

ARCHITECTURE FOR DETECTING INFINITE LOOPS OF WEB SERVICES USING TIME
BOUNDARY VALUES

Miss Nattapatch Srirajun

A Dissertation Submitted in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy Program in Computer Science and

Information Technology
Department of Mathematics and Computer Science

Faculty of Science
Chulalongkorn University

Academic Year 2013
Copyright of Chulalongkorn University

สถาปัตยกรรมเพื่อการตรวจหาวงวนไม่รู้จบของเว็บเซอร์วิสโดยใช้ค่าขอบเวลา

นางสาวณัฐพัชญ์ ศรีราจันทร์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต
สาขาวิชาวิทยาการคอมพิวเตอร์และเทคโนโลยีสารสนเทศ ภาควิชาคณิตศาสตร์และวิทยาการ

คอมพิวเตอร์
คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2556
ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title ARCHITECTURE FOR DETECTING INFINITE LOOPS
OF WEB SERVICES USING TIME BOUNDARY
VALUES

By Miss Nattapatch Srirajun
Field of Study Computer Science and Information Technology
Thesis Advisor Assistant Professor Pattarasinee Bhattarakosol,

Ph.D.
Thesis Co-Advisor Associate Professor Panjai Tantasanawong, Ph.D.

 Accepted by the Faculty of Science, Chulalongkorn University in Partial
Fulfillment of the Requirements for the Doctoral Degree

 Dean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

 Chairman

(Assistant Professor Rajalida Lipikorn, Ph.D.)

 Thesis Advisor

(Assistant Professor Pattarasinee Bhattarakosol, Ph.D.)

 Thesis Co-Advisor

(Associate Professor Panjai Tantasanawong, Ph.D.)

 Examiner

(Arthorn Luangsodsai, Ph.D.)

 Examiner

(Associate Professor Taratip Suwannasart, Ph.D.)

 External Examiner

(Assistant Professor Benchaphon Limthanmaphon, Ph.D.)

 iv

THAI ABSTRACT

ณัฐพัชญ์ ศรีราจันทร์ : สถาปัตยกรรมเพ่ือการตรวจหาวงวนไม่รู้จบของเว็บเซอร์วิสโดย
ใช้ค่าขอบเวลา. (ARCHITECTURE FOR DETECTING INFINITE LOOPS OF WEB
SERVICES USING TIME BOUNDARY VALUES) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ.
ดร.ภัทรสินี ภัทรโกศล, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. ดร.ปานใจ ธารทัศนวงศ์, 79
หน้า.

เว็บเซอร์วิสเป็นระบบระยะไกลที่ถูกพัฒนาขึ้นบนระบบแบบกระจายที่มีผู้ร้องขอและผู้
ตอบสนอง เพ่ือการรับประกันการบริการที่ดีนั้น ผู้พัฒนาซอฟท์แวร์จ าเป็นต้องหาเทคนิคต่าง ๆ
เพ่ือการตรวจจับและป้องกันความผิดพลาดในขณะการท างาน ปัญหาหนึ่งที่มีความส าคัญอย่างยิ่ง
ของการบริการคือ สภาวะการวนไม่รู้จบ เนื่องจากระบบการท างานจะไม่ตอบสนองผลลัพธ์ใดๆ
ให้แก่ผู้ร้องขอการบริการ นอกจากนี้แล้วทรัพยากรของระบบจะมีการใช้งานอย่างสูงจนระบบไม่
สามารถท างานได้อีกต่อไป ดังนั้นงานวิจัยนี้ได้น าเสนอสถาปัตยกรรมที่ท างานบนเว็บเซอร์วิส อัน
เกี่ยวข้องกับอัลกอริทึมท่ีท างานชนิดไม่สามารถก าหนดการวนได้ และเพ่ือแก้ปัญหาการวนไม่รู้จบ
นั้น งานวิจัยนี้ได้น าเสนอเทคนิคเพ่ือการแก้ปัญหาสองวิธี คือ การตรวจสอบเวลาการท างานด้วย
การก าหนดขอบของระยะเวลาการท างาน และการตรวจสอบรูปแบบของค่าตัวแปรที่ใช้วน
เทคนิคนี้สามารถตรวจจับและควบคุมสภาวะการเกิดการวนไม่รู้จบ ก่อนที่ความเสียหายจะเกิด
ขึ้นกับระบบการท างาน ผลการทดลองที่เกิดจากการใช้สถาปัตยกรรมที่น าเสนอนี้จะเป็นการวัด
ประสิทธิภาพการใช้หน่วยความจ าหลัก ซึ่งผลที่ปรากฏได้แสดงให้เห็นว่า สถาปัตยกรรมที่น าเสนอ
นี้สามารถเพ่ิมประสิทธิภาพการใช้หน่วยความจ าหลักได้ นอกจากนี้แล้ว สภาวะการวนไม่รู้จบ
สามารถถกูตรวจจับและยกเลิกได้ด้วยกลไกการท างานของสถาปัตยกรรมนี้

ภาควิชา คณิตศาสตร์และวิทยาการ
คอมพิวเตอร์

สาขาวิชา วิทยาการคอมพิวเตอร์และ
เทคโนโลยีสารสนเทศ

ปีการศึกษา 2556

ลายมือชื่อนิสิต

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก

ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

 v

ENGLI SH ABSTRACT

5173821423 : MAJOR COMPUTER SCIENCE AND INFORMATION TECHNOLOGY
KEYWORDS: EXECUTION TIME / MEAN TIME INTERVAL / WEB SERVICES / INFINITE
LOOP

NATTAPATCH SRIRAJUN: ARCHITECTURE FOR DETECTING INFINITE LOOPS
OF WEB SERVICES USING TIME BOUNDARY VALUES. ADVISOR: ASST. PROF.
PATTARASINEE BHATTARAKOSOL, Ph.D., CO-ADVISOR: ASSOC. PROF.
PANJAI TANTASANAWONG, Ph.D., 79 pp.

A web service is a remote system, implemented on a distributed system
with request and response. To guarantee good services, software developers must
find techniques for detecting and preventing errors during run-time. One problem
that is important to such services is the infinite-loop situation, since the system
will not return any results to the requester. Moreover, the resources of the
system are overloaded until the server cannot function. Therefore, this research
proposes the web service architecture relating to non-deterministic loop
algorithms. For solving the infinite-loop problem, this research proposes two
techniques: checking execution time by defining the execution time boundary,
and checking patterns of iteration variable values. The techniques can detect and
control the infinite-loop situation before causing damage to the system. The
experiments using the proposed architecture measured the CPU usage. The
results show that the architecture can improve the CPU usage. Moreover, the
infinite-loop situation can be detected and terminated by the mechanisms of this
architecture.

Department: Mathematics and
Computer Science

Field of Study: Computer Science and
Information Technology

Academic Year: 2013

Student's Signature

Advisor's Signature

Co-Advisor's Signature

 vi

ACKNOWLEDGEMENTS

During studying for a Ph.D., one of completion is to look over the past
journey and remember all the friends and family who have helped and supported
me along this long way. I would like to thank the Office of Higher Education
Commission and Chulalongkorn University for their financial support.

I would like to express my heartfelt gratitude to Assist.Prof. Dr.Pattarasineee
Bhattarakosol, Assoc.Prof. Dr.Panjai Tantasanawong, and Prof. Dr.Sunyoung Han, for
their advice, guidance and care, which help me overcome all difficulties of the
process of research and make this dissertation possible.

I would also like to thank dissertation committee, Assist.Prof. Dr.Rajalida
Lipikorn, Dr.Arthorn Luangsodsai, Assoc.Prof. Dr.Taratip Suwannasart, and Assist.Prof.
Dr.Benchaphon Limthanmaphon, who provided encouraging and constructive
feedback. It is no easy task, reviewing a thesis, and I am grateful for their thoughtful
and detailed comments.

Finally, I would also like to thank all lecturers and colleagues at Innovative
Network and Software Engineering Technology (INSET) laboratory, the Department of
Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, for
their warmest care and support.

CONTENTS
 Page

THAI ABSTRACT ... iv

ENGLISH ABSTRACT ...v

ACKNOWLEDGEMENTS ... vi

CONTENTS ... vii

LIST OF TABLE .. x

LIST OF FIGURE .. xi

CHAPTER 1 INTRODUCTION ... 1

1.1 Introduction and Problem Review ... 1

1.2 Problem Domain: Non-Responsive Web Services under the Infinite-Loop
Situation ... 2

1.3 Research Objectives .. 3

1.4 Expected Outcomes .. 3

1.5 Scopes of the Study .. 3

1.6 The Definition of Terms .. 4

CHAPTER 2 THEORIES AND LITERATURE REVIEWS ... 5

2.1 Software at Run-time Situation ... 5

2.1.1 Loop Instructions .. 7

2.1.2 Infinite-Loop Situation ... 7

2.2 Packet Time-out Mechanism ... 9

2.3 Identifying Execution Mean Time Interval (EMTI) .. 10

2.4 Web Services ... 10

2.4.1 The Run-time Error Detection of Web Services .. 11

CHAPTER 3 DESIGN OF THE MECHANISM .. 13

3.1 Loop Characteristics .. 13

3.1.1 Deterministic loop .. 14

3.1.2 Non-Deterministic loop.. 16

3.2 Characteristic Analysis of Critical Section ... 17

 viii

 Page

3.3 Classification of Problem Domain .. 20

3.4 The proposed Mechanism ... 23

3.4.1. Activity Diagram for Monitoring Web Service Module 23

3.4.2. Activity Diagram for Training the IWSM .. 24

3.4.3. Activity Diagram for Verifying the IWSM .. 26

3.4.4. Activity Diagram for Online-Verifying the IWSM ... 27

3.5 The Algorithm for Creating the IWSM .. 28

3.6 The Algorithm for Verifying the IWSM .. 29

CHAPTER 4 IMPLEMENTATION AND EXPERIMENTAL RESULTS .. 31

4.1 The Proposed Architecture .. 31

4.1.1 Monitoring Package ... 32

4.1.1.1 Instruction_Instrument Module ... 32

4.1.1.1.1 <service_name> text file .. 36

4.1.1.1.2 <service_name_iv> text file ... 37

4.1.2 Training Package .. 38

4.1.2.1 Selection_Calculation module .. 38

4.1.2.2 Time_checking module ... 38

4.1.2.3 Pattern_Checking module ... 39

4.1.3 Verification Package .. 42

4.1.4 Termination Package .. 42

4.1.5 Web Service Repository ... 42

4.1.6 Database Design .. 42

4.1.6.1 Loop_Instruction Table ... 43

4.1.6.2 <service_name> Table .. 43

4.1.6.3 EMTI Table .. 44

4.2 Experimental Results .. 45

4.2.1 Performance of the System .. 45

 ix

 Page

4.2.2 The Main Web Service Module under the Sub-function Services 46

4.2.3 Reliability of the Web Service .. 50

CHAPTER 5 DISCUSSION AND CONCLUSION ... 51

5.1 Discussion .. 51

5.2 Conclusion ... 54

5.3 Limitation ... 55

5.4 Future Work .. 55

5.5 Extended Work ... 56

REFERENCES ... 57

Appendix A The proposed architecture based on a standalone system 60

Appendix B Extending WSDL for Calling Sub-function... 69

Appendix C List of Publications ... 78

VITA .. 79

LIST OF TABLE

 Page

Table 3.1 Defining components of countable loop [3] .. 15
Table 3.2 An example of repetition of iv values ... 18
Table 3.3 An example of the growth of iv values ... 19
Table 3.4 Examples of web service modules with non-deterministic loops 21
Table 3.4 Examples of web service modules with non-deterministic loops (con.) 22
Table 4.1 Details of the EMTI_DB database .. 43
Table 4.2 Structure of the Loop_Instruction Table ... 43
Table 4.3 Structure of the <service_name>Table .. 44
Table 4.4 Structure of the EMTI Table ... 45
Table 4.5 Main web service modules with sub-function services 47
Table 4.5 Main web service modules with sub-function services (con.) 48
Table 5.1 Comparing techniques between the DIDUCE Model and the proposed

architecture ... 52
Table 5.2 Research on timing techniques ... 53
Table 5.3 Comparison between the Jolt system and the proposed architecture 54

 xi

LIST OF FIGURE

 Page

Figure 1.1 The structure of web-service method ... 1
Figure 2.1 An example of simple calculation program using two inputs [23] 9
Figure 2.2 The basic structure of web services and functional web services 11
Figure 2.3 The three main engines for solving errors on the run-time error detecting 12
Figure 3.1 An example of a deterministic loop algorithm ... 16
Figure 3.2 Example of a non-deterministic loop algorithm ... 17
Figure 3.3 Example of a non-deterministic loop algorithm with critical section with

repetition of iv values [17] ... 17
Figure 3.4 An example of non-deterministic loop algorithm in critical section with the

growth of iv values .. 19
Figure 3.5 Activity diagram for monitoring web service module 23
Figure 3.6 Activity diagram for training the IWSM ... 24
Figure 3.7 Activity diagram for verifying the IWSM ... 26
Figure 3.8 Activity diagram for Online-Verifying the IWSM ... 27
Figure 3.9 Algorithm for creating the instrumented web service module 28
Figure 3.10 The algorithm for checking boundary times and finding patterns of iv

values ... 29
Figure 4.1 Deployment diagram of proposed architecture .. 31
Figure 4.2 Three parts of finding instructions.. 32
Figure 4.3 An example of the Instruction_Instrument module .. 33
Figure 4.4 The original web service before instrumenting instructions 33
Figure 4.5 The output from the Instruction_Instrument module, the IWSM 34
Figure 4.5 The output from the Instruction_Instrument module, the IWSM (con.) 35
Figure 4.6 The text files created from the web service module structure 36
Figure 4.7 An example of data in the <service_name> text file 36
Figure 4.8 An example of a text file with a repeating pattern .. 37
Figure 4.9 An example of a text file with an increasing pattern 38
Figure 4.10 (a) Shift the index whenever the value doesn’t have a repetition 39
Figure 4.10 (b) The pattern can be found in the first index .. 39
Figure 4.10 (c) The pattern cannot be detected because the range is not of the same

size .. 39
Figure 4.11 Algorithm for detecting the pattern of Case 1 .. 40
Figure 4.12 Algorithm for detecting the pattern of Case 2 .. 41

 xii

Page
Figure 4.13 Example results from the Time_Checking module and the

Pattern_Checking module .. 42
Figure 4.14 Extraction data from the original web service module 44
Figure 4.15 (a) Percent of CPU usage of the web service module no.1 46
Figure 4.15 (b) Percent of CPU usage of the web service module no.4 46

CHAPTER 1
INTRODUCTION

1.1 Introduction and Problem Review

Currently, various software developers use web services to provide and share
services among similar tasks of different organizations. The implemented web service
is stored in a web server. Moreover, one server can have many web-service methods.
Each web-service method will perform each task requirement. The web- service
method structure is similar to that of general software functions. Therefore, the
standard for performing a task can be settled.

