associated with pull system because

independent planners pull stock from their predecessor(s).

The best solution is likely to use global information and centralized control
verified by the success of Vendor Managed Inventory (VMI). The VMI system has
heavily increased from the early 2000s, since the collaboration between internal and
external firms is a significant key to improving a firm’s customer service [12]. The VMI
system is a specific type of outsourcing inventory management (OIM). Outsourcing is
a contractual agreement between the customer and one or more suppliers to
provide services or processes that the customer is currently providing internally [84].
This logical approach has become attraction when 1) outside providers can produce
needed products (services) more efficiently than internal departments or 2) outside
providers can produce desired products (services) at a higher level of quality than an
organization [85]. The growing importance of this strategy has emerged for many
organizations, because several researches and case studies verified that OIM can help
control inventory cost and improve internal performance influencing customer
satisfaction and perception. Moreover, the capabilities of external sources are
growing. Hence, outsourcing becomes an increasingly attractive option [2-11, 13, 86].
We recommend Arshinder et al. [87]’s work which is a review on supply chain
coordination in aspect of mechanisms, managing uncertainty and research directions.
Their work enables the reader to comprehend the overview and trend of supply

chain coordination.

The dissertation problem considers centralized control of OWNR, which is a
general inventory system in supply chain, to minimize the total system-wide cost. In
the next part of review, researcher restricts only the literatures on two-echelon serial

and divergent inventory systems. Note that the serial system is studied herein as it is
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a small part of the divergent inventory system. According to the existing literatures,
most of the ordering policies are developed around two major policy classes:

installation stock policies and echelon stock policies [22, 50, 88].

® |nstallation stock policy: ordering decisions at each location are

based on its own installation inventory position, which is equal to sum
of its physical stock and on order minus the backlog. This policy acts
as a common-sense approach to control overall inventories in the
system. It employs together with the nested policy. The nested policy
is an ordering policy for the warehouse (upper stream) where an order
is triggered at the warehouse if and only if any retailer reaches its
reorder point. By this policy, the warehouse cannot trigger an order at

any other time of no demand arriving at the retailer echelon.

® Fchelon stock policy: the information of the down-stream locations is

taken into account. Ordering decisions at each location are based on
the echelon inventory position defined as sum of installation
inventory positions at the location and all its down-stream locations.
In the opposition to installation stock policy, the warehouse can trigger
an order at any other time of no demand arriving at the retailer
echelon. This pre-ordering decision expects that the retailers’ waiting

time from insufficient stock at the warehouse would reduce.

Axsdter and Juntti [88] compared two policies in both deterministic demand
and stochastic demand. Even though in case of deterministic demand echelon stock
policy dominates installation stock policy, in case of stochastic demand either
installation stock or echelon stock policies may be advantageous depending on the
structure of the inventory system. Cost difference between two policies is about 5%.
Echelon stock policy seems to dominate installation stock policy for long
warehouse’s lead times, while the opposite is true for short warehouse’s lead times.
However, Axsater and Juntti [88] stated that when ratio of the replenishment
quantity at the warehouse to the dispatch quantity at the retailers (called the

Q, /Q, ratio) is not positive integer value, echelon stock policies could not be
applied. The reason is that the warehouse echelon stock inventory position is
decreasing continuously with the retailer demands, non-integer ratio of Q, /Q,
cannot be duplicated by an echelon stock policy. Consequently, our dissertation

cannot apply echelon stock policy due to the uncertainty of dispatch quantity issued
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at the retailer echelon and non-integer ratio of Q,,/Q,. Therefore, we mainly focus

on installation stock policy to develop our joint replenishment models.

Regarding our problem, we emphasize in both single-item and multi-item
models following three phases of dissertation methodology. Hence, we review the

interesting literatures according to such two models as follows:

2.2.1 Single-item models

According to the dissertation problem, the review in this section
focuses on stochastic demand, which raises several new issues and creates extreme
modeling complexities in a multi-echelon inventory situation. Not only the
arborescent system is considered, but the serial system is examined as well since it
usually is a part of more complex chains. As a matter of the fact that there have
been a number of researches on single-item multi-echelon inventory problem
conducted under either continuous or periodic replenishment. They proposed
mathematical models and solution approaches for setting an appropriate inventory
policy. Most of previous works studied two major types of the inventory policies:
Fixed-interval order-up-to polices and Stock-based batch-ordering policies, on
different conditions and relevant parameters. Further details can be seen in the
reviews of Schneider et al. [15], Axsater et al. [16], and Wang et al. [17] In our
dissertation, we are interested in both order-up-to (base-stock) control policies and
batch-ordering policies. For order-up-to polices which are related to the can-order

policy employing an order-up-to level S;, we consider them in both periodic and

continuous replenishments. The following review is aimed at identifying various

common inventory policies applied into single-item two-echelon inventory system.
1) The order-up-to control policies

They are used in both periodic and continuous replenishment

in different policy parameters. The most common order-up-to policies are:
- The (R,S) policy (some literatures use the (S,T)
policy) where all locations’ inventory position are reviewed at the same period R (or

T ) and they replenish inventories to reach their respective order-up-to levels S.
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- The (s,S) policy is a traditional order-up-to policy
where each location reviews its inventory position continuously when the reorder
point S is reached its inventory is replenished to the order-up-to level S.

- The (R,s,S) policy is a hybrid of periodic and
continuous replenishments where all locations’” inventory position are reviewed at
the same period R. If their inventory position reaches their respective reorder points
s, they also replenish the inventories to their respective order-up-to levels S .

- Another continuous policy is called a pure base stock
policy or one-for-one replenishment policy, (S—1,S) policy. It is normally used for
repairable items with a fixed unit of order quantity. When the warehouse receives

the request from the retailer, it orders a new unit from the outside supplier.

We demonstrate some interesting literatures herein to
provide insights of their works. One of the first literatures relating to the base-stock
policies is the METRIC (Multi-Echelon Technique for Recoverable Items Control)
model of Sherbrooke [89]. The objective function in METRIC is to minimize the
expected number of backorders at retailer echelon, subject to budget constraints.
The METRIC approximation assumed that the lead time at any retailer is constant at
the average lead time3, so the expected inventory levels and backorder units at the
retailers can be easily evaluated. Later, METRIC is a basic model for several
extensions of the order-up-to policies and the batch-ordering policies. For a more
extensive review we refer Diks et al. [50] which provided the development of the

METRIC model in two perspectives: repairable items and consumable items.

Federgruen and Zipkin [90] studied the (R,S) policy on
OWNR with no stock at the warehouse. The warehouse places an order periodically;
its order arrives after a fixed lead time and is allocated among several retailers who
face normally distributed demand. So, the allocation problem was included in their
study. Several approaches were proposed to approximate the dynamic program
describing the problem, and then a near-optimal order policy was provided. Matta
and Sinha [91] developed the two-echelon inventory problem on OWNR with stock

at the warehouse. Each retailer orders from a single warehouse according to (R,S)

> The average lead time at any retailer is equal to its constant lead time plus the expected

waiting time from the warehouse which can be determined by Little’s Law.
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policy, and the warehouse employs (R,S,S) policy. All locations use the same
review period R. Demand is assumed to be normal distributed. The shortage cost
per unit time and the procurement cost at the warehouse are applied, but the
retailers’ ordering cost is negligible. The cost function and algorithm are approximate
based on renewal theory and queuing theory. Cetinkaya and Lee [23] provided
(s,5,T) policy to the warehouse (i.e. we categorized the (s,S,T) policy as the
(R,s,S) policy since both policies have their characteristics as time-based and
quantity-based ordering decision). They considered VMI system with coordinating
inventory and transportation decisions. Under the (s,S,T) policy, the warehouse
holds small orders until an agreeable dispatch time T then dispatching to the
retailers will be done. The retailers are willing to wait at the expense of waiting costs.
For such a delivery policy, Cetinkaya and Lee [23] realized that larger loads could

benefit the economies of scale in transportation problem.

Recently, Chu and Shen [92] and Shang and Zhou [93, 94]
studied periodic base-stock policies. Chu and Shen [92] studied OWNR with the so-
called power-of-two (POT) policy first introduced to stochastic demand. Shang and
Zhou [93, 94] considered the integer-ratio of replenishment intervals at the
warehouse and the retailers. Their numerical study suggested that the optimal policy
tends to be an integer-ratio policy rather than POT policy under some conditions.
According to the review on periodic base-stock policies, they were employed into

various systems.

More details of the fixed-interval order-up-to policies can be
obtained from, for instance, Nicholson et al. [9], Schneider et al. [15], Eppen and
Schrage [95], Rogers and Tsubakitani [96], Axsater [97], Diks and de Kok [98], Axsater
[99], Rao [100], Li [101], Wang et al. [17, 102], Wang [103], Wang and Axsater [104].

For the continuous (S, S ) policy, most research interpreted to
the reorder point batch-ordering policy due to their equivalent. Hence, this kind of

policies will be included in the section of batch-ordering policies.
2) The batch-ordering policies

Normally, the batch-ordering policy is able to be represented
by (r,Q) where each location reviews its inventory position continuously when the

reorder point r is reached order quantities Q are issued to the upper echelon.
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Some interesting literatures are demonstrated herein to raise various systems and

significant insights of their works.

Focusing on the serial system which is a smallest part of the
supply chain, the following are a few notable examples. De Bodt and Grave [105]
considered a multi-stage, serial inventory system under (r,Q) policy facing stochastic
and stationary demands at the lowest echelon. The installation stock policy was
employed with the nested policy. The relevant costs include the fixed ordering cost
and the inventory holding cost for each echelon, and a backordering cost for the
lowest echelon. The objective is to determine the inventory policy setting which
obtain the minimum expected average total system-wide cost. Meanwhile, Chen and
Zheng [106] first studied echelon stock (r,Q) policy in a serial system. They also

extended their work into compound Poisson process [107].

Deuermeyer and Schwarz [108] presented an analytical
model for the one-warehouse n-identical retailer inventory system facing stationary
Poisson demand and operating under the (r,Q) policy. They developed a
decomposition technique for analyzing OWNR by finding inventory policies for each
retailer independently and adapting the METRIC technique. Later, Deuermeyer and
Schwarz [108]’s work was examined by Svoronos and Ziphin [109] in order for more
accurate approximate solutions. Axsdter is one of the most popular researchers in
the field of multi-echelon inventory system as he has been developing many papers
continuously and his works have been cited in over 100 papers. He carried out many
researches on both the base-stock policies and the batch-ordering policies. The
following are some examples of his works specifically on the batch-ordering policies.
Axs&ter [110] considered one warehouse and n identical retailers under the (r,Q)
policy. Lead times are constant and the retailers face independent Poisson demand.
Axsater [110] showed an extension of Axsater [111] used for batch-ordering policies.
Axsater [112] proposed a generalized model of Axsater [110] considering two non-

identical retailers.

Further details of the batch-ordering policies can be found in
various systems, for example, Wang et al. [17], Axsdter [99, 113, 114], Schwarz,
Deuermeyer, and Badinelli [115], Ahire and schmidt [116], Chen and Zheng [117], Tee
and Rossetti [118], Hill, Seifbarghy, and Smith. [119], Jha and Shanker [120].
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According to aforementioned policies, periodic based-stock policies
enable the system to make coordinated ordering decision, whereas the continuous
replenishment policies (including based-stock policies and batch-ordering policies)
are independent ordering decision. We found that most of literatures studied the
coordinated ordering decision for the continuous replenishment when employing
joint replenishment policies (already mentioned in Section 2.1 on multi-item single-
location inventory system). We realize that continuous joint replenishment policies
are a special group of inventory policies utilized for coordinated ordering decision.
Therefore, we categorize them to the third group of inventory policies, besides the
based-stock policies and the batch-ordering policies. Dealing with our dissertation’s
consideration, the following are an extensive review on coordinated ordering decision

for the continuous replenishment.
3) The continuous joint replenishment policies

A few of literatures on continuous joint replenishment
policies on OWNR have been conducted. Focusing on our considered cost structure
which includes the ordering costs and holding costs at both echelons, and either the

penalty costs or service levels, the interesting literatures are reviewed as follows:

Cheung and Lee [21] studied the (Q,S) policy. When the
cumulative demands over all retailers reach a given Q units (i.e. truckload size for all
retailers in single trip), an order is placed at the warehouse to replenish the retailer
to their respective order-up-to levels S. The inventory policy at the warehouse is
the (r,Q) policy.

Ozkaya [22] proposed analytical models and heuristic
approaches for four types of joint replenishment policies at the retailers, and utilized
a traditional (S,S ) policy at the warehouse. Such four types of joint replenishment
policies are the (Q,S) policy, the (Q,S,T) policy, the (Q,S|T) policy, and the (
5,S—1,S) policy. The (Q,S) policy of Cheung and Lee (2002) and Ozkaya (2005) was
studied on different structures. The former sets target service level at the warehouse
and penalty cost at the retailers, meanwhile the latter sets target service level only
at the retailers. The (Q,S,T) policy is a hybrid of continuous and periodic
replenishments. An order is placed at the warehouse either when the cumulative
demands over all retailers reach Q units or when at least one demand arrives in T

time units after the last ordering instance. The (Q,S|T) policy is a periodic
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replenishment policy and the ordering decision arises every T time units. At the
decision epoch, if at least Q demands have accumulated for the retailers since the
last ordering instance, an order is placed at the warehouse. The (S,S —1,S) policy is
a special can-order policy which an order is triggered when any retailer’s inventory
position reaches its must-order level S. Then other retailers in the system will be
also included by this order if at least one demand arrives to each retailer. All
proposed policies commonly have the retailer’s order-up-to level S to which the
warehouse replenishes all retailers’ inventories. Ozkaya [22] showed comparative
results among these policies without comparing to the lower bound or the best-

known solution.

Gou et al. [14] introduced a joint replenishment policy where
the warehouse takes a traditional (S,S ) policy and the retailers utilize the can-order (
S,C,S) policy. When an order is triggered by a retailer, other retailers whose
inventory position reaches its can-order level € will be included by this order as
well. Even though zero lead time was assumed in their study, they cannot provide
an analytical model due to the complication. Thus, computer simulation was used
instead. Their result showed that about 5 to 20% of the cost can be saved as
comparing with the independent (S,S ) policy at the retailers. Nevertheless, they did

not provide a solution approach for setting the appropriate inventory policy.

There are other researches on joint ordering decision
conducted on different cost structures. Cross-docking system were carried out in
GUrbUz [24] Axsdter and Zhang [25] developed joint ordering policy by not

concerning the shared ordering cost.

Thus far, a few researches have concerned coordinated ordering
decision under continuous replenishment and stochastic demand with considering all
relevant costs on both echelons. We recognize that all relevant costs on both
echelons should be considered together in order to determine the inventory policy
parameters for all stores in the system as the general inventory control process.
Moreover, a very few of them focused on determining the appropriate inventory
policy setting especially for the can-order policy in OWNR. Hence, it is interesting to
develop a heuristic approach to determine the appropriate can-order policy in OWNR
so as to extend the knowledge of the can-order policy into the two-echelon

inventory system.
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2.2.2 Multi-itemn models

Number of researches on multi-item multi-echelon inventory problem
is much smaller than the one on a single item case. We classify the existing
literatures into two groups of multi-item problem: coordinated ordering decision and
joint constraint. For coordinated ordering decision, periodic joint replenishment
policies have been conducted. Some works have also included integration of
inventory and transportation problem. Thus far, the continuous joint replenishment
policies have not yet been found to employ into multi-item multi-echelon inventory
problem. It appears that there is another research gap to extend the continuous joint
replenishment policies into multi-item multi-echelon inventory problem. However, in
this section we raise some literatures on periodic joint replenishment policies and
also exemplify some with joint constraint in order to illustrate a direction of multi-
item multi-echelon inventory system. Note that this review is not limited to only two

echelons.

Relating to periodic joint replenishment policies on multi-item multi-
echelon inventory system, Qu et al. [28] dealt with an inbound material-collection
problem. A central warehouse sends an uncapacitated vehicle to collect multiple
items at geographically dispersed suppliers in a stochastic setting. They developed an
integrated inventory and transportation system for joint replenishment with a

modified periodic MP(R;,T) inventory policy originally proposed by Atkin and
lyogun [47]. Any item j belonging to a base set is brought up to its R; at every
review interval T, while other items are brought up the their level R; at every kT
time units where k; is an integer value. Since the problem only focuses on holding
stock at the warehouse echelon, so it is able to directly apply the MP(R;,T)

inventory policy which was initiated for a multi-item single-location inventory
problem. A heuristic decomposition method was proposed to solve the problem by
separating the model into two sub-problems namely conventional inventory and
vehicle routing models. This modified periodic inventory policy has been extended
into Zhou et al. [33] for controlling all inventories on the multi-echelon system. An

algorithm designed by Genetic Algorithm (GA) is used for solving the problem.

Sindhuchao [29] also studied an inbound material-collection problem

with capacitated vehicle. The system consists of a set of geographically dispersed
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suppliers producing one or more non-identical items and a central warehouse
stocking these items. The problem is to partition items into a number of subsets. For
each item, the replenishment quantity and the replenishment interval must be
determined along with the efficient route for the vehicle. Thus, each subset concerns
the same replenishment interval of all items and the aggregated replenishment
quantity for all items in a subset. The integrated inventory-transportation problem
was formulated as a set partitioning problem and a mathematical programming
approach was developed for coordinating inventory and transportation decisions.
Sindhuchao [29] decomposed problem into lot sizing problem and Vehicle routing
problem (VRP), then various heuristic algorithms were used to solve this problem in
small problem. See more review of inventory and transportation problem

considering multiple items in Moin, and Salh [121].

Other literatures have been associated with the independent ordering
policies under joint constraints for multiple items. For example, Cohen et al. [26]
developed a multi-echelon inventory model for the IBM network in the United
States. They developed and implemented a system called “Optimizer” to determine
the inventory policy setting for each part at each location employing the (s,S)
policy. Joint service constraint for a product, which is composed of multiple parts, is
concerned. They considered holding costs, replenishment costs, and emergency
shipments. To solve the problem, they decomposed the model development into
three stages; a one-part one-location model, a multi-product one-location model,
and a multi-product multi-echelon model. Under decomposition, each facility is
modeled under the assumption of ample supply at its supplier. Hopp et al. [27] and
Al-Rifai and Rosetti [30] considered a system involving a target level on the aggregate
ordering frequency to determine the (r,Q) policy parameters. Topen et al. [31, 32]
considered a multi-item two-echelon inventory system in which the central
warehouse operates under the (r,Q) policy, and each local warehouse implements
one-for-one replenishment policy. The objective is to determine the inventory policy
parameters minimizing the expected total system-wide cost subject to an aggregate

mean response time constraint.

According to a few literatures studied coordinated ordering decision under
the continuous replenishment and stochastic demand on OWNR, it is an open
research area for the development of the can-order policies into more complex

system.
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2.3 Modeling and Solution Approaches

Previously, we reviewed a lot of literatures on various kinds of problem
including the multiple-item single-location inventory problem, the single-item multi-
echelon inventory problem, and the multi-item multi-echelon inventory problem.
Then, this section emphasizes on an interesting issue about modeling and solution

approaches for determining the can-order policy parameters.

Modeling the can-order policies can be classified into two approaches. The
first approach is decomposition of a multi-item model into M single-item models
[34, 46, 51-56, 71, 73] and the second approach considers a multi-item model [22,
48, 72]. The decomposed model has been extensively used in various literatures
since it can reduce the dimension of search space. Focusing on a multi-item model,
Kayis et al. [72] concerned only two items, so it was able to formulate on a semi-
Markov model without decomposition. van Eijs [48] and Ozkaya [22] considered the
multi-item models with the fixed value of the can-order policy ¢ = S- 1. The
dimension of search space can be reduced. Interesting that van Eijs [48] used
decomposition technique into search algorithm instead, this can reduce the

dimension of search space as well.

Relating to search algorithm, iterative procedure is the most common
approach to determine the appropriate inventory policy parameters. lIterative
procedure is adopted to improve all inventory policy parameters determined from
each iteration. After an iteration is executed, some considered values are updated for
using in the next iteration. Terminate condition can employ when 1) inventory policy
parameters are unchanged from previous adjacent iteration, 2) the current total cost
is not reduced by more than pre-specified tolerance value as comparing to the last
total cost considered as a minimum cost of previous iteration, or 3) number of

iterations are exceeded the setting if computational time is too long.

One-dimensional searches have been utilized together with iterative
procedure. Exhaustive search (enumerative search) was typically used to search
inventory policy parameters within a range of minimum and maximum values. This
search seems not to enhance the heuristic algorithm in the aspect of computational
time, since all possible values in the range must be considered. Advantageously, the
best solution can be thoroughly determined. For two-echelon system, Ozkaya [22]

employed the exhaustive search into the special can-order (S,S—-1,S) policy.
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Another interesting search algorithm is “golden section search” which is a search
method for finding extremum of a unimodal function in the case of non-derivative
function. It is a simple and efficient method by successively narrowing the range of
search space until the desired accuracy in minimum value of the objective function
is achieved. A golden ratio, which is a constant reduction factor for the size of the
interval, is utilized to maintain the successive range of dynamic triples of points (i.e.
upper point, middle point, and lower point). Advantageously, each successive range
we only want to perform one new function evaluation. From this algorithm, we can
obtain the best policy parameters provided the satisfying total cost with the saved
computational time. van Eijs [48] used the golden section search to determine the
best value of A which is equal to S—S. Recently, we found an interesting work of
Nagasawa et al. [77]. They applied genetic algorithm (GA) to determine the can-order
level on given s and S. Further details about one-dimensional search can be seen
in, for example, Antoniou and Lu [122], Rios and Sahinidis [123].

2.4 Conclusion

This chapter reviewed previous researches on two major areas of problem:
joint  replenishment problem and multi-echelon inventory problem. We
demonstrated a review of according to various joint inventory policies, specifically
the can-order policies developed by several approaches and other interesting

policies. Comparative analyses among these joint inventory policies were provided.

For multi-echelon inventory problem, the literatures were divided into the
single-item models and the multi-item models. We identified two common types of
inventory policies on the single-item models: the order-up-to (base-stock) policies
and the batch-ordering policies. Additionally, continuous joint replenishment policies
were raised into OWNR but there have been a few of literatures studied on this kind
of system. For the multi-item models, Number of researches on multi-item multi-
echelon inventory problem has been much smaller than the one on a single item
case. The existing literatures could be classified into two groups of multi-item
problem: coordinated ordering decision and joint constraint. For coordinated ordering
decision, periodic joint replenishment policies were conducted. Some works
integrated inventory and transportation problems. However, the continuous joint
replenishment policies have not yet been found to employ into multi-item multi-

echelon inventory problem.
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In the last section, we summarized the interesting modeling and solution
approaches for the can-order policies. Modeling the can-order policies could be
classified into two approaches. The first approach was decomposition of a multi-item
model into m single-item models and the second approach considered a multi-item
model with either the fixed value of the can-order level at S- 1 or only two items.
With regard to search algorithm, iterative procedure was the most common approach
to determine the appropriate inventory policy parameters. One-dimensional searches
for non-derivative function were utilized, such as exhaustive search and golden

section search.

It is interesting that a few literatures studied coordinated ordering decision
under the continuous replenishment and stochastic demand on OWNR. This is a
great opportunity for the development of the can-order policies into more complex

system so as to fulfill the knowledge in the area of inventory problem.



CHAPTER IlI
THE CAN-ORDER POLICY FOR SINGLE-ITEM TWO-ECHELON INVENTORY
SYSTEM WITH ZERO LEAD TIME

This chapter is related to the 1™ phase of dissertation methodology. It is the
most important chapter to build up a basic knowledge of the can-order policy which
is used throughout the dissertation. For phase |, we study the basic model for the
can-order policy on OWNR with single item and zero-lead time consideration. The
system just has an interaction among retailers without joint ordering decision at the
warehouse echelon. The objective of this phase is to gain the insight of such policy
on OWNR, and then to develop the heuristic approaches for determining the

appropriate inventory policy setting.

3.1 Problem Description

Outside supplier

The Considered System

Item
st .
A Warehouse 1st Echelon :
Warehouse echelon

2nd Echelon:
Retailer echelon

Retailers ‘ \” >”
Item

demand demand demand demand

End Customers

Figure llI-1 Single-item two-echelon inventory system with zero lead time
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The system consists of a warehouse and multiple retailers with single
commodity. Let n denote number of retailers and i denote the location i = {0, 1,
2, .., N} where the warehouse is set by i = 0 and the retailer ie N,N ={1, 2, .., n}.
The warehouse is assigned in the first echelon called warehouse echelon, and all
retailers are assigned in the second echelon called retailer echelon. Demands come
from each retailer’s customers defined as end customers. The warehouse and
multiple retailers are cooperated as a single firm to concern the total system-wide
cost under global information and centralized control. The warehouse is available to
hold inventories for supplying all retailers’ orders. Inventories at the warehouse are
fulfilled by an outside supplier whose ample stock is not considered in the problem.
The warehouse distributes all required quantities to the retailers in a single trip
without splitting lot. It is supposed that uncapacitated vehicle is available to supply
all required quantities in the order. Multiple retailers have their own inventories to
serve their customer demands. Poisson demand is assumed to represent the

customer demands, denoted by A which is a constant mean of customer demand

at retailer i.

Regarding the can-order (s;,C;,S;) policy applied to the system, it has two
reorder points: the must-order level s, providing normal replenishment, and the
can-order level ¢, making special replenishment. Special replenishment is an
opportunity of a joint replenishment which a retailer is faced with when other
retailers reach their must-order levels. When the inventory position of any retailer
drops to or below its must-order level s;, an order is triggered to create normal
replenishment. Then, other retailers in the system can also be included by this order
if their inventory position is at or below its can-order level ¢,; a special
replenishment is occurred. All the involved retailers’ inventories are fulfilled from
the warehouse to their own order-up-to level S,. Considering single commodity, the
warehouse modifies the can-order policy to a traditional (s,,S,) policy by setting its
can-order level equals its must-order level. The warehouse issues an order when its
inventory position reaches its must-order level s,. Then the outside supplier will
replenish the warehouse’s inventory to its order-up-to level S;. The warehouse
places an order to the outside supplier if and only if retailer echelon triggers an order
to the warehouse. We differentiate between order cycle at retailer echelon and
order cycle at warehouse echelon by defining “dispatch cycle” and “replenishment

cycle” for retailer echelon and warehouse echelon, respectively.
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The system considers all inventory costs at both echelons. The inventory
costs consist of 1) The holding costs at the warehouse and all retailers, 2) The major
ordering costs for warehouse echelon and retailer echelon, and 3) The minor
ordering costs for retailer echelon. The holding cost occurs at each location having

physical stock. The total holding cost over the time period at location i (HC;) can
be determined from the unit holding cost (h,) and the accumulated inventory over
the time period (INV,). The major ordering cost is the fixed cost occurring once an

order is triggered. This cost includes administrative costs, material handling costs, and
transportation costs which do not depended on the number of retailers in the order.
So, the retailers in the system can share the major ordering cost together for
replenishing in one round trip. The total major ordering cost over the time period at

retailer echelon (MJ,) is the retailers’ major ordering cost per an order (K,)
multiplied by the number of dispatch cycle (ND, ). Similarly, the total major ordering
cost over the time period at warehouse echelon (MJ,,) is the multiplication of the
warehouse’ major ordering cost per an order (K, ) and the number of replenishment
cycle (NR,)). The minor ordering cost is an additional cost of each retailer when

replenishing their inventories, such as additional transportation cost relating to
distance or other charges. This cost depends on the number of involved retailers in

that order. The total minor ordering cost over the time period ( MN, ) is accumulated

from the involved retailers in each order multiplied by its minor ordering cost of

retailer i (x;) over the time period. Prior works on coordinated ordering decision

ignored this additional cost in spite of the fact that this additional cost directly
affects the inventory policy setting [48, 56, 60].

The concept of the can-order policy is balancing among reduced major
ordering costs, varied minor ordering costs, and increased holding costs. Reduced
major ordering cost occurs if special replenishment is included in an order. On the
other hand, from special replenishment there is a residual stock [48] which is a stock
left above the must-order level at the order-triggered point. Then, the involved
retailers have to hold more stock increasing the holding cost. Meanwhile, the minor
ordering costs can be either reduced or increased depending on order frequency at
each retailer. Hence, we have to consolidate all relevant costs to determine the

appropriate inventory policy setting under the total system-wide cost minimization.
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It is, however, difficult to deal with the problem mainly because of demand
uncertainty, variation of retailers’ order quantity, retailer’s two-order point setting,
and order time synchronization at all locations. We simplify the problem by
assuming zero lead time. Retailers’ order is instantly dispatched from the warehouse.
All retailers’ must-order levels are then equal to zero (s, = 0, 1€ N), since shortage
at the retailers are not allowed. The warehouse’s order is also replenished from the
outside supplier immediately. In this case, warehouse’s must-order level is equal to -
1 because the warehouse is allowed to hold zero inventory level until the next
replenishment will be issued. This uses the same setting as Gou et al. [14]. It can
help the warehouse not to keep the excessive stock waiting for the next dispatch to
retailer echelon. Therefore, decision variables are ¢,, S, and S;. This is a simple

case of the can-order policy on OWNR.

