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CHAPTER I 

INTRODUCTION 
 

1.1 Research rationale 

The theoretical understanding of graphene, graphene oxide (GO), carbon 

nanotubes (CNT) and other carbon based nanomaterials were ambiguous. This study 

includes understanding the fundamental properties of carbon nanomaterials, the 

influence of defects on properties, and exploring possibilities for nanoscale carbon 

electronics and applications. There were two purposes of this research: investigation 

on the influence of the applied force on the structural and electronic properties of 

single-walled carbon nanotubes (SWCNTs), and divalent metal cations adsorption on 

the GO surface It is expected that the deformed SWCNTs would change their electronic 

properties, in comparison to the normal SWCNTs while the functional groups on the 

surface of GO have direct influence on the adsorption of divalent metal cations on GO 

surface. These findings can be applied to the development of novel nano-electronic 

devices and effectively utilized for the treatment of industrial waste, respectively. 

1.2 Hybridization of carbon 

Carbon is the group 4A elements of the periodic table. The four valence 

electrons were 2s2 and 2p2 atomic orbital of carbon atom. The hybridization state can 

be three states such as in sp (e.g. C2H2), sp2 (e.g. graphite) or sp3 (e.g. CH4) forms. This 

property is unique to carbon in its particular group in periodic table. Discoveries and 

inventions of the size sp2 carbon bonded materials such as fullerenes, carbon 

nanotubes and graphene have been investigated in this field. As shown in Figure 1.1, 

mixing the 2s orbital with two 2p orbitals called sp2 hybridization generates these three 
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orbitals. The π and π* denotes the bonding and anti-bonding orbital in term of the 

three sp2 hybridized orbital are in-plane, with 2p orbital orthogonal to the plane. 

 
 

Figure 1. 1: The bonding and anti-bonding orbitals in term of the three sp2 
hybridization 

 

1.3 Carbon nanotube 

The carbon nanotube (CNT) has gained much interest in the field of nano-

devices because of its very special properties, such as elasticity, strength, flexibility, 

and conductivity. Table 1.1 gives a summary of experimentally measured properties 

of CNTs. Their structures are allotropes of carbon in the form of rolled-up graphene 

sheets [1]. CNTs generally have various structures of the chiral type, have a number of 

layers, and can be characterized as single-walled carbon nanotubes (SWCNTs), double-

walled carbon nanotubes (DWCNTs) or multi-walled carbon nanotubes (MWCNTs) [2]. 

Many studies in the recent years have focused on the electronic properties of the 
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carbon nanotubes (CNTs) in order to achieve the desired properties of the nano-

devices [2-9]. 

Table 1. 1: An overview of various properties of CNTs 

property value unit reference 

carbon bond length ≈1.42 Å [10] 

C–C tight binding overlap energy 2.7 eV [10] 

maximum current density >0.1 300–1800 [11] 

thermal conductivity 1000–6000 kWK-1 [12] 

Young’s modulus ≈300–1800 GPa [13] 

breaking strength ≈30 GPa [13] 

 

The SWCNTs consisting of a single layer of graphene are favorable for this study 

due to their simplicity. Although various subtypes of SWCNTs are formed from the 

same graphite sheet, their electronic properties differ depending on their structures, 

acting as either metal or semiconductor. Hence, their electronic and related properties 

of SWCNTs are directly determined by their molecular geometries. 

Different types of SWCNTs can be geometrically described by the chiral vector 

(n,m) where n and m are integers (in Figure 1.2). The chiral vector determines how a 

graphene sheet is rolled which result in various forms of the tubes [1, 2]. Yet, due to 

symmetry, the rolled-up graphene sheet may lie between the two extreme forms, the 

armchair form and the zigzag form. In case of the armchair form (n,n), the SWCNTs are 

always metallic while in case of the zigzag (n,0) form, the SWCNTs are metallic only 

when n is a multiple of 3 and are semi-conductive otherwise [2]. Since the stability 

and the precision of nano-devices apparently depend on the electronic properties of 
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the SWCNTs, many attempts have been made in order to achieve the desired 

electronic properties by altering the geometry of the nanotubes. In the past, 

experimental and theoretical works had not studied the behavior of the molecular 

properties of SWCNTs. Therefore, the molecular structure of SWCNTs in the distorted 

states is unknown. 

 

Figure 1. 2: Schematic views for SWCNTs with armchair zigzag and chiral structures 

Recently, only the basic molecular properties of deformed SWCNTs have been 

investigated [14-18]. For example, Gülseren et al. [19] showed that the bond lengths 

and the bond angles have a monotonic variation as a small tubes only. On the other 

hand, Imtani et al. [14, 20, 21] showed that the bond angles of the zigzag and the 

armchair tubes under hydrostatic pressure were changed only for tubes small radii, 

but their work did not show the variations in bond lengths and bond angles in all 

positions along the circumference. 

Many experimental studies have examined the electronic properties of SWCNTs 

after alteration of the molecular structure using mechanical methods such as atomic 
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force microscopy (AFM). Qing et al. demonstrated that local deformation at a crossed 

SWCNT junction could introduce a local gate effect under ambient conditions [22]. 

Other studies have induced radial deformations of bent and crossover forms of CNTs 

using AFM [23-25]. Based on measuring the electrical conductance, MaEuen et al. 

showed that stretching a nanotube with the tip of the AFM can open an electronic 

band gap in certain metallic nanotubes and change the band gap in semiconducting 

nanotubes [6]. This behavior also occurs for SWCNTs under high external hydrostatic 

pressure [26-28]. AFM is widely used due to its ability to alter a certain location of an 

atom in a specific manner, but this method does not reveal the amount of pressure 

exerted on the object. A further drawback of AFM is that it does not give enough 

detailed information about the electronic behavior of SWCNTs. Unfortunately a 

drawback of this experimental method, it does not give enough detailed information 

about the electronic behavior of SWCNTs. In fact, another possible way to alter the 

molecular properties of SWNCTs is by high pressure processing [29-31]. In addition, the 

amount of pressure required to deform a SWCNT is suspended on the radius of the 

tube. In fact, the hydrostatic pressure can change the structure and electronic 

properties including conductivity of SWCNTs, that is, from being a semiconductor to 

be a metallic tube, and vice versa [32, 33]. However, experimentations on pressure 

and conductivity can be very complex and expensive. Therefore, there is a need for a 

detailed theoretical calculation to accurately investigate the behaviors of the 

nanotubes. 

Another feasible way to modify the electronic properties of SWCNTs is by 

exerting high pressure. Irreversible changes in the mechanical properties of SWCNTs 

under high pressure have been reported such as the shortening of the tubes [34]. 
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Besides the local Raman scattering spectrum of CNTs studied the effects of bending 

curvature on its [17], it was found by Wang et al. that the CNTs with a bending radii as 

large as 1–2 μm produce a measurable shift of the frequencies by state deformation. 

This result was conjured by Raman spectroscopy, the sp2 C-C bonds in SWCNTs were 

shifted to sp3 C-C bonds under high pressure [35]. 

A major trend in the investigation of the detailed of structure of deformed 

SWCNTs is the use of quantum calculations, which are able to focus specifically on 

the electrons and approximations derived from the postulates of quantum mechanics. 

Most importantly, the theories are able to model the electron behaviors and predict 

the electronic properties of SWCNTs. Also, there are several theoretical studies based 

on the first-principle calculation. Avramov et al. studied the electronic structures of 

various types of SWCNTs using PBE and hybrid PBE0 calculations [36] and predicted 

the density of states (DOS) for metallic and semiconducting tubes, respectively. They 

found that the PBE energy band gap of the zigzag (10,0) tube is of 0.8 eV in good 

agreement with the experimental energy band gap of 1.1 eV. Furthermore, the density 

functional theory within the generalized gradient approximation (GGA) [37] and local 

density approximation (LDA) with plane wave pseudopotential method [38] suggested 

that the band gap of this (10,0) tube was reduced from 0.92 eV to 0.00 eV by increasing 

of the distortion. From the presented evidence, the quantum calculation is a promising 

theoretical method worthy of a detailed investigation, which is the main objective of 

this research work. 

However, from the previous studies, the structural behavior in terms of the 

bond lengths and bond angles for deformed SWCNTs as a function of radial 

deformation have not been revealed in details. For example, the relationship between 
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the bond lengths and the bond angles under the distorted state. A rational goal of the 

present work is to investigate the molecular and electronic properties of deformed 

zigzag and armchair SWCNTs with a variety of tube sizes. To the best of our knowledge 

this represents the first study in which the impacts of the molecular and electronic 

properties change of both SWCNTs in detail by quantum calculation. 