The web-service method structure with Microsoft Visual C# language was
shown in Figure 1.1.

Figure 1.1 The structure of web-service method
The web service development process is similar to software development

process since web services can be counted as a part of the developed software over
the network. Therefore, the quality control mechanism during the software process is
also applied while web services are implemented. As a result, in order to remove
defects from the developed web agents during software process, two processes must
be performed: verification and validation processes.

The verification process attempts to detect all functional defects before the
software is delivered, while the validation process attempts to ensure that the
developed web service can serve user’s expectations. Nevertheless, some errors can
occur after the software has been delivered to users, especially run-time errors. Run-
time errors are a significant problem that is hard to detect during the testing period
since the test data set might not cover all possible inputs from users. Thus, every
web agent cannot be fully guaranteed to be error-free.

[WebMethod]
Web-service method name (input parameters)
{
 <statement lists>
 return values;
}

 2

Once run-time errors occur, the reliability of the software drops [1]. Moreover,
the software overhead to re-perform the task is increased. Based on the run-time
problems mentioned, the situation of web services is similar to other programs in
that some critical processes can exist. Since there are various critical errors during
run-time processes, this research will focus on non-responsive services under the
infinite-loop situation in which there is no-response to clients. The proposed
mechanism tends to detect and protect from any damages that can arise when
infinite loops occur. The following section elaborates the focused domain of this
research.

1.2 Problem Domain: Non-Responsive Web Services under the Infinite-Loop
Situation

As mentioned previously, non-responsive web services under the infinite-loop
situation is a type of critical run-time errors. Thus, critical damage can occur and the
CPU resource usage is high but unused. Consequently, the Quality of Service (QoS) of
web services must be considered and maintained.

Based on the proposed QoS model by Araban and Sterling [2], QoS factors for
reliability of web services depending on the correctness of the execution services.
Moreover, the performance of the services is measured from the space usage
efficiency during execution and the execution time for each round. Furthermore, the
usability of the web services is based on the types and values of the input and
output parameters.

Thus, the problem of non-responsive web services under the infinite-loop
situation can be considered as the reliability of the services that affects the
performance of the system, since space usage during run-time is large without
benefits. Additionally, the value of input and output parameters that relate to the
control loop condition must be determined.

Therefore, this research will focus on the non-responsive web services under
the infinite-loop situation since its impact is critical to all the important factors of
QoS.

 3

1.3 Research Objectives

The objectives of this research are as follows:
1. To design a mechanism for detecting and controlling the infinite-loop

situations,
2. To design the architecture of distributed web services that guarantees

dynamic-loop process.

1.4 Expected Outcomes

The expected outcomes of this research are as follows:
1. The mechanism that allow the infinite-loop problem of the service process to

be controlled and notified to the requester;
2. Architecture that can guarantee the performance and reliability of web-

services agent that contains dynamic loops;
3. The architecture that can perform real time verification.

1.5 Scopes of the Study

1. Web services architectures studied under the SOA (Service Oriented
Architecture) environment of service providers.

2. The research focuses on at least four computing intensive web services
contain dynamic loops.

3. Web services being tested cover five patterns: sequence, parallel, choice,
loop, and compound compositions.

4. The termination condition of the loop is dependent on input parameters
only; and the termination condition is in the computing model.

5. The value of the detecting infinite-loop situation will be dependent on the
upper bound of the EMTI (Execution Mean Time Interval).

6. The EMTI value will be adjusted by the learning data set obtained from users’
execution time.

7. The network environment under the composite web services test has an
effect on the EMTI value.

8. The implementation is developed using the Microsoft Visual C# platform.

 4

1.6 The Definition of Terms

Deterministic loop: A deterministic loop is a predictable loop. The number of
iterations of a loop is known before the loop has started.

Non-deterministic loop: A non-deterministic loop is not a predictable loop. A
loop is driven by outside factors such as user input. Therefore, the number of
iterations is not known in advance before the loop has started.

Static loop: the static loop has a constant number of loop cycles in every
loop execution.

Dynamic loop: the dynamic loop has a variable number of the loop cycles.
The number of loop cycles is not constant, depending on the external factors such
as called function, input value from the user, etc.

Iteration variable [3]: the iteration variable is a variable at the loop condition.
It is a factor for controlling the loop cycle.

Critical section: a situation of a loop that has a very low probability of exiting
according to the control loop condition; or the probability of exiting the loop is close
to zero.

 Non-critical section: a situation of a loop that has a high probability of exiting
according to the control loop’s condition; or the probability of exiting the loop is
close to one.

 5

CHAPTER 2
THEORIES AND LITERATURE REVIEWS

In this chapter, related articles are reviewed under the problem of the non-
responsive web services with the infinite-loop situation. First, Section 2.1, the
software at run-time situation will be presented which relates to the loop instruction
and the infinite-loop situation. Second, Section 2.2, the packet time-out mechanism
technique will be presented for consideration for checking the execution time.
Moreover, in Section 2.3, the confidence of execution time boundary will be
proposed, which identifies the execution mean time interval. Finally, the literature
reviews of web services are drawn in Section 2.4. Details of each section will be
described as follows.

2.1 Software at Run-time Situation

It is the fact that the success of every organization around the world relies on
the quality of implemented software. Moreover, software reliability is also an
important issue that the developers must consider. The reliability of software is
dependent on the number of errors that can be detected and prevented during the
software processes. In order to obtain qualified software, there are many factors that
have to be considered during the software development process. In addition, the
structure of software design relating to the implemented parameters is another
protection technique that has to be considered.

Based on the traditional development process, the input data set is an
important factor that leads to software implementation. Therefore, the simulation
models [4-5] were proposed in the verification and validation phases. These
proposed models increase the confidence of software usage during run-time.
However, the complexities of these models rely on the input data set generator.

Since the run-time error problem is a significant issue for the success or failure
of software usages, it has been focused on by many researchers. The event of
changing states in the system and the execution time are also considered as other
factors for discovering the errors hidden in the software. The design method for
testing running times of objects was proposed under the object-oriented
environment[6]. The method, called as the real time logic (RTL), was applied in the
testing state and was a constraint for the changing software state. The result showed

 6

that the model can detect the constraint violation. Unfortunately, this run-time
checker used a static data-base for checking; therefore, its value cannot be altered in
the run-time environment.

In addition, reliability can be obtained by adding a debugging module [7]. This
research proposed result-checking, simple checkers, self-correctors on the possible
input data, and time boundary when the software was executed. Moreover, a
proposed monitoring and checking framework [8], called the Monitoring and Checking
(MAC) architecture, used a run-time checker mechanism to fill the gap between the
static verification and the testing mechanism of the software development process.
Furthermore, Anomaly Detection by Resource Monitoring (Ayaka) [9] monitored and
detected anomalies using only some system resource usage information. They also
used a completely black-box approach based on machine learning methods to find
anomalies, by comparing the application resource usage with the learned model.

The timing technique has also been applied to monitor the real-time system
using the graph diagram [10]. This diagram is created to detect the violation during
the event transfer period. This was implemented using Java run-time timing
constraint monitor (JRTM). This method provided the shortest latency and low
overhead for violation detection. In 2008, a method was proposed using the
automata theorem for analyzing the time of program events in run-time monitoring
[11]. The expected outcome is error detection. This prototype has revealed itself to
be efficient with respect to real-time operating system deployment and decreases
event overhead for increasing system performance.

Since the reliability of software is a significant consideration that is mostly
determined during run-time process, therefore, the problems that can occur to
obstruct the reliability issue can be basically protected using the exception class in
software. Unfortunately, this technique cannot protect all kinds of the unwanted
cases such as the long run-time problem.

The research in [12] proposed the theoretical approval to analyze a loop
during run-time on primitive recursive functions, bounding the running time and
complexity classes. This proposed approval can be applied to real systems. The
experiment was verified by formal verification method. The result showed that
result-checking may improve debugging tools for reliable systems.

Moreover, the Dynamic Invariant Detection U Checking Engine (DIDUCE) was
proposed as a tool for detecting complex-program faults in the debugging process

 7

[13]. This tool focuses on various faults which are failure from some inputs, failures in
long-running programs, in component-based software. Additionally, the programs are
tested with inputs for which the correct outputs are unknown. As a consequence of
using four applications, this method can discover different types of faults, such as
faults from algorithms, inputs, and developer’s misconceptions of the APIs.

According to the previous paragraphs, it is obvious that the processing time is
of importance for the performance of the real-time system. Especially, the long-time
running should be concerned. Thus, loop instructions and the infinite-loop situation
will be described in the following sections.

2.1.1 Loop Instructions

A loop instruction may cause an infinite cycle depending on the condition of
the loop instruction. It affects the resources of the running system, which are used
enormously, such as memory and CPU usage. Incorrectness of software
implementation has significant effects for critical software, such as finance software,
shipping software, medical software, and scientific software, etc.

Loop characteristics have been defined in [14] which can be classified in three
categories: a static-control loop, a conditional control loop, and a variable-
dependent loop. The first category is the static-control loop, called as a well-
structured loop. This type of the loop performs in static execution time, such as for
(i= 1; i< 10; i++) {…};.

The second category is the conditional control loop, such as while (1), do {…if
(i<j), break, …};. The execution of the loop will be terminated when the condition in
the loop is satisfied. Therefore, the execution time is predictable based on its
execution profile. The category is defined as an ill-structured loop.

The last category of loop is the most significant loop since the termination of
the loop is dependent on the value of a variable at run-time, such as while (i<j)
do{…};. Thus, this category is called a variable-dependent loop. Moreover, the
countable loop [3] was proposed on characteristics, definition and restriction of the
loop.

2.1.2 Infinite-Loop Situation

Referring to the defined loop characteristics above, there are two groups of
the loops, which can be classified as: the deterministic loop, and the non-
deterministic loop. The deterministic loop has the characteristics of the static control

 8

loop, while the non-deterministic loop is dependent on the conditional control loop
and the variable-dependent loop because the termination of the loop occurs during
the run-time process only. Consequently, the critical effect relies on the non-
deterministic loop since users cannot predict the computation outcomes during the
execution period. Furthermore, the infinite-loop situation can occur.

The infinite-loop problem is a situation when the system cannot release the
system’s resources; the performance of the system will be reduced. Therefore, the
infinite-loop situation can occur only on non-deterministic loop algorithms, where
there is no termination of non-deterministic loop. The infinite loop is defined in
meaning as: “An infinite loop is an instruction sequence that loops endlessly when a
terminating condition has not been set, cannot occur, and/or causes the loop to
restart before it ends.” [15].

Research relating to loop verification and detection such as loop checking was
analyzed for the logic program in [16]. A new complete-loop checking mechanism
with the key technique to expanded variants was developed, called VAF-checks
(variant atoms loop checks for logic programs with functions). The key structural
characteristics of infinite loops were captured. In addition, the LOOPER technique
was proposed in [17] with an automated technique for dynamically analyzing a
running program to design non-terminating programs. Symbolic execution in
argument values was analyzed with a construct of satisfiability modulo theories
(SMT). Moreover, studying the design model for developing dynamic software was
recommended in [18], with a self-adaptive system. This system was suggested in
parts of development methods. Therefore, the proposed technique with tools
showed the dynamic self-adaptive behavior and the loop control.

Moreover, the Jolt system [19] presented dynamically detecting and escaping
infinite loops. This system recorded the state change at the start of the loop
instruction. If the previous and the current loop iterations produce the same state,
this system will report to the user that the application is in an infinite loop. The
system was designed to add instructions into the loop body. This system escaped
loops by adding instruction into the loop body whenever the infinite loop occurred.

Size-change termination was proposed in [20]. This research considered on
parameter-size analysis with graphs and proved that the program flow was
recognized as causing infinite descent. In addition, the new program termination
prover[21] was proposed using path-sensitive and context-sensitive program analysis.
A tool was designed for checking the balance between the constructing and

 9

termination arguments. Moreover, the research in [22] presented an automatic non-
termination checking with symbolic testing, using an automated generation of
invariants which showed unreachable from the terminating states of a program.

The program termination is an invariant of the path, or well-found path.
Binary reachability was used for finding a rank-function synthesis. On the other hand,
partial evaluation was used for binding-time analysis for guaranteeing the termination
of specialized program. Therefore, execution-time analysis for program termination
should be considered, such as the program at risk of an infinite-loop situation.

The research about loop invariants was designed with a formula with
mechanically-generated inductive assertions [23]. The mechanisms consist of
generating all paths corresponding to every basic cycle of the loop, test conditional
statements and loops, and generate a constraint on the parameters with a quantifier-
free formula. The conjunction of all constraints on parameters is evaluated based on
satisfying the loop invariant. From Figure 2.1, the while-loop has two testing
condition paths in the loop for analyzing the loop invariant.

Figure 2.1 An example of simple calculation program using two inputs [23]

2.2 Packet Time-out Mechanism

Similarly to software, every packet in communication channels must have
time to live (TTL) after being delivered in order to prevent a congestion situation in
the communication line. Thus, when a packet is delivered and flowed into the
communication channel, the packet will be terminated whenever it reached the TTL
value; the sender will be informed by ICMP [24] to retransmit the data.

TTL represents the lifetime of any packet over the network. The value is set
from zero to 255 and decremented by one when the packet passes each router

product (X, Y : integer) returns z: integer
var x,y: integer end var
<x, y, z>:=<X, Y, 0>;
while y ≠ 0 do
 if y mod 2 = 1 then <x, y, z>:=<2x, (y − 1) div 2, x + z>;
 else y mod 2 = 0 then <x, y, z>:=<2x, y div 2, z>;
 end if
end while

 10

across the network. If the TTL value reaches zero, the packet will be discarded. Thus,
this mechanism can prevent congestion when a packet cannot reach the destination.

In this research, the packet time-out is adapted to find a software process
lifetime. A boundary time was estimated for every execution using the concept of
identifying Execution Mean Time Interval (EMTI) of the execution time.

2.3 Identifying Execution Mean Time Interval (EMTI)

The confidence interval [25] was used for creating a trusted execution time of
the architecture. Normally, the execution time of a process is measured in the unit of
“millisecond” (ms) or “second” (sec). For example, the boundary of the execution
time of process A is not over 2500 ms. So, when the process is repeatedly executed,
there will be an Execution Mean Time (EMT) obtained from the average value of
every execution time of the process in a certain period.