The notations and problem formulation are demonstrated as follows:

n = Number of retailers in the system

i = Index of the location i; the warehouse i = 0 and the retailer e N
T = The time period considered in the problem (time units)

S = The must-order level at the warehouse (units);

(Assign s, = -1 from the zero-lead time assumption)
S, = The order-up-to level at the warehouse (units)
S, = The must-order level at retailer i (units);

(Assign s, = 0 from the zero-lead time assumption)

¢, = The can-order level at retailer i (units)

S, = The order-up-to level at retailer i (units)

A = Demand rate of retailer i (units/time unit)

h, = The unit holding cost per unit time at the warehouse ($/unit - time unit)
h. = The unit holding cost per unit time at retailer i ($/unit — time unit)

K, = The warehouse’s major ordering cost per a replenishment cycle ($/time)
K, = The retailers’ major ordering cost per a dispatch cycle ($/time)

k;, = The minor ordering cost at retailer i ($)

TC(c,S;,S,) = The total system-wide cost per unit time ($/time unit)

HC. = The total holding cost at location i over the time T units ($)

MJ._ = The total major ordering cost at retailer echelon over the time T units ($)

r
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MN, = The total minor ordering cost at retailer echelon over the time T units ()
OC, = The total major ordering cost at warehouse echelon over the time

T units ($)
INV, = The accumulated inventory over time period at location i (unit — time unit)
ND, = The total number of dispatch cycle over the time T units (times)
NR, = The total number of replenishment cycle over the time T units (times)
Suj) = Anindicator which equals 1 when retailer i is included in the dispatch cycle

J and equals 0 otherwise

Objective function:

(ZHCi+MJr+MNr+MJWj
Minimize ~ TC(c,,S;,S,) = ~=

(3.1)
T

where HC, =h x INV, (3.2)
MJ, = K, xND, (3.3)

ND, n
MN, =>">" 5, & (3.9)

j=1 i=1
MJ, = K, xNR, (3.5)

The objective function of the problem is to minimize the total system-wide
cost per unit time. Since §; and S, can be given by the zero-lead time assumption,
the total system-wide cost per unit time can be a function of only three decision
variables: ¢;,S;,S,. This is able to simpler manipulate the problem. However, the
problem remains the complications, such as demand uncertainty, variation of

retailers” order quantity, and order-time synchronization at all locations.

3.2 Research Methodology

Dealing with the complication of the problem, the optimal solution cannot
be simply derived from an analytical approach. Hence, we initially study the can-

order policy on OWNR by using computer simulation. Computer simulation is an



63

efficient approach representing the inventory process even in the complicated
system [14, 88]. The preliminary study leads us to develop a heuristic approach. In
addition, from the simulation we can determine the best-known solution used to

measure the proposed heuristic approach’s performance.

3.2.1 Computer simulation

The computer algorithm representing the inventory process is

illustrated in Fig. lll-2. The inputs for simulating the system can be divided into three

groups as follows:

Computer algorithm

For each retailer £ # 7,

Input parameters

Relevant Factors:

N

7= Number of retailers

4 = Demand rate at retailer 7
ho = Unit holding cost at the warehouse
h; = Unit holding cost at retailer 7

Set Dispatch cycle j = 1
Replenishment cycle 7= 1

For each retailer 7, \L

. . S - — Yes Dispatch
K, = Warehouse’s major ordering cost Generate inter-arrival time of O b _ VS P 0
. . . is ntity = S¢ - uantity =
K, = Retailers’ major ordering cost demands and sort all demands spatch quantity ok k0 || 9 Y
e X . . . set Ix(2) = Sk, and set
x; = Minor ordering cost at retailer / by arrival time
and set gy =1 Oy =0
Decision variables: , N 1 1
) Monitor demand arrival N
Warchouse s = -1 £ the sv —
S5 = [min,max] of the system ‘ Collect total dispatch quantity ‘
Retailer 7 5 =0 For warchouse. ‘

72
Subtract total dispatch quantity
Io(?) = Io(t) — total dispatch quantity

Yes
Record replenishment event and set
replenishment cycle
r=r+1

Replenishment quantity
= So—Iop(t) and set Ip(t) = So
[

¢ = [min,max]
§; = [min,max]

demand arrival ti

Experiment setting:

Ip(0) = Initial inventory level at the
watehouse; Ip(0) = 0

1;(0) = Initial inventory level at retailer 7
L©0)=0

T = Time period; T = 10,000

Seed number = [0, 99]

For retailer 7 who owns an arrived demand|

Subtract demand from

inventory position

Ii(t) = I?) - demand

Record dispatch event and set
dispatch cycle j = j+1
N}

¢l¢

Calculate inventory costs ‘

Dispatch quantity = 5, - Ii(2),
set [i(2) = S,
and set dg = 1

b 7

| Calculate total system-wide costs
pet unit time

Output section
A report of inventory costs and
transactions

(-

END

Figure Ill-2 The computer algorithm for simulation of Phase |

1) Decision variables (c,,S;,S,): Each variable is inputted as a range of
minimum and maximum values. A combination of (c;,S;,S,) is called “solution”. A

solution provides a value of the total system-wide cost and its transaction (e.g.

number of dispatch cycles, number of replenishment cycles).
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2) Relevant factors (i.e. cost parameters, demand rates, and number of
retailers): We set a combination of relevant factors to “scenario”. A scenario contains
different solutions. The best solution providing the minimum total system-wide cost
is selected for each scenario.

3) Experiment setting: Let I.(t) denote the inventory level of location

i at time t. At the beginning of running period, all locations’ initial inventory levels

start at zero, 1,(0) = 0. According to the pilot testing, the stability of the system

occurred after the first 8,000 running periods. So, we chose 10,000 running periods to
provide the steady state for the system. The difference of computational time
between the 10,000-running period and some other running periods in the range
(8000, 10000) is too small and the 10,000-running period is a sufficient number to
assure of the stability of the system. Additionally, various seed numbers are tested to
verify the solutions since different seed numbers generate different inter-arrival time
sets.

Finally, we obtain a report of the inventory costs and its transaction.
In consequence, we can find the minimum total system-wide cost for each range of

decision variables inputted under a given scenario.

3.2.2 The best solution finding

The best solution finding is composed of two steps: Input parameters

and output validation. The following sub-sections explain each step in sequence.
3.2.2.1 Input parameters

First of all, we randomly select a seed number between [0,
99] to use for first replication (i.e. a replication comes from a seed number). Decision
variables are inputted as a range of minimum and maximum values. The range is
dynamic depending on our setting. In the experiment, we set the width of range are
5 units for ¢; and S, and 20 units for S;. Since over 5 units of ¢,and S, creates

multiplied combinations spending more running time. Whereas S, range is larger

because S, linearly creates combinations. The first range can be set from the initial

point of Sjand S, calculated by S, = IZKWZ),,/hO and S, =/2K A /h due to
ieN

the zero-lead time assumption and the concept of economic order quantity. For
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example, initial S;= 45 and initial S;= 14, the first ranges are identified as S, € [41,
60], S, € [11, 15], and ¢, € [10, 14].

The next step is the process of moving the ranges until the

solution seems to be worse continuously. The S, range is moved upward and
downward by fixing the range at all retailers. For example, the next range varied
S, e [21, 40], and fixed S, e [11, 15] and ¢; € [10, 14]. Therefore, minimum and
maximum values for inputting can be changed for each round of the simulation.

Later, we determine the ¢, and S, ranges at the retailer i by keeping the same
range of Syand the ¢; and S; ranges at the retailer j=i. S;, ¢; and S; ranges are

changed repeatedly. We select the best solution providing the minimized total
system-wide cost for the first replication. After that, the validation process showed in

the next part is utilized to get the typical best solution.
3.2.2.2 Output validation

The typical best solution is a representative of the best
solutions from various replications. We define the typical best solution as “the best-
known solution” to generally use in later sections. Since abundant combinations are
run in the first replication, in this process we can reduce unnecessary ranges by
starting at the best solution’s range from the first replication. By this process, we can
find the best solution for other replications faster. If there is an error from the first

replication, cross-checking is occurred.

In the pilot testing (10 scenarios), we tested on ten random
seed numbers to determine the best solution for each seed number. We found that
the best-known solution appeared since the first three random seed numbers were
conducted. However, we chose to test on five random seed numbers instead to
confirm the experimental results. Instead of a number of the experiments, we could
save the computational time on five random seed numbers for determining each

seed number’s best solution.

Consequently, we test another four replications on different
seed numbers (after the first replication has been done previously). The first two
seed numbers are randomized, whereas the last two seed numbers are fixed. We

use this method to study two dimensions of the best solutions.
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® For the first dimension, we aim at studying mean and
variation of all best solutions’ the total system-wide
cost under the same scenario. The result of this study
should provide indifferent total system-wide costs of
the group if the best solutions are in the steady state.
This process is to confirm that our experiments are

conducted in the appropriate condition.

® For the second dimension, we fix seed numbers at 1
and 2 to study characteristics of the inventory policy
parameters on different scenarios. For example, we vary
the holding cost ratio (h, /h) from 0.1 to 1 and then we

monitor trend of the inventory policy parameters on
each scenario under the same seed number.

Most replications provide the same best solution; however,
some different solutions can be appeared. Then, for each best solution we
determine the average total system-wide cost by additional 10 random seed
numbers. The best-known solution is provided by the best solution with the

minimum of average total system-wide cost.

We handle all experiments by using methodology of the best solution
finding as mentioned above. To gain more efficiency, all experiments are
simultaneously run on 8 computers (Intel® Core™ i7-2600 CPU@® 3.4GHz. RAM 8 GB
64-bit Operating System). Simulation programming uses visual C# (2010). By the
aforementioned methodology coupled with the efficient computers and

programming, we are able to conduct various experiments.

3.2.3 Performance measurement

We use two measurements in the dissertation. The first one is a cost-
saving measurement. We use it for evaluating the performance of the can-order
policy as comparing to an independent (S,S) policy (called SI case in the
dissertation). SI case meets stochastic demand and independent replenishment
where each retailer is dispatched individually, so the major ordering cost of each
retailer occurs without sharing. We determine the best solution of SI case by utilizing

computer simulation. According to zero lead time, all retailers’ reorder points (s;)
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are equal to zero. Meanwhile, warehouse’s reorder point (s;) is less than zero
owning to retailers’ batch-order size (s,= -1). Zero inventory position at warehouse
can be occurred until the next order is replenished from the outside supplier. Thus,
we can determine only the base-stock levels (S;) for all retailers, and the base-stock
level for the warehouse (S;). From simulation, SI case can use the data from the

can-order policy by ¢, = -1.

Cost saving can be calculated by comparing the can-order policy with

the SI case using the following equation:

—TC“")x100

_ (rct
Cost Saving (C.S.) = TCED

(3.6)

where TC®" and TC® are the average total system-wide cost per unit time of Sl

case and the can-order policy, respectively.

Since this paper’s objective is to propose a heuristic approach for
setting the appropriate can-order policy, the best-known solution is utilized to
compare with the heuristic’s best solution. Heuristic’s performance is measured in

terms of the cost gap calculated from the following equation.

(TCHRD _TC®)%100

CostGap(C.G.) = TC®E)

(3.7)

where TC™ and TC® are the average total system-wide cost per unit time of
the heuristic approach and the average total system-wide cost per unit time of the

best-known solution, respectively.

3.3 Preliminary Analysis

In the preliminary study, our experiments were conducted to study the
relationship between relevant factors on 253 scenarios as showed in Table Ill-1 and
Table Ill-2.
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Table llI-1: Numerical input for preliminary experiment under identical retailers

The asterisk (*) in the table means that parameter is varied.

Scenario

Fixed Parameters

No. K K K.

w r I

hO

h.

hO/hi ﬂ’l

Varied Parameters

1) Relationship between hyand h

(80 scenarios)

1-50 100 | 50 0

h, € {10, 25, 50, 100, 250},
h,/h €{0.1,02, ..,1}

51-80 100 | 50 0

h € {0.1,05, 1, 25, 5%
h,/h €{0.1,03,05,0.7, 09, 1}

2) Relationship between hy, h, and K

(20 scenarios)

81-92 100 * 0

25

K, €110, 903;
h,/h €10.1,03,05,07, 0.9, 1}

93-100 100 * 0

10

K, €1{10, 90}
h,/h, €{0.2, 0.4, 0.6, 0.8}

3) Relationship between ho, hi and K,

(20 scenarios)

K,, €175, 200},

101-112 * |50 | 0 | * | 25| * | 20
h,/h, €{0.1,03,05,0.7, 09, 1}
K., € {125, 250}
113-120 * |50 | 0 | * | 10| * |2
h,/h, €{0.2, 0.4, 0.6, 0.8}
4) Relationship between ho, h,and K /K (14 scenarios)

121-134 * 50 0

05 | 20

K, /K, €{15,3,4,5, 10, 100,
1500} h, {1, 25}

5) Relationship between ho, hi , and il (10 scenarios)
135-142 100 50 0 * 25 0.5 = ﬂf, €{0.5, 1, 3, 5, 10, 40, 100, 500}
143-144 100 50 0 i 10 0.2 * ﬂf, €{0.5, 10}

6) Relationship between hy, h., A and

N (10 scenarios)

145-148 | 100 | 50 | O | * | 25 | 05 | 20 Ne4, 8, 12, 20}
149-154 | 100 | 50 | 0 | * | 10 | 02 | * 4 €{0.5, 105 N€{4,8, 12}
7) The effect of k; (54 scenarios)
K, €{5, 10, 25} A, €{0.5, 20};
155-208 | 100 | 50 | * * 10| * h,/h €10.2, 04, 0.6};

nNe{2 4,8}
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Table IlI-2: Numerical input for preliminary experiment under non-identical retailers

on two-retailer scenarios and three-retailer scenarios

All scenarios set identical cost components by K, =100, K, =50, k; =0, hO =2, and hi = 10.

Demand rate ratio be abbreviated to “DRR” in the table.

Demand Rate Demand Rate Demand Rate

Al A, | A | DRR Al A | A | DRR Al A A DRR
1 20 20 - 16 | 20 1 - 311 20 | 0.67 | 0.67 30
2 | 10 10 - 1 17110 ] 05 - 20 32120 | 05 0.5 40
3 |40 40 - 18 | 40 2 - 33120 | 20 10
[ 20 10 - 19 | 20 | 0.67 - 34 | 20 20 5 4
5 10 5 - V. 20 10 | 0.33 - 30 351 20 20 2.5 8
6 |40 | 20 - 21 | 40 | 133 | - 36| 20 | 20 2 10
7 20 5 - 22 | 20 0.5 3 37| 20 20 1 20
8 10 2.5 - a 23 10 | 0.25 - 40 38 1 20 20 0.67 30
9 | 40 10 - 24 | 40 1 - 39120 | 20 0.5 a0
10 | 20 25 - 25 1 20 20 20 1 40 | 20 10 5 2,4
11| 10 | 1.25 - 8 26 | 20 10 10 2 41 |1 20 10 0.5 2, 20, 40
12 | 40 5 - 27 | 20 5 5 a 42 | 40 20 10 2,4
13 1 20 2 - 28 | 20 25533255 8 43 | 40 20 1 2, 20, 40
14 | 10 1 - 10 29 | 20 2 2 10 44 1 20 2 0.5 4, 10, 40
151 40 a4 - 30 | 20 ik 1 20 45 | 40 [ 1 4,10, 40

We primarily analyze the experiments on identical retailers to study the

effect of the relevant factors on the can-order policy. Specifically, from the existing

literatures, the ratio of the major ordering cost and the minor ordering cost is one of

the most significant factors for the can-order policy’s performance, since such ratio

affects the can-order level ¢c, to create a combination of retailers in an order.

Therefore, we considered the experiments on identical retailers in case of zero minor

ordering cost and non-zero minor ordering cost. To extend the experiment on non-

identical retailers, we aimed at studying the can-order policy on the retailers’

different demand rates because in reality we frequently encounter such situation. In

addition, non-identical demands can create the different discount opportunities from

the shared ordering cost. So, it is interesting to investigate and this inquiry has not

been studied in the existing literatures.
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Relating to the experimental design, we did not test on full combination of
all factors, since each experiment was focused on different parameters. For example
of scenario 1 - 50, we varied h. e {10, 25, 50, 100, 250} and h,/h, € {0.1, 0.2, .., 1}
and fixed the other parameters to study the relationship between h; and h,. In
multi-echelon inventory problem, the relationship between h, and h, directly

affects stocking decisions of the warehouse and of the retailers. After first 50

scenarios, we also tested on the lower h e {0.1, 0.5, 1, 2.5, 5} but h,/h, can be
reduced to smaller set hy/h e {0.1, 0.3, 0.5 0.7, 0.9, 1} as we found similar

characteristics on the solutions. Similarly, other parameters were varied

corresponding with the purpose of any experiment.

In reality, the ratio of h,/h, always appeared in the existing literatures is likely
not over 1 since value of product increases from the warehouse echelon to retailer
echelon according to, for instance, additional operations cost charged into product
price, retail store rental price. If h,/h, >1 means that all inventories should be hold
at retailer echelon to reduce an expensive holding cost at warehouse echelon,
except the case that there is any constraint for the warehouse’s supplies. Similarly,
the ratio of K, /K, is always equal or more than 1 because, in fact, warehouse’s
ordering cost deals with the external firms so that administrative and transportation

costs are always more than internal management costs.

According to a study of non-identical demand rates for two-retailer scenarios
and three-retailer scenarios as showed in Table -2, we defined the demand rate
ratio as the proportion of different retailers’ demand rates. Demand rate ratio is used
to analyze the effect of non-identical demand rates on the can-order policy.

For two-retailer scenarios, demand rate ratio can be simply identified as a
proportion of the first retailer’s fixed demand rate to the second retailer’s varied
demand rate (e.g. 4, =20,4, =10 then the demand rate ratio is equal to 2).

For three-retailer scenarios, demand rate ratio is formed into three patterns:

® A proportion of a retailer’s fixed demand rate to the other retailers’

identically varied demand rates (e.g. fixed A4 =20 and varied
A, =10, 4, =10; the demand rate ratio is equal to 2)

® A proportion of a retailer’s varied demand rate to the other retailers’
identically fixed demand rates (eg. fixed A4 =20,4,=20 varied

4, =10; the demand rate ratio is equal to 2)
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® A proportion of one retailer’s varied demand rate to another retailer’s
varied demand rate (e.g. A =40,4, =4,4, =1; three demand rate

ratios for this case — 4,/ A,= 10, 4,/ A4,=40,and A,/ A,= 4)

For each scenario, we found that the best solutions from various seed
numbers had the same means proved by one way ANOVA (single factor) with 95%
q
l

confidence interval . In addition, trend of the inventory policy parameters seems not

different even if random seed numbers were utilized. For example, a scenario at K,
= 100, K,= 50, x,= 0, hy=1, h= 10, 4= 20, n= 2, we found two best solutions
from five replications. The best solutions (S,,c;,S;) are (67,11,12) for replication 1, 2,
4, 5 and (67,10,12) for replication 3. Then, we determined ten total system-wide
costs of two best solutions as demonstrated in Table IlI-3. We used these data for
ANOVA. The ANOVA result is depicted in Table lll-4. From Table IlI-4, F-critical value is
less than F value, so we accept null hypothesis that all best solutions have

indifferent means.

Table IlI-3: Ten total system-wide costs of two best solutions

Replication No. (with random seed numbers)

Best
Solution
(67,11,12) | 329.80 | 330.35| 330.26| 330.46| 330.24| 330.16| 330.52| 329.26 | 330.62| 329.39
(67,10,12) | 330.47 | 329.37 | 330.51| 330.06| 330.32| 329.19| 330.34| 328.76| 331.20| 331.18

1 2 3 4 5 6 7 8 9 10

* For each best solution, we used ten values of total system-wide costs from ten seed numbers.
Such costs of all best solutions are analyzed by ANOVA. Function “DATA ANALYSIS” from
Microsoft Excel 2010 was utilized for ANOVA testing.
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Table lll-4: An example result of ANOVA testing

SUMMARY
Groups Count Sum Average Variance
Solution 1: (67,11,12) 10 3301.066 330.1066  0.219774
Solution 2: (67,10,12) 10  3301.407  330.1407 0.657857
ANOVA
Source of Variation SS df MS F P-value  F-critical
Between Groups 0.005836 1 0.005836 0.0133  0.909465  4.413873
Within Groups 7.898677 18 0.438815
Total 7.904514 19

The significant findings are classified into three groups: 1) the effect of the
can-order policy, 2) comparative analysis with an independent policy, and 3)

inventory policy characteristics. Thus,

3.3.1 The effect of the can-order policy

From the general concept of the can-order policy, the major and
minor ordering cost and the holding cost are traded off. The can-order level affects
reduced major ordering costs, varied minor ordering costs, and increased holding cost
from special replenishment. Hence, it is important to find a balance among all

inventory costs.

For the experiment of identical retailers with zero minor ordering cost,

it shows that when ¢, increases, the retailers’ holding cost increases, while the

retailers’ total major ordering cost decreases. Then, the total inventory cost at

retailers also decreases when ¢, increases. For warehouse echelon, the value of c,

affects its dispatch quantity and frequency, and therefore affects the warehouse’s

inventory costs. At the low level of S, increasing ¢, can reduce the warehouse’s
inventory costs since higher ¢, generates lower dispatch frequency. This also causes

lower replenishment frequency at the warehouse. However, there is no obvious

pattern reflecting relationships between all decision variables at the high level of S, .
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Considering the case of identical retailers with minor ordering cost, it

directly affects the can-order level. If the minor ordering cost «; is large enough
when comparing with the major ordering cost K, the retailers’ total minor ordering
cost is observed to be a convex function of the can-order level ¢;. The increase of
¢, reduces the retailers’ total minor ordering cost until a value of c,, that cost is
then increased when ¢, is large as too many retailers are included in an order. The
c, value affects number of retailers jointly replenished in the order, so it influences

the retailers’ total ordering cost per order and the retailers’ total holding cost per

dispatch cycle.

With regard to the case of non-identical retailers, different retailer’s
demand rates were tested. The minor ordering cost is neglectable to study only
impact of non-identical demand rates. When retailer’s demand rates are significantly
different, the retailers with higher demand rates attempt to reduce c; in order to
have less residual stock, while the retailers with lower demand rates attempt to
increase ¢, in order to have more joint replenishment opportunity. Hence, all the
can-order levels have to be traded off between the cost of residual stock and the

cost of joint replenishment.

As these results, the can-order policy has an effect on the inventory
costs at both echelons. It is related to retailers’ residual stock, dispatch quantity and
frequency at retailers, as well as replenishment quantity and frequency at the

warehouse. All are necessary to be traded off to determine the best solution.

3.3.2 Comparative analysis

To study the can-order policy’s performance and identify for which
situation this policy is suitable, we compare the can-order policy with an
independent (s,S ) policy (called SI case). It has already been mentioned in section
3.2.3 in detail. From simulation, SI case can use the data from the can-order policy
by ¢, = -1. We vary a wide range of relevant factors according to various tested
values showed in Table IlI-1 and Table IlI-2. Cost-saving measurement can use
Equation (3.6). Figure IlI-3, Fig.lll-4, and Fig.lll-5 show experimental results in cases of

identical retailers and non-identical retailers, in sequence.
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Figure IlI-5 The cost saving of the can-order policy: Non-identical retailers

According to the experiments, we found that the can-order policy
could reduce the total system-wide cost from the SI case for all scenarios. The
amount of cost saving is depends on scenarios. The best (or useful) scenarios are
identified that can save the greatest amount of the total system-wide cost. In the
opposite way, the can-order policy does not outperform SI case when the total
system-wide costs obtained by the can-order policy and by SI case are not different.
The independent ordering decision by SI case should be a satisfactory policy for ease

of control parameter determination.

The best scenarios for the can-order policy are addressed as follows:

® |dentical retailers: The best scenario is when large K, /h ratio,

large K, /x; ratio, hish demand rate, and high number of retailers. High h, /h ratio

is likely to gain more cost saving but it has to be high enough for trading off with
other relevant factors.

Large K, /h ratio and large K, /x; ratio creates a large shared

major ordering cost among retailers. High number of retailers also increases the

opportunity to share the major ordering cost. High demand rate allows high level of
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S, so that the opportunity of joint replenishment can increase (i.e. longer dispatch

cycle time makes the other retailers have a more change to include in an order),
However, in the opposite way the can-order policy seems to be useless when small

K. /h ratio and low demand rate because both factors reduce the opportunity to
share the major ordering cost. Both factors make very low level of S, from which

short dispatch cycle time happens. Total system-wide costs obtained by the can-

order policy and by the (S,,S,) policy are not different.

® Non-identical retailers: The can-order policy is useful when low

demand rate ratio. From low demand rate ratio, each retailer can create its own
normal reptenishment5 nearly be about the same cycle time. So, it has more
opportunity to share the major ordering cost with small residual stock’. On the
other hand, high demand rate ratio might influence the can-order policy to be
useless since a huge difference of normal replenishment cycle times reduces the
sharing opportunity. We found that a retailer with higher demand rate reduced the
can-order level near to the must-order level in order to reduce its order frequency
together with another retailer with lower demand rate. The retailer with high
demand rate has to tradeoff between the reduced ordering cost and the increased
residual stock.

Like identical retailers, hish demand rate and high number of
retailers increase the opportunity to share the major ordering cost. Each factor allows

high level of S, so that the opportunity of joint replenishment can increase.

The can-order policy builds up cost saving at over 30%, compared to
Sl case. So, the application of the can-order policy into OWNR is considerably

valuable.

> When the inventory position of retailer 1 drops to or below its must-order level S;, an order is

triggered to create normal replenishment.

® Residual stock is a stock left above the must-order level at the order-triggered point.
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3.3.3 Inventory policy characteristics

This section is separated into three sub-sections to elaborate the

characteristic of each decision variable ¢,,S;,S, for the considered system.

3.3.3.1 The order-up-to level at the warehouse

For a given S,, we can find the solution of (c,,$S;) providing
the minimum average total system-wide cost as illustrated in Fig.ll-6. There are two
local minimum solutions located into two ranges: Range | — the solution occurs at
S,= 0 and Range Il - it occurs at S;> 0. For the Range I, S, starts from zero and
then increases to reach the last value before the cost line turns to a convex
function. For the Range I, it is defined after that last value to positive infinity. The
best-known solution (global minimum solution) definitely occurs in either Range | or

Range II.

For Range |, none of holding stock at the warehouse provides

the lowest total system-wide cost since the increasing S, creates the excessive

stock. Whenever retailer echelon triggers an order all excessive stock is consumed
and the warehouse’s must-order level is always reached. The warehouse is
replenished every dispatch cycle; therefore, it is not necessary to keep stock waiting
for the next dispatch cycle. For Range I, a trade-off between the increasing holding

costs and the reduced ordering costs when increasing S, is occurred as found in the

economic order quantity.

We can set S,= 0 when high h,/h, ratio, since more stock

creates more inventory cost (i.e. the increased holding cost is larger than the
reduced ordering cost). However, there is a possibility that the best-known solution
can move from Range | to Range Il when relevant factor is changed, such as smaller
h, /'h, ratio, hisher K, or higher number of retailers since smaller h,/h, ratio,

higher K,,, or hisher number of retailers affect the warehouse to hold inventories to

reduce the frequency of replenishment.
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Figure IlI-6 Two ranges of the best-known solution

3.3.3.2 The order-up-to level at the retailers

When we fix inventory policy at the warehouse, the average
total system-wide cost at retailer i is a convex (unimodal) function of S; as showed
in Fig. IlI-7. Figure III-7(a) and Fig.ll-7(b) illustrate different scenarios but provide the
same pattern. The convex function occurs from a trade-off between the increasing

holding costs and the reduced ordering costs when increasing S;, then the economic

order quantity is determined.
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Figure lII-7 Convex function of S;on given S,

3.3.3.3 The can-order level at the retailers

From the existing literatures, the ratio of the major ordering
cost and the minor ordering cost is one of the most significant factors for the can-
order policy’s performance, since such ratio affects the can-order level ¢, to create
a combination of retailers in an order. Therefore, we considered the experiments on
identical retailers in case of zero minor ordering cost and non-zero minor ordering

cost.

Considering the case of zero minor ordering cost (154
scenarios), a result demonstrates that 87.66% of all scenarios (135 scenarios) the
value ¢/ = S;- 1, where ¢/and S;denote the optimal can-order level and the
optimal order-up-to level of retailer i. This result is consistent with the study of van

Eijs [48] showed that when K, / x; ratio is approaching infinity, then ¢'= S’- 1 for all
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items. It implies that all items are jointly replenished as soon as an item triggers an
order. Other items are not ordered if there has been no demand after the preceding
order. This concept’s purpose is to most reduce the ordering cost from jointly
replenishing all items in the order. For other 19 scenarios occurring the best solution

at ¢’ # S;- 1, the result indicates that TCZS_ __is greater than TC"0.01% on average

1)
with a standard deviation 0.02% where TC"is the optimal average total system-wide

*

cost and TC: . is the minimum average total system-wide cost of the solution at

¢ =S -1

In case of non-zero minor ordering cost (54 scenarios), smaller
K,/ k; ratio influences father difference between ¢; and S, as showed in Fig.IlI-8(a).
Since such difference can reduce the number of involved retailers in the order and
dispatch quantity, but increase dispatch frequency. In multi-item single location
problem, van Eijs [48] ruled that if K, /x; ratio is less than 5, the can-order policy
might not happen to be ¢ = §;- 1. Additionally, high demand rate affects higher

level gap between ¢, and S;. Comparing TC(*S_ ,and TC”, the result indicates that

TC is greater than TC" by 0.91% on average with a standard deviation of 1.85%.