1.4 Graphene 

One has probably made some graphene by drawn a line with a pencil if one 

as heap up layers of graphene form from graphite pencil sketching. This method can 

get a graphene sheet with a low-cost and simple way. Graphene is a carbon based 

material that can be viewed as a one atom thick sheet of graphite. The crystalline 

allotrope of carbon in a 2-dimensional is graphene. In graphene, carbon atoms are 

form sp²-bonded. Graphene can be described as a single sheet of graphite infinite 

alternant (only six-member carbon ring) polycyclic aromatic hydrocarbon (PAH). Since 

graphene has unique properties because of high surface area, high inherent strength 

and high electrical conductivity [39] (as well as many others). The fundamental 

properties of graphene have been firstly studied by Novoselov and Geim [40]. 
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Figure 1. 3: Structure of graphene in reciprocal space 

1.5 Graphene oxide 

Graphene oxide (GO) is the derivative of graphene, which contains a range of 

oxygen function group, suchs as epoxy, hydroxyl, and carboxyl groups, on the surface 

and edge. GO has a hydrophilic functional groups much more than the graphene. Due 

to, GO have a lone pair electron with the oxygen atom. In the environment field, 

graphene oxides have been used in nano technology for the waste treatment in 

industries. Therefore, graphene oxide can be reduced heavy metals ion pollution from 

an aqueous solution by adsorption on the surface. In this study, adsorption behaviors 

of heavy metals are not understood. Graphene oxide is produced according to the 

Hummers method [41] as shown in Figure 1.4. The GO provides an alternative path to 

single sheets of graphene by chemical reduction of GO. 
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Figure 1. 4: Schematic diagram to produce GO by Hummers method [41] 

 

Figure 1. 5: UV–Vis absorption spectra of free GO are shows a band of transition 

Figure 1.5 illustrates the absorption spectra of GO. The maximum absorption 

peak at 231 nm suggested the GO dispersion, which shows the aromatic C = C (π– π * 

transition) and C = O (π – π transition) with a band around ~300 nm [42]. The graphene 

oxide structure based on the Lerf-Klinowski model can be confirmed by the 

experimental structure [43]. The combination of the experiment and the first-principle 

calculations reveals that an oxygen configuration such as epoxide, hydroxyl, carboxyl 
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and carbonyl groups. Therefore, the GO model was investigated by some methods to 

classify functional groups on GO sheet. The possible functional groups on GO surface 

from infrared spectrum are summarized in Figure 1.6 [43]. 

 

Figure 1. 6: Transmission infrared-absorbance spectrum of GO 

1.6 Objectives of the present study 

The purpose of this study is to understand (i) the uniqueness of electronic and 

mechanical properties of various SWCNT forms and (ii) the adsorption of transition 

metals cations on the GO sheet by using quantum calculations. 
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CHAPTER II 

THEORY 

  

 Computational chemistry is caused by fundamental theories of quantum 

mechanics and statistical mechanics. That called as a research tool of the future, 

because it can be used to measure the properties of substances in a way calculated 

to the level of individual atoms or molecules. This is very important, because some 

chemical experiments for measure the properties of matter are too complex to be 

done in a real laboratory. So, quantum chemistry is a new way of developing research 

including the design and structure prediction of chemical or advanced material. The 

Schrödinger equation is the quantum chemistry equation for most of the 

computational chemistry scientists use for instance. 

2.1 Quantum mechanics 

2.1.1 History 

 The classical model of Bohr (developed in 1913, see [44]) described atoms like 

planetary systems as consisting of a core around which the electrons are moving on 

elliptical trajectories like planets around the sun. But according to classical 

electrodynamics, each charged particle moving on a curved path should send out 

electromagnetic waves and the electron should; therefore, loose kinetic energy. 

Finally, it should fall into the core on a spiral path. Planck has proposed already in 

1900 a hypothesis that atoms and molecules can omit light of a given frequency  

only in multiples of h, where h is a natural constant [45]. This hypothesis enabled 

him to derive the law of radiation of black bodies. Einstein used it also to explain the 
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photoelectric effect, and got the Nobel prize for this explanation of the photoelectric 

effect. But, the reason for this behavior of atoms and molecules remained still unclear 

until 1924. 

 The fact that the electron orbitals are stable caused de Broglie to propose the 

assumption that small particles have essentially a wave nature, and he proposed to 

describe the electron orbital as a standing wave [46]. Only paths with lengths that are 

multiples of the wavelengths allowed establishing a standing wave. Otherwise, the 

parts of the wave would cancel each other. This can explain why only selected stable 

states can exist. 

Connecting Einstein’s formula 

2E mc                                                  (2.1) 

that gives a relation between energy E, mass m, and the vacuum speed of light c, and 

Planck’s formula 

E h                                                   (2.2) 

which relates energy E and frequency  of radiation. De Broglie proposed a model in 

which each particle of mass m should be accompanied by a wave that is acting even 

nonlocal in the space surrounding this particle. He was able to show that Plancks 

formula (2.2) could be derived as a consequence of his wave theory. 

 The wavelength should be connected with the momentum p of the particle by 

de Broglies relation 

h

p
                                                      (2.3) 
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The wave nature of matter could be proven experimentally by scattering electrons at 

a crystal [47]. A diffraction pattern characteristic for waves could be observed. De 

Broglie’s picture was very useful, but still too simple to explain several experimental 

findings. 

 Finally, Erwin Schrödinger developed the wave theory [48] that could describe 

the reality quite accurately. The central equation of his theory is the so called 

Schrödinger equation that he derived from the classical Hamiltonian replacing the 

momentum or the site of each particle by corresponding operators. If the momentum 

is replaced by an operator then the coordinate representation will result. 

2.1.2 Schrödinger equation in a periodic potential 

 The most general form of the Schrödinger equation is 

H i
t


 


                                              (2.4) 

where H  is the Hamiltonian operator and is the wave function of the complete 

system. For a nonrelativistic stable unperturbed particle with mass m moving under 

influence of an external potential  V r  the Schrödinger equation reads in coordinate 

representation 

     
 2

2
,

, ,
2

r t
r t V r r t i

m t


     


                            (2.5) 

It describes the time development of the state of this particle. If  is correctly 

normalized then in coordinate representation  
2

,r t is the probability density to 

find the particle at site r  at time t. 

 In momentum representation the Schrödinger equation reads 
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       
 2

3
2

,
, 2 ' ',

2

p tp
p t V p p p t i

m t





    
               (2.6) 

The transition between both representations of the same equation can be done by 

Fourier transforms 

     
3

32, 2 , exp
i

p t r t p r d r
  

     
 

                        (2.7) 

     
3

32, 2 , exp
i

r t p t p r d p
  

     
 

                       (2.8) 

     
3

32, 2 , exp
i

V p t V r t p r d r
  

   
 

                         (2.9) 

     
3

32, 2 , exp
i

V r t V p t p r d p
  

   
 

                      (2.10) 

In the case of a time independent potential U and time independents borders of the 

system the separation ansatz 

   , exp
i

r t r Et
 

   
 

                                      (2.11) 

can be made where E is the total energy. 

 This leads to the time independent Schrödinger equation (we use now the 

common notation with  r  throughout which is of course not the same function as 

 ,r t , but is rather the  in equation (2.11)) 

       
2

2
r V r r E r

m
                                       (2.12) 
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2.1.3 The electronic hamiltonian for the system 

 For a fundamental understanding of the interaction of a particle with the 

electronic field we need to know the total energy of the system consisting of particle 

and field. The nuclear kinetic energy terms are omitted from the Coulomb Hamiltonian 

and one considers the remaining Hamiltonian as a Hamiltonian of electrons only. This 

Hamiltonian has been simplified to the so-called electronic Hamiltonian, which acts 

only on functions of the electronic coordinates. 

ˆ ˆ ˆ ˆ
el e ne eeH T V V                                    (2.13) 

2.1.4 Bloch’s theorem 

A theorem relating to the quantum mechanics of crystals stating that the wave 

function  for an electron in a periodic potential has the form 

exp( ) ( )ik r u r                                    (2.14) 

where k is the wave vector, r is a position vector, and U(r) is a periodic function that 

satisfies 

( ) ( )U r R u r                                   (2.15) 

for all vectors R of the Bravais lattice of the crystal. Block's theorem is interpreted to 

mean that the wave function for an electron in a periodic potential is a plane wave 

modulated by a periodic function. This explains why a free-electron model has some 

success in describing the properties of certain metals although it is inadequate to give 

a quantitative description of the properties of most metals. 
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2.2 Approximate methods in quantum mechanics 

2.2.1 Perturbation theory 

The complete Schrödinger equation can be solved only for few special cases. 

For molecular systems, the treatment is usually restricted to the time independent 

case. Hence, the method shall be described here only for the case that the Schrödinger 

equation reads 

H E                                           (2.16) 

Let  0
H be the unperturbed Hamiltonian for which a complete set of orthonormal 

eigenfunctions  0

n  is known. 

       0 0 0 0

n n nH E        0 0

m n mn                            (2.17) 

Let    0 1
H H H   be the Hamiltonian of the perturbed system. Then, we introduce 

a formal parameter  that is essentially equal to one but, will have practical 

importance as it will be seen. 

We write the perturbed Hamiltonian formally as    0 1
H H . We assume that 

the eigenfunction for the perturbed n-th state fulfills 

    0 1

n n nH H E                                      (2.18) 

We will see that in the ansatz  

 

0

kk

n n

k

E E




    

0

kk

n n

k






                                  (2.19) 

the  k

n  and  k

nE can be calculated by the so called perturbation theory. For the 

 k

n we set the additional conditions that 
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   0

0

k

n n k      
0

k

n n k                                (2.20) 

Inserting ansatz (2.41) into equation (2.39) we get 

           0 1 1 22k

n n nH H               

             0 0 2 0 1 22 2

n n n n n nE E E                   (2.21) 

We assume that equal powers of  on both sides of the resulting equations belong 

to the same level of approximation. The order zero gives 

       0 0 0 0

n n nH E    

which is equation (2.38). 

