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ABSTRACT

5873013063: Petroleum Technology Program
Pornpetch Hattakijvilai: Analysis of Biomarkers in Crude Oils,
Processed Oils, and Spilled Oils
Thesis Advisor: Assoc. Prof. Siriporn Jongpatiwut 173 pp.
Keywords: Chemical fingerprinting/Biomarkers/P AHs/Crude oil/Processed
oil/Fuel oil/Lube oil

Oil spills in marine are commonly come from crude oils, fuel oils and
lubricating oils by accidental leakages or purposeful discharges to the surroundings.
As crude oil and fuel oil which refined from the heavy fraction of crude oil have similar
physical properties especially if they were weathering, it is difficult to differentiate
that the spill has the origin from crude oil or fuel oil. In this study, five crude oils, two
fuel oils, one fresh and one used lube oil that are typically used in Thailand were
investigated. All crude oils, fuel oils, and used lube oil were weathered in the sea water.
All samples were characterized using GC-FID and GCxGC TOFMS. The attention of
this work is focused on the distribution pattern of polycyclic aromatic hydrocarbons
(PAHSs) such as phenanthrenes (P), anthracenes (A), dibenzothiophenes (D) and their
alkylation, and biomarkers in hopanes group. The statistic method was applied to
distinguish crude oils, fuel oils and lube oil. The results from GC-FID showed a useful
basis information of hydrocarbon in oils which could distinguish lube oil from other
oil type due to the huge unresolved complex mixture (UCM). The distribution patterns
of methyl-phenanthrenes (MP) and methyl-anthracenes (MA) were different in most
crude oils and processed oils. The double ratio plots of MP and MA showed the most
positive method to differentiate two refined products and crude oils. The results from
weathering simulation showed that biomarkers were high degradation-resistant,
however, hopanes distribution patterns were different between fuel oils and their crude
oil feedstocks. In addition, the distribution pattern of hopanes biomarker in fresh or
unused lube oil and used lube oil were dissimilar as they were generated or degraded

during the combustion in the engine.
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CHAPTER 1
INTRODUCTION

Oil spill in marine is an important environmental issue. Once oil is released
into marine environment, it subjects to an expanded damage to marine lives, human
and coastal environments for example, in Thailand, the largest oil spill from a leaked
pipeline that operated by PTT Global Chemical in Rayong in 2013 and more recently
spilled in Hua-Hin district which remained unknown sources in 2015. Investigation
and identification of oil type is indeed important for finding response in order to take
effective clean up and rehabilitate the ecosystem (Wang and Fingas, 2003). The spilled
oil in marine, could happened from both accidents and unauthorized drainage, is
commonly come from crude oil, marine fuel which refers to fuel oil (FO), used and
wasted lubricating oil. After oil is discharged into the sea, the chemical composition
is changed as it undergoes with a variety of weathering processes, for example,
evaporation, emulsification, dissolution and biodegradation. In addition, weathering
time and oil type are also related to the change of the oil fingerprint ITOPF, 2011).

Nowadays, the common method to characterize and identify of spilled oils
are followed the NORDTEST methodology which focuses on molecular
characterization of oil and relies on analyses by gas chromatography (GC) and gas
chromatography — mass spectrometry (GC-MS) (Liv-Guri Faksness et al., 2002). The
complexity of crude oil and/or bottom products like fuel oil may not be resolved some
isomer structures clearly by using GC-MS. Then GCxGC-TOFMS or comprehensive
two-dimensional gas chromatography time-of-flight mass spectrometry could resolve
this problem as GCxGC-TOFMS uses two columns of different selectivities with
thermal modulation to create two dimensions of separation (Misselwitz et al., 2013).

Crude oil and FO are extremely difficult to identify especially after
weathering as FO is refined from the heaviest fraction of crude oils. FO provides
similar physical properties and some chromatographic characteristics with crude oil.
Crude oil and refined products from different sources often give different polycyclic
aromatic hydrocarbon (PAH) and biomarker distributions (Zhang et al., 2016).