(s D)
SmallerK, / x; ratio increases cost gap as showed in Fig.lll-8(b). Setting ¢, near S,

increases the total ordering cost because of too many retailers included in an order.

As the results, we can simplify mathematical model by using

the can-order level ¢,= S;- 1 since small average cost gap between TC(*S_ 7l)and

TC"is occurred. Additionally, a convex function of S; enable us to develop heuristic

approach at ease with one-dimensional search.
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Figure llI-8 The effect of ratio on the can-order level at the retailers

However, computer simulation seems not to be an appropriate method for
determining the best-known solution if the problem includes the large-size problem
(e.g. number of retailers, hish demand rates) and/or non-identical retailers (e.g. non-
identical demand rates, non-identical cost components) because of a huge search
space inputted in the simulation. Therefore, heuristic approach is interesting to
systematically reduce the search space for determining the appropriate inventory
policy parameters. As found in many literatures relating to the can-order policy, they

used heuristics to accomplish their studies.
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3.4 Heuristic | - Modified Deterministic Joint Replenishment (DJ)

Our purpose of developing heuristic approach is to provide an appropriate

inventory policy (¢;,S;,S,). The total system-wide cost of mathematical model is

able to be approximated as long as the acceptable solution is provided. This can
reduce the complexity of our model. According to zero lead time and stationary
demand, we consider an existing deterministic model to determine the best solution
due to the same cost structure composed of the holding costs and ordering costs at
both echelons. Schwarz [124] developed an analytical model for OWNR under
deterministic demand for determining the optimal inventory policy, and then it has

become a classical model referred in a lot of literatures.

In the pilot testing, we consider the case of identical retailers with zero minor
ordering cost as we can simply modify Schwarz [124]’s model by jointly fulfilling all
retailers’ inventories in one order. This modification is consistent with the concept of
van Eijs [48] and preliminary analysis (Section 3.3.3.2) mentioned previously. When
K, / x, ratio is approaching infinity, then ¢’ = S’- 1 for all items. It implies that all
items are jointly replenished as soon as an item triggers an order. This concept’s
purpose is to most reduce the ordering cost from jointly replenishing all items in the

order.

3.4.1 Mathematical model and analytical approach

Since Schwarz [124]’s model is based on batch-ordering policies, we
use terms of batch size to determine the minimum total system-wide cost and
convert §;,S, consistently to the batch-ordering policies. The deterministic model is
developed under the property that the delivery to warehouse occurs only when the
warehouse and at least one retailer have zero inventory. Relating to identical
retailers with zero minor ordering cost, the cost model can be formulated for a given

(S;,S,) policy by using the following equations.

(3.8)

TC(mf'Qr) = { KW/lr + Kr/lr + nhOmI'Ql’ + n(hr _hO)Qr + nhr }

mrQr QI’ 2 2



TC(M,.Q,)
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The total system-wide cost per unit time respecting the batch-sizing

model ($/unit time)
Number of retailers in the system

A lot size of each identical retailer replenished by the warehouse
Number of dispatch from the warehouse echelon to retailer
echelon (times)

Demand rate of an identical retailer (units/time unit)

The unit holding cost per unit time at the warehouse ($/unit - time
The unit holding cost per unit time at an identical retailer ($/unit -

The warehouse’s major ordering cost per a replenishment cycle

The retailers’ major ordering cost per a dispatch cycle ($/time)

According to Equation (3.8), the first term is the warehouse’s ordering

cost per unit time and the second term is the retailers’ ordering cost per unit time.

The third term is the warehouse’s holding cost per unit time considering the stock

for all n identical retailers. The last term is the total retailers’ holding cost

accumulated on all n identical retailers.

The optimal solution can be determined by using the first order

differential Equation (3.8) with respect to Q, and m, . It follows that,

22, (K, +K,)
. nm

_ i 3.9
< (m, —Dh, +h, 59

« K, (h —h)
, / < (3.10)

where Q’ is the optimal lot size of each identical retailer replenished by the

warehouse and m; is the optimal number of dispatch from the warehouse echelon

to retailer echelon. From Equation (3.10), the value of m; and Q; can be non-
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integer value. Therefore, we find the integer value of m; by rounding down and
rounding up them identified as m~ and m respectively. Similarly, we find the integer
value of Q; by rounding down and rounding up them identified as Q. and Q'
respectively. Comparing TC(m,,Q,), TC(m,,Q;), TC(m/,Q,), and TC(m;,Q,),

we select the solution providing the minimum total system-wide cost and assign new

. . nh
integer m_and Q, . We found that 2r of the last term could be ignorable since it

does not affect to the optimal solution.

Consequently, S; and S, can be determined by S =Q; for all
identical retailers and S, =(n—-1)m'Q’ for the warehouse. For any retailer, S, =Q/
occurs when unit Poisson demand. The replenishment quantity at warehouse is
equal to m/Q’. Since in our system, warehouse inventory level can drop below zero
(1,(t) =-Q) when issuing a dispatch order (identified as pre-replenishing point) and
then instant replenishment fulfills the warehouse’s inventory level up to S,

(identified as post-replenishing point). Thus, the order-up-to level at warehouse has

to be subtracted Q; from the replenishment quantity.

Lastly, we can determine the solution for the can-order policy from
the modified Schwarz [124]’s model. Let DJ denote the case of determining the
solution by using the modified Schwarz’s model. Let CAN‘® denote the can-order

policy which sets S{W =8(P) = SEAN = g(B) “and N =8PV 1 according to

the preliminary analysis.

3.4.2 Pilot testing

We explore the cost gap when the modified Schwarz’s solution is
used in the can-order policy. The goal is to identify cost gap when CAN®) is
utilized. The cost gap can be calculated by using Equation (3.7). We tested on 20
scenarios following Table IlI-5. In consequence, the testing result can be summarized

as showed in Fig.llI-9.



Table llI-5: Numerical input for pilot testing of the DJ heuristic

Scenario Relevant Parameters
No. K, | K, h, h | h/h | A n
1 100 50 20 100 0.2 20 2
2 100 50 a0 100 0.4 20 2
3 100 10 20 100 0.2 20 2
4 100 90 20 100 0.2 20 2
5 75 50 20 100 0.2 20 2
6 500 50 20 100 0.2 20 2
7 100 50 20 100 0.2 20 4
8 100 50 20 100 0.2 20 8
9 100 50 2 10 0.2 20 2
10 100 50 4 10 0.4 20 2
11 100 10 2 10 0.2 20 2
12 100 90 4 10 0.2 20 2
13 125 50 2) 10 0.2 20 2
14 250 50 2 10 0.2 20 2
15 100 50 2 10 0.2 20 4
16 100 50 2 10 0.2 20 8
17 100 50 2 10 0.2 20 12
18 100 50 2 10 0.2 10 il
19 100 50 2 10 0.2 10 8
20 100 50 2 10 0.2 10 12

85
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Figure 1lI-9 Heuristic’s performance on pilot testing

We found that this heuristic approach was not appropriate for the
problem at higher number of retailers. Trend of cost gap is an exponential increase.
The reason is that DJ case considers all retailers without uncertainty of demand, so
zero residual stock occurs at every triggered order including all retailers, thus

S >8PV and S > ™) Higher number of retailers increases the difference of

holding amount between the best solution and DJ’s solution due to residual stock.
Similarly, higher number of retailers also increases the difference of retailers’ major
ordering cost per order-retailer between the best solution and DJ’s solution.
Meanwhile, other parameters cannot be clearly summarized because there is no

obvious trend of cost gap.

This simple policy is useful in the case of identical retailers with low number
of retailers (i.e. from the pilot test number of retailers should not be over 4 retailers).
According to its limitation, we attempt to develop another heuristic approach to

obtain better quality solution as demonstrated in the next solution.

3.5 Heuiristic Il - Approximate Mathematical Model based on EOQ (EOQ-2)

We propose a new heuristic approach to determine an appropriate inventory
policy. The approximate mathematical model is able to be employed as long as the
acceptable solution is obtained. From the preliminary analysis, various interesting

issues can be interpreted into the mathematical model and heuristic algorithm.
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3.5.1 Mathematical model

Our purpose of developing heuristic approach is to provide an

appropriate inventory policy (¢, S;,S,). The total system-wide cost of mathematical

model is able to be approximated as long as the acceptable solution is provided.
This can reduce the complexity of our model. Hence, relating to the preliminary
analysis our mathematical model utilizes the can-order level at ¢,= S;- 1. Then,
there exists only two decision variables (S,,S,) concerned in the mathematical
model. van Eijs [48] developed exact equations by using ¢,= ;- 1 for non-identical
items on single location. His model used the exact probability of the special
replenishment, unlike other models assuming Poisson distributions. It performed very

well when K, /x; ratio is more than 5. Hence, we adapt his work into our

consideration.

Based on van Eijs [48], we can calculate the inventory cost at the
retailer echelon close to the exact value. However, determination of inventory cost
at warehouse is another difficult part. The warehouse’s inventory level is consumed
by an uncertain lot-sizing order from retailer echelon. From preliminary testing, we
determine the expected dispatch quantity at retailer echelon by using the exact
model of van Eijs [48]. We found that the expected dispatch quantity per dispatch
cycle was always equal to the cumulative demand from all retailers. Thus, we
simplify this part by assuming that the warehouse’s inventory level is consumed
continuously following the total Poisson demand cumulated from all retailers,

%:Zﬂﬁ. By this assumption, warehouse echelon and retailer echelon are
ieN

independent to find the minimum inventory costs at each echelon. Even though the

assumption provides the approximate warehouse’s inventory cost higher than the

warehouse’s actual inventory cost, we compensate the approximate value by

utilizing the minimum inventory cost at retailer echelon.

The cost model can be formulated for a given (S;,S,) policy. It

follows that,

K, + 2 {(1-(8)))xx) + E[H;]} K. +E[H ]
ieN 4 W 0

(3.11)
E[DT] E[RT]

TC(S;,Sp) =
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TC(S,,S,) = The long-run average total system-wide cost per unit time
($/unit time)
i = Index of the location i ; the warehouse i = 0 and the retailer ie N
S, = The order-up-to level at the warehouse (units)
S, = The order-up-to level at retailer i (units)
A = Demand rate of retailer i (units/time unit)
h, = The unit holding cost per unit time at the warehouse
($/unit - time unit)
h, = The unit holding cost per unit time at retailer 1 ($/unit - time unit)
K, = The warehouse’s major ordering cost per a replenishment cycle
($/time)
K, = The retailers’ major ordering cost per a dispatch cycle ($/time)
K, = The minor ordering cost at retailer i ($)
D(S,) = The probability that no demand arrives for retailer i during
a dispatch cycle
E[H;] = The expected holding cost of retailer i during a dispatch cycle ($)
E[H,] = The expected holding cost of the warehouse during a replenishment
cycle ($)
E[DT] = The expected length of a dispatch cycle (unit time)
E[RT] = The expected length of a replenishment cycle (unit time)

According to Equation (3.11), we consider the probability that at least
one demand arrives for retailer i during a dispatch cycle to be consistent with the

value ¢;= S;- 1. Such probability affects the occurrence of the minor ordering cost.

Retailer Echelon

The model is developed according to the independent Poisson
process of demands for individual retailers, so inter-arrival times of demands are
exponentially distributed. Suppose a dispatch cycle starts at time 0. We define the
following variables according to stochastic process:

DT, = Time until retailer i triggers an order to the warehouse

DT

Time until any retailer triggers an order to the warehouse;
DT =min(DT,)

Probability density function of DT,

70
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F(t) = Distribution function of DT,
f(t) = Probability density function of DT
F(t) = Distribution function of DT

Retailer i will trigger an order if the total demand for retailer i from

time 0 equals S;. Thus, according to exponential distribution of inter-arrival times of
demands, DT, follows Erlang distribution with parameters 4, and S,. The value of
f,(t) and F(t) are determined by the general formula of Erlang distribution [125].

Then, the probability density function and distribution function of DT can be
calculated by

f(t) =Z fi(t)H(l—Fi(t)) (3.12)
F(t) :1—H(1— F.(t) (3.13)

Thus, the expected length of a dispatch cycle is

E[DT]= th (t)dt = T (1-F(t))dt = TH(l—Fi(t))dt (3.14)

t=0 t=0 ieN

The expected holding cost of retailer i during a dispatch cycle is
associated with the retailer’s inventory on hand at the beginning and at the end of
the dispatch cycle. At the beginning of the cycle, setting ¢,= S;- 1 makes all
retailers’ inventory on hand equal S,. At the end of the cycle, the inventory on
hand depends on the residual stock level, which is a stock above the must-order
level when an order is triggered. Thus, we define @,(x) as the probability that at
time DT the residual stock of retailer i equalsx. There are two cases for
determining @, (x). The first case is when the residual stock level of retailer i is
equal to zero; only retailer i triggers an order. The second case is when the residual
stock level of retailer i is positive. So, an order is triggered by retailer j #1i. Thus, the

value of @, (x)can be calculated by the following expressions:
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o0

j FOT(-F;®)dt if x=0,
o,(x)=1 (3.15)
j Pois(At,S, —x)f ) (t)dt if 0<x<§,
Pois(a, b) = abs!a (3.16)
£ (1) =Z f.O[Q1-F@®) (3.17)

where Pois(a,b) is the probability density function of Poisson demand with
parameter (a,b), and f"(t) is the probability density function that at time t any
retailer j=#1 triggers an order. Thus, ®(S;)illustrated in Equation (3.11) can be
calculated by using Equation (3.15) as well.

The expected holding cost of retailer i during a dispatch cycle is then given by
h S + X)t
E[H,]= Z{CD(X) j S+t f(t)dt} (3.18)

According to Equation (3.14) and (3.18), we transform the expression to determine

the expected holding cost of retailer i per unit time instead. Thus,

E[H] _< .(S +X)
E[DT]_XZ.;{ (x) = } (3.19)

Warehouse Echelon

To simplify this part, we assume that the warehouse’s inventory level
is consumed continuously by all retailers’ Poisson demands with rate 4, . Inter-arrival
times of demands are exponentially distributed, and then the distribution of time
until warehouse triggers an order to an outside supplier is Erlang, similar to the
retailer echelon. Let RT denote time until warehouse triggers an order to an outside

supplier. The warehouse will trigger an order if the total demand from time 0 equals
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Sy, so the distribution of RT is Erlang with parameters 4, and S,. The expected
length of a replenishment cycle is mean of Erlang distribution. Thus, E[RT]=S,/4, .

In case of holding inventory at the warehouse, the expected holding
cost of the warehouse during a replenishment cycle is estimated following the

continuous demands from the retailer echelon. Then, we can determine the
E[H,] _ hyS,
E[RT] 2

to the expression at the warehouse, we can find the optimal order-up-to level at the

expected holding cost of the warehouse per unit time by . According

warehouse S from the derivative of the cost function with respect to S;. We found

that S; could be easily calculated from EOQ formula. Then, S; =4/2K,,4,/h,

Consequently, we can figure out the long-run average total system-
wide cost per unit time for a given (S;,S,) policy. Then, the next section will
demonstrate the algorithm of heuristic approach to determine the appropriate

decision variables by using the cost model.

3.5.2 Heuristic algorithm

With regard to the preliminary analysis and the mathematical model,

the following analyses demonstrate our concept for developing heuristic approach.

1) According to two local minimum solutions located into two
ranges, we can identify the value of S, to S, = 0 for Range | and S, :m
for Range II.

2) To develop initial solution at retailer echelon by assuming ¢, =
S,- 1, we can use deterministic model to find economical joint ordering time when
every retailer is replenished in an order.

3) Fixing inventory policy at retailer j#1i and at the warehouse,
the total inventory cost at retailer i is a convex function of S;. We can find the local

minimum TC(S;, S;)at the given S, ;

. and S, . Therefore, Decomposition technique
and iterative procedure can be applied to break multiple locations into single
location and to recurrently find the minimum solution as far as the best solution has
been found. Both techniques have been extensively used in JRP [34, 46, 51-56, 71,

73].
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4) Since the total inventory cost at retailer i is a unimodal function
under one-dimensional unconstrained problem. We apply the concept of line search
called “golden section search” into discrete function [126]. Golden section search is
a simple and efficient method for finding extremum of a unimodal function [48, 57,
58, 122]. Golden section search is suitable for the case of non-derivative function,
like our model, by successively narrowing the range of search space until the desired
accuracy in minimum value of the objective function is achieved. A golden ratio,
which is a constant reduction factor for the size of the interval, is utilized to maintain
the successive range of dynamic triples of points (i.e. upper point, middle point, and
lower point). Advantageously, each successive range we only want to perform one

new function evaluation. From this technique, we can determine the optimal S for

the given S, ;

. and S, and save computational time.

Hence, the heuristic approach is outlined in the following algorithm
illustrated in Fig.llI-10.

START Step1
Step 1.1: Step 1.2:

_ .SFe_p L o Calculate joint dispatching time — Find initial S; from Ty
Determine initial Solution §; at (T) by using Poisson probability function

retailer echelon

Output:
' S Step 2
Step 2: Step 2.1:
Determine the local optimal :‘|> (A) Set values at the warchouse for range Re: £ = {1,2}
solution .Jéffr e;tczh range For range Ry, set 55= 0 and For range Ry, set 55 = N2Kuio/ho and
Re: k= {1,2} E/RT] = E/DT) E/RT] =S5/ %

Output: (B) Calculate TCiuiria($550)

TCinr(S5S50)

, v

Step 3: Step 2.2: Iterative procedure for determining
Select the best solution at the local optimal solution (S for each range Rx
TCin(S550)= (A) Set initial value:
min{ TCoir1(S550), TChinr2(S550)} - Setloop y = 0, iteration z = 0, and assign TCinre(S550) = TCiiriar($550) for such
initial value

- Assign retailer /=0
END (B) Set retailer i = 7 +1, fix Sy and Sy
(C) Use golden section search for determining the optimal $; under given S, and Sy
(D) Update TCimre(S550) and S; if the better solution has been found
(E) Count iteration 7 = m +1, go back to step (B) until 7 = »
If 7=, countloop y =y +1
(F) Stop if
- Sifori={1,..,n} does not change # iterations in a row, or
- TCuimi($iSo) of loop y and TCire(S5S0) of loop y - 1 does not decrease by
more than £%
Otherwise go back to step (B)

Figure 1lI-10 The algorithm of the heuristic approach - EOQ-Z
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In step 1 — determination of the initial solution S,, we calculate joint

dispatching time (T, ) by deterministic model according to the following expression:

(3.20)

Then, the initial S, for retailer i is determined by adapting Love [46]’s
method. It is selecting S, which provides the minimum gap between two
probabilities: 1) the probability that demand for retailer i during time T, is less than
or equal to such S, and 2) the probability that an order is triggered by any retailer

(i.e. including normal replenishment and special replenishment). Thus,

- - n n i
o T A e T

u+1 Otherwise

The initial S; from Equation (3.18) is closer to the optimal solution than S; obtained
from S, = AT, .

Step 2 is the most important procedure for the heuristic in order to

determine the optimal S; for each range of range R, and R, (note that for range R,,

the local optimal solution occurs at S,= 0 and E[RT]=E[DT], and for range R,, it
occurs at Sy =4/2K,4,/hy and E[RT]=S,/4,). We use Syand initial S; from step

1 to calculate the initial long-run average total system-wide cost per unit time,
TC, it (Si1Sy) - The next step (2.2) is an iterative procedure containing step (A) to (F).
For each iteration, the golden section search is carried out for retailer i: vary S, and

fix other retailers S.

j=i

given from the previous iteration. TC(S;,S,) is an objective
function for the golden section search. The iterative process terminates as soon as
every S, does not change n iterations in a row, or the minimum long-run average
total system-wide cost per unit time, TC_, .. (S;,S,), from the current loop does not

decrease from the previous loop by more than ¢% (i.e. when all retailers have been
run, one loop is counted). From step 2, we obtain the local minimum cost
TC.nrc (S;,S,) for kefl, 2%
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Lastly, the comparison of TC .z (S;,S,) for k e{l, 2} is carried out in

step 3. The minimum long-run average total system-wide cost per unit time is equal
tomin {TCmin r1(Si:S0) TChinr2 (Si So)} .

To summarize, our heuristic approach (called EOQ-Z) is developed by using
approximate mathematical model with heuristic algorithm to determine the
appropriate inventory policy parameters. The mathematical model is formulated
based on two compositions. The first one is the exact model for retailer echelon
with relaxing synchronization of the dispatch cycle time between echelons. The
other one is the EOQ model for warehouse echelon. We can interpret preliminary
analysis into the heuristic algorithm consisting of decomposition technique, iterative
procedure, and one-dimensional search called the golden section search. To
measure heuristic’s performance, we continue to the next section which various

experiments are conducted and the findings are analyzed.

3.6 Experimental Results

In this section, we experimented on the EOQ-Z heuristic on various scenarios
following Table lll-1 and Table llI-2. The experiments on identical retailers were
analyzed, specifically in case of zero minor ordering cost and non-zero minor

ordering cost. Since both cases affects the can-order policy at given ¢,= S;- 1 on

different results as showed in the preliminary analysis. In addition, the experiment
on non-identical retailers was also conducted to measure the heuristic’s
performance on the dissimilar situation. Moreover, we compared computational time
between computer simulation and our EOQ-Z heuristic on the cases of identical and
non-identical retailers.

3.6.1 Identical retailers with zero minor ordering cost

According to three relevant factors (i.e. cost parameters, demand
rates, and number of retailers), they were designed to examine the heuristic’s
performance under 154 scenarios (showed in Table llI-1). Table Ill-6 shows some
numerical examples relating to the best-known solution of the system and the best
solution from the heuristic approach. We found that the performance of heuristic

approach depended on all relevant factors. It provided an average cost gap at 1.05%
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with standard deviation 1.11% over various scenarios. Our approach performed well

when high number of retailers, high K, /K, ratio, and high h,/h ratio.

Table llI-6: Numerical examples for comparison of the best-known solution and the

heuristic’s best solution under identical retailers with zero minor ordering cost

Relevant factors Best-known Solution Heuristic Approach
nstence Ik, K [ he | D A4 | n ] Sec.S | TC® | S,c.S | cG.
1 100 | 50 20 | 100 | 20 2 1334 1,280.75 20,3,4 0.52%
2 100 | 50 40 100 20 2 0,5,6 1,420.94 0,5,6 0.00%
3 100 | 50 2 10 20 2 459,12 359.73 63,10,11 2.03%
4 100 | 50 4 10 20 2 25,12,13 392.37 0,18,19 1.88%
5 100 10 2 10 20 2 58,4,5 244.97 63,4,5 0.05%
6 100 | 90 2 10 20 2 31,15,16 424.21 63,14,15 4.34%
7 125 50 2 10 20 2 49,12,13 376.43 71,10,11 2.50%
8 250 | 50 2 10 20 2 86,11,12 436.63 100,10,11 0.98%
9 100 | 50 2 10 10 4 42,6,7 427.16 63,5,6 0.36%
10 100 | 50 2 10 10 8 78,4,5 697.16 89,4,5 0.11%
11 100 | 50 2 10 10 12 93,45 932.60 110,4,5 0.15%
12 100 | 50 2 10 20 [ 79,8,9 576.83 89,8,9 1.03%
13 100 | 50 2 10 20 8 100,6,7 925.98 126,6,7 0.29%
14 100 | 50 2 10 20 12 142,5,6 1,230.39 155,5,6 0.17%

Let S and S{®) denote the best-known order-up-to level at retailer
i and at the warehouse determined from the computer simulation. Let S and
S denote the best order-up-to level at retailer i and at the warehouse and they

were calculated by the heuristic approach. Theoretically, when the number of
retailers increases, it also increases the joint replenishment opportunity from special

replenishment, which makes S, decrease. Thus, higher number of retailers reduces
S®% to be closer to S*™Mand also increases S{®) to be closer to S{™M.
Therefore, the cost gap can reduce. For higher K,/ K, ratio, S; and S are affected in

a similar pattern.

Regarding hy/h ratio, higher ratio influences the warehouse’s stock

equal to zero. Consequently, the inventory cost at retailer echelon becomes the

main part of the system. Our mathematical model provided cost expression at
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retailer echelon near the exact value and heuristic approach could determine the
minimum solution at retailer echelon. Then, the heuristic approach provided the

(near) best-known solution.

3.6.2 Identical retailers with non-zero minor ordering cost

Although the can-order level is not necessary to be equal to S;- 1
when there is a minor ordering cost, our heuristic approach can be applied into this
problem in some situations. To identify such situation, we tested on 54 scenarios
(showed in Table llI-1) by mainly varying the minor ordering cost «,. The value of
K, / k; ratio are identified following van Eijs [48]’s work. The experimental results are

depicted in Fig.lll-11.

3.0% ~
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2.0% -
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(a) Heuristic’s performance and simulation’s performance when fixing ¢, =S;- 1
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(b) The effect of h,/h, ratio

Figure IlI-11 The effect of K, /; ratio on the can-order level at the retailers
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We found that the heuristic approach provided an average cost gap at
1.64% with standard deviation at 2.03% over various scenarios. Heuristic’s
performance is associated with two reasons. Firstly, our heuristic assumes ¢, =S;- 1.
As showed in Fig.lll-11(a). Relating to computer simulation, we compared the best-
known solution with the best solution fixing ¢, = S, - 1. Average percentage of cost
gap provides in simulation’s line. Smaller K, /x;ratio provided larger cost gap in
simulation’s line, consequently our heuristic also performed in the same way.
Secondly, the inventory cost at the warehouse is approximate. Cost gap of the

heuristic’s line is also added from the simulation’s line.

Considering hy /h ratio, higher ratio (hy/h is 0.4 and 0.6) influences

the warehouse’s stock equal to zero. Then, the heuristic approach provided the

(near) best-known solution. On the other hand, higher cost gap at the lower h,/h,

ratio comes from an approximate inventory cost at the warehouse, especially when
small demand rate and high number of retailers by the reason that our heuristic

obtains S, = 0 whereas the best-known solution is S, > 0. The difference of solution

creates larger cost gap.

3.6.3 Non-identical retailers

To extend the experiment on non-identical retailers, we aim at
studying the can-order policy on the retailers’ different demand rates because in
reality we frequently encounter such situation. In addition, non-identical demands
can create the different discount opportunities from the shared ordering cost. Hence,
it is interesting to investigate and this inquiry has not been studied in the existing
literatures. We tested on two-retailer scenarios and three-retailer scenarios (showed
in Table IlI-2). Figure Ill-12 depicts the cost gap from our heuristic approach, as

compared to the best-known solutions.

The heuristic approach provided an average cost gap at 2.18% with
standard deviation 0.82% for two-retailer scenarios, and an average cost gap at 1.80%
with standard deviation 0.51% for three-retailer scenarios. At small demand rate ratio
the heuristic approach performed well because order cycle of each retailer was quite
not different. So, the retailers’ ordering cost can be more shared with the balancing

holding costs. However, at the higher demand rate ratio heuristic’s performance does
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not depend on the different of demand rates (i.e. there is no trend of the cost gap

following demand rate ratio).
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Figure 1lI-12 Heuristic’s performance under non-identical retailers

(b)

3.6.4 Computational times

For the experiments on identical retailers as shown in Table Il-1,

computational time of our EOQ-Z heuristic was 2.37 seconds on average with a

standard deviation at 0.78 seconds. EOQ-Z heuristic’s computational times were

much faster than computer simulation’s computational times. Minimum time saving

was 297 times and maximum time saving was 8722 times where time saving can be

calculated by the following equation

Time Saving (T.S.) =

CPU®™ _cpy RD)

CPy D)

(3.22)
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CPU®™) and CPU ™ are the computational time of computer simulation and our

heuristic, respectively.

We found how much the EOQ-Z heuristic could save computational
time from computer simulation depended on various relevant factors. High value of
S, and §; affected a huge computational time of computer simulation, since we had
to search on larger search space. Larger search space was associated with relevant
factors at high K,and K,, low x;, low h; and h;, hish 4, and high n.
Consequently, a lot of policy combinations were examined. Some examples of
computational times between EOQ-Z heuristic and computer simulation are shown

in Table llI-7. It demonstrates trend of relevant factors affecting computational times.

Table IlI-7: Numerical examples for comparison of computational time between the

EOQ-Z heuristic and computer simulation under identical retailers

All examples fixed K, =100, K, =50, hy/h =02

Relevant Factors Computational Times (seconds) Time Saving

A n h, K, EOQ-Z Simulation (times)
0.5 2 10 - 1.58 473 297
10 2 10 - 2.04 1,702 833
20 2 10 - 2.89 4,131 1,429
0.5 il 10 - 3.05 946 322
10 4 10 - 292 2,269 757
20 4 10 - 2.99 6,262 1,742
0.5 8 10 - 3.22 2,837 881
10 8 10 - 3.18 5,949 1,871
20 8 10 - 3.17 7,502 2,364
20 2 100 - 2.26 836 836
20 4 100 - 3.02 1,249 1,249
20 8 100 - 3.18 1,783 1,783
20 8 10 5 3.24 27,358 8,446
20 8 10 10 3.35 27,580 8,722
20 8 10 25 3.79 27,593 7,276
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Relating to the experiments on non-identical retailers as shown in
Table -2, average computational times of our EOQ-Z heuristic were 4.10 seconds
(standard deviation at 2.87 seconds) for two-retailer scenarios and 37.84 seconds
(standard deviation at 33.47 seconds) for three-retailer scenarios. Non-identical
demand rates had a significant effect on computer simulation’s computational time
since huge combinations of inventory policy parameters were created. For our
experiments, we spent more than 40 hours to determine the best solution of any
scenario from computer simulation. As the results, the EOQ-Z heuristic’s
computational times were much faster than computer simulation’s computational

times.