The first order gives 

               0 0 1 0 0 1 1 0

n n n n n nH H E E                          (2.22) 

Multiplying from left with  0

n we get for this order with    0 0
1n n    

                   0 0 1 0 1 0 0 0 1 1

n n n n n n n nH H E E          

Because of        0 0 0 0

n n nH E   this means 

                   0 0 1 0 1 0 0 0 1 1

n n n n n n n n nE H E E          

The first order gives therefore 

             0 1 0 0 1 0 1

n n n n n nH E E       

That means, we can calculate  1

nE from 
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       1 0 1 0

n n nE H   (2.44) 

Because the  0

n form a complete set, we can develop  k

n as 

     0

,

0,

k k

n n l l

l l n

c


 

   (2.45) 

Inserting this with k = 1 in equation (2.42) we find 

                   0 0 1 0 0 0 1 0

, ,

0, 0,

l l

n l l n n n l l n n

l l n l l n

H c H E c E
 

   

         

Multiplying from left with    0 0

m n   we get 

             0 0 0 0 1 0

,

0,

l

m n l l n n

l l n

H c H


 

      

             0 0 0 0 1 0

,

0,

l

n m n l l m n n

l l n

E c E


 

       

Hence, 

             0 0 1 0 0

, ,

0, 0,

0
l l

n l n ml m n n n l ml

l l n l l n

c E H E c 
 

   

       

             1 0 0 1 0 0 1

, ,n m m m n n n mc E H E c     

So we finally get (using the notation l instead of m again) 

 

     

   

0 1 0

1

, 0 0

l n

n l

n l

H
c

E E

 



                                     (2.23) 

These  1

,n lc  equation (2.46) yields a first approximation  1

n for the n-th wave function 

of the perturbed system as an infinite series. 
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In the same scheme higher approximations for eigenvalues and wave functions 

can be obtained. This shows how perturbation theory using a complete set of basic 

wave functions can in principle solve the perturbed problem. Note however, that it is 

not at all sure that the series converge and which basic set is the best one. A lot of 

skill and experience is needed to apply perturbation theory successfully. 

2.2.2 Hartree-Fock approximation 

If a system of several particles of equal kind (e.g. electrons) is under 

consideration then the Hartree-Fock approximation allows a relatively simple 

treatment. For electrons in this approximation an ansatz is used in which the 

wavefunction of all electrons is represented by a single Slater determinant with one 

spin orbital per electron. According to the Rayleigh-Ritz principle, the true ground state 

wave function of a given system yields the lowest expectation value for the energy in 

comparison to all other waver functions. Hence, among different approximations to 

the real wave function the one which gives the lowest energy is considered to be the 

one closest to the real state. This principle is used to find appropriate spin orbitals for 

the mentioned slater determinant used in the Hartree-Fock approximation. An 

disadvantage of the Hartree-Fock approximation is that electron correlations are 

partially neglected. 

2.2.3 Density functional theory 

The density functional theory (DFT) is an approximate method to solve 

quantum mechanical problems by optimizing an expression called density functional 

using the Rayleigh-Ritz principle. A functional is a mathematical expression (e.g. an 

integral) that contains functions. The value of the functional depends upon the whole 
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functions for all values of their arguments. In the case of the DFT such functions that 

enter the functional are electron density distributions. 

Recently, the DFT has been improved a lot and is now among the most popular 

methods in quantum physics and chemistry. The electron density,  r , represents 

the probability of observing an electron at the point r  so that the electron density is 

manifestly nonnegative, and hence is a physical observable.  

The electronic Hamiltonian can be written to accommodate generalization as 

 ˆ ˆ ˆ
N

ee i

i i

H T V r


                                       (2.24) 

where T̂  is the kinetic energy operator, ˆ
eeV  is the electron-electron interaction energy 

operator, and the function  r is called the electronic external potential which 

models forces that act on the electrons in the system but are not due to other 

electrons in the system, as such forces are external to the system of electrons. The 

electronic Hamiltonian in eq. (2.47) is a functional (a function of a function) of the 

external potential  r and a function of the number of electrons (N) and is denoted 

as  ˆ ;H r N   . The external potential is a simple function of the nuclear charges and 

positions which are determined by locating the cusps of a molecule’s ground state 

electron density. Thus,  r is a functional of  r if and only if no electron density 

is the ground state density for more than one external potential. 

The total electronic energy is also a functional of the external potential and 

the number of electrons; hence the total energy can be expressed as a functional of 

the electron density: 
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     

     

; ;

ˆ

E r E r N

H

   

  

     

  
                            (2.25) 

 

where    is the ground state wave function for the Hamiltonian  Ĥ  . Because 

the external potential is a functional of the electron density, the contribution of the 

external potential to the total energy can be expressed as 

     ;extV r r dr                                        (2.26) 

Thus, the purely electronic contribution to the total energy can be expressed as 

       ;F E r r dr                                    (2.27) 

     ˆF F                                           (2.28) 

 F  is called the Hohenberg-Kohn functional which is a so-called universal density 

functional. Understanding and computing  F  is almost the whole subject of density 

functional theory. Hohenberg and Kohn expressed the second theorem which is 

according to the variational principle as: for the N-electron system with external 

potential  ;r  , the energy of a N-electron trial density,  0
 , is always greater than 

or equal to the true ground state energy of the system. Moreover, equality is achieved 

if and only if  0
 is the ground state density for this system, 

   

0 0

0

0 0E E E    
 

                                  (2.29) 

where  0 r is the exact N-electron ground state density. 

A prescription to obtain the energy from the N-electron density was given by 

Kohn and Sham [49] in an one-electron formalism, where in the auxiliary functions 
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introduced are spin orbitals, feeling only a local potential  r  which yields exactly 

the same density as the system of interacting electrons with potential  r . The 

electron density,  r , is represented by the sum of the densities of the 
2

N  doubly 

occupied single-particle spatial orbitals, 

   
22

1

2

N

i

r
i r 



                                       (2.30) 

and the Kohn-Sham expression for the electronic energy functional is given by: 

         S N ee XCE T V J E                                 (2.31) 

where  ST   is the non-interacting kinetic energy,  NV  describes the electron-nuclei 

interaction, and  eeJ   is the classical electrostatic repulsion energy among the 

electrons: 

     * 21

2

N

S i i

i

T r r dr                                        (2.32) 

     NV r r dr                                        (2.33) 

 
   1

2
ee

r r
J drdr

r r

 





                           (2.34) 

The last term in eq. (2.57),  XCE  , is the exchange-correlation energy functional, 

which has to correct the electron-electron repulsion,  eeV  , being described only by 

the Coulombic repulsion,  eeJ  , thereby neglecting the exchange interaction and the 

electron correlation interaction and for the kinetic energy functional which describes 

the kinetic energy for non-interacting electrons: 
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       XC ee ee SE V J T T                                 (2.35) 

Furthermore, the exchange-correlation energy functional should also correct a spurious 

self-interaction arising from eeJ , which is cancelled exactly by the exchange term in ab 

initio methods, but in DFT actually is the largest contribution to XCE . 

The electronic ground state density is found by minimizing the Kohn-Sham 

energy functional, which is achieved by solving the Kohn-Sham equations: 

 
   

 

2 1ˆ
2 2

XCKS

i i i i

Er
H r dr

r r r

 
   



 
      

 
          (2.36) 

This KS equations are nonlinear partial differential equations, which are generally 

solved employing a self-consistent field scheme. However, an exact expression for 

 XCE   is to date unknown, and the construction of approximated functional is very 

complex. Moreover, there is no straightforward way in which the exchange-correlation 

functional can be systematically improved. 

The simplest model system in the context of density functional theory is the 

uniform electron gas, constant electron density   r  , which has an infinite 

number of bound electrons and so the total energy of the system is infinite. It can be 

written as 

    LD

xc xcE r r dr                                   (2.37) 

The exchange-correlation energy density function,   xc r  , especially in solid-state 

physics, LDA works surprisingly well despite its approximate nature. However, most 

chemical applications do not satisfy the restriction of slowly varying electron density, 

and hence the LDA fails. To extend the approximation, the gradient of the charge 
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density,  r , is included to account for the non-homogeneity of the true electron 

density. This has led to the development of various so-called generalized gradient 

approximations (GGA) [50], which depend explicitly on local densities and local spin-

density gradients as: 

        3, , ,GGA

xcE f r r r r d r                           (2.38) 

The most popular GGA exchange functional was developed by Becke [51]: 

 

2
4
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11 6 sinh

B

xc

x
E d r

x x




  

 
 

 


                          (2.39) 

where x  is a dimensionless nonuniformity parameter defined by 

4
3

x











                                               (2.40) 

and   is a constant of value 0.0042 as determined by fit to exact Hartree-Fock 

exchange energies of the noble gas atoms (He through Rn) [51]. A large number of 

other GGA functionals for both correlation and exchange have been developed, of 

which the most popular probably are the 3 parameter Lee-Yang-Parr (LYP) correlation 

function [52, 53], the Perdew86 correlation functional [54] and the Perdew91 exchange 

and correlation functional [55]. In this thesis, hybrid functionals which introduce an 

additional HF terms for the exchange such as B3LYP, B3PW91 and B3PW86 were used 

for comparison of geometry and binding energy results. 

2.2.4 Hybrid functional (B3LYP) 

 More recently, following an approach proposed by Becke the combination of 

DFT functionals with ab initio formulations leads to a class of expressions, which are 

essentially a mixture of both DFT and HF contributions with fitted coefficients for each 
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contribution. The aim of this approach is to provide expressions that include the full 

exchange contribution with avoiding side-effects that arise from a complete 

replacement of the DFT exchange expression by the HF one. As an example, the B3LYP 

functional look likes this. 