The EMTI can be calculated based on the assumption that the distribution of
the execution time is normal. The EMTI is calculated from the Execution Mean Time
(EMT) of the service execution times. The formula for the EMTI is based on the
confidence interval, as shown in the equation below.

n

s
zx

2

EMTI 

where x is the EMT during a certain period,
α is the significance level,
Z is a distribution with confidence level equal to (1-α),
s is the standard variation of sample execution time values during time t,

and
n is the total number of the executions during time t.

2.4 Web Services

A web service is software that grants services over the web technology. A web
service is an improvement on Remote Procedure Calls (RPC) or methods for
exchanging the information using the SOAP protocol among the business processes.
One important characteristic of web service algorithms is the same as any other
software, which is the reliability of the web service process. Thus, each web-service

 11

module must be tested for reliable services [26-29] before being used in the real
world.

Functional web services are the functional programs which are implemented
at the web-service providers. They will be executed after receiving the SOAP request
message. Figure 2.2 shows the basic structure of web services and functional web
services.

Figure 2.2 The basic structure of web services and functional web services

2.4.1 The Run-time Error Detection of Web Services

Normally, web services must pass the verification and validation (V&V)
processes as same as any programs. V&V are the main techniques for confirming
correctness on the objective of general software services. So, there are many V&V
models designed for proving the completeness of the functions [4-5]. Error detection
was covered on the environment at run-time. Then, the system should be protected
from these errors by creating a framework, a model or architecture for monitoring
and detecting run-time faults. Run-time errors may occur on many factors at run-
time, such as incorrect inputs, file not found, or the fault from the system’s files.

Generally, based on the run-time error detection, there are three main solving
engines: the fault detector, replication, and notification, shown as Figure 2.3.

[WebMethod]
public string
checking_Loop1(dou
ble x, double y)
{
 while(x != 3)
 {
 x = (x * x + 2) % y;
 }
 return "Not
Infinite";
}

<?xml version="1.0"
encoding="UTF-8"?>
+<wsdl:types>-+--+--
+<wsdl:message
name="checking_Loop1SoapIn">
+<wsdl:message
name="checking_Loop1SoapOut">
+<wsdl:portType
name="ServiceSoap">-
+<wsdl:binding
name="ServiceSoap"
type="tns:ServiceSoap">---
+<wsdl:binding
name="ServiceSoap12"
type="tns:ServiceSoap">---
+<wsdl:service name="Service">

.....

Functional Web

Services

WSDL

Create

Provider UDDI

Requester

Bind

Find

Publish

 12

Figure 2.3 The three main engines for solving errors on the run-time error
detecting

Referring to Figure 2.3, each module can be described as follows:

Fault detector: this engine is responsible for checking run-time errors.
Typically, the run-time errors are captured by the exception classes. Thus, the
monitoring technique based on detecting faults are classified by tools or solving
techniques [9-30].

Replication engine: this engine is responsible for system recovery when a run-
time error occurs. The replication technique may use many services in many servers
in the distributed system. Nevertheless, the replication technique may cause high
system overhead depending on the number of replication. Some errors cannot use
replication technique in the same engine such as the server cannot respond, and file-
not-found error etc.

The errors on the recovery engine are separated into two types: errors that
cannot use the replication technique, and errors that can use the replication
technique. Based on the errors that cannot use the replication technique, the
developers must be sure that the input data in the testing process cannot lead to
this type of error again, which is different from the second type of the error, in that
the same input data can be reused. In the distributed system such as web services
system, the replication technique is used in fault-tolerant systems [31-34].Moreover,
the replication technique was proposed with separation into active replication and
passive replication [35-36].

Notification engine: this engine is responsible for informing the results to the
requester after recovery.

In the next chapter, Chapter 3, the infinite loop situation will be considered
and described more in detail. In addition, the proposed mechanism to detect and
solve the infinite loop situation under run time with the implementation of the EMTI
value will be elaborated.

Run-time environment

Fault

Detector

Replication

engine

Notification

engine

 13

CHAPTER 3
DESIGN OF THE MECHANISM

This chapter describes the design of the detection and control mechanism for
infinite-loop situations. To detect the infinite-loop situation, the loop condition and
iteration variables are considered. The proposed solution for the design can be
separated into three sections. In the first section, loop characteristics are analyzed to
identify the loop conditions and iteration variables. The technique for defining the
execution time boundary is proposed in the second section. In the third section, the
analysis of the non-deterministic loop structure is studied to detect the infinite-loop
situation. In addition, the following section provides examples of different loop
types. Furthermore, the designed mechanism of the proposed solution is described
in the last section.

3.1 Loop Characteristics

According to the definitions of loops mentioned in Chapter 1, this section
provides more details of two important loop types: deterministic loops and non-
deterministic loops. However, there are three significant factors that will be focused
on in this section:

Iteration variable (iv)[3] is a variable relating to the loop condition. If the
loop condition is TRUE, the next loop cycle will be executed. The value of iv is set in
two phases: the initial phase and the loop cycle phase.

- Initial phase: the value of iv is set before entering the loop instruction.
- Loop cycle phase: the value of iv is modified for the next loop cycle.

Thus, there are some statements that change the iv value, which means adjusting
values of the iteration variable each loop cycle, called incr_expr. In each loop cycle,
the iv value will be compared with the loop condition expression. The loop will be
terminated whenever the output of the loop condition is FALSE.

 Exit loop condition (exit_cond) [3] is a set of statements that terminate the
loop. The exit_cond relates to two variables: iv and x, where x is a value that is used
to control the execution cycles of a loop. The types of statement for the exit loop
condition are as follows:

 14

1. “iv<= x” : the loop condition runs when iv is less than or equal to x. On the
other hand, the loop condition will be terminated when iv is greater than x.

2. “iv<x” : the loop condition runs when iv is less than x. On the other hand,
the loop condition will be terminated when iv is greater than or equal to x.

3. “iv>= x” : the loop condition runs when iv is greater than or equal to x. On
the other hand, the loop condition will be terminated when iv is less than x.

4. “iv>x” : the loop condition runs when iv is greater than x. On the other hand,
the loop condition will be terminated when iv is less than or equal to x.
Adjusting values of iv (incr_expr)[3] is a set of statements for changing the

iv value in each loop cycle. The incr_expr relates to two variables: iv and x, where x
is a value that is used to control the execution of a loop.

 The incr_expr of a loop consists of four statements as follows.
1. “++iv’ and ‘iv++” : iv value will be incremented by one before and after

executing the statement, respectively.
2. “--iv’ and ‘iv--” : iv value will be decremented by one before and after

executing the statement, respectively.
3. “iv += x”, “iv = iv + x” and “iv = x + iv” : iv value will be incremented by x

value.
4. “iv -= x” and “iv = iv - x” : iv value will be decremented by x value.

3.1.1 Deterministic loop

Referring to the loop characteristics in Chapter 1, both the static loop and the
countable loop are deterministic loops. One characteristic of the countable loop is
that a number of loop cycles can be guaranteed and the infinite-loop situation can
be predicted. Table 3.1 defines the components of all countable loops.

 15

Table 3.1 Defining components of countable loop [3]

Examples of loops Definitions apply Restriction
for (initial [iv]; exit_cond;
incr_expr)
 statement
…………………………………..
for (initial [iv]; exit_cond;
incr_expr) {
 [declaration_list]
 [statement_list]
}
……………………………………
Initial [iv];
while (exit_cond) {
 [declaration_list]
 [statement_list]
incr_expr;
 [statement_list]
}
……………………………………..
Initial [iv];
do {
 [declaration_list]
 [statement_list]
incr_expr;
 [statement_list]
} while (exit_cond)

exit_cond:

iv <= ub
iv <ub
iv >= ub
iv >ub

incr_expr:

++iv
iv++
--iv
iv--
iv += incr
iv -= incr
iv = iv + incr
iv = incr + iv
iv = iv - incr

1. the exit_cond is not
affected from statements
inside or outside of the loop.

2. the incr_expr expression is
not within a critical section.

3.iv : Iteration variable. The
iteration variable is a signed
integer that has either
automatic or register storage
class, does not have its
address taken, and is not
modified anywhere in the
loop except in incr_expr.

4.incr : Loop invariant signed
integer expression. The value
of the expression is known at
compile-time and is not 0.
incr cannot reference extern
or static variables, pointers or
pointer expressions, function
calls, or variables that have
their address taken.

5.ub : Loop invariant signed
integer expression. ub cannot
reference extern or static
variables, pointers or pointer
expressions, function calls, or
variables that have their
address taken.

 From the structure of loop examples in Table 3.1, a number of loop cycles
can be predicted. In the deterministic loop, the loop execution time can be
predicted with certainty. An example of a deterministic loop is presented in Figure
3.1.

 16

Figure 3.1 An example of a deterministic loop algorithm

3.1.2 Non-Deterministic loop

As mentioned in Chapter 1, in the non-deterministic loop the number of loop
cycles is unknown, and the loop execution time cannot be predicted with certainty.

Referring to iv mentioned in Section 3.1, non-deterministic loops with the
exit_cond and incr_expr are divided into two sections: a critical section and a non-
critical section.

In the non-deterministic loop with a non-critical section, the variables and set
of statements in exit_cond and incr_expr are the same as the countable loop which
is different on restrictions.

In the non-deterministic loop with a critical section, exit_cond mostly only
has only one expression: “iv != constant value”. This means loop termination has
only one condition. Moreover, incr_expr cannot be clearly defined in calculation
statement for changing iv value in each loop cycle.

Therefore, a non-deterministic loop with non-critical sections has lesser
chance of being the infinite loop than with critical sections, because the non-critical
section easily performs in incr_expr calculation. Therefore, for the infinite-loop
situation, only the non-deterministic loop with the critical section should be
considered. If both exit_cond and incr_expr fall into the critical section, the
opportunity of an infinite-loop situation occurring is high.

main()
{ int x = 0;

while (x <= 99)
 { printf("x = %d\n", x);

x++; }
}

 17

Figure 3.2 Example of a non-deterministic loop algorithm

3.2 Characteristic Analysis of Critical Section

Consider the following example, Figure 3.3, in which the values of x and y are
dependent on other functions, foo() and bar(). Thus, there is a high possibility that
the exit_cond cannot be satisfied when running.

Figure 3.3 Example of a non-deterministic loop algorithm with critical
section with repetition of iv values [17]

Based on the previously defined definition, the iv is x. The ‘exit_cond’ is “x !=
3” and ub is a constant value, 3. Therefore, the loop will be terminated whenever x
is equal to 3. While the value of y will never be changed in the loop, the value of x
is changed according to the statement “x = (x * x + 2) % y” inside the loop.

Assuming that foo() returns 1 and bar() returns 2, the initial x value is set to 1
and the initial y value was it to 2. After passing the first cycle, x has the same value
because the calculation of statement “x = (x * x + 2) % y” cannot change the value
of x. Therefore, if x is equal to 1 and y is equal to 2, the loop cannot be terminated
because x value cannot be equal to 3 and the infinite loop will occur.

In another case, if foo() returns 7 and bar() returns 5,the initial x value is set
to7 and the initial y value is set to 5. After passing the first cycle, the value of x is 1

main()
{ int x = 0, n;

scanf("%d", &n);
while (x <= n)

 { printf("x = %d\n", x);
x++; }

}

main()
{ x = foo();
 y = bar();
 while (x != 3)
 { x = (x * x + 2) % y; }
}

 18

and the next cycle, the value of x is 3. Thus, the loop can terminate after passing the
second cycle of the loop.

From preliminary data analysis of this loop, it can be concluded that the loop
cannot be terminated whenever value of x and y consist of:

- An initial y value between 1 and 3, because x value cannot be 3 with the
fraction, which is divided by y value.

- An even initial y value and an even initial x value.
On the other hand, the loop can be terminated when the x and y data consist of;

- An even initial y value and an odd initial x value.
- An odd initial y value and almost all initial x values both even and odd.

This case has some x values that can cause non-termination of the loop.

As mentioned above, y is not related to the loop instruction, but x is iv.
Therefore, x values should be considered when the loop cannot be terminated.

In the execution phase, when foo() returns 6 and bar() returns 10, in every
loop cycle, the value of x is changed only to 6 and 8, a set of repeating values, as
shown in Table 3.2. Thus, the loop condition cannot be FALSE and the infinite loop
will occur.

Table 3.2 An example of repetition of iv values

Loop
Cycle 1 2 3 4 5 6 7 8 9 10 … n-1 n

iv values
(x) 6 8 6 8 6 8 6 8 6 8 … 6 8

Another example of a non-deterministic loop algorithm is shown in Figure 3.4.

 19

Figure 3.4 An example of non-deterministic loop algorithm in critical section
with the growth of iv values

From the algorithms of Figure 3.4, the algorithm has one loop instruction, that
is, “while (x != 1.1)”. iv is x. The initial iv value is set to a constant value, 0.1. The x
value is changed on a calculating statement in the loop: “x = x + 0.3”. Therefore, the
loop condition cannot be true because the x value cannot be equal to value 1.1. In
each loop cycle, the value of x will be added continuously and cannot exit the loop.
The infinite loop always occurs whenever this algorithm is running. Thus, the fault
occurs from the structure of algorithm.

On the other hand, if the initial iv value is not a constant value, the loop can
be terminated in some cases of the initial iv values, such as 0.8, 0.5, etc. So, when an
infinite loop occurs and iv’s value is continuously increased until it is higher than the
ub value, as shown in Table 3.3.

Table 3.3 An example of the growth of iv values

Loop cycle 1 2 3 4 5 6 7 8 9 10 … N

iv values (x) 0.1 0.4 0.7 1 1.3 1.6 1.9 2.2 2.5 2.8 … …

As mentioned above, the pattern of iv values under the infinite loop situation

can be defined in Definition 4 to Definition 8 as follows:

main()
{
floatx = 0.1;
while (x != 1.1) {
printf("x = %f\n", x);
 x = x + 0.3; }
}

higher than ub value

 20

Definition 4:
Let be a series of numbers with length starting at position in iv values and
can be defined as where is the number of at digit .

Definition 5:

Let and be a series of numbers with length starting at position and
 in iv values. The iv values repeat if and only if and in every digit of

and , that is,

Definition 6:
Let be a series of numbers with length started at position in iv values. The
iv values monotonically increase if and only if, .

Definition 7:

Let be a streaming number with length n started at position i in iv values.
The iv values monotonically decrease if and only if .

Definition 8:
The iv values has a pattern if and only if in iv values is satisfied either a
condition stated in Definition 4, 5, 6, or 7.

By analyzing data defined in Definitions 4 – 8, the pattern would occur in two
cases: 1) the iv values are repeated and 2) the iv values increase or decrease
continuously, which will be mentioned in Chapter 4.

Next, Classification of Problem Domain will be described by designing
algorithms with non-deterministic loops with a critical section.