3.7 Discussion

The EOQ-Z heuristic is based on preliminary analysis as shown in section 3.3.
The important characteristics of inventory policy parameters are 1) two ranges of the
warehouse’s order-up-to level and 2) the fixed retailer’s can-order level at the
retailer’s order-up-to level minus one. Such two characteristics can be intuitively

described as the following contents.

The warehouse’s order-up-to level S, is relative to the retailers’ order-up-to
level S, . If §; <S;, the warehouse’s inventory is replenished every time when any

retailer’s triggers an order, because dispatch quantity is always larger than the
warehouse’s inventory level. So, the minimum total system-wide cost of this
condition occurs at S; =0. Meanwhile, if S, >S,, it means that the warehouse
holds stock for dispatching to the retailers more than one order. Trading off between
the holding costs and the ordering costs has to be considered to decide how many
order cycle the warehouse should serve retailer echelon. Then, there is a solution (or

more than one solution) which S; >S; >0 providing the minimum total system-wide

cost of this condition. According to these conditions, we can generally divide the
system into two cases: case | — Cross-docking system, and case Il — Stocking system at
the warehouse. Therefore, our search algorithm can also be divided into two ranges
(as described in section 3.5.2) to determine the minimum total system-wide cost of
each case. Finally, we are able to decide for a given situation that the warehouse
should apply either case | or case ll, and then how the appropriate inventory policy

parameters should be set.
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Relating to the fixed retailer’s can-order level at ¢; =S, -1, the retailers’

major ordering cost can be most shared if all retailers are included in an order to
minimize the total system-wide cost [48]. The fixed retailer’s can-order level at

C =S, —1 can create the maximum opportunity of joint replenishment for all

retailers. Unless all retailers are replenished, the total ordering cost will increase from
the increased total ordering cost or/and the increased total holding cost. We call this
concept as “All joint concept” in this dissertation. Then, the holding cost is traded
off with the shared ordering cost in order to balance order frequency and holding
stock. In the case of zero minor ordering cost, only the fixed ordering cost occurs
once an order is triggered. The most sharing such cost among retailers according to
the all joint concept is preferable. We also applied the all joint concept in the case
of non-zero minor ordering cost. If the ratio of the major ordering cost to the minor
ordering cost is not too small, this all joint concept can be utilized as van Eijs [48]
recommended. Since the minor ordering cost has less effect on the total system-
wide cost as comparing to the major ordering cost. If the minor ordering cost has
major effect, not every retailer should be included in an order, since less number of
retailers in an order might reduce the total system-wide cost from the reduced total

ordering cost.

From preliminary analysis (section 3.3), our results were absolutely consistent
with the all joint concept especially in the case of zero minor ordering cost. Whereas
we tested the case of non-zero minor ordering cost by varying the ratio of the major
ordering cost to the minor ordering cost from 2 to 10. The results were still
consistent with the all joint concept. However, it seems that if such ratio is less than
2 the cost gap might be more than 1.67% on average. This means that the minor
ordering cost has more effect on the system-wide cost. The fixed can-order level on
the EOQ-Z heuiristic has a very small effect on the cost gap in case of the zero minor
ordering cost. The cost gap in this case majorly came from the fixed order-up-to
level S, of Range Il. Since we applied EOQ concept to determine the best value of
S, . However, we found that the cost gap from EOQ was not much (0.96% on
average with standard deviation at 1.08%). Even though the fixed can-order level on
the EOQ-Z heuristic influences the cost gap in case of non-zero minor ordering cost,
we found that the cost gap was only 2.85% on average. It implies that EOQ
application builds up the cost gap at 1.18% on average. If the ratio of the major

ordering cost to the minor ordering cost is less than 2, the cost gap might be more
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than 2.85%. Neither the fixed can-order level nor the fixed order-up-to level at EOQ
value might be applicable.

In addition, the fixed can-order level on the EOQ-Z heuristic has a significant
effect on the cost gap in case of non-identical demand rates among retailers. From
the best-known solutions, the retailers with higher demand rates attempt to reduce
¢, under high §; in order to have less residual stock, while the retailers with lower
demand rates attempt to increase c; in order to have more joint replenishment
opportunity. Hence, all the can-order levels have to be traded off between the cost
of residual stock and the cost of joint replenishment. It seems that the EOQ-Z
heuristic is not consistent with this phenomenon. In our experiments, we varied
demand rate ratios from 2 to 40. We found small cost gap (2.01% on average with
standard deviation at 0.71%) under two-retailer scenarios and three-retailer scenarios.

Interestingly, the EOQ-Z heuristic attempts to reduce S, for less residual stock
instead of reducing ¢, as the best-known solutions. According to this mechanism, the

EOQ-Z heuristic can provide the quality solutions.

Significant finding is an integration of the classical EOQ and the can-order
policy for two-echelon inventory system. We simplified the EOQ concept to
determine the warehouse’s order-up-to level S;. It relaxed dispatch quantity and
frequency synchronized with retailer echelon, but utilized total demand rate which is
a summation of all retailers’ demand rates. From the experimental results, we found
that S{™" was always higher than S{*) where S{™™) denote the best order-up-to
level at the warehouse calculated by the heuristic approach and S{® denote the
best-known order-up-to level at the warehouse determined from the computer
simulation. It seems that holding cost at the warehouse obtained from the heuristic
approach is higher than the best-known solution. However, the mechanism of trading
off between warehouse echelon and retailer echelon occurs to rebalance with EOQ.
Additionally, the EOQ concept has more performance for higher number of retailers.
Theoretically, when the number of retailers increases, it also increases the joint
replenishment opportunity from special replenishment, which makes S, decrease.
Thus, higher number of retailers reduces S to be closer to S Mand also
increases S{®) to be closer to S{™ 7. So, the cost gap is less. Even though we study

the complicated system, the simple concept of EOQ remains useful and applicable

for the case of zero lead time.
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Another crucial finding is a characteristic of the retailer’s order-up-to level S;.

Trading off between the holding costs and the ordering costs makes the total

system-wide cost perform as a convex function relative to the value of S;. So, we
can determine the value of S, providing the minimum total system-wide cost on

one-dimensional search. Since our cost formulation is non-derivative function, we
utilized a search algorithm called “Golden section search” by adapting for integer
variable. This search algorithm performs better than other search algorithms, such as
Fibonacci search and Halfinterval search.’ Previously, most researches used
exhaustive search to determine the best solution, therefore large search space and
long computational time occurred. Using one-dimensional search can reduce search
space and computational time, especially when high number of non-identical

retailers.

Decomposition technique and iterative procedure are the most common
approach for the can-order policy determination. Decomposition technique helps
breaking the complicated system (multiple retailers) into smaller part (single retailer).
Determination of the can-order policy parameters seems easier than consideration of
the whole parts together. However, this technique should be utilized with iterative
procedure to consolidate all single retailers consistently. The solution can move to
the better one and do until the best solution has been found for the whole system.
From both techniques integrated with one-dimensional search, we can determine
the best solution easier and faster than other approaches, especially computer

simulation.

As the experimental results in various scenarios, the EOQ-Z heuristic provided
the best solutions at a small average cost gap comparing to the best-known solution.
Moreover, the heuristic approach’s computational time can be saved from the
reduced search space as comparing to the computer simulation’s computational
time. The EOQ-Z heuristic is a satisfactory approach to use for the can-order policy

setting under OWNR with zero lead time. Note that the zero lead time assumption

" Golden section search is simpler than Fibonacci search whereas their computational time is not
different in case of integer variable. Since Fibonacci search needs to know number of searching
loops before starting search algorithm. Meanwhile number of searching loops between the
golden section search and Fibonacci search is not different for integer variable. For half-interval
search, the golden section search is faster than half-interval search because less number of

variables has to be calculated.
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can be interpreted and applied in the situation when the ratio of lead time to order

cycle duration is very small.

3.8 Conclusion

This phase considered the basic model for the can-order policy on OWNR.

The system assumed zero lead time to reduce decision variables remaining ¢;,S;,S, .

Single item consideration raised an interaction among retailers without joint ordering
decision at the warehouse echelon. We studied the insight of the can-order policy on
OWNR with three relevant factors, i.e. cost components, demand rates, and number
of retailers. Then, we used the aforementioned insight to develop two heuristic

approaches for determining the appropriate inventory policy setting.

The can-order policy had an effect on all inventory costs. It was connected
with retailers’ residual stock, dispatch quantity and frequency at retailers, as well as
replenishment quantity and frequency at the warehouse. All are necessary to be
traded off to determine the best solution. The can-order policy could save the total
system-wide cost from an independent (S,S) policy at over 30%. Interestingly,

application of this policy into such system is considerably valuable.

From preliminary analysis by computer simulation, the average total system-

wide cost was a unimodal function of the retailer’s order-up-to level §;, when given

S.; and S, were fixed. Decomposition technique was applied to break multiple

ji
retailers into single retailer, as well as iterative procedure was utilized to successively
find the best solution. Since our mathematical model was a non-derivative function,
we utilized the golden section search for finding minimum of a unimodal function.
This could save our computational time to find the appropriate inventory policy
setting. The heuristic approach under simplified mathematical model and fixed
C, =S, —1 performed very well, especially in case of high K, /x;ratio. Overall, the
experiments tested on the wide range of data provided the cost gap of heuristic
approach less than 2% on average. With satisfactory computational time and small
cost gap, the heuristic approach is well worth using for the can-order policy setting
under OWNR.



CHAPTER IV
THE CAN-ORDER POLICY FOR SINGLE-ITEM TWO-ECHELON INVENTORY
SYSTEM WITH NON-ZERO LEAD TIME

The 2™ phase (Phase Il) of dissertation methodology is addressed in this
chapter. It is an extension of the basic model describe in previous chapter. Mostly,
general industries encounter non-zero lead time which is the duration from the
moment an order is placed to the warehouse (outside supplier) until the moment
the order is received by the retailers (warehouse). Moreover, lead time can lead the
system to occur backorder units. Thus, service level constraint is utilized to serve
end customers with an acceptable service level. Research remains taking single item
into consideration to study an interaction among retailers without joint ordering
decision at warehouse echelon. The objective of this phase is to study inventory
policy characteristics with the conditional relevant factors, as well as to develop the
heuristic approach consistent with such characteristics provided. More complexity of

the model is contributed to the research.

4.1 Problem Description

Outside supplier

The Considered System

Lead time for warehouse’s replenishment

Item
st .
A Warehouse I* Echelon :
Warehouse echelon

2nd Echelon:
Retailer echelon Lead time for retailers’ replenishment

Retailers cee
Item
Target Target Target Target
service level service level service level service level
demand demand demand demand

End Customers

Figure IV-1 Single-item two-echelon inventory system with non-zero lead time
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The system considers single commodity on a warehouse and multiple
retailers. There are warehouse echelon and retailer echelon as described in Chapter
. Let n denote number of retailers and i denote the location i =1{0, 1, 2, ..., n}
where the warehouse is set by i= 0 and the retailer ie N, N ={1, 2, ..., n}. Poisson

demand is assumed to represent the end customer demands, denoted by A which

is a constant mean of customer demand at retailer 1.

In the considered system, ordering process and replenishment process are
more complicated as comparing to the basic model described in the Chapter Ill. First
of all, there are four terms used throughout the dissertation [49].

(1) Inventory on-hand is the quantity of physical inventories at each

location i .

(2) Backorder is the quantity that supptier8 (predecessor) cannot fill a
customer (successor)’s order, and then the customer is prepared to wait for some
time.

(3) Net inventory level is the quantity representing the inventory status

which is either available or reserved. Thus,

Net inventory level = Inventory on hand — Backorder

(4) Inventory position is the quantity includes the outstanding orders

that have not yet arrived and backorders which units have been demanded but not

yet delivered. Thus,

Inventory position = Inventory on hand + Outstanding order — Backorder

In Phase | — zero lead time, it is not necessary to identify various terms of
inventory level because the zero-lead time condition allows the inventory position
and net inventory level to be the same value. Backorder is not occurred due to
instant replenishment. Similarly, outstanding order can be fulfilled immediately at
once without waiting process. Unlike phase I, phase Il need to differentiate these four
terms since ordering process and replenishment process have more complexities.

Each term is used in different purposes.

® The definition of supplier and customer in the context means about two levels of service: the

first level — Warehouse and retailer, and the second level — Retailer and end customer.
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The system employs the can-order (s;,c;,S,;) policy for ordering process. In
the ordering process, we use the term of inventory position to determine the
triggered point. At retailer echelon, the can-order (s,,¢,,S;) policy is applied into the
system by coordinated ordering decision among retailers. When the inventory
position of any retailer reaches its must-order level s;, an order is triggered. Then,
other retailers in the system can also be included by this order if their inventory
position is at or below its can-order level ¢;. All the involved retailers’ inventories
are fulfilled from the warehouse to their own order-up-to level S;. Considering single
commodity, the warehouse modifies the can-order policy to a traditional (s,,S,)
policy by setting its can-order level equals its must-order level. The warehouse
issues an order when its inventory position reaches its must-order level s;. Then the
outside supplier will replenish the warehouse’s inventory to its order-up-to level §;.
For the system, we use the nested policy which the warehouse places an order to
the outside supplier if and only if retailer echelon triggers an order to the warehouse
[50, 88]. Note that we differentiate between order cycle at retailer echelon and order
cycle at warehouse echelon by defining “dispatch cycle” and “replenishment cycle”

for retailer echelon and warehouse echelon, respectively.

Whenever any retailer (warehouse) triggers an order to the warehouse
(outside supplier), it needs to wait for some time that order arrives. The waiting time
is called “lead time”. In the problem, we assume constant lead time for each
location (L;). Relating to centralized control, the supplier can reduce and specify
more certain lead time, so this assumption seems reasonable. However, the retailer’s
total lead time (TL;, i€ N) can be longer than L, depending on the warehouse’s
inventories. Meanwhile, the warehouse’s total lead time (TL,) is equal to L, due to

ample stock of the outside supplier.

According to lead time, it can lead the system to occur backorder units which
are the quantity that supplier9 (predecessor) cannot fill a customer (successor)’s
order, and then the customer is prepared to wait for some time. Thus, service level
constraint is utilized to serve end customers with an acceptable service level. We
measure such service level in term of “Fill Rate” widely used in industrial practice

[22, 50]. Fill rate (FR) is a quantity-oriented performance measure describing the

* The definition of supplier and customer in the context means about two levels of service: the

first level — Warehouse and retailer, and the second level — Retailer and end customer.
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proportion of total demand within a reference period delivered without delay from
stock on hand. FR is measured only at retailer echelon since in a multi-echelon
system the backorder at warehouse echelon has only a secondary effect on service.
For this problem, retailer echelon must serve the end customer following a service

constraint defined as target service level (TSL,., i € N). By this constraint, the setting

ij ?

of the must-order levels at all locations is related.

On the assumption about no-splitting order, when the warehouse has
insufficient inventory on-hand for dispatching all required quantities in an order to
retailer echelon at once, the retailers have to wait for the next warehouse’s order is
arrived. It implies that the dispatching for that order is occurred if and only if there is
sufficient inventory on-hand for all required quantities. Normally, the warehouse
serve an order follows the First-In First-Out System (FIFO) except if there is an order
issued to the warehouse and inventory on-hand is enough for this order we allow
the warehouse to deliver it as special case to reduce the opportunity of stock-out at
the retailers. This creates higher service level than FIFO. We illustrate the inventory
process following this statement in Fig.lV-2. Let O, represent a triggered order
number K by retailer echelon, and A, represent an arrived order number k
fulfilled to retailer echelon. Similarly, let Q,, represent a triggered order number K
by warehouse echelon, and A, represent an arrived order number K fulfilled to
warehouse echelon. For retailer echelon, we use net inventory level to represent
inventory on-hand if net inventory level is positive (=0) and represent backorder if
net inventory level is negative (<0). On the other hand, for warehouse echelon net
inventory level cannot be used for inventory on-hand since splitting lot is not
allowed. The warehouse has to hold such inventory on-hand as soon as the next
dispatch is occurred. Meanwhile backorders at the warehouse are accumulated from

net inventory level as usual.
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Figure IV-2 The inventory process of Phase II’'s problem

The system considers all inventory costs at both echelons. The inventory

costs are composed of 1) The holding costs at the warehouse and all retailers, 2) The

major ordering costs for warehouse echelon and retailer echelon, and 3) The minor

ordering costs for retailer echelon. The holding cost occurs at each location having

physical stock. The total holding cost over the time period at location i (HC,) can

be determined from the unit holding cost (h;) and the accumulated inventory on-

hand over the time period (INV;). The major ordering cost, not depended on the

number of retailers in the order, is the fixed cost occurring once an order is
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triggeredlo. The retailers can share the major ordering cost together for replenishing in
one round trip. The total major ordering cost over the time period at retailer echelon
(MJ,) is the retailers” major ordering cost per an order (K,) multiplied by the
number of dispatch cycle (ND,). Similarly, the total major ordering cost over the
time period at warehouse echelon (MJ,,) is the multiplication of the warehouse’
major ordering cost per an order (K, ) and the number of replenishment cycle
(NR,,). The minor ordering cost depending on the number of involved retailers in

that order is an additional cost of each retailer when replenishing their inventories,
such as additional transportation cost relating to distance or other charges. The total

minor ordering cost over the time period (MN, ) is accumulated from the involved
retailers in each order multiplied by its minor ordering cost of retailer i (x;) over the

time period. According to the system, target service level and retailers’ lead time
directly affect the must-order levels at the retailers. Hence, we have to consolidate
all relevant costs to determine the appropriate inventory policy setting under the

total system-wide cost minimization.

The notations and problem formulation are demonstrated as follows:

n = Number of retailers in the system

i = Index of the location i; the warehouse i = 0 and the retailer i e N

T = The time period considered in the problem (time units)

S, = The must-order level at the warehouse (units)

S, = The order-up-to level at the warehouse (units)

S, = The must-order level at retailer i (units)

¢, = The can-order level at retailer i (units)

S, = The order-up-to level at retailer i (units)

A= Demand rate of retailer i (units/time unit)

h, = The unit holding cost per unit time at the warehouse ($/unit — time unit)
h. = The unit holding cost per unit time at retailer i ($/unit — time unit)

K, = The warehouse’s major ordering cost per a replenishment cycle ($/time)

** Even though the problem enable more than an order to be dispatched together in a trip, the
major ordering cost is assumed that it occurs once an order is triggered, not once at the
dispatching time. The problem relating to the shared major ordering cost at the dispatching time

is in the area of shipment scheduling. It has been studied in one echelon holding stock.
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K, = The retailers’ major ordering cost per a dispatch cycle ($/time)

k, = The minor ordering cost at retailer i ($)

L, = Lead time for the warehouse (time unit)

L, = Lead time for the retailer i (time unit)

FR, = Fill rate of the retailer i

TSL, = Target service level of the retailer i

TC(c,s;.S;,8y,S,) = The total system-wide cost per unit time ($/time unit)

HC. = The total holding cost at location i over the time T units ($)
MJ, = The total major ordering cost at retailer echelon over the time T units ($)
MN_ = The total minor ordering cost at retailer echelon over the time T units ($)
MJ,, = The total major ordering cost at warehouse echelon over the time

T units ($)

INV, = The accumulated inventory on-hand over time period at location i
(unit — time unit)

BO. = The accumulated backorder unit over time period at location i (units)

ND, = The total number of dispatch cycle over the time T units (times)

NR, = The total number of replenishment cycle over the time T units (times)

Sa.j = Anindicator which equals 1 when retailer i is included in the dispatch cycle
j and equals 0 otherwise

Objective function:

(ZHCi+MJr+MNr+MJWj
Minimize TC(Ci'Si’Si150,30)= i—0

(4.1)
T
where HC, =h xINV, (4.2)
MJ, = K, xND, (4.3)
ND, n
MN, =>">" 5, )k (4.9)

j=1 i=1

MJ, =K, xNR, (4.5)
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Constraint FR =1- BO, (4.6)
AT
FR >TSL, (a.7)

The objective function of the problem is to minimize the total system-wide
cost per unit time. The total system-wide cost per unit time can be a function of five
decision variables: ¢,,s;,S;,S,,S,. This problem has more complicated than the
problem in Phase | by the reason that it is a constraint problem with demand
uncertainty, variation of retailers’ order quantity, and order-time synchronization at

all locations.

4.2 Research Methodology

According to the complication of the problem, we primarily study the can-
order policy on OWNR by using computer simulation as utilized in Phase I. Computer
simulation can represent the inventory process by inputting relevant parameters. The
preliminary study leads us to develop a heuristic approach. We also determine the
best-known solution used to measure the proposed heuristic approach’s

performance from the simulation.

4.2.1 Computer simulation

The computer algorithm representing the inventory process is
illustrated in Fig.IV-3. The inputs for simulating the system can be divided into three
groups: decision variables, relevant factors, and experiment setting. We use the same
experiment setting as described in Chapter Il (Section 3.2.1), and then only two

groups are explained as follows:
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Input parameters

Relevant Factors:

7 = Number of retailers

A; = Demand rate at retailer 7

ho = Unit holding cost at the warehouse
h; = Unit holding cost at retailer 7

K, = Warchouse’s major ordering cost
K, = Retailers” major ordering cost
;= Minor ordering cost at retailer 7
Ly = Lead time for the warehouse

I, = Lead time for retailer 7

TSL; = Targer service level at retailer 7

Decision variables:
Warehouse s = [min,max]
So = [min,max]
Retailer/ & = [min,max]
¢ = [min,max]
Si = |min,max]

Experiment setting:

Ip(0) = Initial inventory level at the
warehouse; Ip(0) = 0

I;(0) = Initial inventory level at retailer 7
L)=0

T = Time petiod; T'= 10,000

Seed number = [0, 99]

Output section
A report of inventory costs and
transactions

Computer algorithm

START

Set Dispatch cycle j =1
Replenishment cycle r=1
Inventory on-hand at warehouse (OHy) = Io(0)
Inventory on-hand at retailer 7 (OH)) = I;(0)
Inventory position at warehouse (IPg) = Ip(0)
Inventory position at retailer 7 (IP) = L;(0)
Net inventory level at warehouse (NETp) = Iy(0)
Net inventory level at retailer 7 (NET)) = I;(0)

For each retailer 7, \L

Generate inter-arrival time of demands () and sort
all demands by arrival time

72
b

Is an event
arrival time < T'?

Check which kind of events is arrived:
Event(A) Demand arrival at retailer echelon
Event(B) Arrival of dispatch order to retailer echelon —
Event(C) Arrival of replenishment order to
warehouse echelon

Event(A) [ ‘

Event(B)

For retailer 7 included in this order,

calculate

(1) OH;= OH;+ On Order (OR)

() NET;= NET; + OR;

Event(C)

—31(1) OHyp= OHy+ ORy
(2) NETy = NETy+ ORy

For the warehouse, calculate

= Calculate inventory costs

L

For retailer 7 who own this
demand, calculate

1) IP;= IP;i- d;

(2) OH,;= min(OH;- d,, 0)
(3) NET; = NET;- d;

L

1f OH; > 0 counted for INT/;
otherwise not counted
If NET; < 0 counted for BO;

otherwise not counted @
No

o 7

For the warehouse

Calculate
(1) IPy = 1Py~ TDQ
(2) OHp = min(OHy- TOQ, 0)
(3) NETy= NET,- TOQ
N\

If OHy > 0 counted for INT/
otherwise not counted
If NETy < 0 counted for BOy
otherwise not counted

IP; < 57
Calculate total No 1Py < 57
Yes system-wide -
Record ordering time and Gers Yes
assign/ =/ + 1 R R
Order Quantity (0Q) N Recorci;ri(inrl%—ulme and
=8 IP; set = .
Set IP;= §; OQ;P*” :‘05_,) 1P

.

Record arrival time of
replenishment order

NZ—

For retailer j # 7
00,= 8- IP, -
=5

Collect total dispatch
quantity (TDQ)

Identification of artival time of dispatch ordcr‘(ARﬂuscd information from the warchouse]

Ar = ordering time

W

-

Record Ar

+1y+ 1L,
[
No

Ar = ordering time + L;

NoO
Yes

Ag = latest arrival of
replenishment order at
warehouse + [;

[

T
Special order

Ar = ordering time + L;
and rearranging Ax of
previous orders according to
this special order

Figure IV-3 The computer algorithm for simulation of Phase |l
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1) Decision variables (c,,s;,S;,S,,S,): Each variable is inputted as a
range of minimum and maximum values. A combination of (c,,s;,S;,s,,S,) is a
solution providing a value of the total system-wide cost and its transaction. The
transaction includes number of dispatch cycles, number of replenishment cycles, fill
rate at each location, number of replenishment event for various situations“.

2) Relevant factors: We consider five factors. Three factors are cost
parameters, demand rates, and number of retailers already experimented in Phase |,
as well as additional two factors are lead time and target service level. We set a
combination of relevant factors to a scenario containing different solutions. The best
solution providing the minimum total system-wide cost is selected for each scenario.

For the output section, we obtain a report of the inventory costs and
its transaction. In consequence, we can find the minimum total system-wide cost for

each range of decision variables inputted under a given scenario.

4.2.2 The best solution finding

This process has already been introduced in Chapter Il (Section 3.2.2).
So, we additionally elaborate some important features which are different from
previous content. The best solution finding is composed of two steps: Input
parameters and output validation. In this section we focus on the input parameters
since there are additional two variables from Phase I. It makes the finding process
more complicated. Meanwhile the output validation can follow in Chapter Il (Section
32.22). It is a general procedure used for validation process throughout the

dissertation.

With regard to the step of input parameters, we use a replication
method for running simulation, so we randomly select a seed number between [0,
99] for first replication. Decision variables are inputted as a range of minimum and

maximum values. In the experiment, we set the width of range are 5 units for

" Various situations are identified as follows:

1) Situation that warehouse has sufficient stock to dispatch all lot and has not reached the
reorder point,

2) Situation that warehouse has sufficient stock to dispatch all lot and also reached the reorder
point,

3) Situation that warehouse has insufficient stock to dispatch all lot,

4) Situation that warehouse has no sufficient stock to dispatch all lot but enough for some

retailers included in the order.
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5.C.S;,S, and 20 units for §,. Since over 5 units of s,,C,S;,s, creates multiplied
combinations spending more running time. Whereas S range is larger because §,

linearly creates combinations. The first range can be set from the initial point of
S, S, Sy, S, calculated by

Y. (v-5)Pois(AL,, )
Simltlal — min s :1_ y=s;+1 ZTSLI (48)

| J%(Kﬁzzq)/hi

ieN

S (y - 5,)Pois( AL, ¥)

:min s _1_ y=s5+1

° 22K,

initial

S (4.9)

> max(TSL,)

where Pois(a,b) is the probability density function of Poisson demand with
parameter (8,b) (using Equation (3.16) to calculate this term).

Then, S;,S, can be determined by S, =S5, + ,2KWZX,I/hO
ieN

and S, =5, +«f2Kr/11/hi due to the concept of economic order quantity.

The next step is the process of moving the ranges until the

solution seems to be worse continuously. The s;,S, ranges are moved upward and
downward by fixing the range at all retailers. Later, we determine the s;,C;,S, ranges
at the retailer i by keeping the same range of sy,S; and the s;,C;,S; ranges at the
retailer j#1. All ranges are changed repeatedly. We select the best solution
providing the minimized total system-wide cost for the first replication. Then, the

validation process is utilized to get the best-known solution.

4.3 Preliminary Analysis

In the preliminary study, our experiments were conducted to study the

relationship between relevant factors on 87 scenarios as showed in Table IV-1.
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Table IV-1: Numerical input for preliminary experiment under identical retailers

The asterisk (*) in the table means that parameter is varied.

Scenario Fixed Parameters

No. |K,|K, |x |h h|A]|n | L

w r I 1

Varied Parameters

h,/h €10.3,0.5, 0.7}
1-45 1005 | 0| * | 10]10]| 2 |02]L/Le02505124
TSL, €{0.90, 0.95, 0.99}
h,/h, €103, 0.5}

4675 100 50 | o | * |10 | 10| 2 | 1 |L/L 02505124
TSL,; €{0.90, 0.95, 0.99}
L €2, 0.1

76-87 100 | 50 | 25 | 3 | 10 | 10 | 2 « | L/L €f05, &
TSL, €{0.90, 0.95, 0.99}

We primarily analyze the experiments on identical retailers to study the
effect of the relevant factors on the can-order policy, since the case of non-identical
retailers is very difficult to determine the best-known solution. Relating to the
experimental design, the tested problem is generated according to Phase I’s results
which already studied insight of some relevant factors. From the Phase I, we
recognize that the h,/h ratio is one of the most important factors because it affects
a decision whether holding stock at the warehouse should be occurred or not.
Certainly, stock held at the warehouse bears upon retailer’s lead time and service
level. Therefore, the experiment is designed by mainly considering the following
factors: h,/h ratio, L;, L,/L ratio, and TSL,.