LYP

Cc

VWN

C

B

Xx

HF

xx

s

xx

LYPB

xc EaEEaEaEaE  100

3 )1(      (2.41) 

With parameters ax0 = 0.80, ax1 = 0.72 and ac = 0.81. These values were obtained 

from fitting of a selected set of molecules to reproduce heat of formation. The term 
HF

xE is calculated using the Kohn-Sham orbitals in the manner of HF procedure by 

computing the exchange integrals   , S

xE  is Slater local density exchange, B

xE  is 

Becke’s 1988 [51], the Slater exchange along with correction involving the gradient of 

the density. VWN

CE  is Vosko, Wilk and Nusair [56]. Correlation functional and LYP

CE is the 

correction function of Lee, Yang and Parr [53]. 

2.2.5 Hybrid meta functional (M06) 

These functionals are based on meta-GGA approximations, developed by a 

group of Prof. Donald G. Truhlar [57] at the University of Minnesota. The exchange-

correlation (XC) functional can make an accuracy of a DFT calculation. Therefore, they 

have been developed and validation of XC functionals. The timeline of develop 

process were three generation steps. The first generation of functionals is called the 

local spin density approximation (LSDA), this functionals consider the up- and down-

spin. The second generation is generalized gradient approximation (GGA), it focus on 

the local spin density and their gradients. In third generation functionals, two additional 

variables, the spin kinetic energy densities are included in the functional form; we 

called meta-GGAs. Hybrid functionals are containing HF exchange, and they are more 
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accurate than local functionals for main-group thermochemistry. The Kohn–Sham 

orbitals were the accurate if HF exchange would be exact determined. The hybrid 

exchange-correlation energy can be written as follows: 

1
100 100

hyb HF DFT DFT

xc X X C

X X
E E E E

 
    

 
                                (2.42) 

where HF

XE  is the nonlocal Hartree–Fock (HF) exchange energy, X is the percentage of 

Hartree–Fock exchange in the hybrid functional, DFT

XE is the local DFT exchange energy, 

and DFT

CE is the local DFT correlation energy. 

The development of new functional forms for meta-GGAs and hybrid meta-

GGAs and their validation against diverse databases have yielded powerful new density 

functionals with broad applicability to many areas of chemistry. Therefore, the 

problems involving rearrangements of both organic and transition metal bonds were 

used M06. 

2.3 Basis set 

Most molecular quantum-mechanical methods begin the calculation with the 

choice of a basis set. It is a set of functions which are combined in linear combinations 

to create molecular orbitals. The use of an adequate basis set is an essential 

requirement for success of the calculation. Two types of atomic basis functions have 

received widespread use, Slater Type Orbitals (STO) and Gaussian Type Orbitals (GTO). 

2.3.1 Slater type atomic orbitals  

 The slater-type orbitals (STO) is written as 
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   ,01 



m
l

a

r

n eNr                                   (2.43) 

where r,   and   are spherical coordinate,   ,m
l  is spherical harmonics 

function (the angular part of the wave function) while N, n and   are normalization 

constant, principle quantum number and orbital exponent respectively. The STO 

provide reasonable representations of atomic orbitals with standard  -values 

recommended by Slater. They are, however, not well suited to numerical work, and 

their use in practical molecular orbital calculations has been limited. Their largest 

problem is that it is prohibitively complicated to calculate the matrix elements 

entering the Fock matrix. 

2.3.2 Gaussian type atomic orbitals 

 The Gaussian Type Orbitals (GTO) is written as 

2rcba ezyNx                                             (2.44) 

Where x, y, and z are Cartesian coordinate and a, b and c are non-negative integers. 

The GTOs have the important advantage that all integrals in the computations can be 

evaluated explicitly without recourse to numerical integration. 

2.3.2 Effective core potential 

 DFT pseudopotential for all-electron calculations and construct a numerical, 

the fhi98PP code was perform by Troullier-Martins [58]. The core and valence regions 

were a balanced basis requires a proper. For transition metal, there are a lot of core 

electrons (1st-5th periods). Most of the computational effort was used to describe the 
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energy but not the valence region. In case of LANL2DZ, core electrons are modeled 

by suitable potential function, and only the valence are treated explicitly. 

2.4 Plane wave pseudopotential approach 

In all of the calculations in this work, we use the plane wave pseudopotential 

approach to solving the Kohn-Sham equations. This involves using a plane wave basis 

set to represent the orbitals, and pseudopotentials to represent the nuclei and core 

electrons. In this section, we will describe this plane wave pseudopotential approach. 

Alternative approaches to the plane wave pseudopotential exist. These involve using 

basis functions that are localized around individual atoms [59]. 

One advantage of this method is that it has been shown to have accuracy close 

to the all-electron method for many applications, and yet is still fast enough to treat 

hundreds of atoms. The portability and accuracy of this code make it a desirable first-

principles simulation tool in the study of complex molecular, liquid, and solid-state 

systems. Applications for this P3MD code include the calculation of free energies, 

search for structural minima, and ab-initio QMD simulation of quantum liquids in 

compressed and expanded systems. 

2.4.1 Norm-conserving pseudopotentials 

The main requirement of the pseudopotential approach is that it reproduces 

the valence charge density associated with chemical bonds. It has been shown that 

for pseudo and all-electron wavefunctions to be identical beyond the core radius, Rc, 

it is necessary for the integrals of squared amplitudes of the two functions be the 

same. This is equivalent to requiring norm-conservation from pseudo wavefunctions, 
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i.e. that each of them should carry exactly one electron. This condition ensures that 

the scattering properties of the pseudopotential are reproduced correctly. 

2.4.1 Plane wave basis set 

The plane-wave basis set for the electronic wavefunctions at each k-point were 

preform by bloch's theorem states. In principle, an infinite number of plane waves is 

required for such an expansion. However, the coefficients, Ck+G, for the plane waves 

with small kinetic energies, |k+G|2, are more important than those with large kinetic 

energies. Thus, the plane wave basis set can be truncated to include only plane waves 

that have kinetic energies that are smaller than some particular cutoff energy as 

illustrated in Figure 2.1 (the radius of the sphere is proportional to the square root of 

the cutoff energy). 

 

Figure 2. 1: Schematic representation of the cutoff energy concept 

2.4.2 Reciprocal space 

By analogy with our definition of a one-dimensional Fourier transform, the three 

dimensional Fourier transforms can be defined as: definition of Fourier transform 

    3ik rF k f r e d r


 


                                  (2.45) 
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The only differences between this and the one-dimensional equivalent are that F and 

f are functions of three-dimensional vectors K and r respectively, and the product in 

the exponential is now a vector dot product. 

2.4.3 Periodicity and special points 

'

exp( ( ). ) ( )

exp( . ) ( )

k G k G

k

i k G r u r

ik r u r

   


                                 (2.46) 

where ' ( )ku r  is still periodic in the unit cell, as exp(iG.r) must be periodic in the unit 

cell. We can always choose to reduce any k in this fashion, and do always choose to 

work with / 2k G . This also implies that the points ( 1

2
 , 1

2
 ,

1

2
 ) are all identical, 

for they are related via the addition/subtraction of a reciprocal lattice vector. This point 

is called the L point, and the reciprocal space point (0, 0, 0) is called the point. A 

small zoo of other, high-symmetry, points in k-space has also been named.   
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CHAPTER III 

METHODOLOGY 
 

3.1 Constrained geometry optimization of SWCNTs  

All system preparations and calculations of zigzag (Z) and armchair (A) SWCNTs 

with periodic boundary condition were initially generated and optimized using the 

Cambridge Serial Total Energy Package (CASTEP) module implemented in Material 

Studio 5.5 (MS) program [60]. Ab initio calculations of SWNTs were conducted using 

various modules available in the commercial software, Materials Studio (Accelrys Inc). 

Specifically, density functional theory (DFT) calculations were performed with CASTEP 

modules. Density-functional calculations are performed using plane-wave 

pseudopotential, which is a method within the generalized gradient approximation 

(GGA). Ultrasoft pseudopotential is used to model the ion-electron interaction. The 

cutoff energy for the plane-wave basis is chosen as 300 eV, while further increasing the 

cutoff shows slightly difference on the results. The present calculations were 

performed based on the density functional theory (DFT) and within the CASTEP plane 

wave code [61]. The generalized gradient approximation (GGA) of Perdew–Burke–

Ernzerh method parameterized by Perdew, and was used to calculate the exchange 

and correlation terms. Brillouin-zone integrations were performed using Monkhorst and 

Pack k-point meshes [62]. During the calculation, the 300 eV for cutoff energies and 6 

x 6 x 12 for the numbers of k-point can ensure the convergence for the total energy. 
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Figure 3. 1: (a) The degree of flatness is calculated as  = (D0 - D)/D0. D and D0 
are the diameters shown in the figure (b, c) Representative SWCNTs, Z(10,0) and 
A(6,6), with two different bond lengths (Bz,a Bz,p and Ba,a Ba,e) and a bond angle 
(A) in a quadrant of the tube colored in orange. 1-5Bz,a, 1-3Bz,p and A1-A5 were 
determined for Z(10,0) and 1-4Ba,e, 1-3Ba,a and A1-A6 for A(6,6). 