3.3 Classification of Problem Domain

 Since the consideration of loops in this research is based on three types of C
language command and there are three infinite loop patterns as mentioned above,
nine cases of web services are deployed in this experiment as listed in Table 3.4.

 21

Table 3.4 Examples of web service modules with non-deterministic loops

Loop
types

NO. Web service modules

while

1

[WebMethod]
public string Calculation1 (double x, double y)
{
 while ((x != 3) && (y > 0))
 { x = (x * x + 2) % y;}
 return "No Infinite Loop";
}

2

[WebMethod]
public string Calculation2 (double x)
{
 while (x != 1.1)
 {x = x + 0.3;}
 return "No Infinite Loop";
}

3

[WebMethod]
public string Calculation3(double x)
{
 while (x != -2.1)
 { x = x - 0.2; }
 return "No Infinite Loop";
}

for

4

[WebMethod]
public string Calculation4 (double n, double y)
{
 for (double x = n; (x!=3) && (y>0); x = (x * x + 2) % y)
 { }
 return "No Infinite Loop";
}

5

[WebMethod]
public string Calculation5 (double n)
{
 for (double x = n; x!=1.1; x=x+0.3)
 { }
 return "No Infinite Loop";
}

 22

Table 3.4 Examples of web service modules with non-deterministic loops (con.)

Loop
types

NO. Web service modules

for 6

[WebMethod]
public string Calculation6 (double n)
{
 for (double x = n; x!=-1.1; x=x-0.3)
 { }
 return "No Infinite Loop";
}

do…while

7

[WebMethod]
public string Calculation7 (double x, double y)
{
 do
 { x = (x * x + 2) % y;
 } while ((x != 3) && (y > 0));
 return "Not Infinite";
}

8

[WebMethod]
public string Calculation8 (double x)
{
 do
 { x = x + 0.3;
 } while (x != 1.1);
 return "Not Infinite";
}

9

[WebMethod]
public string Calculation9(double x)
{
 do
 { x = x - 0.2;
 } while(x != -2.1);
 return "No Infinite Loop";
}

 In the next section, the mechanism for detecting the infinite-loop situation is
proposed from previous investigation.

 23

3.4 The proposed Mechanism

A mechanism is proposed for detecting the infinite-loop situation from the
boundary of execution time and the iv values. The mechanism is performed using
the activity diagram. The activity diagram of the mechanism is separated into four
diagrams: activity diagram for monitoring web service module, activity diagram for
training the IWSM, activity diagram for verifying the IWSM, and activity diagram for
online-verifying the IWSM. Each diagram will be described as follows:

3.4.1. Activity Diagram for Monitoring Web Service Module

Figure 3.5 Activity diagram for monitoring web service module

Figure 3.5 shows the activity diagram of the instrumented instructions. There
are four related classes: S/W tester, IWSM controller, Web service repository, and
EMTI database. This diagram starts as the S/W tester chooses the web service file for
the instrumented instructions at the IWSM controller. The IWSM controller calls the
web service file from the web service repository. The web service repository sends

 24

the web service file to the IWSM controller. The IWSM controller reads each
statement in the web service file. First, in the header of web service statements, the
instructions will be instrumented for capturing the start time, and the web service
name will be used for creating the web service name table at the EMTI database.
Secondly, when a loop instruction is found, the loop body will be instrumented with
instructions for capturing iv values, and the loop instruction and the iv names will be
recorded in the EMTI database. Lastly, instruction instrumentation for capturing the
return time will be done before returning the statement. After passing the
instrumented instruction in each step, the instrumented web service module (IWSM)
is created in the IWSM controller and it will overwrite the original web service file in
the web service repository.

After that, the IWSM is ready to be used for detecting the infinite-loop
situation. In the first step, the IWSM will be trained with an input data training set,
which is the numbers of input parameters that will not cause an infinite-loop
situation. The activity diagram for training the IWSM is shown in Figure 3.6.

3.4.2. Activity Diagram for Training the IWSM

Figure 3.6 Activity diagram for training the IWSM

 25

Referring to Figure 3.6, the activity diagram for training the IWSM is separated
into four classes: S/W tester, IWSM controller, Web service repository, and EMTI
database. This diagram starts as the S/W tester sends the input data training set. The
IWSM controller calls an IWSM, and the IWSM will be selected by the web service
repository. Whenever the IWSM is run with each input data training value, the
execution time will be calculated and recorded in the EMTI database. If the input
data training value is not the last value, the IWSM will be called continuously. On the
other hand, if the input data training value is the last value, the EMTI value will be
calculated from the execution time values and recorded at the EMTI database. The
initial EMTI value will be calculated and recorded in the EMTI database. After the
EMTI value is recorded, the result report will be created for informing the S/W tester.

After passing this step, the initial EMTI value will be calculated from a number
of execution times from the input data training set. In the next step, the IWSM will
be tested with the input data test set. The data test set cannot guarantee that the
infinite-loop situation will not occur. Thus, for some data elements in the data test
set, the infinite-loop situation may arise. The activity diagram for verifying the IWSM is
shown in Figure 3.7.

 26

3.4.3. Activity Diagram for Verifying the IWSM

Figure 3.7 Activity diagram for verifying the IWSM

Figure 3.7 shows the activity diagram for verifying the IWSM, which is
separated into five classes: S/W tester, IWSM controller, Web service repository,
temporary files and EMTI database. This diagram starts as the S/W tester sends the
input data test set. The IWSM controller calls the IWSM, which will be selected from
the web service repository. When the IWSM is run, the start time and the iv values
will be recorded in the temporary files. The IWSM controller checks the return time
value. If the return time has a value, the IWSM controller calculates the execution
time and records the execution time in the EMTI database. On the other hand, if the
return times do not have a value, the IWSM controller will check the execution
boundary of the IWSM by using the EMTI value from the EMTI database. If the current

 27

running time value of the IWSM is greater than the EMTI value, the IWSM controller
will search for a pattern of iv values from the temporary file. If a pattern is found, the
infinite-loop situation is also found, and the IWSM will be terminated by the IWSM
controller. In contrast, if the pattern is not found, the IWSM controller will check the
execution of the IWSM and the execution boundary time again.

If the input data test value is not the last value, the IWSM will be called
continuously. On the other hand, if the input data test value is the last value, the
new EMTI value will be calculated from the execution time values and recorded in
the EMTI database. After the new EMTI value is recorded, the result report will be
created for informing the S/W tester.

3.4.4. Activity Diagram for Online-Verifying the IWSM

Figure 3.8 Activity diagram for Online-Verifying the IWSM

 28

The activity diagram for online-verifying the IWSM is similar to the activity

diagram for verifying the IWSM, but there are two additional classes: User and
Application GUI. This diagram starts as the user opens the application and sends the
input parameters to the application GUI. Thus, the application GUI calls the IWSM
controller. Again, the process is similar to the previous one, but a new EMTI value
will be calculated every time. The IWSM controller receives the execution time value
instead of being calculated only after the IWSM controller receives the set of
execution time values from the EMTI database.

3.5 The Algorithm for Creating the IWSM

Referring to Figure 3.5, the activity diagram for monitoring web service
modules can be presented as pseudo code in Figure 3.9. This pseudo code shows
the concepts that are applied to instrumenting detection code into a web service.

Figure 3.9 Algorithm for creating the instrumented web service module

Read file stream of web service module

DOWHILE(NOT End Of File)

 read line

 IF (line = web service header instruction) THEN

 find web service name

 create web service name table to EMTI database

 instrument code for capturing start time

 ENDIF

 IF (line = loop instruction) THEN

 find iteration variables

 instrument code for capturing iteration variable values

into loop body

 ENDIF

 IF (line = return instruction) THEN

 instrument code for capturing return time

 ENDIF

ENDDO

 29

3.6 The Algorithm for Verifying the IWSM

 Since the boundary time and pattern finding are the very significant solution
of this research, the algorithms of both processes are presented in Figure 3.10. In
addition, these algorithms are implemented in both the verification and the online-
verification of IWSM.

Figure 3.10 The algorithm for checking boundary times and finding patterns of

iv values

set s1 to null

set t1 to 0

set t2 to 0

set b1 to false

While (time for checking = true)

For each IWSM’s name

 s1 = IWSM’s name

 get EMTI values from EMTI_DB database from s1

 t2 = upper boundary of EMTI values

 get start and return time values of s1 from file storage

 t1 = start time value + t2

 IF (return time value = empty)

 IF (current time of the system > t1)

 For each iv values files of s1

 get iv values from iv values files

 b1 = Find pattern (iv values)

 IF (b1 = true)

 call Terminate IWSM(s1)

 ENDIF

 ENDFOR

 ENDIF

 ENDIF

ENDFOR

ENDWHILE

Find pattern(iv values)

 IF (repetition of iv values = true)

 return TRUE

 ELSE IF (increasing of iv values = true)

 return TRUE

 ELSE IF (decreasing of iv values = true)

 return TRUE

 ELSE return FALSE

 ENDIF

END FUNCTION

Terminate IWSM(s1)

 destroy process name s1

 create report

END FUNCTION

 30

In the next chapter, Chapter 4, all implementation details will be shown as a
deployment diagram. Moreover, the information on testing the proposed method
and architecture is presented to ensure that the infinite-loop situation can be
detected.

 31

CHAPTER 4
IMPLEMENTATION AND EXPERIMENTAL RESULTS

This chapter discusses details of the implementation and experiments for
evaluating the proposed mechanism.

4.1 The Proposed Architecture

The proposed architecture is shown in the deployment diagram in Figure 4.1
where components of the architecture are defined.

Figure 4.1 Deployment diagram of proposed architecture

According to the designed mechanism in Chapter 3, Figure 4.1 shows the
deployment diagram of the derived system that is installed on a web server. Based
on the deployment diagram, there are four packages that must be processed in this
approach: the monitoring package, training package, verification package, and
termination package. In addition, two databases are involved: the web service
repository and EMTI_DB. Details of each package and database will be described in
the following sections.

Web Server

Tester_node

User_node

verifying package

monitoring package training package

terminating packageEMTI_DB

Web service

repository

 32

4.1.1 Monitoring Package

This package is used by S/W testers who have the responsibility to verify the
web services in the server. One important module is the Instruction_Instrument
module since it is responsible for instrumenting the infinite loop monitoring code.

4.1.1.1 Instruction_Instrument Module

Whenever a web service is implemented, the S/W tester will read this web
service agent as an input to this module. The output of this step is the IWSM.

Referring to Definitions 4 - 8 in Chapter 3, this research analyzes the changing
of iv values in the loop implementation. Therefore, this module is responsible for
instrumenting instructions for recording iv values and capturing the execution time,
which refers to the algorithms for creating the IWSM in Chapter 3.

Figure 4.2 Three parts of finding instructions

When considering an implemented web service module, there are three parts
to be considered: header, loop condition, and return instructions, as shown in Figure
4.2.

- Header : To find the web service module name and input parameters of
the service.

- Loop condition : To find the iv of the loop.
- Return instructions : To find the return instruction.

After instrumenting instructions, the structure will be recorded in the EMTI_DB
and the IWSM will be overwritten in the same file. The application for the
Instruction_Instrument module is shown in Figure 4.3. Moreover, Figure 4.4 shows the
original web service before the instructions were instrumented by the

[WebMethod]
public string Calculation1 (double x,

double y)

{

while ((x != 3) && (y>0))

 {

 x = (x * x + 2) % y;

 }

return "No Infinite";

}

Header

Loop condition

Return instruction

 33

Instruction_Instrument module and Figure 4.5 shows the web service algorithm after
the instructions have been instrumented.

Figure 4.3 An example of the Instruction_Instrument module

Figure 4.4 The original web service before instrumenting instructions

public class Service : System.Web.Services.WebService

{

 public Service()

 { }

 [WebMethod]

 public string Calculation1(double x, double y)

 {

 while ((x != 3) && (y > 0))

 {

 x = (x * x + 2) % y;

 }

 return "No Infinite";

 }

}

 34

Figure 4.5 The output from the Instruction_Instrument module, the IWSM

public class Service : System.Web.Services.WebService

{

 public Service()

 { }

 DateTime t1, t2;

 Boolean bool1 = true;

 Boolean bool2 = true;

 string x0;

 string y1;

 [WebMethod]

 public string Calculation1(double x, double y)

 {

 GC.Collect();

 TimeSpan d1 = new TimeSpan();

 d1 = DateTime.Now.TimeOfDay;

 StreamWriter T_d1;

 T_d1 = File.AppendText(@"D:\EMTI_ARCH_results\Calculation1.txt");

 T_d1.WriteLine("");

 T_d1.Write(" x " + x + " y " + y + " " + d1 + " ");

 T_d1.Close();

 OleDbConnection TimeCon1 = new

OleDbConnection(@"Provider=Microsoft.ACE.OLEDB.12.0; Data

Source=D:\EMTI_DB.accdb");

 TimeCon1.Open();

 OleDbCommand com = new OleDbCommand("select max_exeTime from EMTI

where Service_name='Calculation1'", TimeCon1);

 OleDbDataReader myReader = com.ExecuteReader();

 while (myReader.Read())

 {

 t1 = DateTime.Now;

 t2 =

t1.AddMilliseconds(Convert.ToDouble(myReader.GetValue(0).ToString()));

 }

 myReader.Close();

 while ((x != 3) && (y > 0))

 {

 if ((DateTime.Now >= t2) && (bool1 == true))

 {

 get_data0(x0);

 x0 = null;

 bool1 = false;

 }

 x0 += x + "\\\\";

 35

Figure 4.5 The output from the Instruction_Instrument module, the IWSM (con.)

Whenever the IWSM is running, the embedded instruction will record the start
time, the return time and the iv values of the loop in text files. A separate example
of the structure of the web service for creating the text files is shown in Figure 4.6.
Each created text file will be described in the next section.

 if ((DateTime.Now >= t2) && (bool2 == true))

 {

 get_data1(y1);

 y1 = null;

 bool2 = false;

 }

 y1 += y + "\\\\";

 x = (x * x + 2) % y;

 }

 TimeSpan d2 = new TimeSpan();

 d2 = DateTime.Now.TimeOfDay;

 StreamWriter T_d2;

 T_d2 = File.AppendText(@"D:\EMTI_ARCH_results\Calculation1.txt");

 T_d2.Write(d2 + "*");

 T_d2.Close();

 File.Delete(@"D:\EMTI_ARCH_results\Calculation1.x.txt");

 File.Delete(@"D:\EMTI_ARCH_results\Calculation1.y.txt");

 return "No Infinite";

 }

 void get_data0(string str)

 {

 StreamWriter Tx;

 Tx =

File.CreateText(@"D:\EMTI_ARCH_results\Loop_Variable_Pattern\Calculation1.

x.txt");

 Tx.Write(str);

 Tx.Close();

 }

 void get_data1(string str)

 {

 StreamWriter Ty;

 Ty =

File.CreateText(@"D:\EMTI_ARCH_results\Loop_Variable_Pattern\Calculation1.

y.txt");

 Ty.Write(str);

 Ty.Close();

 }

}

 36

Figure 4.6 The text files created from the web service module structure

4.1.1.1.1 <service_name> text file

 This text file will be created from the name of the web service module. This
text file is responsible for recording input parameter variables and values, the start
time and the return time of the service. The structure of this text file is shown as
follows.