According to the minor ordering cost, Phase | indicated that the small ratio of
the major ordering cost and the minor ordering cost has an important effect on the
coordinated ordering decision. Thus, we extend this finding into the experiment with

low h,/hratio to study a change of decision variables (i.e. at high h,/h ratio
decision variables s,,S, are fixed at -1 and 0, respectively, so we cannot clearly

investigate the policy setting).

The significant findings are demonstrated as follows:
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4.3.1 The effect of the can-order policy

From the general concept of the can-order policy, the major and

minor ordering cost and the holding cost are traded off. The can-order level ¢

affects reduced major ordering costs, varied minor ordering costs, and increased

holding cost from special replenishment. However, ¢, must consider target service

level since cost saving can be reduced as much as the constraint is unmet. Hence, it

is important to find a balance among all inventory costs with a service constraint.

The experiment shows that ¢; can help the system sharing the
ordering cost among retailers. The increase of C; reduces the total system-wide cost
until a value of ¢;, that cost is then increased when ¢; is large. The main factors

affecting such results are

1) Target service level (TSL,)
The decrease of C; creates a possibility of reducing the
retailer’s fill rate (FR;) since the average remnant inventory level decreases. The

average remnant inventory level is the stock left when normal replenishment occurs
as showed in Fig.IV-4 (referring to Fig.IV-2). It implies that the average reorder level
occurs at the average remnant inventory level [46]. Therefore, the decrease of the
average remnant inventory level increases the opportunity of stock-out influencing to

reduce FR;. Figure IV-5 also illustrates this statement. According to the effect on
total system-wide cost, the best-known solution decides to reduce ¢; to obtain
smallest difference between FR,and TSL, (FR =TSL) providing lower total

system-wide cost.

2) Minor ordering cost (k; ):
If x,is large enough when comparing with the major ordering
cost K,, the increase of ¢, reduces the retailers’ total minor ordering cost until a
value of ¢C;, that cost is then increased when c; is large, by the reason that too
many retailers are included in an order. The ¢; value affects number of retailers
jointly replenished in the order, so it influences all relevant inventory costs in the

system.
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Inventory Level (Units)
Retailer 1 (Lead|time = 1)
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Inventory position

-------- Average remnant inventory level

| | | | | | | I | | Time (days)
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Retailer 2 (Lead|time = 1)

S26
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S, 2
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Figure IV-4 The effect of the can-order policy on target service level
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Figure IV-5 The effect of the can-order policy on target service level
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As these results, the can-order policy has an effect on the inventory
costs at both echelons. It is related to the average remnant inventory level directly
associated with retailers’ residual stock, as well as dispatch quantity and frequency
at retailers. In addition, inventory process at retailer echelon also affect to the
warehouse echelon in terms of replenishment quantity and frequency. All are
necessary to be traded off with concerning a service constraint to determine the best
solution. An interesting issue is that the average reorder level occurs at the average
remnant inventory level, therefore s(®*") can be lower than s&", where s“*V and

s are the must-order level at retailer i of the can-order policy and the S case,

respectively.

4.3.2 The best-known solutions

4.3.2.1 The inventory policies at the warehouse

For a given §;, we can find the best solution of (s;,¢c;,S;,s,)
providing the minimum average total system-wide cost as illustrated in Fig.IV-6. There
are at least two local minimum solutions located into two ranges: Range | — one
solution occurs at Sy = 0 and Range Il - at least one solution occurs at S,> 0. For the
Range |, S, starts from zero and then increases to reach the last value before the
cost line turns to resemble a convex function. For the Range I, it is defined after that
last value to positive infinity. The best-known solution (global minimum solution)
definitely occurs in either Range | or Range IIl. As a result, this phase provides two

ranges as Phase |.

Relevant factors have an effect on determination of the best-
known solution occurring in either range. For Range |, zero stock at the warehouse
provides the lowest total system-wide cost since the increasing S, creates the
excessive stock which should not be kept to wait for the next dispatch cycle. Since
the warehouse’s must-order level is always reached whenever retailer echelon
triggers an order. For Range I, a trade-off between the increasing holding costs and

the reduced ordering costs when increasing S, is occurred as found in the economic

5| case called in the dissertation is an independent (s,S) policy. SI case meets stochastic

demand and independent replenishment where each retailer is dispatched individually, so the

major ordering cost of each retailer occurs without sharing.
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order quantity. However, this trade-off is restricted by a service constraint which

provides the cost line in Fig.IV-6 not to be smooth as the curve found in Phase .

o 360 - !

E Rangel | Range II

= |

T 340 -

-

b

2.

2 320 -

)

&}

]

=

BI 300 -

£

S

f_% 280 \ \ \ \ — \ \ \ \ \ \

s !

it 0 2 6 10 14 18 22 26 30 34 38
S, level

Figure IV-6 Two ranges of the best-known solution

At high h,/h ratio, we can set S;= 0 since increasing stock

creates more total system-wide cost (i.e. the increased holding costs is larger than
the reduced ordering costs). However, there is a possibility that the best-known
solution can move from Range | to Range Il when relevant factor is changed, such as

smaller h, /h; ratio, higher L, and higher TSL,. At higher L, and higher TSL;, they

force the warehouse to hold more stocks to prevent the opportunity of stock-out.

Considering the value of s,, it can be located in range
[0,55"] where sy is the maximum value of the must-order level at the
warehouse to serve end customers’ demand. Therefore, L, is included to allow the

warehouse having sufficient stock for end customers. s;™ can be determined by

n
Equation (4.10). Note that 4, = Zﬂ,l with Poisson distribution.

i=1

o0

D> (y—s,)Pois(4,TL,, y)

5, 11— L2 > max(TSL,)

V24K, /My

TL, = L, +max(L,) (4.11)

Sg ™ =min (4.10)
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4.3.2.2 The inventory policies at the retailers

From the experiment (87 scenarios), a result demonstrates
that 21.84% of all scenarios (19 scenarios) the value ¢/ = S’- 1, where ¢ and S

denote the optimal can-order level and the optimal order-up-to level of retailer i.
This result is different from Phase | due largely to target service level and the ratio
between the major ordering cost and the minor ordering cost as mentioned in

Section 4.3.1. However, the result indicates that TC:S__ is greater than TC"0.15%

1)
on average with a standard deviation 0.34% where TC"is the optimal average total

system-wide cost and TC,

is the minimum average total system-wide cost of the
solution at ¢, = S; - 1. Therefore, the setting of ¢, = S; - 1 is still interesting for
Phase Il. The value of s; is strongly related to L; and TSL;, as well as decision
variables at the warehouse s,,S,. We deal with the value of s; in more detail in the
Section 4.3.3. Additionally, there is no obvious pattern for S; because it depends on

other decision variables. However, we can find some relationship between decision

variables which will be explained in the Section 4.3.4.

4.3.3 Relationship between relevant factors

In this section, we consider the relationship between h, /h ratio, L,
L,/L; ratio, and TSL;. The result demonstrates that these factors mainly affect the
value of s;,s,,S, as depicted in Fig.IV-7.

Comparing Fig.IV-7(a) and Fig.IV-7(b), high value of L, forces s, to
increase even in low L,/L ratio. Meanwhile, s; increases following higher L; to
maintain service fill rate as targeted but it has to balance with increasing s, as well.
At low value of L, the value of s, is close to zero and the warehouse keep a stock

with the order-up-to at S, > 0. This stock compensates the fill rate from s, =0.

In case of FigIV-7(b) and FigIV-7(c), TSL, affects not only at the
retailer echelon but also at the warehouse echelon. Higher TSL, is able to increase
the value of s, because it makes less holding costs than an increase of only s, due

to the h, /h ratio.
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Figure IV-7 Relationship between relevant factors

Considering h, /h, ratio in Fig.IV-7(c) and Fig.IV-7(d), the h,/h ratio
largely influences the decision at the warehouse. When higher h,/h ratio, the
warehouse should not keep stock in order to obtain the minimum total system-wide
cost (i.e. S;= 0 and s,= -1). Thus, increasing s, is executed to maintain service fill
rate as targeted. The best-known solution can be moved from Range | to Range II
when lower h, /h ratio (as stated in the Section 4.3.2.1).

4.3.4 Relationship between decision variables

All decision variables are associated with each other, so it is hard to
analyze their relationship obviously. In deterministic model, the major ordering cost
and the holding cost are traded off to obtain economical order quantity as a classic

EOQ. Thus, we consider A, =S, —s, to represent location K including the

warehouse and the retailers; for the warehouse A, =S,—S, and for the retailers
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A, =S, —5,, 1€ N. We analyze each decision variable by either fixing other variables
or varying some needed variables. The results show various graphs as depicted in
Fig.IV-8. Each point in the graph is the best solution on a given value on the
horizontal axis. We can draw up a curve across most points in each graph. According
to these curves, it is interesting to be a guideline for developing the heuristic

approach.
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(a) Varied A, and fixed s,,S, (b) Varied A and fixed s;,S;,s,

324

Total System-Wide Cost per Unit Time
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s,value

(c) Varied s, on which the best solution of (s;,S,,S,) is provided

Figure IV-8 Relationship between decision variables

Due to the laborious process to determine the best-known solutions from
computer simulation, an application of heuristic approach is more interesting to
systematically reduce the search space for determining the appropriate inventory
policy parameters. A lot of existing literatures on the can-order policy used heuristics
to accomplish their studies. Section 4.4 and 4.5 will proposed our heuristic

approaches with their performances and limitations.
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4.4 Heuristic lll - Joint Replenishment Model for Single Item and Non-Zero Lead

Time

The retailers’ major ordering cost can be most shared if all retailers are
included in an order to minimize total system-wide cost as we discussed in section
3.7. Preliminary analysis also provided the results as this rationale. Therefore, to
develop heuristic approach for the can-order policy we assume that all retailers are
replenished together in an order to minimize the major ordering cost per retailers.
Then, we can fix the retailer’s can-order level at ¢; =S, —1 to create the maximum
opportunity of joint replenishment for all retailers. By the fixed retailer’s can-order

level, we can focus on determining other decision variables (s;,S;,S,,S,) -

4.4.1 Approximate mathematical model with non-zero lead time (MMNZ)

From Phase |, we obtained two heuristics abbreviated to DJ and EOQ-
Z (expressed in Section 3.4 and Section 3.5, respectively). EOQ-Z provides more
efficient approach and preferable results than DJ does, so we extend EOQ-Z

approach into non-zero lead time system.
4.4.1.1 Mathematical model

Our purpose of developing heuristic approach is to provide an
appropriate inventory policy (c;,S;,S,). The total system-wide cost of mathematical
model is able to be approximated as long as the acceptable solution is provided.
Hence, relating to the preliminary analysis our mathematical model utilizes the can-
order level at ¢, = S;- 1. This fixed value of ¢, can simplify the can-order policy into
the regenerative process [22, 48, 127]. Each dispatch cycle is independently

generated at the same starting point, which is the order-up-to level S, for all

retailers. In consequence, the cost model can be formulated for a given (s;,S,,S,,S,)

policy.

We simplify this part by assuming the warehouse’s inventory
level is consumed continuously following total Poisson demand cumulated from all
retailers, A, =Zﬂ,| . Some equations in EOQ-Z (from the 1" phase) can be utilized.

ieN

The cost model can be used Equation (3.10) for a given (s;,S,,S,,S,) policy, and also
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added the service constraint to the model. Note that Equation (4.7) can be reused.
Thus,

K, + > {(1-@(S)))xx) + E[H;]}

TC(s,,S,,5,,Sy) = — =8 LS L) P
E[DT] E[RT]
Constraint FR; :l—w (4.13)
E[Q]
FR >TSL, (4.7)
TC(s,,S;,5,S,) = The long-run average total system-wide cost per unit time
($/unit time)
[ = Index of the location i; the warehouse i = 0 and the retailer i e N
S, = The must-order level at the warehouse (units)
S, = The must-order level at retailer i (units)
So = The order-up-to level at the warehouse (units)
S; = The order-up-to level at retailer i (units)
A = Demand rate of retailer i (units/time unit)
h, = The unit holding cost per unit time at the warehouse
($/unit - time unit)
h, = The unit holding cost per unit time at retailer i ($/unit — time unit)
K, = The warehouse’s major ordering cost per a replenishment
cycle ($/time)
K, = The retailers’ major ordering cost per a dispatch cycle ($/time)
K, = The minor ordering cost at retailer i ($)
L, = Lead time for the warehouse (time unit)
L = Lead time for the retailer i (time unit)
TSL, = Target service level at the retailer i
E[WT] = The expected waiting time at retailer echelon when the warehouse is
unable to dispatch according to the committed lead time (time unit)
E[L] = The expected total lead time for retailer i (time unit)
Dd(S;) = The probability that no demand arrives for retailer i during

a dispatch cycle
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E[H,] = The expected holding cost of retailer i during a dispatch cycle ($)
E[H,] = The expected holding cost of the warehouse during
a replenishment cycle ($)
E[DT] = The expected length of a dispatch cycle (unit time)
E[RT] = The expected length of a replenishment cycle (unit time)
FR = Long run fraction of demand satisfied from stock on-hand of
the retailer i.
E[SH,] = The expected number of shortage per dispatch cycle of the retailer i
(units/time unit)
E[SH,] = The expected number of shortage per replenishment cycle of
the warehouse (units/time unit)
E[Q] = The expected dispatch quantity per dispatch cycle of the retailer i

(units/time unit)

Retailer Echelon

The model is developed according to the independent
Poisson process of demands for individual retailers, so inter-arrival times of demands
are exponentially distributed. Thus, time until retailer i triggers an order to the

warehouse (DT;) follows Erlang distribution with parameters A, and A;. We can
determine related probability function of DT, and DT , where DT is time until any

retailer triggers an order to the warehouse, by using Equation (3.12) and (3.13). Then,
we are able to calculate the expected length of a dispatch cycle, E[DT], by using
Equation (3.14).

The expected holding cost of retailer i during a dispatch
cycle is associated with the retailer’s inventory on hand at the beginning and at the
end of the dispatch cycle. At the beginning of the cycle, setting ¢, = S,- 1 makes all
retailers’ inventory on hand equal S,—Yy where y is total demands during lead
time. At the end of the cycle, the inventory on hand depends on the residual stock.
Thus, we define ®@,(X) as the probability that at time DT the residual stock of
retailer i equals X. There are two cases for determining @, (x). The first case is when
the residual stock level of retailer i is equal to zero; only retailer i triggers an order.
The second case is when the residual stock level of retailer i is positive. So, an order

is triggered by retailer j #i. From EOQ-Z, the value of ®,(X)can be calculated by
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the following expressions reused Equation (3.16) and (3.17) for Pois(a,b) and
f O (t), respectively:

0

[ &I T(1-F®)dt if x=0,
o,(x)=1 = (4.14)
IquALm—xﬁ“”GMt if 0<x<A

Since any retailer’s order has to wait until the warehouse’s
inventory on-hand is available. In case of sufficient stock on-hand at the warehouse,
the retailer’s replenishment just depends on its lead time L;. On the other hand, if
the warehouse has not enough stock on-hand, the retailer has to wait longer. The
expected waiting time can be calculated by using Little’s formula [50, 128]. However,
in case of special order which does not follow FIFO as explained in Section 4.1 the
waiting time might be shorter than FIFO. Therefore, we define the proportion of
waiting time as comparing to FIFO case (p). This value is in a range of [0, 1]; it is
defaulted at 1. We can determine the expected total lead time for retailer i by the

following expressions.

FIFO E[SHO]
E =— 02 (4.15)
[WT] p
E[WT]= pE[WT]™™ (4.16)
E[L]=L +EMWT] (4.17)

The expected holding cost of retailer i during a dispatch cycle is then given by

E[H.]= i(Pois(ﬂ,, E[L], y)i{(l)(x) T H. (S, —y,s +x-y,t)f (t)dt}} (4.18)

x=0 t=0
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h (z+o)t

ifz>0, =0
5 q
2
H.(2,q,t) = z(hzz_tq) if 250, q<0 (6.19)
0 otherwise

where H,(z,0,t) is the expected total holding cost for retailer i during a dispatch

cycle of tperiods given that the inventory on hand equals z at the beginning and

equals q at the end of the cycle.

According to Equation (3.14), (4.18) and (4.19), we can reduce the expression to
determine the expected holding cost of retailer i per unit time by

m = i(PoiS(/l, E[L], y)Z{(I)(x)Hi (S;—-vy,s +x— y)}] (4.20)
E[DT] = pary
@ if 2>0, >0
h.z? )
H.(z,q) = 2(zl—q) if z>0, <0 (4.21)
0 otherwise

To determine long run fill rate at retailer i, the expected
number of shortage per dispatch cycle of the retailer i, E[SH,] , and the expected

dispatch quantity per dispatch cycle of retailer i, E[Q.], are given by

E[SH.]= i{cp(x) S (y-s,—X)Pois(4E[L], y)} (a.22)
E[Q]= i{(l)(x)(Ai -X)} (4.23)

Warehouse Echelon

We assume that the warehouse’s inventory level is

consumed continuously by all retailers’ Poisson demands with rate 4. Inter-arrival
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times of demands are exponentially distributed, and then the distribution of time
until warehouse triggers an order to an outside supplier is Erlang, similar to the
retailer echelon. Let RT denote time until warehouse triggers an order to an outside
supplier. The warehouse will trigger an order if the total demand from time 0 equals

A,, so the distribution of RT is Erlang with parameters 4, and A,. The expected
length of a replenishment cycle is mean of Erlang distribution. Thus, E[RT]=A,/4, .

Similar to retailer echelon, we determine the expected

holding cost of the warehouse per unit time by

EH] & .
——12 = 3" Pois(4 Ly, Y)H, (S, — Y, S, — 4.24
E[RT] ; 0is(4 Ly, Y)H, (S, — V.8, - Y) (4.29)
@ if 2>0, q>0
2
H,(z,q) = Z(ZOiq) if z>0, q<0 (4.25)
0 otherwise

The expected number of shortage per dispatch cycle of the
warehouse is then given by

E[SH,]= 3 (y-s)Pois(4 Ly, ) (a.26)

y=s;+1

Consequently, we can figure out the long-run average total
system-wide cost per unit time for a given (s;,S;,S,,S,) policy. Later, the algorithm of
heuristic approach is demonstrated to determine the appropriate decision variables
by using the cost model mentioned above.

4.4.1.2 Heuristic algorithm

We use the concept of the EOQ-Z heuristic to develop
heuristic algorithm for non-zero lead time consideration by the reason that the
preliminary study provides the similar results. Therefore, the design of heuristic

approach (named MMNZ for Phase ) is based on the following concept.
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Table IV-2: Additional concept for developing the MMNZ heuristic as comparing to

the EOQ-Z heuristic

Concept of the EOQ-Z heuristic (Phase 1)

Concept of the MMNZ heuristic (Phase II)

1) The value of S is identified to S, =0

for Range | and S, = /2K 4, /h, for

Range II.

1) Regarding at least two local minimum
solutions located into two ranges,
procedure for determining the value of
S, can be divided into such ranges. For
Range |, the value of S is set at 0 and
then s, is also assigned to -1. For Range
Il, we apply a search algorithm to
determine the value of S, which is more

than 0.

2) To develop initial solution at retailer
echelon, deterministic model is used to
find economical joint ordering time when

every retailer is replenished in an order.

2) We use the same concept as EOQ-Z to
find out initial A, and A,

3) Decomposition technique and iterative
procedure are applied to break multiple
locations into single location and to

recurrently find the minimum solution as

far as the best solution has been found.

3) We use the same concept as EOQ-Z to
break multiple locations into single
location and to recurrently determine
the local minimum TC(s,,S;,S,,S,) at

the given A, and A,.

4) The concept of the golden section
search is applied to determine the

minimum value of §,.

4) We apply the concept of the golden
section search to determine the (near)

minimum value of A,, A;, and s;.

Hence, the heuristic approach is outlined in the following

algorithm illustrated in Fig.IV-9.
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Main algorithm

START Algorithm-Procedure

relationship
Step 1:
< P; d 1
Determine initial Solution (o) :MCE ure
Step 2
Output:
A Step 2.1:
= - Calculate TCiniar1(50,50,55.57) . P dure 2
Step 2: by setting 5=-1, §p =0 and E/RT] = E/DT] < rocedure
Determine the local optimal :“ > - Set TCouinri1(50,50,5557) = T Citiaik1 (50,50,55.53)
solution for range Ry + '
S R . Procedure 3
tep 2.2: Iterative procedure for determining by skippinie 4
the local optimal solution (50,.50,5.5) Y SKIPPINg 2o
Output: determination
TCoinr1(50,50,5,53)
v Step 3
Step 3 | Step 3.1: St il o ) | Procedure4_|
Determine the local optimal £\>
solution for range R> Step 3.2:
- Calculate TCiiar2(50,50,5,53) by E/RT] = 4,/ X0 |« Procedure 2
- Set TCuinr2(50,50,5583) = TCliriamz(50,50,5:53)
Output: +
TCinr2(50,50,5,.53) N T h 4
v Step 3.3: Tterative procedure for determining Mo
. o - e < Procedure 3
the local optimal solution (s4,50,5,.57)
Step 4:
Select the best solution at v
TCrin(s0,50,55,5,) = Step 3.4:
min{ TCir1(50,50,555), - Search next spand step back to step 3.3
TCinr2(50,50,55.5:)} - Update TCinrz2(50,50,5553) on given spif the better | Procedure 4
solution has been found
- Stop if the best s has been found according to
END terminate condition

Figure IV-9 The algorithm of the heuristic approach - MMNZ

Procedure 1 - Determination of the initial solution A; and A,

For the initial value of A,, we simply determine by using

EOQ formula, then A, = 2K, 4, /h, -

For the initial value of A;, we calculate joint dispatching time

(T,) by deterministic model according to the following expression.

2(KW + ZKi)
— =N (4.27)
2 AN
ieN
Later, the initial A, for retailer i is determined by adapting
Love [46]’s method. It is selecting A, which provides the minimum gap between two

probabilities: 1) the probability that demand for retailer i during time T, is less than
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or equal to such A, and 2) the probability that an order is triggered by any retailer

(i.e. including normal replenishment and special replenishment). Thus,

, : n n :
A = u if {Pms(ﬂde U+1) —(n—ﬂj} > {(n_ﬂj_ Pois(4T,, u)} (a.28)

u+1 Otherwise

The initial A; from Equation (4.28) is closer to the optimal solution than A; obtained
from A, = AT, .

Procedure 2 - Determination of retailer’s must-order level s,

According to a service constraint, the value of s, must be
high enough to serve target service level (TSL,). Whenever a change of A, or A, is
occurred, this procedure is needed to find out updated s,. Therefore, the procedure

is also used together with Procedure 3. It can be divided into 4 sub-procedures as
follows:

Procedure 2.1: Determine the initial value of s; for retailer i and repeat until all

retailers has been done.

Siinitia| — min L y;l(y_si)POiS(/l. Li’ y)
- E[Q]

(4.29)

>TsL,

Start at retailer i = 1 and follow operations below, then repeat until all retailers

have been done.

Procedure 2.2: Calculate FR; for each retailer by using Equation (4.13) and check the
difference between FR; and TSL; with the tolerance &. If |FR —TSL|<é go to
Procedure 2.3, else go to Procedure 2.4. In case that FR, =TSL;, select the current

s; to the solution, and then terminate Procedure 2.

Procedure 2.3: Compare FR; with TSL, and use “Sequential Search” to find s;.
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- If FR <TSL, increase s; by 1 until obtain FR; 2 TSL,. Select the current s,
to the solution, and then terminate Procedure 2.
- If FR >TSL, decrease s; by 1 until obtain FR, <TSL;. Select the last s

providing FR, = TSL, to the solution, and then terminate Procedure 2.

Procedure 2.4: Compare FR;, with TSL; and use “Half-Interval Search” to reduce
search space.
- Setinitial boundary of s, by the following conditions:
- If FR, >TSL, set 8" =s and s’ =0
- If FR <TSL,, increase s, =S,+R where R=round(4L;) to integer
number until obtain FR >TSL, . Assign the current s, to s/ and the
last s, providing FR, >TSL, to s&
- Then, the initial boundary of s,(R’) is equal to ‘SiA —SiB‘
- Repeat the operations below and simultaneously evaluate with Procedure

2.2’s condition.
if FR, >TSL,, assign S, =S —R'/2, else s, =s +R'/2

- Set new value of s*, s® by assigning s” =s” and s/ =5
- Update new R’ from new value of s, s°

- Range R’ is reduced until Procedure 2.2’s condition is met
(|JFR, =TSL| < &), then go to Procedure 2.3.

Procedure 3 - Iterative procedure for finding the best combination of (A, A;)

on given S,

This procedure applies Step 2.2 of EOQ-Z’s heuristic algorithm
which is an iterative procedure containing step (A) to (F) illustrated in Fig.lll-10. Step
2.2 of EOQ-Z’s heuiristic algorithm is used for retailer echelon, but in Procedure 3 we

extend to warehouse echelon as well.

We consider A, =S, —s, to represent location K including
the warehouse and the retailers; for the warehouse A, =S, —S, and for the retailers
A, =S,—s,,ieN. We modify Step 2.2(A) by setting location K = -1 to cover both
echelons, and Step2.2(B) set location k=K + 1 by fixing other locations A, given

from the previous iteration. For each iteration, the golden section search is carried
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out for location k: vary A, and fix A, . TC(s,S;,s,,S,) is an objective function
for the golden section search. The iterative process terminates as soon as every A,
does not change n+1 iterations in a row, or the minimum long-run average total
system-wide cost per unit time from the current loop does not decrease from the
previous loop by more than £%. From Procedure 3, we get the local minimum long-
run average total system-wide cost per unit time for either Range | or Range Il on

given S,.
Procedure 4 - Determination of the warehouse’s must-order level s,

Procedure 4 includes 2 sub-procedures, the first s

determination of the initial value of s, and the second is search algorithm for the
best s,. The initial s, is defined as the maximum value of s,, so Equation (4.10) and
(4.11) are utilized. Then, search space for s, is restricted within [0,s7*]. Then, we

apply gold section search to determine the best s, .

In the last step of algorithm, the minimum long-run average
total system-wide cost per unit time is equal to the minimum value of either ranges,
min {TCmian(si ’ Si ’ SO’ SO)'TCminRZ (si ’ Si ’ SO’ SO)} X

To summarize, our heuristic approach (called MMNZ) is
developed by using approximate mathematical model with heuristic algorithm to
determine the appropriate inventory policy parameters. The mathematical model is
extended from EOQ-Z integrating lead time consideration and service level. We can
interpret preliminary analysis into the heuristic algorithm consisting of decomposition
technique, iterative procedure, and one-dimensional search called the golden
section search. To measure heuristic’s performance, we carry out a pilot testing

demonstrated in the next section.
4.4.1.3 Pilot testing

We explore the cost gap of the MMNZ heuristic and the best-
known solution obtained from computer simulation by using Equation (3.7). We
tested on 29 scenarios selected from Table IV-1 under considering zero minor
ordering cost. Consequently, the testing result can be summarized as showed in
Table IV-3 and Table IV-4.
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Let FR™™ is the average fill rate obtained from the best
solution of heuristic approach. We found some limitations of the heuristic MMNZ as
follows:

1) High cost gap (with maximum at 54.04%) was occurred
when the best solution falls in Range II, ie. TC_ . ,(S5:,S;) <TC. \ri(Si)S,) . It

seemed that approximate mathematical model on the warehouse echelon was poor
for the situations that have high L;, hish L,/L;, and low hy/h,. Cost gap was huge
because
(1) The approximate mathematical model influenced
the warehouse to hold more cycle stock and to
reduce safety stock; therefore retailer’s must-order
level was higher than actual due to target service
level or
(2) The approximate mathematical model provided
lower cost than actual, so the best solution
preferably fell into Range Il instead of Range I. Range
| used the (near) exact model which provided the
total system-wide cost close to actual cost as van
Eijs [48]’s formulation.
2) The best solution of heuristic approach provided the

C(HRT) L

average total system-wide cost T ower than the best-known solution’s cost

TC® due to the average fill rate.

The MMNZ heuristic seems to be useful if the cross-docking
system performs better, but there is a possibility that the average fill rate is less than
target service level. For pilot testing, average fill rate is less than target service level
0.29% on average with a standard deviation 0.32%. According to its limitation, we
attempt to develop another heuristic approach to obtain better quality solution as

demonstrated in the next solution.

4.4.2 Simulation cost model for single item and non-zero lead time

(SIM/S/NZ)

We propose a new heuristic approach to determine an appropriate
inventory policy. Since the approximate mathematical model is not suitable for the

complicated system, we use the simulation cost model instead. This can reduce the
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cost error from an approximation. However, we apply heuristic algorithm from
Section 4.4.1.2 into this approach called SIM/S/NZ.