 

All the calculations were considered converged when the maximum force on 

the atom was below 0.01 eV Å-1, maximum stress was below 0.01 GPa, and the 

maximum displacement between cycles was below 0.001 Å. The current investigation 

involved two types of SWCNTs. The zigzag (Z) and the armchair (A) tubes were selected 

for five different sizes of the diameter. These are Z(10,0), Z(15,0), Z(20,0), Z(25,0) and 

Z(30,0) for the zigzag tubes and A(6,6), A(8,8), A(10,10), A(14,14) and A(17,17) for the 

armchair tubes. The tube diameters of both chiral SWCNTs were shown in Table 3.1. 
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Table 3. 1: The tube diameters of native and deformed SWCNTs and box 
parameter (γ)  

SWCNT 

 

Diamete
r(D0)/ Å 

 γ/degree 

 = 0.0  = 0.1  = 0.2  = 0.3  = 0.4 

Z(10,0) 7.83 120.00 102.30 87.49 74.50 62.50 

Z(15,0) 11.74 120.00 103.16 88.28 86.24 62.98 

Z(20,0) 15.66 120.00 102.38 87.68 74.61 62.59 

Z(25,0) 19.57 120.00 102.25 87.53 74.42 62.37 

Z(30,0) 23.49 120.00 102.55 87.79 74.68 62.63 

A(6,6) 8.14 120.00 104.68 89.45 75.91 63.67 

A(8,8) 10.85 120.00 103.20 87.76 74.03 61.33 

A(10,10) 13.56 120.00 101.82 87.02 73.83 61.65 

A(14,14) 18.98 120.00 102.36 87.63 74.54 62.49 

A(17,17) 23.05 120.00 102.42 87.66 74.53 62.46 

 

3.2 Geometrical structures of the zigzag and the armchair SWCNTs 

With respect to the tube axis, bond lengths can be divided into the angular 

(Bz,a) and the parallel (Bz,p) groups for the zigzag SWCNTs (see Figure 3.1b) and the 

angular (Ba,a) and equatorial (Ba,e) groups for the armchair SWCNTs (see Figure 3.1c) 

based on their topologies and geometries relative to the direction of the 

circumference. Due to symmetry, some bond lengths and bond angles do not have to 

be defined or measured. Furthermore, there is no need to define some angles because 

such an angle and its adjacent ones make up a full angle (360°) and can be easily 

computed. 
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3.3 Deformed structures of the SWCNTs 

In order to characterize the tube flatness, a dimensionless quantity as, the 

degree of flatness (), is defined by (D0 - D)/D0 as shown in Figure 3.1, where D0  is the 

original diameter of an undeformed tube (before applying the force) and D is the minor 

diameter of the deformed tube (after applying the force). The geometries of the 

deformed tubes were relaxed in the periodic box by constraining the γ parameter as 

shown in Table 3.1. For all deformed structures, the degree of flatness () was 

increased from 0.0 to 0.4 with the interval value of 0.1. At a fixed , other parameters 

representing the molecular geometry of SWCNTs were fully optimized. The bond 

length and angle were measured for all deformed structures of both SWCNTs. 

3.4 Ab initio pseudopotentials method 

All system preparations and calculations of SWCNTs under periodic boundary 

conditions were initially generated and optimized using the CASTEP module 

implemented in Material Studio 5.5 program [60]. Density functional calculations were 

performed on each structure using the plane-wave pseudopotential method within 

the generalized gradient approximation (GGA) with Perdew, Burke and Ernzerhof (PBE) 

correlation. Ultrasoft pseudopotential is used to model the ion-electron interaction. 

The cutoff energy for the plane-wave basis is chosen to be 300 eV. Consequently, the 

structure in the periodically repeating tetragonal cell, α = β = 90˚and γ = 120˚, was 

used in the optimization of the structures for all systems. Finally, the energy band gaps 

were recorded. 

3.5 Model of the graphene oxide and optimization 

The graphene oxide structure based on the Lerf-Klinowski model [63] contains 

oxygen atoms on the graphene surface (54 carbon atoms) in the forms of epoxy, 
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hydroxyl and carboxyl groups. This model consists of epoxy (C-O-C), hydroxyl (-OH), 

double bond (C=C) and carbonyl (-C=O) groups integrated on the graphene sheet. The 

C/O ratio can be approximately 4:1-2:1 in most cases [64]. The number of functional 

groups on the graphene sheet is consistent with the C/O ratio from the previous works 

[43, 65]. The Lerf−Klinowski model is the most reasonable structural model for the GO 

system in the present study the C/O ratio is 3.0:1 as shown in Figure 3.2. Experimentally, 

Casabianca et al. [65] showed a comparison of the experimental spectrum with the 

simulated spectra that the model based on the Lerf−Klinowski model best matched 

the experimental spectrum with compared to other suggested models.  

 

Figure 3. 2: (a) Top and (b) side views of schematic representation of graphene 
oxide model  

Structure of M2+···GO complexes was generated by including all possible types 

of adsorption position (Figure 3.3). 
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Figure 3. 3: (a) The four adsorption sites, 1-4, of GO surface for each ion (b) Top 
view of GO surface where 1 is the ion position at the center of GO, 2 is the position 
between the epoxide and hydroxyl group and 3 is the position at the center of 
two epoxide groups. (c) Bottom-up view of GO surface where 4 is the ion position 
between the epoxide and hydroxyl group. Note that the metal ion is placed 
above the surface by 5 Å on each side. 

In this GO system, the positions of the functional groups were three points at 

top of surface and one point at bottom of surface (Figure 3.3). To study cation 

adsorption on GO surface, binding energy of metal cation on the GO was determined 

at the 4 different positions. The positions 1-3 were at the top of GO sheet, while the 

position 4 was at the bottom of GO sheet. Position 1 was placed at the GO center 

without any functional group. Position 2 was at between the epoxide and hydroxyl 

groups. The position 3 was located between the two epoxide groups. Lastly, the 

position 4 was opposite to position 1 at the bottom of GO sheet with nearby the 

epoxide and hydroxyl groups. 
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All geometry optimizations were performed with density-functional-theory 

(DFT) B3LYP, and meta-hybrid DFT M06 with the 6-31g(d) basis set. In addition, the 

counterpoise corrections were applied to eliminate basis set superposition error (BSSE). 

The obtained interaction energies of each metal cation at the 4 different positions on 

GO surface. Rungnim et al. [66] investigated the size effect of graphene sheet on the 

nucleobase binding. They found that the coronene (C24) was too small and the edge 

effect may perturb the binding of nucleobases. Therefore, the size of graphene sheet 

suitable for the adsorption of nucleobases should be larger than C24 or at least around 

54 carbon atoms [67]. This is therefore in this work, the C54 sheet was selected to 

model the GO sheet for the study of the cation adsorption. The optimized structures 

by present basis sets such as 6-31g(d), cc-pVDZ and cc-pVTZ, the distances between 

heavy atoms of drugs and carbon atoms of graphene are quite similar [66]. Therefore, 

we adopted the 6-31g(d) basis set to calculate the binding energies of metal cations 

on GO surface. In this work we performed the CP BSSE calculations with the standard 

LANL2DZ (Los Alamos National Laboratory 2 Double-Zeta) pseudopotential and also a 

modified ECP aiming to improve the divalent metal atom basis set [68]. More 

sophisticated basis sets have been developed for use in highly accurate calculations 

with correlated methods [69]. 

3.6 Binding energy calculations of GO complexes 

The graphene oxide structure contains the epoxy, hydroxyl and carboxyl groups 

on the graphene surface (C54). These functional groups located of graphene oxide at 

center. The GO model in this work has 2 epoxy and 1 hydroxyl groups on one side, 1 

epoxy and 1 hydroxyl groups on another side, and 5 carboxylic acid, 2 hydroxyl and 1 

carbonyl groups at the edge of GO. The graphene oxide was fully optimized by B3LYP 
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and M06 with 6-31g(d) level of theory. The adsorption energies of the divalent metal 

ions-GO systems were calculated by using B3LYP and M06 methods with 6-31g(d) level 

of theory for oxygen, carbon, and hydrogen atoms and effective core potential (ECP) 

basis set, LANL2DZ was used for M2+. The interaction energy was then corrected by 

basis set superposition error (BSSE) using the counterpoise correction (CP) [70]. In this 

study, the focused M2+ ions were Cd2+, Cu2+, Hg2+and Zn2+. Each ion was located above 

the center and perpendicular to functional groups on the graphene oxide sheet (Figure. 

3.3) and then the complex geometries were fully optimized using the B3LYP and M06 

with 6-31g(d) level of theory. All calculations were performed with the GAUSSIAN 09 

quantum chemistry software package [71], which has been expanded to include a 

number of DFT methods. The binding energy of complexes is defined by 

2bind cpx GO M
E E E E                                  (3.1) 

Where Ecpx, EGO and EM
2+ the energies of the optimized complex, GO and M2+, 

respectively. 
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CHAPTER IV 

RESULTS AND DISCUSSION 
 

4.1 Single-walled carbon nanotubes (SWCNTs)  

4.1.1 Validation of density functional theory (DFT) methods for SWCNTs  

To validate the DFT methods for the calculation of the energy band gaps in the 

normal and deformed of SWCNTs, we first applied the different methods, LDA, GGA, 

HF, PW91, PBE0 and B3LYP in comparison with the experimental results in Table 4.1. It 

can be seen that the PBE0 well predicted energy band gaps of the zigzag and armchair 

SWCNTs relatively in correspondence to the experiment data [3, 72-74]. Therefore, the 

PBE0 method was chosen for study on the energy band gap of normal and deformed 

SWCNTs. 