However, lower molecular weight PAHs are lost during the weathering, higher



molecular weight PAHs and biomarkers are more resistant to weathering and be a
valuable fingerprinting for oil identification (Stout et al., 2005).

This study is focused on the distributions of PAHs, such as anthracene (A),
phenanthrene (P), dibenzothiophenes (D) and their alkyl-isomers and biomarkers,
especially pristane, phytane and hopane in fresh crude oils, fuel oils and used
lubricating oil comparing with weathering of these type of oils. The change of these

chemical fingerprintings due to the weathering time also investigated.



CHAPTERII
THEORETICAL BACKGROUND AND LITERATURE REVIEW

2.1 Crude Oil and Refined Product

Crude oil is liquid petroleum that can be found beneath the earth’s crust. It is
classified as a fossil fuel which originated from decayed sea plants and animals matter
in source rocks under temperature and pressure condition as illustrated in Figure 2.1.
Crude oil contains primarily carbon and hydrogen called hydrocarbon, organic
compounds like nitrogen, oxygen and sulfur together with small amount of metal such
as nickel vanadium and iron (Freudenrich, 2016).

Several sources and conditions of oil forming leads to a variety of types and
a difference in oil component. Crude oil is usually black, dark brown or it can also be
yellowish and greenish, depending on its hydrocarbon composition. The variety of
crude oil types are generally described in the terms of light or heavy according to API
gravity of crude oil, and sweet or sour according to its sulfur content. The different
composition results in a unique chemical that can be fingerprinting of each oil

(Chevron, 2012).

Figure 2.1 Crude oil formation diagram (History of Oil, 2014).

Crude oil will be refined and processed to produce useable refined products

such as gasoline, jet fuel, diesel, lube oil and various forms of petrochemicals.



Distillation is the first stage to heat and fractionate crude oil. In this study will focus

on only fuel oil and lubricating oil.

Figure 2.2 Scheme flowchart of oil refining process (Oil Refining Process, 2014).

Fuel oils (FOs) are produced from residuals in the oil refining process
(Leffler, 2000). As light products demand are increasing, the additional steps, for
example thermal cracking and catalytic cracking are added to refining process for
producing more light products from the residuals. This result in lower quality
especially in terms of higher concentration of sulfur, metals, ash or even related to
catalyst fine and higher viscosity of cracked FO feedstocks than the feedstocks from
straight run atmospheric and/or vacuum distillated residues (Uhler et al., 2016). Due to
low quality of FO feedstocks, blending with other lower boiling point and/or lighter

residuals such as cracked gas oil and other refinery intermediates, is required in order



to achieve the FO performance specifications (Winkler, 2003). Each refinery operates
individually therefore FO blending is particular to each refinery depends on its current
operating and economic at that moment. While it may be complicated to complete FOs
process, this will be an advantage in identification and tracking spilled residual fuels

in the sea (Uhler et al., 2016).

Figure 2.3 Simple straight run refinery block diagram (Chevron, 2012).

Figure 2.4 Complex refinery with FCC and visbreaking block diagram (Chevron,
2012).



Fuel oil is typically used as an energy fuel to generate heat in furnace and
boiler or generate power in an engine. In the early twentieth century, a ship propulsion
used diesel engines and there were a series of developments to make them possible to
use heavy fuel oil (Chevron, 2012). Technically, fuel oils are labelled into 6 classed,
numbering from 1 to 6, according to their boiling point, composition and purpose. In
maritime, the ship or marine fuels are commonly called bunker fuels which is a
generally referred to any type of fuel oil used on aboard vessel. Bunker fuels, typically,
are classified into 3 types which is bunker A, B and C. Bunker A is corresponds to
distillated fuel No. 2 fuel oil, bunker B is synonymous with No. 4 or residual fuel oil
No. 5 — also called navy special, and bunker C is generally uses as a synonym for
residual fuel oil No. 6 which is the most commonly used bunker oil. There are some
conventional way to classify the marine fuels, namely as the following (Bunker Oil-
Marine Fuel Oil, 2016),