The simulation cost model follows the algorithm illustrated in Fig.IV-3.
Then, the total system-wide cost and fill rate from the simulation cost model are
used in the heuristic algorithm instead of approximate mathematical model (Section
4.4.1.2). However, there are some equations of approximate mathematical model
utilized to find out the initial values of s;,s;, A;, and A,. They have to be inputted
in the simulation cost model to initiate the first solution for iterative procedure. The

heuristic algorithm exists but we add the part of simulation cost model as depicted
in Fig.IV-10.

Main algorithm

START Algorithm-Procedure
relationship
Step 1:
P 1
Determine initial Solution (4o4) | rocedure
Step 2
Output:
A Step 2.1: STC
' . - Calculate TChuiriari (50,S0,55.53) P Procedure 2 Sg“R
Step 2: by setting s5=-1, 5o =0 rocedure
: - Set TCoinr1(50,50,5,.5) = TCinitia S0,5i.5;
Determine the local optimal f‘> et TComimi(i,S0.5:5) vk 30.50,5:.5)
solution for range R, + Y
. . Procedure 3
Step 2.2: Iterative procedure for determining -y
the local optimal solution (53,50,4,.57) - -1 by Sk‘P_P‘“S o
Output: determination
TCinr1(50,50,5553)
4 Step 3
Step 3: ‘ Step 3.1: Set initial 1 }4 @
Determine the local optimal :[> v STC
solution for range R Step 3.2: &
- Calculate TCiriamr2(50,50,5553) Procedure 2 \' SER
- Set TCinr2(50,50,5559) = TChniviair2(50,50,53.5)
Output: +
TCoinr2(50,50,5,53) - . v
v Step 3.3: Iterative procedure for determining Mo
. . < Procedure 3
the local optimal solution (55,50,4.5))
Step 4:
Select the best solution at v

TCorin(50,50,5,.5;) = Step 3.4:

min{TCinr1(50,50,5,5), - Search next spand step back to step 3.3
TCinr2(50,50,553)} - Update TCoiz(50,50,5,5) on given soif the better || | |
solution has been found

- Stop if the best s has been found according to

END terminate condition

STC = Simulated total system-wide cost per unit time obtained from the simulation cost model
SFR = Simulated fill rate obtained from the simulation cost model

Figure IV-10 The algorithm of the heuristic approach - SIM/S/NZ

Summarily, we conducted the research continuously to find out an

appropriate solution approach. We first developed an approximate mathematical
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model and heuristic algorithm called “MMNZ” heuristic. We interpreted preliminary
analysis into the heuristic algorithm consisting of decomposition technique, iterative
procedure, and one-dimensional search called the golden section search. Its result
provides huge cost gap in some situations because approximate mathematical model
might not reflect actual process. Therefore, another approach was introduced by
using simulation cost model instead of approximate mathematical model. It is called
“SIM/S/NZ” heuristic. It could reduce cost error from approximation. To measure
heuristic’s performance, we continue to the next section which various experiments

are carried out and the analysis of the results is demonstrated herein.

4.5 Experimental Results

The SIM/S/NZ heuristic was experimented on various scenarios following the
Table V-1 (87 scenarios). The experiments focused on identical retailers with and
without minor ordering cost, since both cases affects the can-order policy at given ¢,
=S

simulated total system-wide cost and simulated fill rate, seed number is an

.- 1 on different results as showed in the preliminary analysis. According to using
important input to generate inter-arrival time of demand. Thus, we conducted the
research by using the same method of output validation described in Section 3.2.2.2.
We tested on five replications with different random seed numbers. Then, for each
best solution we determined the average total system-wide cost by additional 10
random seed numbers. We define “the minimum solution” provided by the best
solution with the minimum of average total system-wide cost. We use Equation (3.7)

to measure heuristic’s performance.

4.5.1 Identical retailers with zero minor ordering cost

According to 75 scenarios tested, Table IV-5 concludes the

experimental result in four dimensions: the h, /h ratio, L, the L, /L ratio, and TSL,
. The SIM/S/NZ heuristic provides an average cost gap at 1.22% with standard

deviation 1.52% over various scenarios. The obvious good performance of this

heuristic was when high h,/h ratio providing cost gap only 0.81% on average.
Moreover, at high TSL; this heuristic performed well not depending on the h,/h

ratio. However, for the situations having cost gap higher than 2% we found that the
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minimum solutions were s,= 0 and S, #0 happening at low h,/h ratio together
with low L; or low L, /L, ratio. However, the average cost gap of such situations was

only 2.73% with standard deviation 2.03%.

Table IV-5: Cost gap between the best-known solution and the SIM/S/NZ heuristic’s

minimum solution under identical retailers with zero minor ordering cost

The h, /h ratio
Low (hy/h <0.5) | High(h,/h >0.5)

L Low (L, = 0.2) 2.38% (2.74%) 0.70% (1.30%)
' High (L= 1) 1.24% (0.74%) 0.96% (1.49%)
L/L Low (L, /L <1) 2.05% (1.32%) 1.44% (1.88%)

High (L, /L > 1)

1.59% (1.92%)

0.33% (0.34%)

Low (TSL; = 0.90)

1.46% (1.25%)

1.25% (1.79%)

TSL, Middle (TSL; = 0.95)

3.45% (2.31%)

1.09% (1.49%)

High (TSL,; = 0.99)

1.07% (1.14%)

0.08% (0.16%)

Average

1.72% (1.62%)

0.81% (1.31%)

The percentage values in the table is the average cost gap (standard deviation)

4.5.2 Identical retailers with non-zero minor ordering cost

In case of non-zero minor ordering cost, we tested on 12 scenarios
(Scenario no. 76-87 in Table IV-1) to observe the minimum solution’s trend and the
cost gap as comparing to the best-known solution. Then, we illustrate the

experimental result in Table IV-6.

The result showed that when considering the minor ordering cost the
SIM/S/NZ heuristic provided an average cost gap at 0.93% with standard deviation
1.31% over various scenarios. An interesting issue was that the best-known solution
moves from Range Il to Range | when considering non-zero minor ordering cost, for
example of Instance 1, the best-known solution (s;,¢C;,S;),(S,,S,) when zero minor
ordering cost was (1,12,13),(0,24), whereas the best-known solution when non-zero
minor ordering cost was (0,13,21),(-1,0). To explain this circumstance, when each
retailer had the minor ordering cost charged into an order, the system attempted to

rebalance new inventory policy by two mechanisms. The first mechanism was
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reducing number of dispatch cycle and holding more stock, and the second one was
reducing its can-order level in order to reduce the opportunity of special
replenishment. By this circumstance, cost gap seemed to be smaller as our heuristic
could provide a little cost gap when the solution fell into Range I. Search algorithm

on dimension of s; was not included for Range |, so the effect of search algorithm

on multiple variables appears to diminish.

Table IV-6: Cost gap between the best-known solution and the SIM/S/NZ heuristic’s

minimum solution under identical retailers with non-zero minor ordering cost

Relevant
Best-known Solution Heuristic Approach
Instance Parameters
L L /L | TSL | (5:C,S;)(S0:Sp) | TC® | (5,C,S:). (S0, S,) | C.G.
1 0.2 0.5 0.90 (0,13,21),(-1,0) 290.49 (0,20,21),(-1,0) | 0.11%
2 0.2 0.5 0.95 (2,12,19),(-1,0) 314.16 (2,18,19),(-1,0) | 0.05%
3 0.2 0.5 0.99 (4,13,18),(0,28) 365.57 (4,24,25),(-1,0) | 0.72%
4 0.2 4.0 0.90 (8,19,27),(-1,0) 301.89 (8,26,27),(-1,0) | 0.15%
5 0.2 4.0 0.95 (10,21,29),(-1,0) 339.59 (10,28,29),(-1,0) | 0.15%
6 0.2 4.0 0.99 (4,12,15),(20,42) 383.69 (4,15,16),(18,46) | 1.83%
7 1 0.5 0.90 (13,26,34),(-1,0) 311.72 (14,30,31),(-1,0) | 1.66%
8 1 0.5 0.95 (16,30,34),(-1,0) 356.99 (16,33,34),(-1,0) | 0.02%
9 1 0.5 0.99 (20,30,37),(-1,0) 432.81 (20,36,37),(-1,0) | 0.04%
10 1 4.0 0.90 (11,20,26),(78,114) 356.42 | (10,25,26),(75,119) | 0.63%
11 1 4.0 0.95 (12,22,28),(88,120) 401.48 (35,55,56),(40,41) | 4.52%
12 1 4.0 0.99 (16,24,29),(87,118) 483.20 | (15,25,26),095,121) | 1.23%

4.5.3 Computational times

For the experiments as shown in Table V-1, computational time of
our SIM/S/NZ heuristic was 811.90 seconds on average with a standard deviation at
521.78 seconds depending on lead times for the warehouse and the retailers. Longer
lead time for the warehouse (retailers) increased the search range of the must-order
level s, (s;), so this also increased our heuristic’s computational time. However,
there was no obvious trend of computational times relative to target service level

TSL, ranged from 0.90 to 0.99. Most scenarios provided indifferent computational
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times among TSL;, values since numbers of iteration for each scenario were not

different.

For our experiments, most scenarios spent more than 40 hours to
determine the best solution of any scenario from computer simulation. As the
results, the SIM/S/NZ heuristic’s computational times were much faster than
computer simulation’s computational times. We found how much the SIM/S/NZ
heuristic could save computational time from computer simulation majorly
depended on lead times for the warehouse and for the retailers. Normally, longer
lead times for the warehouse and for the retailers increase time saving. In some
scenarios, although there were longer lead times for the warehouse and for the
retailers, computational times of computer simulation were unchanged due to equal
number of combinations. So, time saving of such scenarios could be reduced.

However, time saving might increase again if number of combinations increases.

According to above result, it was only the case of identical retailers.
Hence, for more complex case of non-identical retailers, we presume that the
SIM/S/NZ heuristic’s computational times are extremely much faster than computer

simulation’s computational times.

4.5.4 Comparative analysis

Dealing with the existing literatures, an interesting work being close to
our problem is Ozkaya [22]. Ozkaya [22] proposed analytical models and heuristic
approaches for four types of joint replenishment policy at the retailers, and utilized a
traditional reorder point-based stock policy at the warehouse. At retailer echelon,
zero minor ordering cost and target service level in terms of fill rate are also
considered. Four types of joint replenishment policy are the (Q,S) policy, the
(Q,S,T) policy, the (Q,S|T) policy, and the (5,S—-1S) policy. More details of all
policies already explained in Chapter Il. Ozkaya [22] showed comparative results
among these policies without comparing to the lower bound or the best-known
solution. Therefore, in this section we attempt to compare his heuristic approach
with the SIM/S/NZ heuristic.

Based on Ozkaya [22]’s results, they can be separated into two groups:

Group | — Cross-docking system and Group Il — Holding stock at the warehouse. For
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Group Il, we cannot quantitatively compare our heuristic with Ozkaya [22] since his
system is different from ours. Ozkaya [22]’s system applied First-In First-Out System
(FIFO) for the warehouse replenishing to retailer echelon. Meanwhile, our system
allows the warehouse to serve an order follows FIFO except if there is an order
issued to the warehouse and inventory on-hand is enough for this order the
warehouse can deliver it as special case to reduce the opportunity of stock-out at
the retailers. This creates higher service level than FIFO. According to different
systems, in case of holding stock at the warehouse Ozkaya [22]’s cost and policy
cannot compare with ours in detail. However, for the cross-docking system we can
compare our heuristic with Ozkaya [22] since no available stock at the warehouse
allows FIFO for all orders. Therefore, our system acts as Ozkaya [22] system and
they are comparable. Hence, the following content will demonstrate comparative
analysis in case of the cross-docking system to illustrate our heuristic’s performance

over Ozkaya [22].

For the cross-docking system, Group 1 of Ozkaya [22] is consistent with
Range | of our approach. Under this system, we can identify a simple lower bound

determined by two steps. The first step is to find the order quantity Q, for all

retailers by assuming that they are replenished at the same order interval.

ZKW/ D Ah (4.30)

ieN

Thus, the order quantity for each retailer is Q, = AT, . Determination of s; can apply
Equation (4.8) with considering total lead time for each retailer TL; =L, + L.

; S (y-5)Pois(4TL,, y)
S o=miny S

i Qi

(4.31)

>TSL,

Therefore, the total system-wide cost is given by

TC(s,Q) = 2KutKo) hZ( +s—/1TL,j (4.32)

i ieN
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The comparative results are depicted in Table V-7 — Table IV-10.
Different comparative analyses are illustrated by using the following equations.

For Table IV-7 and IV-9 we use the following equation to compare

Ozkaya [22]’s results with our heuristic approach.

C® —TC™1)%100
TC(HRT)

CostGap(CG.) = (T (4.33)
where TCHRT and TC are the average total system-wide cost per unit time of
the heuristic approach and the average total system-wide cost per unit time of

Ozkaya [22]’s policies, respectively.

For Table IV-8 and IV-10, we use Equation (4.32) to compare lower

bound with proposed heuristics: SIM/S/NZ and Ozkaya [22]’s the minimum result.

ct™ _TC®)%x100

o (4.39)

CostGap (C.G.) = (1T

where TC™® and TC™are the total system-wide cost per unit time of lower
bound and the average total system-wide cost per unit time of heuristic approach,

respectively.
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Table IV-7: Comparison of heuristics with the warehouse employing cross-docking at

K,=K,h=h, Li=5 L=1 and TSL =095

Relevant Parameters | TC(HRD Cost Gap (C.G.)
A Kol b n sz [(Q,S,T) (QS|T) (Q,S) | (s,S-1S)
1 50 1 2 25.48 -40% -40% -38% -37%
4 42.43 -41% -40% -38% -38%
8 70.07 -33% -32% -31% -31%
16 123.00 -25% -25% -23% -23%
1 50 1.2 29.30 -36% -35% -33% -33%
48.58 -34% -33% -32% -32%
80.22 -14% -13% -11% -11%
16 142.38 -23% -23% -21% -20%
1 100 1 33.27 0% 1% 3% 3%
51.73 25% 26% 28% 28%
86.45 44% 44% 47% 46%
16 145.56 64% 64% 66% 66%
1 100 | 1.2 36.95 21% 22% 25% 25%
60.25 44% 46% 48% 48%
98.90 90% 92% 95% 94%
16 167.94 102% 102% 105% 105%
10 50 1 74.68 1% 3% 7% 9%
120.07 81% 84% 87% 89%
196.72 86% 87% 91% 92%
16 339.01 120% 119% 124% 124%
10 50 1.2 83.64 88% 91% 95% 97%
135.91 95% 98% 102% 103%
225.15 151% 153% 157% 159%
16 394.53 119% 118% 124% 126%
10 | 100 1 97.50 187% 189% 193% 195%
151.92 256% 257% 262% 264%
241.80 331% 332% 337% 338%
16 398.01 396% 394% 400% 401%
10 | 100 1.2 109.93 246% 249% 250% 256%
171.29 321% 324% 329% 330%
274.54 495% 498% 505% 505%
16 454.01 533% 532% 539% 540%




Table IV-8: Comparison of lower bound and heuristics with the warehouse

employing cross-docking at K, =K, ,hy=h, L,=5, L,=1, and TSL; = 0.95

Relevant Parameters

Cost Gap (C.G.)

TC*® "

A K | h | n SIM/S/NZ Ozkaya (2005)
1 50 1 2 24.00 6% -37%
4 36.28 17% -30%
8 64.00 9% -27%
16 104.57 18% -12%
1 50 1.2 26.71 10% -30%
40.58 20% -21%
72.62 10% -5%
16 119.57 19% -8%
1 100 1 30.28 10% 10%
48.00 8% 35%
72.57 19% 71%
16 128.00 14% 86%
1 100 | 1.2 2 33.38 11% 34%
4 53.42 13% 63%
81.17 22% 132%
16 145.24 16% 133%
10 50 1 2 125 5% 79%
4 113.44 6% 92%
190.49 3% 92%
16 322.89 5% 130%
10 50 1.2 81.28 3% 93%
126.78 7% 109%
215.36 5% 162%
16 368.76 7% 134%
10 | 100 1 93.44 4% 199%
142.49 7% 279%
226.89 7% 359%
16 380.98 4% 416%
10 | 100 | 1.2 2 105.18 5% 262%
4 162.56 5% 343%
253.56 8% 544%
16 430.73 5% 566%

146



147

Table IV-9: Comparison of heuristics with the warehouse employing cross-docking at

K,=K,,h=h, L=5 L=1 and TSL = 099

Relevant Parameters | TC(HRD Cost Gap (C.G.)
A Kol b n sz [(Q,S,T) (QS|T) (Q,S) | (s,S-1S)
1 50 1 2 32.19 -29% -28% -26% -28%
4 53.61 -24% -24% -22% -23%
8 93.79 -17% -17% -15% -17%
16 165.52 -6% -6% -4% -6%
1 50 1.2 36.33 -27% -26% -24% -26%
61.29 -17% -16% -14% -16%
108.75 -71% -6% -4% -6%
16 192.35 -17% -17% -15% -17%
1 100 1 39.40 17% 18% 20% 19%
65.99 43% 44% 46% 44%
112.20 58% 59% 62% 60%
16 196.14 81% 82% 84% 81%
1 100 | 1.2 46.14 32% 33% 36% 34%
74.58 66% 68% 1% 69%
127.70 117% 118% 122% 119%
16 223.59 131% 132% 135% 132%
10 50 1 90.57 104% 106% 110% 108%
150.79 120% 123% 127% 124%
254.28 137% 139% 143% 140%
16 453.68 184% 184% 189% 184%
10 50 1.2 102.01 133% 137% 142% 139%
17217 157% 160% 164% 161%
295.79 230% 233% 237% 235%
16 524.86 214% 216% 220% 214%
10 | 100 1 115.70 235% 238% 243% 240%
186.14 324% 327% 332% 329%
303.28 424% 426% 432% 427%
16 511.91 509% 508% 514% 507%
10 | 100 | 1.2 129.43 303% 307% 313% 309%
209.57 398% 402% 408% 404%
346.08 518% 523% 530% 524%
16 595.07 572% 571% 579% 571%




Table 1V-10: Comparison of lower bound and heuristics with the warehouse

employing cross-docking at K, =K, ,h,=h, L,=5, L,=1, and TSL; = 0.99

Relevant Parameters

Cost Gap (C.G.)

TC*® "

A | K, | h n SIM/S/NZ Ozkaya (2005)
1 50 1 2 28.00 15% -19%
a4 48.28 11% -16%
8 80.00 17% -3%
16 136.57 21% 14%
1 50 1.2 31.51 15% -16%
54.98 11% -8%
91.82 18% 10%
16 177.17 9% -10%
1 100 il 36.28 9% 27%
56.00 18% 68%
96.57 16% 84%
16 160.00 23% 122%
1 100 | 1.2 2 40.58 14% 50%
4 63.02 18% 97%
109.97 16% 152%
16 183.64 22% 181%
10 50 1 2 85.25 6% 116%
a4 141.44 7% 135%
238.49 7% 153%
16 418.89 8% 207%
10 50 1.2 98.08 4% 143%
160.38 7% 175%
272.96 8% 257%
16 483.96 8% 240%
10 | 100 1 109.44 6% 254%
170.49 9% 363%
282.89 7% 462%
16 476.98 7% 552%
10 | 100 | 1.2 2 121.98 6% 328%
a4 196.16 7% 432%
320.76 8% 567%
16 545.93 9% 631%
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As the experimental results, our heuristic extremely outperformed all
policies proposed by Ozkaya [22] when higher number of retailers and higher target
service level together with the increase of major ordering costs, unit holding costs,
and demand rates. However, the results seemed unusual because the cost gap was
very huge. We inquired whether some errors arise on either our heuristic or Ozkaya
[22]’s. Hence, Table V-8 and IV-10 were carried out on the cross-docking system and
the results proved that the errors arise on Ozkaya [22]’s work. Ozkaya [22]’s result
provided the total system-wide cost less than lower bound in the situation that our
heuristic was beaten. According to the error of Ozkaya [22]’s cost model along with
insufficient information, it was not worth comparing our heuristic’s performance with
Ozkaya [22]’s by quantitative analysis. Then, we will compare them by qualitative
analysis instead in the next paragraph. However, specifically comparing our heuristic’s
result with lower bound, the SIM/S/NZ heuristic provided less cost gap when higher
demand rate and/or higher major ordering costs. The reason is that such situations
create more opportunity of special replenishment, so the SIM/S/NZ heuristic can

share the major ordering costs as much as lower bound obtains.

We make a qualitative comparison between the SIM/S/NZ heuristic
and Ozkaya [22]’s approach by considering their search algorithms. Ozkaya [22]’s
approach uses a combination of the iterative and the exhaustive search procedures.

His approach sets search ranges for each variable s,,S,,s;,S;. It seems that our

heuristic is better than Ozkaya [22]’s because

1) Our heuristic contains smaller search ranges than Ozkaya [22]’s.

For example, search range for S, - denote that SQ” and sg’ are the warehouse’s

order-up-to level for the SIM/S/NZ heuristic and for Ozkaya [22]’s approach,
respectively. Under a scenario at A = 10, L,= 1, TSL, = 0.90, and n = 2, search

range for SQ” has 39 values obtained by equation (4.10) and (4.11) whereas search

range for Sg° has 200 values obtained by 10[%2&)

i=1

2) Since Ozkaya [22]’s approach uses the exhaustive search
procedures. It means that all values over search ranges need to be calculated. Thus,
a lot of combinations have to be considered. On the contrary, our search algorithm
applies the golden section search to reduce number of search points. Therefore, our
heuristic with smaller search ranges and the golden section search can reduce the

computational time from Ozkaya [22]’s approach. According to the exhaustive search
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used by Ozkaya [22], it should bring to the better solution which provides lower
total system-wide cost than our heuristic. This statement is not always correct
because of iterative procedure. There is a possibility that the solution is unable to

the optimal solution.

According to this comparative analysis, the SIM/S/NZ heuristic appears
to be better than the existing research. It can save the computational time by
reducing number of search space. However, the best solutions obtained from the

SIM/S/NZ heuristic and Ozkaya [22] cannot be guaranteed as the optimal solutions.

4.6 Discussion

For this phase, the SIM/S/NZ Heuristic extends search algorithm from the
EOQ-Z heuristic. Decomposition technique, iterative procedure, and golden section
search are utilized. We added two procedures to determine the retailers’ must-order
levels s; and the warehouse’s must-order level S,. Since all values of S
interrelate with S, , searching the best values of S; and S, together is quite hard.
We set a search range for S, , and then varied S, until the best value of S, has
been found. Under a fixed value of S;, the best values of S, are determined. This

algorithm can simplify the complication from interrelationship between s; and S, .

In deterministic model, the major ordering cost and the holding cost are
traded off to obtain economical order quantity as a classic EOQ. Thus, we considered
A, =S, —S, to represent an order quantity for location K including the warehouse
and the retailers; the warehouse A, =S;—s, and the retailers A, =S, —s,,1eN.
We found the characteristic of A, by trading off between the holding cost and the
ordering cost. The total system-wide cost performs as a curve containing the
minimum point relative to the value of A, as shown in Fig.IV-8. Interestingly, even
though the curves are not unimodal continuous function because of discrete
numbers and the must-order levels, the golden section search with iterative
procedure can be applied to determine the appropriate value of A, . The reason is
that the cost difference between two connected points is small enough to lead the
successive search ranges from the golden section search meet the minimum point.
Similarly, we also used the golden section search for determining the best values of

S,- Based on the same reason of small cost difference between two connected
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points, the best values of s, can be reached. According to the experimental results,

it is fascinating to apply the golden section search into our system in order to

shorten the computational time with the appropriate inventory system-wide cost.

For determining the retailers” must-order level s;, most previous researches
used the exhaustive search. Certainly, it is not worth using this search for high value
of s,. Therefore, we combined a half-interval search to the exhaustive search (also
called sequential search in the dissertation). We used the half-interval search to find

an acceptable search range of s; which provides the fill rate FR; to be close to the
target service level TSL; (by %tolerance). Then, we applied the sequential search to
determine the best value of s;. According to this mixed approach, it can reduce the

successive search range of s,, thus it can reduce the computational time as well.

The SIM/S/NZ heuristic assumes the fixed retailer’s can-order level at

C, =S, —1 as the rationale that the retailers’ major ordering cost can be most shared

if all retailers are included in an order to minimize the total system-wide cost.
Then, the holding cost is traded off with the shared ordering cost in order to balance

order frequency and holding stock. The fixed retailer’s can-order level at ¢, =S, -1

can create the maximum opportunity of joint replenishment for all retailers. From
Phase I, this assumption performs well for non-zero lead time. According to our
experiments on identical retailers as shown in Table V-1, we found that service fill

rate FR affected number of retailers included in an order. Most of the best-known
solutions occur at ¢; # S, —1. The decrease of ¢; creates a possibility of reducing
FR. since the average remnant inventory level decreases. The average remnant

inventory level is the stock left when normal replenishment occurs. It implies that
the average reorder level occurs at the average remnant inventory level [46].
Therefore, the decrease of the average remnant inventory level increases the

opportunity of stock-out influencing to reduce FR,. According to the effect on total
system-wide cost, the best-known solution chooses to reduce ¢; to obtain the

smallest difference between FR, and TSL, (FR >TSL) providing lower total

51 1S Very small

system-wide cost. However, the cost gap between TC" and TC

(0.15% on average) where TC"is the optimal average total system-wide cost and

TC is the minimum average total system-wide cost of the solution at ¢, = S, - 1.

(O

The reason is that difference between FR" and FR:S, _y is very small (0.05% on
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average) where FR" is the average fill rate of the best-known solution and FR:S_ )

is the average fill rate of the solution at ¢, = §; - 1. In conclusion, the fixed retailer’s
can-order level at ¢, =S, -1 is applicable. As the experimental results in various

scenarios, the SIM/S/NZ heuristic provided the best solutions at a small average cost

gap comparing to the best-known solution.

4.7 Conclusion

Phase II studied an extension of the basic model from the first phase by
considering non-zero lead time and target service level as found in general industry.
Research remained taking single item into consideration to study an interaction
among retailers without joint ordering decision at the warehouse echelon. The
objective of this phase was to study the can-order policy characteristics with the
conditional relevant factors, as well as to develop the heuristic approach consistent

with such characteristics provided.

The objective function of the problem was to minimize the total system-wide
cost per unit time. The total system-wide cost per unit time could be a function of

five decision variables: C;,S;,S;,S,,S,. This problem had more complicated than the

problem in Phase | by the reason that was a constraint problem with a service
constraint. We provided insight of the can-order policy through preliminary analysis.

Like the first phase, the fixed can-order level ¢, =S, -1 was applicable (i.e. all

retailers were replenished together in an order). The relationship between decision
variables could be analyzed. We found the curve patterns of the total system-wide
cost relative to decision variables. It was interesting to apply one-dimensional search
with them.

Consequently, we developed the SIM/S/NZ heuristic with an extension of the
EOQ-Z heuristic’s search algorithm. The SIM/S/NZ heuristic used decomposition
technique, iterative procedure, and one-dimensional search called golden section
search. We also added two procedures to determine the retailers’ must-order levels
and the warehouse’s must-order level. In comparison with the best-known solution
obtained from computer simulation, the SIM/S/NZ heuristic provided an average cost
gap at 1.01% on average. The good performance of this heuristic was when high
hy,/h ratio and high TSL,. Additionally, the SIM/S/NZ heuristic spent the
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computational time less than computer simulation more than 177 times on average.
We also provided comparative analysis with Ozkaya [22]. We used the golden section
search with smaller search range, whereas Ozkaya [22] used the exhaustive search.
Hence, the SIM/S/NZ heuristic should be better than Ozkaya [22]’s approach.

Advantageously, the SIM/S/NZ gave small cost gap as comparing to the best-
known solution obtained from computer simulation. The SIM/S/NZ heuristic also
provided less computational time than computer simulation and the existing
approach. We proposed the systematic approach to reduce search space by
synchronizing with the inventory policy characteristics. Hence, the SIM/S/NZ heuristic
is interesting for the can-order policy setting under OWNR with single-item and non-

zero lead time consideration.



CHAPTER V
THE CAN-ORDER POLICY FOR MULTI-ITEM TWO-ECHELON INVENTORY
SYSTEM WITH NON-ZERO LEAD TIME

According to Phase | and Phase Il, we obtained the single-item two-echelon
inventory models and heuristic approaches to determine the appropriate inventory
policy setting. Later, we extend the single-item model into the multi-item model in
order to consider coordinated ordering decisions at both echelons. So, this chapter
demonstrates Phase III’'s system which comprises multiple items on OWNR. The
warehouse’s items are jointly replenished. However, the structure of the ordering
cost is different from previous chapters since we consider the ordering cost following
location-item ij instead of only location i. To determine the inventory policy
parameters for controlling multiple items, we propose three models of joint
replenishment described in the section of problem description. Throughout this
chapter, we present such three models comparatively. The aim of this chapter is to
analyze the proposed models and identify the relationship of such models and the

significant relevant factors.