(<input parameter name><value>)* <start time> <return time>

 The example of the <service_name> text file from the structure of
checking_Loop1 method is shown in Figure 4.7.

 (<input parameter name><value>)* <start time> <return time>

Figure 4.7 An example of data in the <service_name> text file

 According to Figure 4.7, all data are recorded in the text file. Each line will be
classified into four data groups: input parameter variables, input parameter values,
the start time and the return time. In the case that a service does not have an

[WebMethod]
public string Calculation1 (double x, double y)
{
while ((x != 3) && (y>0))
 {
 x = (x * x + 2) % y;
 }
return "No Infinite";
}

<service_name> text file is Calculation1.txt
Input parameters are x and y which these
values will be recorded at Calculation1.txt

<service_name_LV> text files are
Calculation1_x.txt and Calculation1_y.txt.
These text files contain values of each
iteration variable of the loop.

 37

infinite-loop situation, then the text file will record all values in the structure. In
addition, the “*” symbol will be extended to the last alphabet. On the other hand, if
the service has an infinite-loop situation, the input parameter values, including the
start time without return time, are stored.

4.1.1.1.2 <service_name_iv> text file

 The <service_name_iv> text file contains iv values. The name of this text file
is identified by “service name” and “iv name”. This text file is created for each iv
name of the loop condition. Whenever the iv values are stored, the separation
symbol, “\\”, will be used. Examples of <service_name_iv> text files are shown in
Figure 4.8 – 4.9.

Figure 4.8 An example of a text file with a repeating pattern

In Figure 4.8, the iv values are stored with two values, 2 and 0. This text file
is created from a web service, named Calculation1, and the iv name is x, Table 3.4 in
Chapter 3. Calculation1 has created two text files of iv values: x and y; however, this
figure shows only the text file of x. The repeated values, 2 and 0, are obtained from
changing the x value within the loop cycle when x starts with 2 and y starts with 6.

 38

Figure 4.9 An example of a text file with an increasing pattern

 In Figure 4.9, the text file is created from a web service, named Calculation2,
and the iv name is x, Table 3.4 in Chapter 3. Calculation2 creates one text file of iv
values, which is x. The increasing values of x are obtained from changing the x value
within a loop cycle when x starts with 4.

4.1.2 Training Package

 After the IWSM has been created from the original web service, the training
package will be used by the S/W tester. This package contains three modules: the
Selection_Calculation module, the Time_Checking module, and the Pattern_Checking
module.

4.1.2.1 Selection_Calculation module

This module is responsible for calculating the EMTI values from the execution
time.

4.1.2.2 Time_checking module

 The initial upper bound of EMTI values is set as the maximum value of the
defining boundary. If the execution time is more than the boundary value, the iv
values will be checked for patterns. Whenever, the execution time is higher than the
boundary value, the Pattern_Checking module is called. Details of each module are
described as follows.

 39

4.1.2.3 Pattern_Checking module

Whenever the IWSM runs, the iv values of the loop is recorded in the
<service_name_iv>text file. The iv values are a number of digits separated with “\\”
symbols. This module is responsible for finding patterns in the iv values. The patterns
indicate the running state that cannot reach the final state. Based on Definitions 4 –
8 in Chapter 3, patterns can be classified into two cases as follows:

Case 1: the patterns occur from a repeating set of the iv values. The checking
technique will be described in Figure 4.10(a) – 4.10(c). Moreover, the algorithm for
Case 1 is shown in Figure 4.11.

Figure 4.10 (a) Shift the index whenever the value doesn’t have a repetition

Figure 4.10 (b) The pattern can be found in the first index

Figure 4.10 (c) The pattern cannot be detected because the range is not of the
same size

 40

Figure 4.11 Algorithm for detecting the pattern of Case 1

/* N : a number of iv values

str : Array of iv values

idx : Array of indices of iv values

range : Array of length of each pattern

size_range : size of the length

c_range : a number of the same range

c : count a number of the same iv values

st1 : status of comparing the same range

rep_pattern : status of founding the pattern */

j := 0
for i := 0 to N //checking index of the same data

 while (j < N)

 if (check index of str[i] by starting at position i) > j

 idx[c] := record index of the same str[i]

j := idx[c] + 1 //move index for checking

 c++

 else

 j++ //add the index when are not the same data in the text

 loop continue

 end if

 end while

if (c > 1) //if a number of index of the same data more than one

 for i := 0 to c - 2

 range[i] = idx[i + 1] - idx[i] //checking range between the same data

 end for

 for i := 0 to c - 2 //Compare range of each part of the same data

 if (check the same range : range[i] == range[i + 1])

 c_range := c_range + 1;

 end if

 end for

end if

if (c_range >= (c-1))

 st1:= 1//keep status when the same range

end if

if (st1:= 1)

 while(count1 <idx - 1)

 while (count2 < range))

 if (str[(idx[count1] + count2)]:= str[(idx[count1 + 1] + count2)])

 //compare character each part of the range

 count3++

 end if

 if (count3 := range)

//if a number of the same data equals to the range

 count4++ //count a number of the same data per the range
 end if

 count2++

 end while

count2 := 0

count3 := 0

count1++

 end while

end if

if (count4 := c_range)

 rep_pattern := true

end if

end for

 41

Case 2: the pattern occurring from the situation in which the iv has continuously
increasing or decreasing values. The checking technique will be described as follows:

a) Type 1: the iv value is continuously increasing. Each value will be
compared with the next iv value for checking the increasing sequence. The hundreds
percent of increasing that is used for the conclusion of this pattern. An example of
this type is shown as below.

3\\3.3\\3.6\\3.9\\4.2\\4.5\\4.8\\5.1\\5.4\\5.7\\6\\6.3\\6.6\\6.9\\7.2\\7.5\\

b) Type 2: the iv value is continuously decreasing. Each iv value will be

compared with the next iv value for checking the decreasing sequence. The
hundreds percent of decreasing that is used for the conclusion of this pattern. An
example of this type is shown as below.

10\\9.7\\9.4\\9.1\\8.8\\8.5\\8.2\\7.9\\7.6\\7.3\\7\\6.7\\6.4\\6.1\\5.8\\5.5\\

The algorithm for Case2 with both Type1 and Type2 are shown in Figure 4.12.

Figure 4.12 Algorithm for detecting the pattern of Case 2

Continuously increasing

Continuously decreasing

/* N : a number of iv values

str : Array of iv values

increase : a number of rank of increasing

decrease : a number of rank of decreasing

*/

for i := 0 to N

 if (str[i] < str[i+1])

 increase++;

 else if (str[i] > str[i+1])

 decrease++;

 end if

 if (increase >= N)

 increase_pattern := true

 else if (decrease >= N)

 decrease_pattern := true

 end if

end for

 42

 Example results from the Time_Checking module and the Pattern_Checking
module are shown in Figure 4.13.

Figure 4.13 Example results from the Time_Checking module and the
Pattern_Checking module

4.1.3 Verification Package

 This package is used by the user, in which there are three modules, the same
as the training package.

4.1.4 Termination Package

 This package is called for terminating the IWSM when the infinite-loop
situation occurs.

4.1.5 Web Service Repository

 The web service repository is for storage of the IWSMs.

4.1.6 Database Design

 The database, EMTI_DB, contains three tables: the Loop_Instruction table, the
EMTI table, and the <service_name> table, as shown in Table 4.1.

 43

Table 4.1 Details of the EMTI_DB database

Table
No.

Name of Table Description

1 Loop_Instruction The table stores the information of loop structure in the
web service module

2 <service_name> The table stores the input parameters and execution time
from a set of deterministic input

3 EMTI The table stores the information on boundary of
execution time for checking execution time

 The details of each table are explained below.

4.1.6.1 Loop_Instruction Table

 After passing the Instruction_Instrument module, the structure of the loop
instruction from the web service module will be recorded in the Loop_Instruction
table. The fields of the Loop_Instruction table are shown in Table 4.2.

Table 4.2 Structure of the Loop_Instruction Table

Field Name Data Types Description Extra
Id Text (4) Number of record Primary Key, Not

null
service_name Text (50) Name of the web service module Not null

loop_name Text (150) Loop structure in the web service
module

Not null

Loop_variable Text (50) iv names of each loop structure Not null

Text_filename Text (50) Name of text file for recording iv
values

Not null

4.1.6.2 <service_name> Table

 <service_name> table is created for recording the values of the input
parameters. The fields of this table are not stable since it is dependent on the
structure of the web service module. The table fields consist of input parameter
names and the execution time, as shown in Table 4.3.

 44

Table 4.3 Structure of the <service_name>Table

Field Name Data Types Description Extra
<service input
parameters >*

Text(50) The value of this field
depends on the number of
the service input
parameters.

Primary Key, Not
null

Execution_Time Text (100) Each execution time of
deterministic initial iv
values

Not null

Figure 4.14 Extraction data from the original web service module

 An example of extracted data from a web service module is shown in Figure
4.14. The web service module, named Calculation2, instrumented its structure to the
Loop_Instruction table with service_name, loop_name, loop_variable, and
text_filename of the loop. Moreover, the Calculation2 table is created in the
EMTI_DB from the identified structure of the <service_name> Table, and it has two
fields: x (the input parameter of the service) and Execution_Time.

4.1.6.3 EMTI Table

 The values in the<service_name> table are used to calculate the EMTI
values, and are recorded to the EMTI table. The EMTI value was calculated using
95% confidence level from the EMT of the deterministic input parameter test cases.
The structure of EMTI table is shown in Table 4.4.

 45

Table 4.4 Structure of the EMTI Table

Field Name Data Types Description Extra
Service_name Text (50) Name of the service. Primary Key, Not

null
EMTI Text (255) Lower bound and Upper bound

of the confidence interval of
execution mean time.

Not null

max_exeTime Number (Double) Upper bound of EMTI value. Not null

4.2 Experimental Results

4.2.1 Performance of the System

The performance of the proposed architecture is measured based on CPU
usage. Figure 4.15(a) and Figure 4.15(b) show the CPU usage of web service
algorithms no.1 and no.4 from Table 3.4 in Chapter 3. The solid line represents
percentage of the CPU usage under the infinite-loop situation being run by the
proposed architecture. The dotted line shows percentage of the CPU usage under
the infinite-loop situation based on the original architecture. Each graph shows that
whenever the infinite loop occurs and is detected by the proposed architecture, the
CPU usage does not trend to increase and to drop as a result of the service
termination.

Based on the nine algorithms in Chapter 3, these algorithms were created as
the web service modules and run on the IIS web server. The web server is run on a
core-i3 CPU, 2.83 GHz with 2 GB RAM. From the results of running these modules, it is
clear that the CPU usage is high under the infinite-loop situation. Nonetheless, after
detecting the unwanted criteria, these abnormalities are terminated and the CPU
usage will be reduced approximately 20%.

 46

Figure 4.15 (a) Percent of CPU usage of the web service module no.1

Figure 4.15 (b) Percent of CPU usage of the web service module no.4

Moreover, the experiment was expanded to call sub-function services, which
will be described in the next section.

4.2.2 The Main Web Service Module under the Sub-function Services

 This evaluation is performed using the architecture of the sub-function
services. The web service modules under the sub-functions are designed as shown in

Web service module no.1

Web service module no.4

 47

Table 4.5 using five sub-function structure types: sequence, parallel, loop, selection,
and composition. The sub-function services are designed on the assumption of the
infinite-loop situation, using algorithms in Table 3.4 in Chapter 3. Each main service
implements one level of the sub-function type.

Table 4.5 Main web service modules with sub-function services

Sub-function types Main web service algorithms

Sequence

[WebMethod]
public string sub_Sequence(double x, double y)
{
 Cal1.Service c1 = new Cal1.Service();
 c1.Calculation1(x, y);
 Cal2.Service c2 = new Cal2.Service();
 c2.Calculation2(x);
 Cal3.Service c3 = new Cal3.Service();
 c3.Calculation3(x);
 return "return sequence";
}

Selection

[WebMethod]
public string sub_Choice(double x, double y, double n)
{
 if (n > 0)
 { Cal1.Service c1 = new Cal1.Service();
 c1.Calculation1(x, y); }
 else
 { Cal2.Service c2 = new Cal2.Service();
 c2.Calculation2(x); }
 return "return Choice";
}

 48

Table 4.5 Main web service modules with sub-function services (con.)

Sub-function types Main web service algorithms

Parallel

[WebMethod]
public string sub_Parallel(double x, double y)
{
 Cal1.Service c1 = new Cal1.Service();
 Cal2.Service c2 = new Cal2.Service();
 Cal3.Service c3 = new Cal3.Service();
 Thread tc1 = new Thread(c1.Calculation1(x, y));
 Thread tc2 = new Thread(c2.Calculation2(x));
 Thread tc3 = new Thread(c3.Calculation3(x));
 return "return Parallel";
}

Loop

[WebMethod]
public string sub_Loop(double x, double y,double n)
{
 Cal1.Service c1 = new Cal1.Service();
 Cal2.Service c2 = new Cal2.Service();
 Cal3.Service c3 = new Cal3.Service();
 for (int i = 0; i < n; i++)
 { c1.Calculation1(x, y);
 c2.Calculation1(x);
 c3.Calculation1(x); }
 return "return Loop";
}

Composition

[WebMethod]
public string sub_Compound(double x, double y, double n)
{
 Cal1.Service c1 = new Cal1.Service();
 Cal2.Service c2 = new Cal2.Service();
 Cal3.Service c3 = new Cal3.Service();
 if (n > 0)
 { c1.Calculation1(x, y);
 c2.Calculation2(x); }
 else
 { for (int i = 0; i < n; i++) c3.Calculation1(x); }
 return "return Compound";
}

 49

The CPU usage of the main services is measured in the same way as the first
experiment. When the architecture detects the infinite-loop situation from the sub-
functions, the sub-functions will be terminated. From the experiment results, when a
sub-function is terminated, the main process is also terminated.

Next, proof is drawn for confirming that whenever the infinite-loop situation
occurs in a sub-function, the main service will be affected.

Lemma 1: If a sub-function has an infinite-loop situation, then the main
service also has an infinite-loop situation.