Table 4. 1: Method validation compared between calculated and experimental 
values for zigzag and armchair of normal SWCNTs in terms of band gap (eV) 

Type LDA GGA HF PW91 PBE0 B3LYP Exp. 

Z(9,0) 0.024 0.5[75] 0.818 0.249 0.017 0.079[76] 0.080±0.005[72] 

Z(10,0) 0.9[38] 0.92[37] 3.612 0.8[3] 1.253 1.251 1.1[3] 

Z(15,0) 0.0[75] 0.0[75] 0.520 0.00 0.014 0.036 0.029±0.0054[72] 

A(6,6) 0.0[77] 2.0[78] 0.940 0.369 0.000 0.000 0.0[74] 

A(8,8) 0.0[79] 1.55[78] 1.405 0.249 0.224 0.994 0.1[72] 

A(10,10) 0.0[79] 0.25[80] 1.465 0.219 0.152 0.00[76] 0.08-0.1[72] 
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4.1.2 Effect of applied force on bond lengths of SWCNTs  

Based on the optimized structures of normal and deformed SWCNTs with 

plane-wave pseudopotential calculations using the PBE method, due to the tube 

symmetry, the C-C bond lengths and C-C-C bond angles of zigzag and armchair tubes 

in a quadrant region (Figure. 3.1b and 3.1c) were measured. By considering the structure 

in accordance with tube axis, the bond lengths can be divided into angular (Ba,p) and 

parallel (Bz,p) groups based on their topologies and geometries relative to the direction 

of the circumference. The C-C bond lengths were monitored from the optimized 

structures of the SWCNTs under normal conditions and applied forces as shown in 

Figure. 4.1. 

It can be seen that under applied force each chiral tube has its own unique 

characteristic of structural change. In zigzag SWCNTs (Figure. 4.1, left), the bond lengths 

in Bz,p type, which are in direction parallel to the tube axis, were kept constant at ̴ 1.42 

Å in correspondence to the elliptical zigzag SWCNTs under hydrostatic pressure [21]. 

In contrast, the applied forces had affected almost all B bond lengths with the same 

pattern in the five different sizes of zigzag tubes. For all zigzag tubes, increased  from 

0.1 to 0.4 has dramatically enhanced the bond length at the highest point of flattened 

region (1.68 Å, 1.88 Å, 2.04 Å and 2.17 Å) but decreased the bond length at edge region 

on x axis (1.32 Å, 1.22 Å, 1.13 Å and 1.04 Å). The bond length at the middle of the tube 

was continually decreases in correspondence to the circumference. 

Most notably, this is the first study on investigation of the effectiveness of 

applied force to SWCNTS. For example, at high pressure ( = 0.4) the slope was a 

rapidly negative decrease, while, at low pressure ( = 0.1) the slope was a slowly 

negative decrease. The critical point of bond length change was found at 
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approximately at the middle of the tube. It is the bond length of zigzag SWCNTs all 

conformation have been a same C-C bond length are in 1.42 Å. That mean, even 

though forces to the zigzag SWCNTs have been applied the bond length was kept 

constant. This might involve that a part of the tube was not influenced by the applied 

force. 

For metallic armchair tubes (Figure. 4.1, right), both Ba,e and Ba,a bond lengths 

were influenced by force applied. Referred to the axial and the equatorial bonds 

strongly effects the tube flattening regions these two types of bonds were observed 

(Figure. 4.1). For the bond length perpendicular to the tube axis, 1Ba,e-3Ba,e at the edge 

region (see Figure. 3.1a for the definition) were dramatically changed as a function of 

tube flattening. At the highest flattened region, as a function of the flatness , the 1Ba,a 

(1.82, 2.01, 2.23 and 2.40 Å) was more significantly lengthened than the Ba,e (1.51, 1.57, 

1.64 and 1.69 Å). Similarly at the edge region, the Ba,a bond lengths were also affected 

rather than the Ba,e bond lengths. For example at  = 0.4 in A(6,6), 3Ba,a is equal to 

1.33 Å while 4Ba,a is of 0.86 Å. From these results, the force has larger influence on Ba,e 

than on Ba,a. Therefore, the geometry at edge parts is influenced more than the 

geometry at the flattened parts. The C-C bond lengths at the edge part are shorter 

than that in graphite. It has been concluded that the local sp2 hybridization was 

partially destroyed due to the deformation of SWCNTs. 

By taking into account the effect of flattening shown in Figure. 4.1, the data 

suggested us to conclude, interestingly, that flattening of the tube cross-section leads 

to dramatic changes of the C-C bond length at the edge region, elongation of the C-C 

bonds that lie parallel, and vice versa for those perpendiculars, to the tube axis. In 
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addition, this also affects a significant increase of the C-C bond lying parallel to the 

tube axis in the flattened region. 

The previous work has shown the effect of uniaxial strain on the structures of 

SWCNTs, with the finding that bond lengths along the axis were increased [81]. 

However, the results were different from those for zigzag SWCNTs obtained by Pullen 

et al [81]. For zigzag SWCNTs, two types of bond lengths (defined as angular and 

parallel bonds in Figure 3.1b) were found to change significantly. Moreover, for a given 

size of the nanotube, there was always a critical bond length that remained constant 

despite the change in pressure. This implies that parts of the tube may not be 

influenced by the applied forces. Similarly, for armchair SWCNTs, two types of bond 

lengths (defined as angular and equatorial bonds in Figure 3.1c) changed significantly, 

with dramatic increases and decreases of the equatorial and angular bonds, 

respectively, with a very weak external force. 
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Figure 4. 1: Variation of C-C bond lengths, Bz,a and Bz,p (defined in Figure 3.1b) for 
zigzag (10,0), (15,0), (20,0), (25,0) and (30,0) SWCNTs, and Ba,a and Ba,e (defined in 
Figure 3.1c) for armchair (6,6), (8,8), (10,10), (14,14) and (17,17)SWCNTs as a 
function of flatness () 
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4.1.3 Effect of applied force on bond angle of SWCNTs  

The C-C-C bond angles (A1, A2, A3, A4, …) were defined in Figure. 3.1b and 3.1c. 

For example, there are five and six bond angles in the structure of the zigzag Z(10,0) 

and the armchair A(6,6) tube, respectively. The angle numbers depend on the size of 

the tube. For the zigzag SWCNTs, the A1 angles at the flatted region were increased 

from 120° (=0.0) to 128°, 134°, 138° and 140° for  equal to 0.1, 0.2, 0.3 and 0.4, 

respectively. Although the angle changes in all zigzag tubes were in the same trend, 

the angles at the edge region were less affected when the size of the tube increased. 

The bond angle at the flatted region of the zigzag tube was higher than that of the 

armchair tube. The bond angles at the flattened and edge regions of the armchair tube 

are influenced by pressure and follow the same trend. The applied forces affected the 

bond angles at the flattened and edge regions with the same pattern in the armchair 

tube. C-C-C bond angles at the edge gradually decreased as a function of tube 

flattening, i.e., from 117° to 108° when the degree of flattening () changed from 0.0 

to 0.4. In contrast, the edge region angles A4 and A5 significantly decreased when 

flatness increased ( = 0.4). This is in contrast to the observations in the flattened 

region in which A4 and A5 were significantly decreased when the flattening increased 

( = 0.4). The higher slope in Figure. 4.2 (left) demonstrate that the angle of zigzag 

tubes was affected by increased  more than the armchair tube. For example, the 

Z(10,0) for the angle gap is 40° but the A(6,6) for the angle gap is 10°. The bond angle 

of Z(10,0) at the flatted region (A1) is 140° but for A(6,6) it is 130° for  =0.4. The bond 

angles along axial edge parts A (A1-A3) of zigzag tube increases, while those of the 

equatorial flattened parts (A4-A5) decreased when the degree of flattened () 

increases. Therefore, the angles at flattened and edge regions were larger and smaller 
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than those of graphite. At this point, the bond angle is constant at about 120° for all 

 flatness values. Overall, we conclude that local sp2 hybridization was partially 

destroyed due to deformation of SWCNTs. 

4.1.4 Effect of applied force on electronic properties of SWCNTs  

As mentioned previously, the aim of this work was to investigate the effect of 

pressure on the electronic structure of the SWCNTs in term of the energy band gap. 

The energy band gaps of zigzag and armchair tubes as a function of flatness () were 

displayed in Figures 4.3 and 4.4. The energy values obtained from plane-wave methods 

were compared with the experimental data. Again, the energy band gap for the zigzag 

and armchair SWCNTs are summarized in Table 4.2 for clarification. The energy band 

gaps of the normal (=0.0) were 1.251 and 0.014 eV of Z(10,0) and Z(15,0) SWCNTs, 

respectively, in relatively closed to the experimental values ( 1.1 eV [3] and 0.036 eV 

[72]). As a function of flatness (), the energy band gap of Z(10,0) was quickly decreased 

when the flatness increased from 1.251 eV to 0.296 eV at  = 0.1 and to 0.106 eV at 

 = 0.4. This behavior showed that the electronic property of metallic tube has been 

changed to semiconductor. While the energy band gap of Z(15,0) was increased from 

0.014 eV to 0.650 eV at  = 0.1 and to 0.668 eV at  = 0.4. It is evident that the 

electronic property of semiconductor has been changed to be metallic instead. The 

curvature effect, as one result of the geometry properties, can significantly affect the 

electronic structure of SWCNTs [82]. The difference between the two π bond of the 

nanotube diameter decreases. This π bond is shifted down even further to closely 

each other, leading to metallic properties for this nanotube. 
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Figure 4. 2: Variation of C-C-C bond angles, A (defined in Figure 3.1b) for zigzag 
(10,0), (15,0), (20,0), (25,0) and (30,0) SWCNTs, and for armchair (6,6), (8,8), 
(10,10), (14,14) and (17,17) SWCNTs as a function of flatness () 
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Figure 4. 3: Energy band gap (eV) of the zigzag (10,0), (15,0), (20,0), (25,0) and 
(30,0) SWCNTs as a function of flatness () 

On the other hand, the energy band gap rapidly increased with increasing the 

flatness at  = 0.1 for all armchair SWCNTs. Afterwards, the energy band gap was 

decreased immediately and finally reached to 0.0 eV at high   values (0.3 and 0.4). 