5.1 Problem Description

The system considers multiple commodities on a warehouse and multiple
retailers. Let index i represents location i where i= 0 for the warehouse and 1€ N,
N = {1, 2, .., n} for the retailers. Considering multi-item inventory system, such
system comprises an item set with m items. Let index j denote item | in the
system, so that je M, M = {1, 2, .., m}. Thus, the whole system is composed of
multiple location-items indexed by ij representing item | at location i. Totally, the
system has (N+1)xm location-items. The customer demands are identical Poisson
distributed with rate A

ij°

In general, the system employs the can-order (S;,C;,S;) policy for ordering
process at both echelons. At retailer echelon, the can-order (s;,C;,S;) policy is

applied into the system by coordinated ordering decision among retailer-items. When
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the inventory position of any retailer-item reaches its must-order level s, an order is
triggered. Then, other retailer-items in the system can also be included by this order

if their inventory position is at or below its can-order level C;. All the involved

retailer-items’ inventories are fulfilled from the warehouse to their own order-up-to

level §;. Similarly, the warehouse employs the can-order (S jy,C,jys S(0.jy) POlICY.

Coordinated ordering decision occurs when any warehouse-item triggers an order by

the must-order level S ;, and when other warehouse-items’ inventory position is at
or below its can-order level Cg ;. All the involved warehouse-items’ inventories are
fulfilled from the outside supplier to its order-up-to level S, ;. For this phase, we

assume that for each echelon all location-items are replenished together in an order.
Then, we can fix the can-order level at ¢ =S —1 to create the maximum opportunity
of joint replenishment for all location-items. By the fixed can-order level, we can

focus on determining other decision variables (s;;, Sy, S0 )1 S0, jy) -

Whenever an order is triggered at an echelon, such echelon needs to wait for
some time that order arrives called “lead time”. In the problem, we assume

constant lead time for each location-item (Lij ). For the retailer echelon, the total
lead time (TL;, ieN jeM) can be longer than L; depending on the warehouse’s

inventories. Meanwhile, the warehouse’s total lead time (Tl ;) is equal to L,

due to ample stock of the outside supplier. Lead time enable the system to face
backorder units. Then, service level constraint is utilized to serve end customers with
an acceptable service level. We measure such service level in term of “Fill Rate”
(FR) which is a quantity-oriented performance measure describing the proportion of
total demand within a reference period delivered without delay from stock on hand.
FR is measured only at retailer echelon since in a multi-echelon system the
backorder at warehouse echelon has only a secondary effect on service. For this
problem, retailer echelon must serve the end customer following a service constraint

defined as target service level (TSLij ,ieN).

We assume the system with no-splitting order, when the warehouse has
insufficient inventory on-hand for dispatching all required quantities in an order to
retailer echelon at once, the retailers have to wait for the next warehouse’s order is
arrived. It implies that the dispatching for that order is occurred if and only if there is
sufficient inventory on-hand for all required quantities. Normally, the warehouse

serve an order follows the First-In First-Out System (FIFO) except if there is an order
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issued to the warehouse and inventory on-hand is enough for this order we allow
the warehouse to deliver it as special case to reduce the opportunity of stock-out at

the retailers. This creates higher service level than FIFO.

The system considers all inventory costs at both echelons. We concern
different cost structure as comparing to Phase | and I, since the major and minor
ordering costs are identified following the location-item ij. In general, the inventory
costs are composed of 1) The holding costs at the warehouse and all retailers, 2) The
major ordering costs for warehouse echelon and retailer echelon, and 3) The minor
ordering costs for warehouse echelon and retailer echelon. The structure of cost

component is illustrated as Fig.V-1.

As usual, the warehouse’s cost structure comprises 1) The holding cost
occurring for each item, 2) The major ordering cost which is a fixed cost occurring
once any item triggers an order, and 3) the minor ordering cost which is an additional
cost of item jwhen it is included in the order. So, multiple items at the warehouse

enable the system to share its major ordering cost by coordinated ordering decision.

Unlike Phase | and II, the retailer echelon has to concern two types of the
major ordering cost and the minor ordering cost which is charged at the retailer-item
instead of the retailer as in the single-item model. To define each type of the major
ordering cost, the major ordering cost Type | is the fixed ordering cost occurring once
any retailer-item in the system triggers an order. So, the major ordering cost Type | is
a typical of fixed ordering cost mentioned in Phase | and Phase Il. All retailer-items
can be shared the major ordering cost Type | together. Meanwhile, the major
ordering cost Type Il is an additional fixed ordering cost when retailer i is included
by this order (e.g. transportation cost or additional charge when visiting retailer i).
Even though it looks like the minor ordering cost in previous phases, but it can be
shared among items of such retailer. Hence, we assume it as a type of the major
ordering cost according to the main character of the fixed ordering cost. However, we
can manage the major ordering cost Type Il in different ways following the joint
replenishment model proposed in the next section. The minor ordering cost at the
retailers is an additional cost of retailer-item ij when it is included in the order. This
additional cost is considered like other literatures relating to the multi-item single-

location inventory system.
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Warehouse’s
Warehouse Echelon Inventory Costs

The holding cost The ordering cost
[

For each item

Major ordering cost Minor ordering cost
Fixed ordering cost for Additional ordering cost
replenishing any item Jfor replenishing item j
Retailers’
Retailer Echelon Inventory Costs
[ |
The holding cost The ordering cost

For each retailer-item ‘ ‘

Major ordering cost Minor ordering cost

‘ Additional cost for replenishing

retailer-item ij

Major ordering cost Major ordering cost
Type 1 Type 11
Fixed ordering cost for replenishing Additional fixed ordering cost for
any retailer-item replenishing any item of retailer i

Figure V-1 Cost structure for Phase |l

In consequence, the holding cost occurs at each location-item having physical

stock. The total holding cost over the time period at location-item ij (HC;;) can be
determined from the unit holding cost (h;) and the accumulated inventory on-hand
over the time period (INV;). The major ordering cost Type | and Type Il can be

generalized into a term of the major ordering cost (More detail of generalization will
be explained in Section 5.1.4). The total major ordering cost over the time period at

)
multiplied by the number of dispatch cycle (ND, ). Similarly, the total major ordering

retailer echelon (MJ,) is the retailers’ major ordering cost per an order (K,
cost over the time period at warehouse echelon (MJ,,) is the multiplication of the
warehouse’ major ordering cost per an order (K, ) and the number of replenishment

cycle (NR,). At the retailer echelon, the total minor ordering cost over the time
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period (MN,) is accumulated from the involved retailer-items in each order
multiplied by its minor ordering cost of retailer-item (x;, ) over the time period. In the

same way, at the warehouse the total minor ordering cost over the time period

(MN,,) is collected from the involved warehouse-items in each order multiplied by
its minor ordering cost of warehouse-item (x4, ;,) over the time period. Hence, we

have to consolidate all relevant costs to determine the appropriate inventory policy

setting under the total system-wide cost minimization.

The notations and problem formulation are demonstrated as follows:

n = Number of retailers in the system

m = Number of items in the system

i = Index of the location 1 = {1,2, ...,Il}; the warehouse i = 0 and the
retailer i € N

j = Index of the item jeM

T = The time period considered in the problem (time units)

= The must-order level at location-item ij (units)

C; = The can-order level at location-item ij (units); assign C; =S; -1

S; = The order-up-to level at location-item ij (units)

4; = Demand rate of retailer-item ij (units/time unit)

h; = The unit holding cost per unit time at location-item ij ($/unit - time unit)
K, = The warehouse’s major ordering cost per a replenishment cycle ($/time)
K, = The retailers’ major ordering cost per a dispatch cycle ($/time)

x; = The minor ordering cost at location-item ij ($)

L; = Lead time for location-item ij (time unit)

FR; = Fill rate of retailer-item ij

TSL, = Target service level of retailer-item ij

TC(s;.c;,S;) = The total system-wide cost per unit time ($/time unit)

HC. = The total holding cost of location-item ij over the time T units ($)
MJ, = The total major ordering cost at retailer echelon over the time T units ($)
MN_ = The total minor ordering cost at retailer echelon over the time T units ($)

MJ = The total major ordering cost at warehouse echelon over the time
T units ($)
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INV,

ND,
NR,

(ij,x)

0,

(ij,y)
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The total minor ordering cost at warehouse echelon over the time
T units ($)

= The accumulated inventory on-hand over time period at location-item ij
(unit - time unit)

= The accumulated backorder unit over time period at location-item ij
(units)

The total number of dispatch cycle over the time T units (times)

The total number of replenishment cycle over the time T units (times)

= An indicator which equals 1 when retailer-item ij is included in the

dispatch cycle x and equals 0 otherwise

= An indicator which equals 1 when warehouse-item (0, j) is included in

the replenishment cycle y and equals 0 otherwise

Objective function:

zzn:Hcij +(MJ, + MN, )+(MJ,, + MN,,)

Minimize TC(s;,c;,S;) =1 - (5.1)
where HC, =h; x INV, (5.2)
MJ, =K, x ND, (5.3)

ND, n
MN, =D > 540k (5.4)

x=1 jeM i=1

MJ,, = K, x NR, (5.5)
ND,
MN, = > S0inko. (5.6)
y=1l jeM
BO.
Constraint FR, =1-— (5.7)
AT

FR, >TSL, (5.8)
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The interesting issue is how to coordinate multiple items and multiple
retailers in order to minimize the total system-wide cost, since the ordering cost
structure has been changed and it is very significant to decide how to manage our
considered system. For example questions according to the new ordering cost
structure,

- Is it worth managing all retailer-items together due to a lot of decision
variables concerned in the system?

- In case of large value of the major ordering cost Type II, do we prefer to
manage each retailer individually and coordinate only multiple items?

- In case of large value of the minor ordering cost of retailer-item ij, do
we prefer to manage each item individually and coordinate only multiple
retailers?

These questions issued from the new ordering cost structure lead us to
develop three joint replenishment models. We aim at analyzing the proposed
models and identifying the relationship of such models and the significant relevant
factors. Ultimately, we expect to clarify which joint replenishment model is
preferable to any situation. Consequently, the proposed models are demonstrated

as follows:

5.1.1 Model 1 - Joint replenishment with item-based model

Outside supplier
The Considered sysvh_g

Warehouse-Items
AWarehouse 15t Echelon :

Warehouse echelon

2nd Echelon:
Retailer echelon

Retailer ”/

—A :
Re{ailer-ltems d 1?

N

|

1 Major ordering costs <J
|
|
1

> Minor ordering costs

Figure V-2 Model 1 - Joint replenishment with item-based model
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This model considers each retailer individually and coordinates only
multiple items under such retailer. It appears to a serial system as one warehouse,
one retailer, and multiple items. At retailer echelon, the retailers’ major ordering cost
can be shared among multiple items. In the same way, the warehouse’s major
ordering cost can be also shared among multiple items. According to this model, we
can determine the inventory policy parameters by considering only individual
retailer, and the warehouse’s inventory is individually stocked for that retailer. Thus,
sum of n serial systems is the total system-wide cost. The following expressions
demonstrate the model formulation to determine the inventory policy setting.
Equation (5.2) - (5.8) can be used for the Equation (5.9).

For retailer i,

Objective function:

Minimize
D> (HC;, +HC;)+(MJ, + MN, )+(MJ, + MN,)
TG, (Sij  Cij» Sij) - (5.9)
T
The total system-wide cost is then given by
TC(s;.C;-S5) = 2 TCi(s,¢;. ;) (5.10)

ieN

5.1.2 Model 2 - Joint replenishment with retailer-based model

Outside supplier
The Considered sysﬁg

Warehouse-Igl —
Ware

2nd Echelon:
Retailer echelon

15t Echelon :
Warehouse echelon

house

4

ctailer-1tem

Major ordering costs <—§
-> Minor ordering costs

Figure V-3 Model 2 - Joint replenishment with retailer-based model
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The model considers each item individually and coordinates only
multiple retailers. It has the same structure as single-item two-echelon inventory
system demonstrated in Phase Il. Therefore, sum of m single-item systems is the
total system-wide cost. The model is formulated to determine the inventory policy

setting as follows. Equation (5.2) — (5.8) can be used for the Equation (5.11).

For item |,
Objective function:
Zn: HC; +(MJ, + MN, )+ (MJ,, + MN,, )

Minimize TC;(s;,C;,S;) == T (5.11)

The total system-wide cost is then given by

TC(s;. €, S;) = D_TC, (5.6, S;) (5.12)

jeM
5.1.3 Model 3 - Completely joint replenishment model

Outside @>
The Considered Sys@

Warehouse-Items

AWarehouse

15t Echelon :
Warehouse echelon
27 Echelon:
Retailer echelon

A

Retailer-Items

Major ordering costs <—§a

Minor ordering costs mmm————-

Figure V-4 Model 3 — Completely joint replenishment model

The model includes all location-items to determine the inventory
policy setting. So, the retailers’ major ordering cost can be shared among multiple

retailer-items, as well as the warehouse’ major ordering cost can also be shared
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among multiple warehouse-items. Thus, we can formulate the model to determine
the inventory policy setting as Equation (5.13).

Objective function:

Zzn:Hcij +(MJ, + MN, )+(MJ,, + MN,,)

Minimize TC(s;,c;, S;) =12 T (5.13)

5.1.4 Generalization of the major ordering cost at the retailers

Due to the new ordering cost structure, we need to make some
assumptions to generalize the major ordering cost Type | and Type Il for each joint

replenishment model into a term of the major ordering cost, K,. The generalization

is used for integrating the major ordering cost Type | and Type Il into our models. The

following table summarizes the value of K, for each model. Given that major order

Typell
Ki

cost Type | and Type Il are represented by K™ and , respectively.

Table V-1: Generalization of the ordering cost structure

Model K,
T KTypeI = KiTypeII
2 K TPel K Topell

For Model 1, it is not complicated to set K, since only single retailer

is considered in the optimization model. Thus, the major order cost Type | and Type

Il can be combined to set K = K™ 4+ K

Differently, Model 2 and Model 3 coordinate all retailers into the
optimization model. Even though in the reality there is a possibility that not every
retailer is included in an order, we assume that in ordering decision all retailers are
considered to jointly replenish once an order is triggered. Therefore, the major order
cost Type | and Type Il can be transformed into K = K™ +%" K

ieN
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To summarize this section, three joint replenishment models are proposed
for managing multiple items and multiple retailers in OWNR. All proposed models
will be analyzed to identify the relationship of such models and the significant
relevant factors. This enables us to clarify which joint replenishment model is
preferable to any situation. Definitely, before obtaining any results we will address

our research methodology utilized throughout this phase in the next section.

5.2 Research Methodology

Like previous chapters, we use computer simulation to represent the
inventory process of the system containing multiple items and multiple retailers
coordinated replenishment. Due to the extremely complicated system, it is
herculean task to find out the best-known solution from computer simulation.
However, we integrate the simulation cost model obtained from computer
simulation into our heuristic approach to determine the appropriate inventory policy
setting. Another methodology is determination of lower/upper bound for Model 1
and Model 2. Since such two models are decomposed into smaller parts (i.e. Model
1 - n serial systems implying there are n-warehouse for all retailers, and Model 2 -
m single-item systems implying there are m-warehouse for all items), meanwhile
our computer simulation is based on single warehouse. Therefore, we need to figure
out lower bound and upper bound to represent a range of the total system-wide

cost instead of any point value.

5.2.1 Computer simulation

The computer algorithm representing the inventory process is
illustrated in Fig.V-5. The inputs for simulating the system can be divided into three
groups: decision variables, relevant factors, and experiment setting. We use the same
experiment setting as described in Chapter Il (section 3.2.1), and then only two

groups are explained as follows:
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Input parameters

Relevant Factors:
7 = Number of retailers
7 = Number of items

Ay = Demand rate of retailer-item 7

hj = Unit holding cost at location-item 7/
K, = Warchouse’s major ordering cost
K, = Retailers’ major ordering cost

«; = Minor ordering cost at
location-item 7/

L = Lead time for location-item 7/

TSL; = Targer service level of
retailer-item 7/

Decision variables:
Warehouse-Item (0,7,
5@0,) = [min,max]

o) = [min,max]
S0, = [min,max]
Retailer-Item 7/

5 = [min,max]

3 = [min,max]
S = |[min,max|

Note that each decision variable can

be inputted as a given value by
letting min = max

Experiment setting:

1;(0) = Initial inventory level of
location-item 77 ; I;(0) = 0

T = Time period; T = 10,000

Seed number = [0, 99]

Output section

A report of inventory costs and

transactions

Computer algorithm

START

Set Dispatch cycle x = 1
Replenishment cycle y = 1

For location-item 7j,

Inventory on-hand (OH;) = I;0)
Inventory position (IP;) = I;0)
Net inventory level (NET;) = I;(0)

For each retailer-item 7, \L

Generate inter-arrival time of demands () and sort
all demands by arrival time

L

@ =
Yes

Check which kind of events is arrived:

warehouse echelon

Event(A) Demand arrival at retailer echelon
Event(B) Arrival of dispatch order to retailer echelon ]
Event(C) Artival of replenishment order to

I [(2) NET;= NET;+ OR;

J—/\—’\% (1) OHy,)= OHp,+ ORp,

Event(B)

For retailer-item 7 included in this
order, calculate
(1) OH; = OHj;+ On Order (ORy)

Event(C)

For the warehouse, calculate

(2) NETy,) = NETq,+ ORp,

Event(A) ’—1

— Calculate inventory costs

L

For retailer-item 7/ who own
this demand, calculate

(1) IP; = IP; - d;

(2) OH;;= min(OHj- dj, 0)
(3) NET; = NET;- d;

I
If OH; > 0 counted for
INV7, otherwise not
counted
If NET;; < 0 counted for
BO;, otherwise not counted

Py < g7

N

For the warehouse
N 2|

Calculate

(1) IP,) = IPp,;- TDQ;

2) OHyy=

min(OH,)- TDQ,, 0)

(3) NETp, = NETp,- TDQ;
2

1f OHyp,) > 0 counted for

INV ), otherwise not
counted

1f NETp,) < 0 counted for
BOy,), otherwise not counted

Record ordering time and

Calculate total

system-wide
cost

assignx = x+ 1
Order Quantity (0Q;)
- .
=95 — 1

Set IP;= S

END

No

IPo,) < 50 ?

Record ordeting time and
set y=y+1
0Quy = Sy — 1P
IPo)= Sw,

.

Record arrival time of
replenishment order

Collect total dispatch
1 quantity for each item

(I'bY)

Identification of artival time of dispatch ordcr‘(AR)|uscd information from the warehouse]

Ar = ordering time Yes
+ Lo,y + L
T

-

Record Ar

No
Ar = ordering time + L;

Ag = latest arrival of
replenishment order at
warehouse + L

[

NoO
Yes

T
Special order

Ar = ordering time + L
and rearranging Ax of
previous orders according to
this special order

Figure V-5 The computer algorithm for simulation of Phase |ll
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1) Decision variables (C;,S;,S;;) where the warehouse i = 0 and the
retailer 1 € N: Each variable is inputted either as a range of minimum and maximum
values or a point value by setting identical minimum and maximum values. A

S.

combination of (C;,$;,

i+ Sij»S5) is a solution providing a value of the total system-wide
cost and its transaction. The transaction includes, for example, number of dispatch
cycles, number of replenishment cycles, and fill rate at each location.

2) Relevant factors: we consider five basic factors as previous phase,
i.e. cost parameters, demand rates, number of retailers, lead time and target service
level. We set a combination of relevant factors to a scenario containing different
solutions. Specifically, cost parameters are different from prior chapters as we
mentioned the new ordering cost structure. However, in computer simulation we

only input the major ordering cost K, after generalizing the major ordering cost Type
I and Type Il.

For the output section, we obtain a report of the inventory costs and
its transaction if we input decision variables as a range. On another hand, we get the

total system-wide cost for a combination of (Cij,Sij,Sij) which is a feasible solution

under a given scenario. Then, we use the heuristic approach to determine the best

solution among these feasible solutions.

5.2.2 Determination of lower/upper bound for Model 1 and Model 2

Model 1 and Model 2 are decomposed into N serial systems and m
single-item systems respectively. It implies that Model 1 has n-warehouse for all
retailers and Model 2 has m-warehouse for all items, but our computer simulation is
based on only one warehouse. Then, we need to figure out lower bound and upper
bound to represent a range of the total system-wide cost instead of any point value.
This range is used to compare with the total system-wide cost obtained from Model

3 50 as to measure each model’s performance.

The warehouse’s major ordering cost K, is necessary to be
transformed to a decomposed value of K, . Let K, denote the warehouse’s major
ordering cost for determining lower bound and KW denote the warehouse’s major
ordering cost for determining upper bound. Then, we replace K, with either K, or
Kwin Equation (5.5). The largest cost-saving of the warehouse’s major ordering cost

is when all items at the warehouse are jointly replenished. So, we identify such
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situation to a lower bound case. On the contrary, when each item is separately
replenished bring the non-shared warehouse’s major ordering cost to an upper
bound case. The above concept assumes that the warehouse’s minor ordering cost
is small as comparing to the warehouse’s major ordering cost, Table V-2 summarizes

the calculation of lower and upper bounds for such two models.

Table V-2: The calculation of lower/upper bound for Model 1 and Model 2

Model Lower Bound Upper Bound
1 Ko =K, /n K, =K,
2 KW — KW / m lZW = KW

5.3 Heuristic IV - Joint Replenishment Model for Multiple Location-ltems and

Non-Zero Lead Time (SIM/M/NZ)

To develop this phase’s heuristic called SIM/M/NZ, we use the same concept
as the SIM/S/NZ heuristic mentioned in the Phase Il for the single-item two-echelon
inventory system. Decomposition technique, iterative procedure and one-
dimensional search are employed into the SIM/M/NZ heuristic. The SIM/S/NZ
heuristic is used as a part of the proposed SIM/M/NZ heuristic for determining
decision variables of each item j. We utilize the simulation cost model to reduce the
cost error from an approximation. The simulation cost model follows the algorithm
illustrated in Fig.V-5. Then, the total system-wide cost and fill rate from the
simulation cost model are used in the heuristic algorithm. However, there are some
equations of approximate mathematical model utilized to find out the initial values
of related decision variables. They have to be inputted in the simulation cost model

to initiate the first solution for iterative procedure.

With regard to the single-item model dividing two ranges for determining the

value of S;, in this phase we use the same two ranges applied for all items. It

means that we consider all items controlled in either Range | or Range, for example,
we determine the inventory policy setting for item 1 and item 2 in case of the cross-
docking system (Range 1) and also determine the setting for both items in case of

which the warehouse is allowed to hold stock (Range Il). We do not concern the
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combination of Range | and Range Il, such as Range | for item 1 and Range Il for item
2 and vice versa.

Additionally, we set the can-order level for all location-items equal to
C;= S;- 1. Then, we can determine only TC(s;,S;) on given C;=S; - 1. We use the
same concept as the SIM/S/NZ heuristic to determine A; =3S; —s; for location-item
ij, and decompose multiple location-items into single location-item to recurrently
determine the local minimum TC(s;,S;) at the given A, ;. We also apply the

concept of the golden section search to determine the (near) minimum value of A;
and S ;. Hence, the SIM/M/NZ heuristic is outlined in the following algorithm
illustrated in Fig.V-6.

The SIM/M/NZ heuristic still use the same structure as the single-item
heuristic, but we need to add some steps for this multi-item heuristic: Step 3.0 and
Step 3.5 showed in Fig.V-6. Step 3.0 defines item | concerned in the loop number
AL, then the given item | is processed according to Step 3.1 - 3.4 as the single-
item heuristic (already described in Section 4.4.2). Step 3.0 is repeated until all items
have been done. Step 3.5 is a conditional step of termination. The iterative process
terminates as soon as the minimum long-run average total system-wide cost per unit

time of Range Il, TC_;,r,(S;,S;), from the current loop AL does not decrease from

the previous loop AL—1 by more than &£%. Meanwhile, Procedure 1 — 4 are the

same as the single-item heuristic on a given item j.

Model 1 applies the SIM/M/NZ heuristic for a given retailer i . The
best solution is determined for such retailer, and then the heuristic is repeated until
all retailers have been done. Similarly, Model 2 utilizes the SIM/M/NZ heuiristic for a
given item J. We find out the best solution is found for such item, and repeat the
heuristic until all items have been done. Alternatively, Model 2 is able to employ the
SIM/S/NZ heuristic from the single-item model. Model 3 uses the SIM/M/NZ heuristic
for full combination of retailer-item ij . According to the aim of this chapter which is
to analyze the proposed models and identify the relationship of such models and
the significant relevant factors, we continue to the next section. Various experiments

are carried out and the analysis of the results is demonstrated herein.
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Main algorithm

Algorithm-Procedure

relationship
Step 1: M
Determine initial Solution (4;) Procedure 1
Step 2
Output:
A Step 2.1:
3 : - Caleulate TChiuri(553) . Procedure 2
Step 2: by setting s0,=-1, S,y =0 | Trocedure
’ ;|> - Set TCinr1(5Si) = TCniriatrr (5355
Determine the local optimal © ®i(555%) ik 55:51)
solution for range Ry ‘
S - . Procedure 3
tep 2.2: Iterative procedure for determining A
the local optimal solution (s;;5) - o by sklpp'mg_ ©J)
Output: determination
TCoinki (5i557)
A Step 3

Step 3: +

Determine the local optimal :“> . . Step 3.0:
- Start atitem j = 0 and set AL =1

- Setitem ;j=;+ 1 and follow step 3.1 — 3.4

- Repeat until all items have been done

Output: v

TCoima(sS) | Step 3.1: Set initial 50, « Procedure 4
A

solution for range R

v
Step 4: Step 3.2:
Select rbe best solution at - (:alculffte T(:mffjﬂ/Ri(-ff/in/) ) - Procedure 2
TCoin(5355) = - Set TCinr2(5585) = TCiniiara(5S)
min{ TCinr1(5555), TCrink2(5i555)} v

|

Step 3.3: Iterative procedure for determining

the local optimal solution (s,.57) il Procedure 3
:
Step 3.4:
- Search next 5, and step back to step 3.3
- Update TC,ir2(5553) on given sq,if the better et Procedure 4

solution has been found
- Go back to step 3.0 for the next / if the best 50,
has been found

v

Step 3.5:
- Update TC,iro(5555) for given AL =1
- Set AL = AL + 1, go back to step 3.0, and
restart at item 7 = 0
- Stop if —
TCinra(sj55 ) of loop AL and TCinro(55.55) of
loop AL - 1 does not decrease
by more than %
Otherwise go back to step 3.0 for next AL

STC = Simulated total system-wide cost per unit time obtained from the simulation cost model
SFR = Simulated fill rate obtained from the simulation cost model

Figure V-6 The algorithm of the heuristic approach — SIM/M/NZ

5.4 Experimental Results

The SIM/S/NZ heuristic was experimented on various scenarios shown in
Table V-3 (35 scenarios). The experiments focused on identical items and identical

retailers, thus an identical inventory policy is employed to all identical retailer-item
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Ij as well as at the warehouse an identical inventory policy is used for all identical

item j.

We tested each scenario on five replications with different random seed
numbers. Then, for each best solution we determined the average total system-wide
cost by additional 10 random seed numbers. We defined “the minimum solution”
provided by the best solution with the minimum of average total system-wide cost.
For Model 1 and Model 2, we first determined the lower bound. If the minimum of
average total system-wide costs obtained from these lower bounds are less than the
minimum of average total system-wide costs obtained from Model 3, the upper
bound will be determined later. The experimental results are demonstrated in Table
V-4 — Table V-6.

Table V-3: Test problems for the multi-item one-warehouse n-retailer inventory

system with identical items and identical retailers

Fixed identical parameters for retailer echelon /llj =1, TSLij = 0.95, hij =10
Fixed identical parameters for warehouse echelon h(o, ns$

Fixed identical parameters for both echelons Lij =1

. Varied Parameters
Sczr:rm K, K Tl KiType” kij Combination of parameter
(ieN) | (ieN) N and M
1-5 100 50 5 0
6-10 100 50 5 5 L m
11-15 100 50 5 25 2 2
16-20 100 50 500 0 2 8
21-25 100 50 500 25 u 4
26-30 100 100 5 8 2
31-35 500 50 5 8 8
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According to the scenario 1 — 15, the result is showed in Table V-6. We found
that Model 3 outperformed other models in almost all scenarios except some
scenarios that Model 1 seemed to be more interesting (i.e. Model 3 provides the
minimum of average total system-wide cost in the bounds of Model 1). Model 1 is
interesting in any scenario with low number of retailers and in the scenario of high
minor ordering cost, high number of items, and higsh number of retailers. Due to low
number of retailers, Model 3 appears to share the fixed ordering cost among retailers
indifferent from Model 1. Furthermore, in case of high minor ordering cost, high
number of items and high number of retailers the total ordering cost including the
major and minor ordering cost seems not different. Even though Model 3 can save
the fixed ordering cost, it can increase the minor ordering cost as well. So, all

components have to be traded off.

We then analyzed the scenario 16 - 25 with higher the retailers’ major

Typell
Ki

ordering cost Type |l . Model 1 is preferable when high minor ordering cost. It

can provide the lower average total system-wide costs than other models, since
coordinated ordering decision among retailer-items of Model 3 produces larger total

minor ordering cost MN, . Additionally, we tested on the scenario 26 - 30 with
higher retailers’ major ordering cost Type I, K™ and on the scenario 31 — 35 with
higher warehouse’s major ordering cost K, . The results showed that Model 3

outperforms the others. Mostly, the minimum solutions allow the warehouse to hold

stock for all retailer-item:s.