Proof. Let P, Q be Turing Machines (TMs). Suppose that P calls Q as a sub-TM for
performing some specific task. Formally, there exists a set of states in P such that it
writes the input to Q’s tape, then P transfers the configuration to the start state of Q.
Moreover, Q has a set of states that writes the output back to P’s input tape and
transfers the configuration back to P.

This proof can be performed by contradiction. Suppose, for the sake of
contradiction, that P halts although Q does not reach the state that transfers the
execution back to P. The universal-multi-tape TM, R can be constructed, such that it
takes P, Q, and some input string. Then, R writes the input to P’s tape and starts the
execution of P. When P writes the input on Q’s tape, R also copy the content on Q’s
tape to R’s blank tape. At P’s halting state, R starts the blank tape configuration from
P’s halting state to Q’s start state, using the copy input. Thus, R can be viewed as
follows.

R(<P,Q>, x)
{
 Construct P’ from P in a way such that P’ copy the
Q’s input to its own tape (denoted as x’).
 Execute P’(x)
 Execute Q (x’)
}

It is clearly seen that P’ halts, according to the assumption on sub TM Q and
the halting assumption we made before. Consequently, the configuration of R must
reach the start state of Q on input x’. However, R cannot reach its halt state since
Q(x’) cannot transfer the execution back to R. However, from the halting assumption,
R must halt. Thus, the contradiction appears.

 50

4.2.3 Reliability of the Web Service

Normally, reliability is measured by the number of failures during program
execution. The algorithms in these cases are in critical that the reliability of program
can be estimated from the number of infinite-loops occurring.

On the other hand, the execution time of the service can be measured in a
period of time which the EMTI related on identify boundary of execution time. For
this proposal, the Standard Deviation (SD) is used for the calculation of the EMTI
value. Therefore, if the SD has a high value, the IWSM may get low reliability.
Normally, a number of test cases are an important for reliability. If a number of test
cases are high then the reliability is high as well.

Using only the SD of the execution time for estimation of the service
reliability is not enough because there are many factors for estimation, such as the
number of iterations of the loop, the number of lines of code, and the number of
called sub-functions.

The reliability of web service is evaluated from the probability of infinite-loop
situation not occurring. The architecture can detect and stop the process when an
infinite loop occurs, thus, the probability of the infinite-loop situation not occurring
us equal to one. In contrast, the probability of the infinite-loop situation occurring is
equal to zero.

 51

CHAPTER 5
DISCUSSION AND CONCLUSION

5.1 Discussion

Since the infinite loop can cause critical damage to organizations, a warning
message must be sent to users before this problem occurs. This research proposes a
mechanism with architecture to create a reliable system for detecting and controlling
the infinite loop problem. Compared to other protection methods, the verification
and validation (V&V) will be performed during the development process, while the
non-deterministic loop still has a chance to cause errors during run-time. Therefore,
the existing V&V methods cannot completely guarantee that the critical damage will
not arise after software delivery.

Considering on the run-time protection methods proposed by various
researchers, the input dataset is considered to be the most important factor of the
protection mechanism in the methods, since many researchers believe that the run-
time error relies on unpredicted values, such as the method proposed in [13]. In
addition, the input datasets that have been tested during the software testing phase
may or may not cover all unpredictable cases. Thus, some run-time errors have a
possibility of occurring, leading to a critical problem, especially when the error is
related to loop control.

Since the DIDUCE Model [13] created useful concepts for program testing and
helping in evolving a program correctly, it is similar to this research. So, a comparison
of the similarities between the DIDUCE Model and the proposed architecture is
presented in Table 5.1.

 52

Table 5.1 Comparing techniques between the DIDUCE Model and the proposed
architecture

Factors DIDUCE Model Proposed architecture

Inputs

Create debugging programs on
some inputs.
- Analysis on differences of
behavior between success and
failure at run-time.
- Firstly, extracting invariants input
from known test cases and
checking for invariant violations on
the failing cases.

Firstly, analyzing inputs using data
training set for which the correct
outputs are known.
- The iv values can be chosen as
inputs to the loop.
- Consideration state of loop
condition that the first, output of
loop condition is TRUE. Some of
the loop cycle leads to the output
of loop condition is FALSE.

long-
running

programs

Create debugging failures in long-
running programs.
- To suspect variables or code
segments by adding debugging
statements, assertions, and
breakpoints into the program.
- Monitoring all the variables in
the program which is better suited
than to locate such errors.

Detecting long running time from
infinite-loop situation.
- Instrumenting instructions into
the loop body.
- Monitoring iv values on the
pattern occurrence of the infinite-
loop situation.

Similar to the proposed method of this thesis, [6,10-11] have proposed
detection techniques using time constraints for program termination. These
techniques focus on events and program states within a time interval. However, the
time intervals defined by these techniques are static values that cannot be altered
even though the situation of program is changed. So, the proposed technique in this
research is more realistic, as the time interval is dynamic based on the changing
situation and environment. Table 5.2 shows timing techniques of the above
mentioned research.

 53

Table 5.2 Research on timing techniques

Other timing techniques Our timing technique

- Setting timing properties of real-time
systems. The time was assigned a time
value to event occurrence that is a
timestamp for defining max-time [6].
- Monitoring timing constraints in real-
time systems with designing bounded
violation detection latency and
minimum monitoring overhead [10].
- Using timing constraints for analysis of
correct and/or erroneous states [11].

- Defining maximum execution time
for checking the probability of the
infinite-loop situation occurring from
current execution time of the process.
- The boundary of times will be
updated during use.

Not only is the time constraint applied, but the VAF-checking technique
presented by [16] is also applied as well. This VAF-checking is a complete loop-
checking mechanism. Nevertheless, the VAF-checking technique is much more
complicated when compared with the proposed mechanism. This is because the
VAF-checking technique will consider the whole body structure of the program
before its implementation, while the proposed mechanism in this thesis is free from
such cases. Therefore, the proposed mechanism can be easily applied to any type of
programming structure with loop instructions.

Another technique called the Jolt system [19] is also similar to the proposed
mechanism, since it uses embedded code to control the infinite-loop situation.
Therefore, Table 5.3 shows a comparison between the Jolt system and the proposed
architecture. According to Table 5.3, the Jolt system might not be able to guarantee
on state of occurring the infinite loop. In contrast, the proposed architecture uses
two techniques for detecting the infinite-loop situation: timing technique and pattern
checking. Therefore, the proposed architecture has more reliability of detecting
infinite-loop situations than the Jolt system. Lastly, for controlling the infinite-loop
situation, the Jolt system used escaping the loop whenever an infinite loop occurred
and continuing the process in the main structure. This might be much appropriate
than termination of the entire program. However, the consequence of this action is
that it cannot be confirmed that the following execution is correct as according to
user’s expectations.

 54

Table 5.3 Comparison between the Jolt system and the proposed architecture

Techniques Jolt system Proposed architecture
Instrumenting source code

into the loop body  

Detecting infinite-loop
situation Check state change

Checking boundary of
execution time and infinite

loop pattern occurring
Controlling infinite-loop

situation
Escaping the loop

whenever infinite loop
occurs

Terminating the program
whenever infinite loop

occurs

5.2 Conclusion

This research aims to control the unlimited execution time of the process in
the infinite-loop situation. The proposed architecture has covered the research
objectives.

In the first research objective, there are two main solutions to detect and
control the infinite-loop situation. Firstly, the boundary of execution times, the EMTI,
was defined for analyzing the infinite-loop situation. This value of EMTI was used for
detecting the occurrence of infinite loop. After that, the pattern of iv values will be
detected when the current execution time is higher than the boundary of execution
time. If the pattern of iv values can be found, the process will be terminated and
reported to the requester.

In the second research objective, the architecture was designed on a web
server for detecting and controlling infinite loops of web services. The main
architecture was shown with four packages: monitoring package, training package,
verifying package, and terminating package that depends on each step of the
operation. There are five modules designed in the architecture, consisting of:
Instruction_Instrument module, Selection_Calculation module, Time_Checking
module, Pattern_Checking module and Termination module. These modules work
together for completeness of their tasks. Moreover, the obtained performance of the
architecture will be evaluated based on the CPU usage. The reliability of the web-

 55

service method will be evaluated by analyzing on the probability of a number of
infinite loops occurring after using the architecture.

Additionally, service sub-functions are an important issue that should be
considered when the web service is required. This is because the sub-functions of
the service can lead to the infinite-loop situation. It can be proven by contradiction
that whenever the sub-function has infinite loop, the main service will definitely be
affected.

5.3 Limitation

- Firstly, the boundary of execution time was created from a number of data test
cases.

- If an infinite loop occurs where a pattern cannot be found, the architecture
cannot detect the infinite loop.

- The architecture was implemented using Microsoft Visual C#. Therefore, there
are three loop instructions that were used in the C# language for testing the
architecture consisting of; while, do…while and for loop.

- In case of the sub-function service was terminated from infinite-loop situation
that affects the main service, the main service will be terminated as well.

5.4 Future Work

The proposed architecture cannot automatically classify the loop’s types,
between deterministic or non-deterministic. From Chapter 3, the architecture can
only analyze the structure and variables of the loop. Therefore, in future work, the
architecture should be able to automatically classify the types of loop, between
deterministic and non-deterministic loops, before instrumenting specific instructions
into the loop. Thus, deterministic loop instruction will be unnecessarily instrumented
with specific instructions.

Since the termination of the infinite loop in a sub-function causes the
termination of the main function, the analysis should be performed to prevent such
cases if the result from the sub-function is independent from activities of the main
function.

 56

5.5 Extended Work

Although this research focuses on the problem of infinite loops over the
distributed system, the study of infinite-loop situations on standalone systems was
also performed and presented in Appendix A. Moreover, the web services with sub-
functions were also considered. The solution for such problems is proposed in
Appendix B where the extended (Web Service Definition Language) WSDL for sub-
function services is described.

REFERENCES

1. Linda, R.T. and H.J. Shaw, Software Metrics and Reliability. 1999.
2. Thio, N. and S. Karunasekera. Automatic measurement of a qos metric for web

service recommendation. in Software Engineering Conference, 2005. Proceedings.
2005 Australian. 2005. IEEE.

3. IBM_Corporation. Countable Loops. [cited 2014 June 18, 2014]; Available from:
http://sc.tamu.edu/IBM.Tutorial/docs/CforAIX/CforAIX_html/compiler/concepts/cuppl
oop.htm.

4. Robinson, S. Simulation model verification and validation: increasing the users'
confidence. in Proceedings of the 29th conference on Winter simulation. 1997. IEEE
Computer Society.

5. Sargent, R.G. Verification and validation of simulation models. in Proceedings of the
37th conference on Winter simulation. 2005. Winter Simulation Conference.

6. Gergeleit, M., J. Kaiser, and H. Streich, Checking timing constraints in distributed
object-oriented programs. ACM SIGPLAN OOPS Messenger, 1996. 7(1): p. 51-58.

7. Wasserman, H. and M. Blum, Software reliability via run-time result-checking. Journal
of the ACM (JACM), 1997. 44(6): p. 826-849.

8. Lee, I., et al., A monitoring and checking framework for run-time correctness
assurance. 1998.

9. Sugaya, M., et al. A lightweight anomaly detection system for information
appliances. in Object/Component/Service-Oriented Real-Time Distributed Computing,
2009. ISORC'09. IEEE International Symposium on. 2009. IEEE.

10. Mok, A.K. and G. Liu. Efficient Run-Time Monitoring of Timing Constraints. in
IEEE Real Time Technology and Applications Symposium. 1997.

11. Robert, T., J.-C. Fabre, and M. Roy. On-line monitoring of real time
applications for early error detection. in Dependable Computing, 2008. PRDC'08.
14th IEEE Pacific Rim International Symposium on. 2008. IEEE.

12. Meyer, A.R. and D.M. Ritchie. The complexity of loop programs. in Proceedings
of the 1967 22nd national conference. 1967. ACM.

13. Hangal, S. and M.S. Lam. Tracking down software bugs using automatic
anomaly detection. in Proceedings of the 24th international conference on Software
engineering. 2002. ACM.

14. de Alba, M.R. and D.R. Kaeli. Runtime predictability of loops. in Workload
Characterization, 2001. WWC-4. 2001 IEEE International Workshop on. 2001. IEEE.

http://sc.tamu.edu/IBM.Tutorial/docs/CforAIX/CforAIX_html/compiler/concepts/cupploop.htm
http://sc.tamu.edu/IBM.Tutorial/docs/CforAIX/CforAIX_html/compiler/concepts/cupploop.htm

 58

15. FARLEX. The Free Dictionary. [cited 2013 December 10, 2013]; Available from:
http://www.thefreedictionary.com/infinite+loop.

16. Shen, Y.-D., L.-Y. Yuan, and J.-H. You, Loop checks for logic programs with
functions. Theoretical Computer Science, 2001. 266(1): p. 441-461.

17. Burnim, J., et al. Looper: Lightweight detection of infinite loops at runtime. in
Proceedings of the 2009 IEEE/ACM International Conference on Automated Software
Engineering. 2009. IEEE Computer Society.

18. Cheng, B.H., et al., Software Engineering for Self-Adaptive Systems: A Research
Roadmap, in Software Engineering for Self-Adaptive Systems, H.C. Betty, et al.,
Editors. 2009, Springer-Verlag. p. 1-26.

19. Carbin, M., et al., Detecting and escaping infinite loops with jolt, in
Proceedings of the 25th European conference on Object-oriented programming.
2011, Springer-Verlag: Lancaster, UK. p. 609-633.

20. Lee, C.S., N.D. Jones, and A.M. Ben-Amram, The size-change principle for
program termination. SIGPLAN Not., 2001. 36(3): p. 81-92.

21. Cook, B., A. Podelski, and A. Rybalchenko. Termination proofs for systems
code. in ACM SIGPLAN Notices. 2006. ACM.

22. Velroyen, H., et al., Non-termination checking for imperative programs, in
Proceedings of the 2nd international conference on Tests and proofs. 2008, Springer-
Verlag: Prato, Italy. p. 154-170.

23. Kapur, D. Automatically Generating Loop Invariants Using Quantifier
Elimination–Preliminary Report–. in IMACS Intl. Conf. on Applications of Computer
Algebra. 2004. Citeseer.

24. Forouzan, A.B., Data Communications & Networking (sie). 2006: Tata McGraw-
Hill Education.

25. McClave, J.T. and T. Sincich, A First Course in Statistics. 2011: Pearson
Education, Limited.

26. Qi, Z., et al. FLTL-MC: online high level program analysis for Web services. in
Services-I, 2009 World Conference on. 2009. IEEE.

27. Antunes, N. and M. Vieira. Benchmarking vulnerability detection tools for web
services. in Web Services (ICWS), 2010 IEEE International Conference on. 2010. IEEE.