For example, the energy band gap of the normal A(8,8) and Z(10,10) SWCNTs were 

0.224 eV and 0.152 eV, respectively, somewhat in a good agreement with experimental 

data ( 0.1 eV [83] and 0.0 eV [76]). Therefore, the metallic properties of the armchair 

SWCNTs can easily become the semiconductor when the flatness () increased. A 

significant decrease of the energy gap as a function of the external force was found. 
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Figure 4. 4: Energy band gaps (eV) of the armchair (6,6), (8,8), (10,10), (14,14) and 
(17,17) SWCNTs as a function of flatness () 

These results lead to the clear and interesting conclusion that the effects of 

external forces are much stronger on the flattened region of the nanotube, with the 

local bonding change from sp2 to almost sp3 [84]. In particular, the σ*- π* hybridization 

effect [85] becomes a key factor in gap closure before layer-layer interactions start to 

grow. The armchair results are pertinent to those obtained by Mazzoni et al. [37]. 
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4.2 The divalent metal cations adsorption on graphene oxide 

4.2.1 Validation of calculation method for metal-GO complexes binding energies 

To validate the calculated method used in this study, the different method 

with various basis set were used. The binding energies (∆Ebind), and the corresponding 

binding distances (R) for the cation-benzene complexes are summarized in Table 4.3. 

Moreover, the calculated results with the same system [86, 87] were referred and 

shown as well as the ∆H from experiment were also indicated [86-89]. Note that, in 

each case, R was measured from the center of mass of the benzene ring to the metal 

cations. 

In Table 4.3, the binding energies and the binding distances obtained from the 

B3LYP/6-31g(d) with LANL2DZ level of accuracy are in good agreement with the 

experimental values [86-89]. In the case of geometry, the binding distance was in 

agreement with the previous study [86, 87]. Therefore, the B3LYP/6-31g(d) with 

LANL2DZ level was chosen for this study. 

4.2.2 Binding energies of the divalent metal cations on GO sheet 

The x and y axis pass through the center of GO sheet and x axis passes to the 

oxygen atom of the carboxylic functional group (blue atom). The coordinate plane 

passes the four reference points linked to carboxylic acids on the GO sheet (as seen a 

green plane in Figure 4.5). The configurations of the complexes were modeled by 

placing the M2+ at above the center and perpendicular to the functional groups as 

illustrated in Figure 4.5. The complex geometries were fully optimized using the 

B3LYP/6-31g(d)/LANL2DZ basis set. 
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Figure 4. 5: Model of grapheme oxide (GO) sheet used in this study. Plane of the 
GO sheet (green) and the four positions (1-4) for metal cation adsorption 

The structures of metal cations and GO, were performed by the B3LYP method 

with 6-31g(d)/LANL2DZ basis set. An improved effective core potential for the metal 

atom (ECP) [90] was combined with the 6-31g(d) basis set. The binding energies with 

BSSE corrections in parenthesis of the divalent metal cations with graphene oxides 

(GO) using the four initial ion positions are presented in Table 4.4.  

The ΔEbind values of all studied complexes were decreased by ~3-7 kcal/mol 

after the BSSE corrections in which similar to what found in many systems [91]. In this 

study, the GO model contained the epoxy and hydroxyl groups on the graphene sheet 

where each divalent cation was initially placed at the positions 1-4. Note that, the 

interaction of the divalent metal ion with GO with various functional groups favorably 

found at the binding sites of C-O-C and OH groups [92]. From Table 4.4, the order of 

binding strength of cation-GO systems on the top of GO sheet were chosen from the 

lowest energies of each metal cations (among the initial positions 1-4) was Cu2+ (-

361.91) > Zn2+(-281.06) > Hg2+ (-277.52) > Cd2+(-241.24), with BSSE correction. 
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Figure 4. 6: The binding energy (ΔEbind) of four divalent metals with 4 positions at 
B3LYP/6-31g(d)/LANL2DZ basis set. 

In addition, the binding energy of Cu2+ on the GO sheet was much lower than 

those of Hg2+, Cd2+ and Zn2+, in correspondence with the shorter binding distance (d 

of 0.62 Å). 
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4.2.3 Structural properties of divalent metal cations on GO sheet  

The rational goal of this study is focused on the behavior of divalent metal 

cations on GO sheet, therefore, we evaluated the optimized parameter of GO 

complexes as the binding distance (R) and an angle  in which defined as the angle of 

O-M2+-O (Figure 4.7), after the full optimization was performed. The binding distance 

(R1,2,3) is the distance between metal cation and the functional groups including two 

epoxy and one hydroxyl groups on the surface of GO sheet as illustrated in Figure 4.7. 

The corresponding binding distance (R1,2,3) as well as angle  were reported in Table 

4.5. The obtained binding distance, R, of Cd2+, Cu2+, Hg2+and Zn2+ are 2.323, 2.124, 

3.240 and 2.093 Å, respectively. 

 

 

Figure 4. 7: The angle () and distances (R1-R3) of divalent metal cation adsorption 
on functional groups of GO sheet 
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Table 4. 5: Binding distance, R (Å) and angles () and (φ) between the divalent 

metal cation and GO surface 

Metal positions R1 R2 R3   

Cd2+ 
1 2.323 2.533 2.967 59.98 45.75 
2 2.411 2.636 2.686 58.91 57.80 
3 2.323 2.533 2.965 60.00 45.78 

Cu2+ 
1 2.124 2.561 2.184 58.15 64.33 
2 2.125 2.556 2.186 58.11 64.43 
3 2.124 2.561 2.186 58.10 64.28 

Hg2+ 
1 3.242 3.583 3.783 58.59 28.52 
2 3.240 3.583 3.779 58.57 28.53 
3 3.240 3.578 3.774 58.59 28.74 

Zn2+ 
1 2.093 2.215 3.023 60.41 53.38 
2 2.180 2.363 2.637 59.06 68.51 
3 2.094 2.217 3.015 60.40 53.53 

 

From Table 4. 5, we found evidence to suggest that the Cu2+ cation has most 

strongest interact with oxygen atom of functional groups. The distance, (R2) of the Cu2+ 

cation is 2.124 Å as agreement with the previous study in term of transition metal 

bound to benzene [93] and from x-ray experiment [94] is 1.97 Å. It is evident that the 

smaller cation can approach closer to the GO sheet than larger ones and so the order 

of these distances is consistent with that of the ΔEbind values, namely Cu2+ > Zn2+> 

Hg2+ > Cd2+. In the majority of cases, for Cu2+ and Hg2+ have only one point on xy-

plane of the GO sheet after optimization. Therefore, these have the binding energies 

only one value. For Zn2+ and Cd2+ have two points on xy-plane of the GO sheet after 

optimization. As can be seen, these have the binding energies more than one value. 
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 For more understanding insight into the structural properties of complexes, 

three additional parameters, namely, distance (d), angle (θ) and angle (φ) are defined 

as in Figure 4.8-4.10, respectively and examined. The projection distance (d) represents 

the shortest distance measured from the metal cation located perpendicular to the 

O1-O2-O3 plane (Figure 4.8). The plane angle (θ) is defined by the angle between the 

plane of oxygen functional groups and reference plane of a GO surface (Figure 4.9). 

The angle (φ) is defined as the angle between two planes, one is O3-com-O1 (com: 

center of mass between O3 and O1) plane as perpendicular to the GO plane (green 

plane) and another one is O3-M2+-O1 plane (red plane) (see Figure 4.10). 

 

Figure 4. 8: Definition of the distance (d) measured from the divalent cation to 
the O1-O2-O3 plane 

 

 

Figure 4. 9: Definition of the angle (θ) between the O1-O2-O3 plane and the GO 
plane 
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Figure 4. 10: Angle (φ) measured between two planes. 

 

To study the angle of the complex geometry on the cation interaction, the 

angle (θ) for the Cd2+, Cu2+, Hg2+and Zn2+ cation complexes were summarized in Figures 

4.11 and Table 4.4.  

 

 
Figure 4. 11: The projection distance (d) and angle (θ) of M2+-GO complexes with 
3 positions at B3LYP/6-31g(d). 
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Comparing Figure 4.12 and Table 4.4 shows that the angle (φ) can confirm the 

location of the metal cations on the GO surface. In term of the angle (φ), there is only 

Cu2+ and Hg2+ cations have a constant angle value. 

 

Figure 4. 12: The angle (φ) of divalent metal cations adsorption on plane 
reference of functional groups. 
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4.2.4 Investigation the behavior of the divalent metal cations on the graphene 
oxide  

 

 

 

Figure 4. 13: (a) The distance (rO), and (b) O-O distance (lO-O) of cation-GO 
complexes with the three of oxygen atoms, O1-O3 

The rO1-O3 represents the distance measured from the projection of the divalent 

transition metal cation on O1-O2-O3 plane to the oxygen atoms at adsorption sites 

(Figure 4.13 (a)). The bond distance (lO1-O2) was measured from the oxygen-oxygen atom 

of functional groups on O1-O2-O3 plane (Figure 4.13 (b)). 