An interesting issue is which scenario Model 2 is suitable for. We found that
Model 2 could not outperform Model 3 in any scenarios. However, Model 2 was
more interesting when low number of items and high number of retailers, because it
provided lower minimum of average total system-wide cost than that of Model 1.
Advantageously, Model 2 could be wused in such scenarios if Model 3’s

computational time is too long.

According to our experiments, we found that Model 1 and Model 2 spent
computational times less than Model 3, especially for the scenarios having high
number of retailers and high number of items. For eight retailers and eight items,
Model 3’s computational time was found to be 3.77 hours on average. Then, for
such scenarios Model 1’s computational time was around 52 times faster than Model
3’s, and Model 2’s computational time was around 40 times faster than Model 3’s.

The reason is that Model 3 has a lot of interactions for joint replenishment (64
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interactions among location-items). Meanwhile, Model 1 and Model 2 have a few
interactions for joint replenishment (8 interactions among locations or items).
Certainly, if number of retailers and number of items are more than 8, Model 1 and
Model 2 are more interesting. As comparison between Model 1 and Model 2, Model
1’s computational time is faster than Model 2’s for high number of retailers. On the
other hand, Model 1’s computational time is slower than Model 2’s for high number
of items. It is not surprising because Model 2 is based on interaction among retailers
and Model 1 is based on interaction among items. High number of retailers (items)
increases more interactions, and then increases computational time. Since we tested
only the case of identical retailers, we presume that for more complex case of non-
identical location-items, Model 1 or Model 2 can be a good choice for managing the

multi-item system under OWNR.

We can identify the relationship of such models and the significant relevant
factors by considering the lowest total system-wide costs among three models.
Figure V-7 illustrates the relationships of three models and the relevant factors to
decide which model is suitable for given relevant factors. As comparing to the other
models, although Model 3 provides the smallest minimum of average total system-
wide cost, it spends a lot of computational time especially for high number of items
and high number of retailers. Therefore, which model is suitable for any scenario

should be measured not only by costs but also by computational times.

According to Fig.V-7, it can be explained as follows:

(1) Model 3 provided low total system-wide cost on any values of K.
Meanwhile Model 1 should be interesting for the low value of K,
and Model 2 should be interesting for the high value of K,. The
reason is that Model 2 influences the warehouse to hold stock for all
retailers, then the high value of K, could be saved from the reduced
replenishment frequency. Model 1 is suitable for the lower value of
K, because the best solutions often occur for the cross-docking
system (i.e. high replenishment frequency).

(2) Then, for the high value of K, Model 2 and 3 are considered. We
found that for low number of retailers and low number of items,
Model 2 could be a good choice since it provided low total system-
wide cost as Model 3. Small effect of sharing the ordering costs

between items provides Model 2’s performance be close to Model
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3’s. However, other situations for the high value of K, Model 3 still

outperforms.

(3) We found that for the low value of K, along with the low value of

K™ Model 1’s and model 3’s performances were not difference
because the ordering costs shared among location-items were small.
However, we could not summarize to select either model from only
the values of K, and K™,

(4) Then, we analyzed the relationships between the values of K"

Typell
k(iype

and kij. Model 1 performs well for high value of along with

high value of kij. The reasons are that Model 3 considers too many

retailers in an order might increase the total ordering cost from the
high value of K™ and the high value of k; also affects high total

ordering cost from all retailer-items included in an order. However, for
the low value of k;, Model 3 outperforms due to small effect of all
retailer-items’ total minor ordering costs.

(5) Interestingly, for the low value of K™ and the high value of Ki
Model 1 and 3 should be considered together since each model takes

Typell
k(

an effect of either or kj. We found that for such situation

along with high number of items, Model 1 could be a good choice
since it provided low total system-wide cost as Model 3. The reason is
that Model 1 can more reduce the major ordering costs due to the
hish number of items. High effect of sharing the major ordering costs
between items provides Model 1’s performance be close to Model
3’s.

In conclusion, considering all location-items together for the whole system is
the best option as shown in Model 3. However, we provide other options for some
situations in order to save computational times from high interrelationships between

all location-items. Model 1 should be interesting for 1) the scenarios having low K,

high Kk;, high K", and 2) the scenarios having low K, , high k; , low K" and

high number of items. Meanwhile, Model 2 should be interesting for the scenarios

having high K, , low number of retailers, and low number of items.
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Figure V-7 Relationship of the proposed models and the significant relevant factors

5.5 Discussion

Under multi-item OWNR system, we are interested how to coordinate

multiple items and multiple retailers in order to minimize the total system-wide cost.

According to the ordering cost structure as shown in Fig.V-1, it is very significant to

decide how to manage our system. Some questions have been raised, e.s.

to manage each retailer individually?

Is it worth managing all retailer-items together due to a lot of decision
variables concerned in the system?

If there are large values of the major ordering cost Type Il, do we prefer
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- If there are large values of the minor ordering cost of retailer-item 1ij, do
we prefer to manage each item individually but coordinate all retailers
for economic order quantities?

These questions lead us to develop three joint replenishment models: Model
1 - joint replenishment with item-based model, Model 2 - joint replenishment with
retailer-based model, and Model 3 - completely joint replenishment model (more
details of each model have already been mentioned in section 5.1). One hypothesis
is that Model 3 should provide better performance than others since all location-
items are coordinated to share all ordering costs. Disadvantageously, Model 3
contains a lot of interrelationship between decision variables, so it takes a lot of
computational time to determine the best solution. Consequently, the above
questions motivate us to study other models if they provide indifferent results as

comparing to Model 3.

We extended the SIM/S/NZ heuristic from Phase Il to the SIM/M/NZ heuristic.
Dimension of multiple items was added into search algorithm. We still applied
decomposition technique, iterative procedure, and golden section search, by the
reason that inventory policy characteristics of each location-item have not been
changed. For Model 2, the SIM/S/NZ heuristic can also be applied because Model 2

is based on the single-item multi-retailer model.

From the experimental results, it was not surprising that Model 3 provided
the lowest total system-wide cost in many scenarios since all location-items were
coordinated to share all ordering costs. However, huge number of interrelated
decision variables is the weakness of Model 3. In consequence, Model 3 takes a lot
of computational times, especially for the scenarios at high number of retailers and
high number of items. For eight retailers and eight items, Model 3’s computational
time is 3.77 hours on average. Whereas for such scenarios Model 1’s computational
time is faster than Model 3’s around 52 times, and Model 2’s computational time is
faster than Model 3’s around 40 times. Certainly, if number of retailers and number
of items are more than 8, Model 3 will spend even more computational times than

other models due to multiplication of interrelated decision variables.

Focusing on Model 1, it should be suitable for a scenario under high major
ordering cost Type II, since considering too many retailers in an order might increase
the total ordering cost (instead of taking an advantage from sharing the fixed ordering

costs). From the experimental results, Model 1 performs well for high major ordering
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cost Type Il along with high retailer-item’s minor ordering cost. Whereas Model 3
performs better if there are high major ordering cost Type Il and low retailer-item’s
minor ordering cost. The reason is that high retailer-item’s minor ordering cost affects
high total ordering cost from all retailer-items included in an order. Hence, Model 1
decomposes all retailer-items into single retailer with multiple items to determine
the best solutions of all items for such retailer. Interestingly, when there are high
number of items along with low major ordering cost Type Il, Model 1 should be
replaceable Model 3 to save computational times with the maximum cost ga|o13 at
5.19% (based on our experiments). The reason is that for Model 1 high number of

items can more reduce the major ordering costs.

Even though Model 2 does not outperform other models, especially for
Model 3, it still is interesting for the situation under high warehouse’s major ordering
cost, low number of items, and high number of retailers. Under such situation, Model
2 performs quite well because higsh number of retailers can more reduce the major
ordering costs and there is more possibility that the warehouse is allowed to hold
stock. Moreover, it has less effect of low number of items; therefore its performance

is close to Model 3’s. Since the warehouse has high value of A,, the opportunity of

joint replenishment is very high in spite of low number of items. Therefore, the
upper bound should not be used to compare with Model 3 due to overestimate.
Hence, the lower bound should be used instead. Under such situation, Model 2 can

save computational times 10 with the cost gap at 5.67% (based on our experiments).

For more complex case, such as high number of retailers, high number of
items, non-identical location-items, the decomposed models like Model 1 or Model
2 should be another good choice for managing the multi-item system under OWNR.
However, Model 1 and Model 2 were developed based on the simulation model as
shown in Fig.V-5, the warehouse cannot identify an exact number of retailers (or
number of items) included in an order sent to the outside supplier. We have to
estimate number of retailers per order (or number of items per order) to use for the

models.

" The largest cost-saving of the warehouse’s major ordering cost is when all items at the
warehouse are jointly replenished. So, such situation can be identified to a lower bound case. On
the contrary, when each item is separately replenished bring the non-shared warehouse’s major
ordering cost to an upper bound case (already mentioned in section 5.2.2). By this concept, the
maximum cost gap is a comparative measurement between an upper bound from Model 1 (or 2)

and the lowest total system-wide cost from Model 3.



180

5.6 Conclusion

This chapter demonstrated Phase III’s system comprising multiple items on
OWNR. The warehouse’s items were jointly replenished, and then the can-order
level at the warehouse was employed. Unlike Phase | and Phase Il, we considered
the ordering cost following location-item i instead of only location i. The ordering

costs were restructured to be consistent with multiple items and multiple retailers.

We proposed three joint replenishment models to manage multiple items
and multiple retailers: Model 1 was a joint replenishment with item-based model,
Model 2 was as joint replenishment with retailer-based model, and Model 3 was a
completely joint replenishment model for all retailer-items. Comparative analysis on

three joint replenishment models was conducted.

Heuristic algorithm called SIM/M/NZ was developed to determine the
inventory policy setting for location-item 1ij . We extended the SIM/S/NZ heuristic
which was proposed in Phase Il into this SIM/M/NZ heuristic. Decomposition
technique, iterative procedure, and one-dimensional search were still applied by
adding a dimension of multiple items. The experimental results showed that Model
3 provided the lowest total system-wide cost in many scenarios, but it spent much
more computational time specifically high number of items and high number of
retailers. By this result, a selection of joint replenishment model (three proposed
models) employing to the multi-item inventory system should be based on the

compromise between “total system-wide cost” and “computational time”.
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CHAPTER VI
CONCLUSION

This chapter summarizes the dissertation deliverables: analyses of the can-
order policies as well as joint replenishment models and solution approaches.
Moreover, the future research directions are also provided to fulfill the research gaps
in the area of an integration of joint replenishment problem and multi-echelon

inventory system.

6.1 Dissertation Deliverables

In this dissertation, we studied the can-order policies employed into two-
echelon inventory system composing of one warehouse and multiple retailers with
multiple commodities. Regarding a few of literatures studied on the shared ordering
costs among retailers/items, it was interesting to apply joint replenishment policy
into the one-warehouse n-retailer inventory system (OWNR) under continuous
replenishment and stochastic demand. Then, the system including all inventory costs
were taken into consideration in order to determine the inventory policy parameters
for all stores in the system as the general inventory control process. Our objective
was to develop the stochastic joint replenishment model and the solution approach
for determining inventory policy parameters under such system so as to obtain the

expected minimum total system-wide cost.

We conducted the research by using two methods: computer simulation and
heuristic approach. Due to the system’s complexity, computer simulation was an
efficient approach representing the complicated inventory process. We used
computer simulation to preliminarily study the can-order policy, and also to obtain
the best-known solution providing the minimum of average total system-wide cost.
We made an effort to determine the best-known solution due to a large search
space; therefore, the heuristic approaches were proposed to solve this problem. Lot
of literatures on the can-order policy used the heuristic approach to determine the

appropriate inventory policy setting as it was an NP-hard problem.
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To obtain insights of the can-order policy on OWNR, the dissertation
methodology is divided into three phases: Phase | — The single-item model with zero
lead time, Phase Il — The single-item model with non-zero lead time, and Phase Il -
The multi-item model with non-zero lead time. We studied the can-order policy on
each Phase, observed its characteristics, and analyzed what we found to develop the

joint replenishment models and heuristic approaches following each phase.

Hence, we summarize the significant deliverables of our dissertation as

follows:

6.1.1 Analyses of the can-order policies

We studied the can-order policy on six relevant factors which are the
most important as found in many kinds of inventory problem. There were cost
components, demand rates, lead times, target service levels (fill rates), number of
retailers, and number of items. Specifically, cost components were classified into
three components, i.e. unit holding cost per unit time, major ordering cost per order,
and minor ordering cost per location-item. The experimental results showed that all
relevant factors had an effect on the can-order policy, especially for the holding cost
ratio which is a ratio of unit holding cost per unit time at the warehouse echelon to
unit holding cost per unit time at the retailer echelon. We found that it highly
affected the decision on the warehouse echelon whether or not the warehouse

would employ the cross-docking system.

Rationally, the warehouse’s order-up-to level S is relative to the

(0,1)

retailers’ order-up-to level §;. If S, <S;,;, the warehouse’s inventory is

replenished every time when any retailer’s triggers an order, because dispatch
quantity is always larger than the warehouse’s inventory level. So, the minimum

total system-wide cost of this condition occurs at S, ;, =0. Meanwhile, if S ;) >S;,

©.J)
it means that the warehouse holds stock for dispatching to the retailers more than
one order. Trading off between the holding costs and the ordering costs has to be
considered to decide how many order cycle the warehouse should serve retailer

echelon. Then, there is a solution (or more than one solution) which S; >§, >0

providing the minimum total system-wide cost of this condition. According to these

conditions, we could generally divide the system into two cases: case | — Cross-
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docking system, and case Il — Stocking system at the warehouse. The best-known

solution definitely occurred in either case | or II.

The fixed can-order level at ¢=S—-1 can create the maximum
opportunity of joint replenishment for all retailers (items). The major ordering cost
can be most shared if all retailers (items) are included in an order to minimize the
total system-wide cost [48]. Unless all retailers (items) are replenished, the total
ordering cost will increase from the increased total ordering cost or/and the
increased total holding cost. Then, the holding cost is traded off with the shared
ordering cost in order to balance order frequency and holding stock. We found that
the experimental results were consistent with this joint replenishment concept. The

*

can-order level could be approximated to Sij - 1since TC was greater than TC*

(Sij_l)
not over 1% on average where TC"was the optimal average total system-wide cost

and TC:S p Was the minimum average total system-wide cost of the solution at ¢
ij

= S;;- 1. Even though the minor ordering costs and target service levels influenced
the can-order level is not equal to S;- 1, we obtained a small cost gap between

TC* and TC(*

s 1) Mainly, if the ratio of the major ordering cost to the minor
ordering cost was not too small, this all joint concept could be utilized as van Eijs
[48] recommended. Since the minor ordering cost had less effect on the total

system-wide cost as comparing to the major ordering cost.

All decision variables were associated with each other. For example,
the retailers” must-order level affected the warehouse’s must-order level to hold
sufficient stock for serving target service levels, each location’s order-up-to level was
relative to its must-order level. Therefore, it was hard to analyze their relationship

obviously. Thus, we considered A; =S;; —s; where index ij represents location-item
ij . The value of A; was originated from an economical order quantity as a classic

EOQ which the ordering cost and the holding cost were traded off. We analyzed
each decision variable by either fixing other variables or varying some needed
variables. The results showed that the total system-wide cost line turns to resemble
a curve containing a minimum point. The knowledge from this study was very

significant for solution approaches.
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6.1.2 Joint replenishment models and solution approaches

We proposed various joint replenishment models and solution
approaches to solve the inventory problems for each phase. To illustrate the overall
of what we developed for each phase, Fig.VI-1 shows a summary of the dissertation
with our aimed deliverables. The existing research and the best-known solutions
obtained from computer simulation were compared with our heuristics for
performance evaluation. The best-known solution can be determined by systematic

approaches: input determination and output validation.

From Fig.V-1, each phase was related to indifferent number of decision
variables reflecting indifferent dimensions. Since the fixed can-order level ¢; = S;- 1
was utilized, we could reduce number of decision variables. It was an easier
approach to develop the can-order policy according to a regenerative process. The
simple phase was Phase |. We developed two heuristic approaches, and each

approach employed its joint replenishment model.

® Heuristic | called DJ was proposed by using the concept of a
classical deterministic model of Schwarz [124]. The pilot testing
on DJ showed this simple policy was useful in the case of

identical retailers with low number of retailers.

® We attempted to develop heuristic Il called EOQ-Z to obtain
better quality solution than the DJ heuristic. We modified the
model of van Eijs [48] which was developed following Erlang
distribution. We approximated continuous arrival of demand at
warehouse echelon, so it enabled us to use EOQ. Decomposition
technique, iterative procedure, and one-dimensional search
called golden section search were employed into the heuristic
algorithm. Overall, the experiments provided the cost gap of
heuristic approach less than 2% on average as compared to the
best-known solution. With satisfactory computational time and
small cost gap, heuristic Il (EOQ-Z) is well worth using for the

can-order policy setting under OWNR with zero lead time.
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Significant finding was an integration of the classical EOQ and the can-
order policy for two-echelon inventory system. We simplified the EOQ concept to

determine the warehouse’s order-up-to level S, . It relaxed dispatch quantity and

frequency synchronized with retailer echelon, but utilized total demand rate which is
a summation of all retailers’ demand rates. From the experimental results, the
mechanism of trading off between warehouse echelon and retailer echelon occurred
to rebalance with EOQ. The research showed that even though we studied the
complicated system, the simple concept of EOQ remained useful and applicable for
the case of zero lead time (i.e. the zero lead time assumption could be interpreted
and applied in the situation when the ratio of lead time to order cycle duration was

very small).

Later, Phase Il was examined to determine the appropriate inventory
policy setting by heuristic lll. We classified heuristic into two sub-approaches: heuristic
3.1 and 3.2.

®  Firstly, we proposed heuristic 3.1 named MMNZ. Approximate
mathematical model extended the concept of the EOQ-Z
heuristic from Phase | added lead time and target service level.
We extended an application of decomposition technique,
iterative procedure, and golden section search to heuristic
algorithm. The MMNZ heuristic was useful if the cross-docking
system was preferable, but it was quite poor if the warehouse

was allowed to hold stock.

® Heuristic 3.2 called SIM/S/NZ was introduced. We used
simulation cost model instead of approximate mathematical
model, but yet the same heuristic algorithm. It could reduce the
cost error from an approximation. The performance of the
SIM/S/NZ heuristic was measured into two methods. The first
method was a comparison with the best-known solution
obtained from computer simulation. The SIM/S/NZ heuristic
provided an average cost gap not over 2% on average. The
second method was a comparison with Ozkaya [22]. Qualitative
analysis was provided that the SIM/S/NZ heuristic should be
better than Ozkaya [22]’s approach.
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Advantageously, the SIM/S/NZ heuristic gave the best performance in
terms of cost gap and their computational time could be saved from the reduced
search space as comparing to the computer simulation’s computational time. We
provided systematically reduced search space. Hence, the SIM/S/NZ heuristic was
interesting for the can-order policy setting under OWNR with single-item and non-

zero lead time consideration.

For the last phase, we proposed three joint replenishment models to
manage multiple items and multiple retailers: Model 1 was a joint replenishment
with item-based model, Model 2 was as joint replenishment with retailer-based
model, and Model 3 was a completely joint replenishment model for all retailer-
items. We developed mathematical models with a generalization of the ordering cost
structure, and extended the heuristic algorithm from SIM/S/NZ into the multi-item
model. We called the SIM/M/NZ heuristic. Dimension of multiple items was added
into search algorithm. We still applied decomposition technique, iterative procedure,
and golden section search, by the reason that inventory policy characteristics of each
location-item have not been changed. For Model 2, the SIM/S/NZ heuristic can also

be applied because Model 2 is based on the single-item multi-retailer model.

From the experimental results, it is not surprising that Model 3
provided the lowest total system-wide cost in many scenarios since all location-
items are coordinated to share all ordering costs. However, huge number of
interrelated decision variables is the weakness of Model 3. In consequence, Model 3
takes a lot of computational times, especially for the scenarios at high number of
retailers and high number of items. Certainly, in reality there are many retailers or
items considered in the system, Model 3 will spend even more computational times
than other models due to multiplication of interrelated decision variables. Hence, we
provided insights of which situation is suitable for each joint replenishment model.
Some situations, Model 3 could be replaced by Model 1 or Model 2 by making a

decision based on “total system-wide cost” and “computational time”.

The most significant deliverable of our dissertation was the proposed
solution approaches for determining the appropriate inventory policy parameters.
Each approach was consistent with the inventory policy characteristics obtained from
preliminary analyses. For all phases, we used the same basis for developing the
solution approaches: decomposition technique, iterative procedure, and golden

section search. Decomposition technique and iterative procedure were the most
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common approach for the can-order policy determination. Decomposition technique
helped breaking the complicated system (multiple location-items) into smaller part
(single location-item). Determination of the can-order policy parameters seems easier
than consideration of the whole parts together. However, this technique should be
utilized with iterative procedure to consolidate all single location-items consistently.
The solution could move to the better one until the best solution has been found
for the whole system. From both techniques integrated with one-dimensional search,
we can determine the best solution easier and faster than other approaches,

especially computer simulation and the exhaustive search (e.g. Ozkaya [22]).

From the first phase, trading off between the holding costs and the
ordering costs makes the total system-wide cost performed as a convex function
relative to the value of S,. So, we could determine the value of S, providing the
minimum total system-wide cost on one-dimensional search. Since our cost
formulation was non-derivative function, we utilized a search algorithm called
“Golden section search” by adapting for integer variable. This search algorithm
performed better than other search algorithms, such as Fibonacci search and Half-
interval search. Later phases, we considered A, =S, —S, to represent an order
quantity for location K including the warehouse and the retailers; for the warehouse,
A, =S,—S, and for the retailers, A, =S, —s;, 1€ N. We found the characteristic of
A, by trading off between the holding cost and the ordering cost. The total system-
wide cost performed as a curve containing the minimum point relative to the value
of A, . Interestingly, even though the curves were not unimodal continuous function
because of discrete numbers and the must-order levels, the golden section search
with iterative procedure was applicable for determining the appropriate value of A, .
The reason was that the cost difference between two connected points was small
enough to lead the successive search ranges from the golden section search meet
the minimum point. Similarly, we also used the golden section search for

determining the best values of s,. Based on the same reason of small cost
difference between two connected points, the best values of s; could be reached.

According to the experimental results, it was fascinating to apply the golden section
search into our system in order to shorten the computational time with the

appropriate inventory system-wide cost.

Advantageously, the dissertation provided various joint replenishment

models and heuristic approaches suitable for each part of the OWNR. We considered
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the warehouse and the retailers from the small part of OWNR as the single-item
model to the multi-item model. Therefore, we believe that our contribution is not
only limited to a specific area but also a good starting point for a research of more
complex environment such as the joint replenishment policies in multi-echelon

inventory systems.

6.1.3 Application of the can-order policy

This dissertation is generalized for any industry which matches the
considered system. However, this section exemplifies a specific industry to show the
real situation. Since the research problem originally surveyed in the healthcare
industry, we would apply the can-order policy for such industry (or others which
have the similar system) to express the employment and its limitation. The research
can be applied into many parts of healthcare industry for pharmaceuticals and
medical supplies management such as hospital’s internal chain (central storeroom
and multiple departments), hospital network (central warehouse and multiple

hospitals), and drug store chain (central warehouse and multiple drug stores).

For the inventory policy setting, healthcare services have
implemented both types of inventory reviews: continuous review and periodic
review. Each type is considered depending on item types, demands, suppliers,
replenishment and distribution operations, and resource constraints. Mostly,
healthcare inventory management has commonly adopted “par level” policy which
is special feature only in healthcare. There are two kinds of par levels. The minimum
par level is equivalent to the reorder point and the maximum par level is equivalent
to the order-up-to level (or base stock). Each kind of par levels can be used
separately or together such as

® The (S,S) policy where s represents the reorder point or the
minimum par level and S represents the based stock or the
maximum par level.

® The (r,Q) policy where r represents the reorder point or the
minimum par level and Q represents the fixed order quantity.

® The (R,S) policy where R represents the length of review

period and S represents the based stock or the maximum par

level.



190

Focusing on continuous review, the (S,S ) policy and the (r,Q) policy
are based on independent ordering decision. Instead of both policies, we can
employ the can-order policy to coordinate multiple items and/or multiple locations
(e.g. departments, patient care units, hospitals, drug stores). Since we consider the
OWNR system, central warehouse can also employ the can-order policy to

coordinate multiple items.

The can-order policy is not suitable for a large group of items
(locations) since there are a lot of interactions between items (locations).
Decomposing a large group into various small groups is preferable to reduce

interactions. In addition, due to the fixed can-order level Cj = S. -1, all items

ij
(locations) in a group have to be replenished in the same order. Therefore, small
groups are also useful to apply our heuristics. We suggest to group items (locations)
which have minor variation of demand rates in order to synchronize the same order

cycles.

For some systems, periodic review seems to be more popular than
continuous review, because it is easier to set joint replenishment period. However, a
lot of stock has to be hold to cover the review period. Therefore, the can-order
policy is able to use for specific group of items, such as items with high service level,

in order to reduce safety stock.

6.2 Future Research Directions

In this section, we recommend some possible research extensions. We

categorize the interesting research into three groups as follows:

1) Heuristic approach

According to the golden section search which is actually used for
unimodal function, we attempted to apply its concept to our problem even the
function seems to be multimodal as depicted in Fig.lV-8. The experimental results
provide a quality solution, so we chose to use only simple method to determine the
appropriate inventory policy setting. However, to verify the can-order policy’s
performance without heuristic’s error, global search methods with derivative-free
optimization might be another option to conduct a research. A review of Rios and

Sahinidis [123] is recommended to study the derivative-free optimization with
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comparison of software implementation. They provided the insights of the derivative-
free optimization in both academic and practical aspects. Finally, comparative
analysis between global search methods and our approach should also be carried

out.

Even though fixing the can-order level at §; =1 provides a small cost

gap as comparing to the best-known solution, it seems not suitable if the minor
ordering cost is quite large when comparing to the major ordering cost. Thus, our

heuristics can be extended to the search of the can-order level on given s; and S;; .

Recently, we found an interesting work of Nagasawa et al. [77]. They applied genetic

algorithm to determine the can-order level on given s; and §;. This work is a

starting point to extend our heuristic for determining the can-order level.

In this study, location-items are jointly ordered according to the
predetermined inventory policy setting. Interaction among location-items is one of
the most important effects to the system. If number of items and/or number of
retailers are large, the system needs a lot of computational time to determine the
appropriate inventory policy setting. So, it can reduce the efficiency and advantage of
the multi-item multi-location inventory control. Clustering location-items into small
groups is important to reduce the complexity of the joint ordering decision. Tsai et al.
[76] proposed an association clustering algorithm applying to the can-order policy for
multi-item single-location inventory system to evaluate the correlated demands
among items. Clustering method was developed to group items with close demand
in a hierarchal way. The results of the experiments showed that the proposed
method outperformed several replenishment models. Therefore, the extension of
clustering location-items would be an interesting issue to focus on. Moreover, from
our experiment results the considered system seems to contain two sub-systems:
the cross-docking system (with no stock at the warehouse) and the stocking system
(allowing the warehouse to stock). It is possible that some location-items are stored
at the warehouse and the others utilize the cross-docking system. Hence, clustering
location-items can be applied for coordinated ordering decision and choose the

proper system for each location-item.

2) System complexities

According to the growing trend of information technology, the

warehouse can obtain the real time information about the status of the retailers and
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also be in charge of the allocation of goods to the retailers. Therefore, it is possible
to split lot to allocate the units in an order to the involved retailers according to a
predetermined allocation rule. Since a joint order has larger lot size than an
independent order, the average waiting time from the warehouse to retailer echelon
for all-lot replenishment is much longer. Consequently, an integration of allocation
problem into joint replenishment model is able to reduce the average waiting time

and it can be interesting to study in more details for a future research extension.

With regard to centralized control for OWNR, there are various options
to practically increase service level. An outside supplier can directly deliver to the
retailers with an additional cost in case of insufficient stock at the warehouse.
Another option is that the warehouse replenishes the involved retailers with an

emergency order immediately dispatched to the retailers (<L), and an additional

cost is charged. Such two options have to concern the additional costs charged to
the system. The system needs to tradeoff between the holding costs and the

additional costs under target service levels at the retailers.

In determining which the cross-docking system is preferable, it is
interesting to include truck capacity constraint (i.e. limited dispatch quantity is

needed) in order to synchronize with shipment scheduling problem.

3) Other joint replenishment policies

According to the can-order policy selected in our dissertation, we raise
its advantages in practical and academic aspects as mainly demonstrated in Section
1.3.1. Moreover, we compared our approach to Ozkaya [22] proposed four joint
replenishment policies, and we evaluated that our heuristic approach has an
advantage over Ozkaya [22]'s approach. Later, to enhance our approach’s
performance and to identify which situation is suitable for each joint replenishment
policy considered on OWNR, it is interesting to analyze our can-order policy on
OWNR with other joint replenishment policies, especially periodic replenishment

policies would be focused on both the single-item and multi-item models.

As various directions recommended, the integration of joint replenishment
problem and multi-echelon inventory system is extended into more complex
system. In addition, comparative analyses with other joint replenishment policies or
other heuristic approach would be focused on. These are great opportunities to

enhance  the  knowledese in the field of inventory  problem.
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