28. Oliveira, R., N. Laranjeiro, and M. Vieira. A Composed Approach for Automatic
Classification of Web Services Robustness. in Services Computing (SCC), 2011 IEEE
International Conference on. 2011. IEEE.

29. Karray, M., C. Ghedira, and Z. Maamar. Towards a self-healing approach to
sustain web services reliability. in Advanced Information Networking and

http://www.thefreedictionary.com/infinite+loop

 59

Applications (WAINA), 2011 IEEE Workshops of International Conference on. 2011.
IEEE.

30. Groce, A., et al., Error explanation with distance metrics. Int. J. Softw. Tools
Technol. Transf., 2006. 8(3): p. 229-247.

31. Issarny, V., et al. Coordinated forward error recovery for composite web
services. in Reliable Distributed Systems, 2003. Proceedings. 22nd International
Symposium on. 2003. IEEE.

32. Liang, D., et al. Fault tolerant web service. in Software Engineering
Conference, 2003. Tenth Asia-Pacific. 2003. IEEE.

33. Liu, L., et al. A fault-tolerant framework for web services. in 2009 WRI World
Congress on Software Engineering. 2009.

34. Liu, A., et al., Facts: A framework for fault-tolerant composition of
transactional web services. Services Computing, IEEE Transactions on, 2010. 3(1): p.
46-59.

35. Fang, C.-L., et al. A redundant nested invocation suppression mechanism for
active replication fault-tolerant web service. in e-Technology, e-Commerce and e-
Service, 2004. EEE'04. 2004 IEEE International Conference on. 2004. IEEE.

36. Santos, G.T., L.C. Lung, and C. Montez. Ftweb: A fault tolerant infrastructure
for web services. in EDOC Enterprise Computing Conference, 2005 Ninth IEEE
International. 2005. IEEE.

Appendix A
The proposed architecture based on a standalone system

On the standalone system, the proposed architecture includes two main
phases consisting of eight modules, as shown in Figure A-1.

The first phase is the testing of the software process; there are three
important modules: the checking module (CM), the EMTI Module (EMTIM), and the
Embedded Module (EM). The second phase is the deployment phase, or the running
phase. This phase has two subsystems: controlling and learning subsystems. The
controlling subsystem has three modules: the time checking module, the reporting
module, and the termination module. Moreover, the learning subsystem has two
modules: the time recording module and the EMTI module.

The testing phase is responsible for automatically tracking the input software.
This tracking is performed by instrumenting the time measurement instructions into a
part of the non-Deterministic loop within the software. This phase tests the loop
processing time based on the calculated EMT and EMTI values from the normal
execution times. On the other hand, the running phase checks the processing time of
the loop instruction during run-time using the upper bound of the EMTI from the
EMTI_DB. Moreover, this phase adjusts the EMT and EMTI values. Details of each
phase will be described in the next section.

 61

Figure A-1 System Framework

- The testing phase

 - Checking Module (CM)

In order to prevent the infinite-loop critical problem, the CM checks loop
instructions in the software code. Generally, the loop attributes consist of initial
values, conditions, and counters. The termination of the loop process is dependent
on the loop attributes, which can be classified in two types: static and dynamic
attributes. The static attributes of the loop refer to the situation of loop that has
finite number to perform its tasks, while the dynamic attribute refers to the situation
that the number of loop cycles cannot be determined during the execution.
Moreover, the termination of loop is dependent on the value obtained from the
input variables of the loop conditions or values of the variables during the loop
process which are related to the loop condition at run-time.

Thus, the CM is responsible for checking the existence of the loop
instructions, such as , , or within the software. In this
module, the input software has two states under the pre-compile process.

1) Automatic software tracking: When input software is entered into this state,
each command of this software will be scanned for loop instructions.

 62

2) Instrument time measurement instruction: This state will instrument
instructions for time measurement into the input software. The measurement of time
starts when the loop starts its processes and stops when the loop is terminated, as
show in Figure A-2.

Figure A-2 Input software with instrumented time capturing instructions

Therefore, after passing this module, the software will be sent to two
modules: the EMTI module (EMTIM) and the Embedded Module (EM). These
modules will be described below.

- EMTI Module (EMTIM)

The EMTIM is responsible for recording the normal execution times of the
software. The EMTIM of the testing subsystem will find an initial EMTI value. The
testers generate the input data for software testing. Thus, the input data set of the
testing phase must cause an infinite loop. Conditions of the tests are defined below.

- Controlled loops: Controlled loop refers to the situation of all input
data sets that will not create any infinite-loop situations.

 63

- Terminated loops: Terminated loops mean the controlled situation
under the infinite processing time. The termination of this infinite loop uses the
upper bound of the valid time interval of the normal loop execution.

- Relation among of variables of loop conditions: the variables for
controlling loop conditions are identified into two types: internal and external
variables. The internal variables are all variables existing in the loop, including input
commands within the loops. The external variables are all variables that send data
to the loop process. Thus, any variables of the loop condition can be defined under
the relation between internal and external variables.

The results from the test that are valid execution times will be recorded to
the EMTI_DB and will be used for EMT calculation using a 95% confidence level.
Consequently, the initial value of the EMTI is declared before the software is
delivered.

- Embedded Module (EM)

The EM is responsible for embedding the time capturing instructions within
the loops of the software. So, this EM will embed only the commands that prevent
the unlimited computing time from the loop instruction. Then, the command for
starting capture time is added with the TimeStartCounter attribute and the command
for stopping capture time is added with the TimeStopCounter attribute. After passing
the EM, the software will create a new output file for the run-time process.

- The running phase

After passing the testing process, the software is ready for use with the time
capturing instructions from the EM. Under this phase, the software is implemented
with two main subsystems: the controlling subsystem and the learning subsystem.
The details of each subsystem will be described, as follows:

- Controlling subsystem

The controlling subsystem is responsible for managing the running software
when infinite-loop situation occurs. The controlling subsystem consists of three
important modules: the time checking module (TCM), the reporting module (RM),

 64

and the termination module (TM). The TCM uses the loop starting time and the loop
stopping time for calculating the time interval of the loop. Thus, the TCM compares
the loop execution time with the upper bound of the EMTI in the EMTI_DB. If the
execution time is more than the defined upper bound of the EMTI, then the RM will
be called to create a message to inform the user. Moreover, the TM will be called to
cancel the software process. The activity diagram of the controlling subsystem is
shown in Figure A-3.

Figure A-3 Activity diagram of the controlling subsystem

- Time Checking Module (TCM)

In the first step, each EMTI value is obtained from the testing subsystem and
stored in the EMTI_DB that is chosen for checking in this module. The TCM receives
the loop starting time and the loop stopping time, and then the loop execution time
is calculated. The loop execution time will be compared with the upper bound of
the EMTI value.

 65

The comparison result mentioned above indicates whether the executing
loop is in the normal or abnormal states. The normal state is the situation that the
loop execution time is less than or equal to the upper bound of the EMTI value. On
the other hand, the abnormal state is the situation that the execution time has the
potential to exceed the upper bound of the EMTI value. Moreover, every loop
execution time in the normal state will be recorded in the EMTI_DB for recalculation
of the EMTI value in the EMTI module of the learning subsystem.

- Reporting Module (RM)

When the infinite-loop situation is indicated by the TCM, the RM is called for
process termination. The RM is responsible for creating a warning message for the
user. The message will be displayed to the user as a dialogue. Moreover, the user
must send a response to the dialogue message whether to continue or terminate the
process. If the user chooses to continue the process, the RM will return all checking
processes back to the TCM as the normal process, marked as an abnormal state.
Then, the software keeps running whereas every five seconds the warning message
will be displayed to the user again. On the other hand, the warning message will
disappear when the software finishes executing or the user wants to terminate the
process.

- Termination Module (TM)

The TM is responsible for the software process termination according to the
result of the TCM and RM. Thus, the TM will be performed whenever the user
chooses to terminate the computing process.

- Learning subsystem

- Time Recording Module (TRM)

Previously, the EMTI value of each loop mechanism was set as an initial value
from the testing subsystem. Thus, the TRM receives the execution time from the
TCM and sends it to the EMTI_DB. The administrator identifies a number of normal
states and records them in the EMTI_DB. As a consequence, the recalculating of the

 66

EMTI value will be performed in order to reset the EMTI value in the actual
processes. Moreover, the number of occurring infinite-loop situations will be
reported to the system administrator for problem consideration.

- EMTIM

The EMTIM in the learning subsystem will select the loop execution times of
all normal states from the EMTI_DB for recalculation of the EMTI value. The
calculation uses values of the remaining unused loop execution times stored in the
EMTI_DB

For example, there are 30 remaining unused loop execution times of the
normal state; the new EMTI will be calculated based on these remaining values.
Meanwhile, the TRM still records the incoming valid values of the other executions
of the software.

- The proposed solution under the standalone architecture

The architecture is designed and implemented using Microsoft Visual C++.
The software for evaluation used random test cases in seven loop instruction
patterns, as follows:

1. The algorithm has only one loop instruction: for, while, and do…while.

2. The algorithm has only one loop instruction and calls a functional instruction
where there is no loop instruction existing in the called function.

3. The algorithm has only one loop instruction and calls a functional instruction
where loop instructions exist in the called function.

4. The algorithm has more than one loop instruction without nested loop
instruction.

5. The algorithm has more than one loop instruction, but it has some nested
loop instructions.

 67

6. The algorithm has loop instructions and selection instructions that some
works are overlapped between them.

7. The algorithm has loop instructions and selection instruction that there is no
work to be overlapped among them.

Based on the seven patterns above, fifteen different software programs were
created by a generator program for efficiency measurement. Moreover, there are 100
dissimilar data test sets used as input to the 15 testing software programs. Table A-1
shows various loop conditions in the testing files where each condition can
encounter the infinite-loop situation.

Table A-1 The loop instruction case conditions for testing

Loop instruction condition Loop exit condition
for(i = 0; i!= 10; i++) i =10

while (ch!= ‘c’) ch =‘c’
while (x != 10) x = 10
while (a!= b) a = b

while ((i%2) != 0) i mod 2 equal 0.
while ((a = b|c) || (b = c|d)) (a = b|c) and (b = c|d) are false

while (x = function()) The value from function() return not
equal x

Based on the conditions defined in Table A-1, the test results of the fifteen
programs are presented as a line graph in Figure A-4. The graph consists of two lines
that represent the two situations of the experiments. The first line represents the
infinite-loop situation before using the architecture, while the second line represents
the infinite-loop situation after using the architecture. According to the line before
using the proposed method, it is clear that within 100 data test sets, every program
has a chance to be trapped in the infinite-loop situation. Nevertheless, after the
implementation of the proposed solution, the number of infinite-loop situations of
software is reduced to zero.

 68

Figure A-4 The graph comparing the number of infinite loops before and after
using the system

As shown in the results, the proposed architecture can detect the infinite-
loop situation whenever an invalid condition occurs during the run-time process.
Moreover, there is no side effect from software termination. Therefore, users can be
ensured that their system is secured and trustable.

 69

Appendix B
Extending WSDL for Calling Sub-function

In this case, the web service is separated into two parts: the main service and
sub-function services. The main service is the service called from the user or
application program. The sub-function service is the external services called from the
main services.

In the consideration, if the infinite-loop situation occurs in sub-function
services, the infinite-loop situation will occur in the main service as well. Therefore,
the web-service method algorithm is a variant of the algorithms for calling sub-
functions. In the next section, the exposed sub-function services in the main service
algorithm will be expanded by extending the Web Service Definition Language
(WSDL).

This section proposes the extended WSDL for sub-function services. The
method approach is named as the Extended EMTI (EEMTI). The method extends the
description of sub-function structures for calling external services in the algorithm.
The XML schema design in the WSDL file explains the display of all calling external
services with specific flows.

The service algorithm can identify the path of the called sub-function so that
the path can expose the structural flow of the called sub-function. The sub-function
structural flow in the service algorithm is defined in Definition B-1. Moreover, the
service execution time is approximated in each flow type referring to Definition B-2,
respectively.

Definition B-1:

The flow types of the called external services can be classified as sequence,
parallel, conditional and loop. These types are analyzed from the syntax of the
programming language for calling external services.

According to all flow types defined in Definition B-1, the execution time of
each flow will rely on different criteria. Firstly, the simplest flow type is the sequence
flow. The completeness of the sequence flow is dependent on the completeness of
every sequential process of the task.

 70

Secondly, the parallel flow refers to concurrent tasks. The parallel flow is
divided into two different alternatives: the minimum time execution, and maximum
time execution. The minimum time execution occurs when only one sub-task finishes
its process and the other sub-tasks will be ignored. The result of the first finished
sub-task will be used in the next process. On the other hand, the maximum time
execution refers to the situation that every sub-task must complete their assignments
before moving to the next process.

Differing from other flow types, the execution time of the condition flow
relies on the tasks under the satisfied condition, while the execution time of the
loop is the accumulation of execution times of all cycles. Therefore, the time for
each flow can be defined as Definition B-2.

Definition B-2:

 Let be the execution time of dependent agents under the flow
type . Let be the service time of the external agent . The value of
 in each process flow type is defined as follows:

 ∑

 { |

 | | | |

 ∑∑

where is the number of services to be executed within the Web
Service Composition (WSC),

 is the number of loops to be executed within the WSC.

Moreover, the limitation of the execution time under the infinite-loop
problem is defined using the maximum value. Since there are various flow types as
previously mentioned, all of these flows can be implemented in the main service
algorithm. Thus, if the sub-function is an infinite-loop situation, the infinite-loop
situation will also occur in the main service.

 71

Since the general flow types, as defined in Definition B-1 and Definition B-2,
can be supported by the WSDL, the sub flow is counted as a new flow type that
consists of various general flow types. Therefore, the extended framework of the
WSDL must be extended to support such cases.

The Extending WSDL Schema (EWS) is written in XML schema as an extended
part of WSDL in the web service agent. This module is embedded in the message
type of the WSDL definition for describing the sub-function of the architecture. This
extended schema is distributed to other web service agents for updating their WSDL
descriptions. The parameters of the referred EWS are shown in Figure B-1.

Figure B-1 The EWS in the WSDL document message type

According to Figure B-1, all parameters can be described, as below.

- : This parameter refers to the agent web service’s name.
- : This parameter is used to distinguish the structure flow of calling

the sub-function between sequence, parallel, choice, and loop.
- : This parameter refers to the name of the external

service.
Moreover, these parameters must be defined under tags named “s:element”,

“s:complexType” and “s:binding”, as shown in Figure B-1. Each command line in the
EWS can be elaborated as follows:

- First line 1:<s:element name = _“Extend”>. This tag contains
the parameter, and “_” symbol. Supposing that Root1 is the name of
the web service agent, then the tag of the first line is<s:element name =
“Root1_Extend”>.