From Table 4.4 and Figure 4.14, we found evidence to suggest that Cu2+ mainly 

localized on the position 2 (between hydroxyl and epoxy group) but another cations 

mainly localized on the same position 3 (between two epoxy groups). The influences 

of the divalent transition metal cations to the functional groups were investigated with 

the distance (lO1-O2, lO2-O3, lO1-O3) between oxygen atoms of positions. To determine 

stable structures, we have many parameters to consider the influences of the divalent 

transition metal cations. 
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Figure 4. 14: The distance (rO1), and O-O distance (lO1-O2) of M2+-GO complexes 
with 3 positions at B3LYP/6-31g(d). 

 

 
Figure 4. 15: The distance (rO2), and O-O distance (lO2-O3) of M2+-GO complexes 
with 3 positions at B3LYP/6-31g(d). 

 

 

Figure 4. 16: The distance (rO3) and O-O distance (lO1-O3) of M2+-GO complexes with 
3 positions at B3LYP/6-31g(d). 
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The configurations with epoxy pair and hydroxyl groups on the GO complexes 

have been considered in a term of O-O distance (lO-O). For the behavior of divalent 

metals, we consider the Cd2+, Cu2+, Hg2+and Zn2+. In this current study, we focus on 

the positions of divalent metal cations on GO surface before and after adsorption 

process. We limited the number of functional groups on the GO surface but keep C/O 

ratio constant like a Lerf-Klinowski model [63]. 

Now, we turn to focus the divalent metal cations adsorbed on GO surface. We 

found that the Cu2+ and Hg2+ cations like to move to position 2 when the starting 

points were 1, 2 and 3. Figure 4.14, 4.15 and 4.16 shows O-O distance (lO-O) as positions 

of metal. The analysis of O-O distance (lO-O) showed that the coordinate of both metals 

comes mostly constant position, because O-O distance (lO-O) kept constant value for 

all positions. It is evident that Cu2+ and Hg2+ cations did not move to another position. 

The results seem to indicate that this causes the behavior to become extremely 

interaction with lone pair electrons of functional groups on GO surface. 

However, in case of Cd2+- and Zn2+- complexes, the small fluctuate position 

was observed The O-O distance (lO-O) showed that the coordinate of both metals did 

not constant especially at position 2. Due to, both cations have been fluctuate interact 

between the hydroxyl and epoxy functional groups. 
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Figure 4. 17: The projection of divalent metal cations on xy-plane of GO. Distance 
of cations to xy-plane [Å] was shaded by colour. 

 Figure 4.17 illustrates the findings of the position of divalent metal cations on 

the GO surface. The purple color in the 3D plot indicated the x, y coordinate on xy-

plane of GO surface. As shown in Figure 4.17, the coordinate of divalent metal cations, 

especially for Cu2+ and Hg2+ cations have a single point on xy-plane. This suggests that 

both metals adsorption on GO surface are mainly localized on the same position for 

each metal cation. For the Cd2+ and Zn2+ cations, the coordinate of divalent metal 

cations have two point positions on xy-plane. 

4.2.5 Effect of metal cation with curvature of GO complex  

To investigate the effect of the curvature (complex geometry) on the divalent 

metal interaction, characteristic distances for the Cd2+, Cu2+, Hg2+and Zn2+ cations 

complexes were summarized in Figure 4.19 and Table 4.4. From the geometry of the 

initial state, the form complex and equilibrium shapes at metal-GO complex are 

measured. The central points have the ability to move vertically upward. Additionally, 
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the radius of the metal cation can be estimated from the curvature of the GO plane. 

The curvature distances (h) were measured from complex form on the top (h1) and 

bottom (h2) of surface to the plane of the GO surface (see in Figure 4.18). In this way, 

we can study the influence of metal cation with the curvature of GO complexes by 

the difference of h1 and h2 with and without metal cations. 

 

Figure 4. 18: The curvature (h1,2) of GO complexes 

Figure 4.19 and Table 4.4 show the characteristics of all GO complexes 

investigated in this work. The curvatures of GO complexes were constant for all 

positions. The results were investigated separately for two types of the complexes, 

where the cations are located on top or bottom of the GO sheet. The size of metal 

cations evaluated here are relatively. In this case, the h1 can represent the influence 

of the divalent metal cations on the geometry of GO. The different metal cations on 

the GO surface can cause different distortions. In Figure 4.19, the curvature distortions 

of the GO complexes are influenced by the adsorption of the metal cations. It can be 

seen that the distortion of the curvature (Δh1-h2) of Hg2+ was higher than for all the 

other cations being 0.847 Å. These distortion patterns were induced by the ionic radius 

of metals. 
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Figure 4. 19: The curvature (Δh1,2) of GO complexes four divalent metals with 4 
positions at B3LYP/6-31g(d). 
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4.2.6 Adsorption of Cu2+ cation on GO sheet  

 

Figure 4. 20: (left) X-ray photoelectron spectra (C1s) of GO and GO+Cu2+ from ref 
[95] and (right) the angle α relate to divalent cation adsorption 

The X-ray photoelectron spectra (XPS) of the initial GO and the GO complexes 

are shown in Figure 4.20. The spectrum of the epoxy C-O-C group on the GO surface 

is 286.5 eV. The differences include a reduced twice time intensity of the peak due to 

epoxy group broken by the Cu2+ cation. It is evident that the epoxy group can also 

convert to hydroxyl group. This result can confirm by quantum calculation. The picture 

insert shown that the functional groups of GO have been destroy by the Cu2+ metal 

cation. Figure 4.20 right hand side, illustrates the angle (α) is defined by the angle 

between C-C-O of epoxide group on bottom of GO. From this result, the angle (α) of 

Cu2+-GO complex was changed from about 60° to 110°. These results demonstrate that 

improved correlations with the experimental results are in good agreement with ref. 

[96]. These findings can be applied effectively utilized for the treatment of industrial 

waste by GO.  
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CHAPTER V 

CONCLUSION 
 

The electronic properties of single-walled carbon nanotubes (SWCNTs) can be 

modified by deforming their structures under high pressure. The aim of this study was 

to investigate the molecular structures and energy band gap of armchair and zigzag 

SWCNTs with various sizes and deformed shapes. To model the pressure effect, the 

degree of flatness () of the SWCNT was adjusted as the primary parameter. The results 

gave the C-C bond lengths and C-C-C bond angles of SWCNTs in the distorted states, 

and the structure distortion significantly affected the electronic property in term of 

different energy band gap. With increased  values in all studied SWCNTs, the bond 

lengths at the flattened region on where  applied were dramatically lengthened, 

while those at tube edge region were slightly decreased. This leads to the wider and 

narrower angles at the flattened and edge regions, consequently. Although the trend 

of the bond length and the angle changes were in the same pattern in the five different 

sizes of zigzag and armchair distorted tubes, less curvature effect on the angles at the 

edge region was only found in the zigzag tubes. As a function of the mechanical 

deformation, an electronic band gap is reduced leading to a semiconductor-metal 

transition for the (10,0), (20,0) and (25,0) zigzag SWCNTs and in vice versa for (15,0) 

SWCNT. Differentially, the metal-semiconductor transition is found in the armchair tube 

under applied low  value of 0.1 and followed by a reverse transition at the high  

values. These results may contribute to a more refined design of new nano-electronic 

devices. 
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We performed a systematic DFT investigation of the adsorption of Cd2+, Cu2+, 

Hg2+ and Zn2+ on GO surface. The interactions between the divalent metal ions and 

the GO have been determined. The positions 1-3 were at the top of GO sheet, while 

the position 4 was at the bottom of GO sheet. Position 1 was placed at the GO center 

without any functional group. Position 2 was at between the epoxide and hydroxyl 

groups. The position 3 was located between the two epoxide groups. Lastly, the 

position 4 was opposite to position 1 at the bottom of GO sheet with nearby epoxide 

and hydroxyl groups. Geometries and energies of adsorption demonstrate the 

interaction of divalent metal with the functional groups on the GO surface. The binding 

efficiency of these divalent metals to GO surface increased in the following order: Cu2+ 

> Hg2+ > Zn2+ > Cd2+. The binding energies of Cu2+ are much lower than those of Hg2+, 

Cd2+ and Zn2+, and the corresponding binding distances are much shorter. It is clear 

that the bonding in such systems is quite different from the effect we are discussing 

here because of interactions with d orbitals on the metal. Considering that the epoxy 

and hydroxyl groups are the main active oxide groups of GO for the adsorptions 

process, and epoxy group can also convert to hydroxyl group by the Cu2+. It is evidence 

for presented. This is the first calculations evidence for the structures of GO-metal 

complexes. The Cu2+ cation has strongest interaction with the hydroxyl and epoxy 

functional groups. While, the two epoxy groups are the main active oxide groups of 

GO for the adsorption of the other cations. The epoxy group may convert to hydroxyl 

group by the Cu2+adsorption. However, further experiments and higher level 

calculations are necessary to definitively elucidate these structures. Understanding the 

behavior by which divalent metal cations adsorb on the GO surface it would be useful 
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to design effective control technologies of the heavy metal pollution in industrial. 

Future work should therefore consider the effect of aqueous solution. 
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