1: <s:element name= 𝒂𝒈𝒆𝒏𝒕𝑵𝒂𝒎𝒆 _“Extend”>
2: <s:complexType>
3: {<s:element subType= 𝒕𝒚𝒑𝒆 _𝒕𝒚𝒑𝒆 ∗/>
4: <s:binding WSDL_transport= “http://www.xxx.xx”

 exAgent = 𝒆𝒙𝑨𝒈𝒆𝒏𝒕𝑵𝒂𝒎𝒆 /> ∗
5: </s:complexType>
6: </s:element>

 72

- Second line 2:<s:complexType>. This tag states the beginning of the
extended structure. Under this specific tag, there are two main tags, <s:element> and
<s:binding> tags, as written in line number 3 and 4. However, the occurrence of
these two tags that can be multiple, as marked by “*”, because there can be many
sub-functions within the web service algorithm.

 Within the <s:element>, the subType attribute is used to identify the sub-
function with the flow types. In the simple sub-function, it is followed by
parameter, as shown in Table B-1. Otherwise, it is followed by _ ∗ symbol. The
value of “*” symbol referring to the repeated process can be assigned in the range
of 0 to N. Examples of these sub cases are shown in Table B-1, and Table B-2
respectively.

Table B-1 Basic constraint format of sub type in <s:element subType> tag

Types Example Tags
Sequence <s:element subType= “Sequence” />
Parallel <s:element subType= “Parallel” />
Choice <s:element subType= “Choice” />
Loop <s:element subType= “Loop” />

Table B-2 Examples of compound format of sub type in <s:element subType>
tag

Types Example Tags
Loop_Choice <s:element subType= “Loop_Choice” />
Sequence_Loop_Parallel <s:element subType= “Sequence_Loop_Parallel” />

Besides the <s:element> tag of <s:complexType>, the <s:binding> tag
identifies all elements under the subType attribute that must be blinded. Thus, two
important attributes must be defined: WSDL_transport and exAgent. The
WSDL_transport attribute shows the URL of the external service’s WSDL, while the
exAgent attribute shows the name of the required external service. This tag can
occur more than once under each sub type.

Afterwards, the EWS is instrumented in the WSDL file, and then the file will be
set upon its original URL of the service.

 73

- Monitoring Sub-function (MNS)

The MNS is a module responsible for tracking the sub-functions defined in the
extended WSDL file. First, the main service checks all sub-elements from its WSDL.
Therefore, other levels of the sub flow is exposed to details from the WSDL of the
main web service by checking the WSDL’s URL, stated in the WSDL_transport
attribute and the external service name in the exAgentName attribute. All elements
of the sub-function will be verified from the boundary to the central part of the sub-
function. Afterward, all elements are recorded in the EMTI_DB at the main service.

- Case study of extended WSDL for calling sub-function

The example of the sub-function of Root1 agent is elaborated using flow
chart in Figure B-2. Root1 is the main web service agent with two sub-functions. The
flow chart shows the levels of the sub-functions under the Root1 agent algorithm.
The sub-function type of Root1 is the first level sub-function, where there are three
sub-function types: the Sequences, the Loop, and the Loop_Choice. The solid line
shows the flow of algorithms in the first level of Root1 (Root1.Level1).

Within the Sequence of the first level, Level1, there are two external services
called, namely A1 and B2. Under the loop of Level1, there is a call for an external
service, named C1. Moreover, there is a choice within the loop. This structure is
called a Loop_Choice structure. Under the Loop_Choice structure, there are two
external services called: D2 and E3. Therefore, the sub elements of Level1
(Root1.Level1) contain five elements: A1, B2, C1, D2, and E3.

Figure B-2 Example of sub-function flow of “Root1” agent

 74

<s:element name="Root1_Extend">
<s:complexType>

<s:element name="Sequence"/>
<s:binding WSDL_transport="http//xxx.x.xx/x/x" exAgent="A1"/>
<s:binding WSDL_transport="http//xxx.x.xx/x/x" exAgent ="B2"/>

<s:element name="Loop"/>
<s:binding WSDL_transport="http// xxx.x.xx/x/x" exAgent ="C1"/>

<s:element name="Loop_Choice"/>
<s:binding WSDL_transport="http// xxx.x.xx/x/x" exAgent ="D2"/>
<s:binding WSDL_transport="http// xxx.x.xx/x/x" exAgent ="E3"/>

</s:complexType>
</s:element>

Referring to the structure described above, the extended description of the
Root1 agent has three sub-functions: the Sequence, the Loop, and the Loop_Choice.
The extended WSDL description of Root1 agent is shown in Figure B-3.

Figure B-3 The Extending WSDL of the “Root1” agent

After tracking all sub elements of Root1.Level1, all sub-functions in other
levels are tracked by the MNS. Then, each element of level1 calls an external service
in its algorithm, as listed below.

(1) A1 has a Choice, A11 and A12,
(2) B2 has a Loop, B21,
(3) C1 has a Sequence, C11 and C12,
(4) D2 has a Parallel, D21 and D22,
(5) E3 is the closed element.

The details of these sub-functions in the second level, level2, called as
Root1.Level2, are shown in the dotted line in Figure B-4.

 75

<s:element name="Root1_Extend ">
<s:complexType>

<s:element name="Sequence"/>
<s:binding WSDL_transport="http//xxx.x.x/" exAgent="A1"/>
<s:element name="A1">

<s:complexType>
 <s:element name="Choice"/>

<s:binding WSDL_transport="http// xxx.x.x/" exAgent ="A11"/>
<s:binding WSDL_transport="http// xxx.x.x/" exAgent ="A12"/>

</s:complexType>
</s:element>
<s:binding WSDL_transport="http//xxx.x.x/" exAgent ="B2"/>
<s:element name="B2">

<s:complexType>
<s:element name="Loop"/>
<s:binding WSDL_transport="http// xxx.x.x/" exAgent ="B21"/>

</s:complexType>
</s:element>

<s:element name="Loop"/>
<s:binding WSDL_transport="http//xxx.x.x/" exAgent ="C1"/>
<s:element name="C1">

<s:complexType>
<s:element name="Sequence"/>
<s:binding WSDL_transport="http// xxx.x.x/" exAgent ="C11"/>
<s:binding WSDL_transport="http// xxx.x.x/" exAgent ="C12"/>

</s:complexType>
</s:element>

<s:element name="Loop_Choice"/>
<s:binding WSDL_transport="http//xxx.x.x/" exAgent ="D2"/>
<s:element name="D2">

<s:complexType>
<s:element name="Parallel"/>
<s:binding WSDL_transport="http// xxx.x.x/" exAgent ="D21"/>
<s:binding WSDL_transport="http// xxx.x.x/" exAgent ="D22"/>

</s:complexType>
</s:element>
<s:binding WSDL_transport="http//xxx.x.x/" exAgent ="E3"/>

</s:complexType>
</s:element>

Figure B-4 All sub-functions description of the “Root1” agent

There are seven elements of Root1.Level2: A11, A12, B21, C11, C12, D21, and
D22. Assume that every element of Root1.Level2 is the closed element. Thus, the
sub-function of the Root1 agent has only two sub levels: Level1, and Level2. The
overall sub-function of the Root1 agent after passing the MNS is shown by the WSDL

 76

description, in Figure B-4. The application for detecting the structure of the sub-
function from the extended WSDL files is shown in Figure B-5.

Figure B-5 Application for detecting sub-function from extended WSDL files

From the abovementioned Definition B-1 and Definition B-2, the flow types of
calling external services related to the main program on rank of occurring infinite-
loop situation.

The extended WSDL is a basic for evaluation of reliability of the main
program, such as ranking execution paths. Therefore, each flow type can be
approximated with percent of infinite-loop occurring for probability of basic path as
follows.

In the sequence type; if some sub-functions have a non-deterministic loop,
the percent of calling the sub-functions is 100% because the algorithms have only
one path for this type.

In the parallel type; if some sub-functions have a non-deterministic loop, the
percent of calling that sub-function is 100% and the quantity of resources used is
higher than other types because each sub-function is implemented at the same
time.

In the choice type; if some sub-functions have a non-deterministic loop, the
percent of calling the sub-functions dependent on the number of conditions and
called sub-functions.

In the loop type; nested loops will occur in the algorithm, if some sub-
functions have non-deterministic loops. The sub-functions will be implemented
under the loop. Thus, whenever an infinite loop occurs in the sub-function, the loop

 77

iteration will be stopped to wait for the result from the sub-function. The percent of
calling that sub-function depends on the instructions under the loop such as the
compound type.

 After checking the sub-function, the sub-function will be recorded in the
EMTI_DB. There are two tables that are extended to the EMTI_DB: the WS_relation
Table and Node_WSDL_URL Table. The sub-function will be exposed with the
number of levels and nodes, including relations between nodes. The structures of
these tables are shown in Table B-3 and Table B-4.

- WS_relation Table

Table B-3 Structure of the WS_relation Table

Field Name Data Types Description Extra
service_name Text (50) Name of web-service

method
Primary Key, Not null

relate_nodes Text (255) Names of sub-function
service in each flow type

Primary Key, Not null

structure_type Text (50) flow type : sequence,
parallel, loop and choice

Not null

- Node_WSDL_URL Table

Table B-4 Structure of the Node_WSDL_URL Table

Field Name Data Types Description Extra
node Text (50) Name of sub-function

service
Primary Key, Not null

URL Text (255) URL of WSDL file of the
service

Not null

 78

Appendix C
List of Publications

1) Srirajun, N., Bhattarakosol, P., Tantasanawong, P., Han S., A Trustable Software
with A Dynamic Loop Control Mechanism, Proceedings of The 5th International
Conference on Future Information Technology (FutureTech2010), Busan , KOREA.

2) Srirajun, N., Bhattarakosol, P., Tantasanawong, P., Han S., Trustable Web
Services with Dynamic Confidence Time Interval, Proceedings of The 4th
International Conference on New Trends in Information Science and Service
Science(NISS2010), Gyeongju, KOREA.

3) Srirajun, N., Bhattarakosol, P., Tantasanawong, P., Han S., A Trustable Software
with A Dynamic Loop Control Mechanism, International Journal of Information
Technology Communications and Convergence, Vol.2, No.1, 2012, pp.54 - 70.

4) Srirajun, N., Bhattarakosol, P., Tantasanawong, P., Han S., Trustable Web
Services with Dynamic Confidence Time Interval, Advances in Information Sciences
and Service Sciences, Vol 3(4), Advanced Institute of Convergence Information
Technology (AIOIT), Korea, 2011, pp. 48-58.

5) Srirajun, N., Bhattarakosol, P., Tantasanawong, P., Han S., EEMTI: an Extending
Framework for Nested Web Service Verification, Proceedings of The 7th International
Conference on Computing and Convergence Technology (ICCCT2012), 3-5 December
2012, Seoul, Korea, pp. 128-133.

6) Srirajun, N., Bhattarakosol, P., Tantasanawong, P., Han S., A Modification of
WSDL for Infinite Loop Verification Under Nested Structures, Journal of
Communications and Information Sciences (JCIS), Vol. 3, No. 3, pp. 92 - 98, 2013.

 79

VITA

Name: Miss NATTAPATCH SRIRAJUN.

Date of Birth: 29th December, 1977.

Educations:

• Ph.D., Program Computer Science, Department of Mathematics,
Faculty of Science, Chulalongkorn University, Thailand, (June 2008 - October 2013).

• M.Sc. Program Computer Science, Faculty of Science, Silpakorn
University, Thailand, (November 2002 - April 2006).

• B.Sc. Program Computer Science, Faculty of Science and Technology,
Nakhon Pathom Rajabhat University, Thailand, (June 1995 - March 1998).

Scholarships:

• Office of the Higher Education Commission, Thailand. (June 2008 –
October 2011).

• THE 90th ANNIVERSARY OF CHULALONGKORN UNIVERSITY FUND
(Ratchadaphiseksomphot Endowment Fund), (July 2012 - October 2013).

	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLE
	LIST OF FIGURE
	CHAPTER 1 INTRODUCTION
	1.1 Introduction and Problem Review
	1.2 Problem Domain: Non-Responsive Web Services under the Infinite-Loop Situation
	1.3 Research Objectives
	1.4 Expected Outcomes
	1.5 Scopes of the Study
	1.6 The Definition of Terms

	CHAPTER 2 THEORIES AND LITERATURE REVIEWS
	2.1 Software at Run-time Situation
	2.1.1 Loop Instructions
	2.1.2 Infinite-Loop Situation

	2.2 Packet Time-out Mechanism
	2.3 Identifying Execution Mean Time Interval (EMTI)
	2.4 Web Services
	2.4.1 The Run-time Error Detection of Web Services

	CHAPTER 3 DESIGN OF THE MECHANISM
	3.1 Loop Characteristics
	3.1.1 Deterministic loop
	3.1.2 Non-Deterministic loop

	3.2 Characteristic Analysis of Critical Section
	3.3 Classification of Problem Domain
	3.4 The proposed Mechanism
	3.4.1. Activity Diagram for Monitoring Web Service Module
	3.4.2. Activity Diagram for Training the IWSM
	3.4.3. Activity Diagram for Verifying the IWSM
	3.4.4. Activity Diagram for Online-Verifying the IWSM

	3.5 The Algorithm for Creating the IWSM
	3.6 The Algorithm for Verifying the IWSM

	CHAPTER 4 IMPLEMENTATION AND EXPERIMENTAL RESULTS
	4.1 The Proposed Architecture
	4.1.1 Monitoring Package
	4.1.1.1 Instruction_Instrument Module
	4.1.1.1.1 <service_name> text file
	4.1.1.1.2 <service_name_iv> text file

	4.1.2 Training Package
	4.1.2.1 Selection_Calculation module
	4.1.2.2 Time_checking module
	4.1.2.3 Pattern_Checking module

	4.1.3 Verification Package
	4.1.4 Termination Package
	4.1.5 Web Service Repository
	4.1.6 Database Design
	4.1.6.1 Loop_Instruction Table
	4.1.6.2 <service_name> Table
	4.1.6.3 EMTI Table

	4.2 Experimental Results
	4.2.1 Performance of the System
	4.2.2 The Main Web Service Module under the Sub-function Services
	4.2.3 Reliability of the Web Service

	CHAPTER 5 DISCUSSION AND CONCLUSION
	5.1 Discussion
	5.2 Conclusion
	5.3 Limitation
	5.4 Future Work
	5.5 Extended Work

	REFERENCES
	Appendix A The proposed architecture based on a standalone system
	Appendix B Extending WSDL for Calling Sub-function
	Appendix C List of Publications
	VITA