. Marine gas oil (MGO) which is similar to bunker A

. Marine diesel oil (MDO) is a blend of MGO and HFO

. Intermediate fuel oil (IFO) is a blend of MGO and HFO, with less gas

oil than MDO

. Medium fuel oil (MFO) is a blend of MGO and HFO, with less gas oil

than IFO

. Heavy fuel oil (HFO) is a residual fuel oil that similarly to No. 5 and 6

Table 2.1 Classification of marine fuel (Wallace, 2016, Bunker Oil-Marine Fuel Oil,
2016)

Chain
Name Alias Type Note
Length
No.1 fuel oil - Distillated 9-16 Similar to Kerosene
No.2 fuel oil Bunker A, MGO Distillated 10-20 -
No.3 fuel oil - Distillated 10-20 Rarely used
No.4 fuel oil Bunker B Distillated/Residual 12-70 Blending with No.2 and 6
No.5 fuel 0il  Bunker B, navy special Residual 12-70 Heavy fuel oil

No.6 fuel oil Bunker C Residual 20-70 or residual oil




Lubricating oils or lubricants are substance to reduce friction and heat
between the metal surfaces contact during their operation. Lubricating oils also
improve performance, extend the operational life and also ensure the maximum output
efficiency of the engine and equipments — gearboxes, compressors, motors, etc. Lube
oil can be manufactured from petroleum and/or synthetic to meet specifications
including of high boiling points, high viscosity indics, thermal stability, corrosion
resistance and low freezing point (Uhler et al., 2016). Lubricants compose of largely
base oils and a small amount of chemical additives. Base oils or basic oils are usually
referred to petroleum fractions called mineral oils and synthetic oils. The mineral-
based lube oils are commonly used.

Mineral-based oil are obtained from a series of processing covered by
(Stipanovic, 2003):

(1) Basic distillation — To separate the fraction of crude oil proper for the

mineral oil’s end user.

(2) Deasphalting — To expel undesirable heavy fraction of oil which could

lead to gumming and other undesirable characteristics.

(3) Extraction or solvent refining — To remove or reduce aromatic and

related heteroaromatic compounds.

(4) Dewaxing — To eliminate undesirable paraffins and other alkanes that

could crystallize at low temperature.

(5) Hydrotreating — To remove olefins and other unstable compounds

which may cause smoking at high temperature

Base oils that are manufactured by mineral oils are typically classified into 2
types (1) naphthenic in nature or (2) paraffinic in nature, which mean (1) enriched with
cyclic aliphatic hydrocarbon, in order words, small amount of aromatic or (2)
containing mostly branched paraffins and only minimally normal paraffins,
respectively. Synthetic base oils such as polyalphaolefins (PAO), esters, and
polyglycols, are created by the chemicals reaction of several ingredients (Wang et al.,
2006). Additives are added into the lube oils in order to achieve desired properties —
viscosity, thermal stability, foaming, compressibility, oxidation resistance, corrosivity,

pour point, flash point, etc. The common additives using to blend with base oil are



emulsifiers, detergent, corrosion inhibitors, extreme pressure, alkaline (mostly added

in marine oil to neutralize the engine) and along with others (Kopeliovich, 2012).

2.2 Petroleum Chemical Fingerprintings

2.2.1 0Oil Chemical Composition

Petroleum composition, generally, can be characterized by their

structures into groups of saturates, olefins, aromatics, resin and asphaltenes which

might be known as SARA analysis.

Saturates are an influential hydrocarbon with only carbon-carbon
bonds groups of oil for example, paraffins (straight and brunched
HC chain), naphthenes (alkanes ring structure or cycloalkanes)
and also including biomarkers.

Olefines or alkenes are unsaturated hydrocarbons that consist of
at least one double carbon-carbon bonds. These components are
particularly found in some refined products, but rarely to find in
crude oil as they are formed from larger molecules in cracking
processes.

Aromatic hydrocarbons are cyclic and planar compound.
Aromatics in petroleum are consist of mono-aromatic
hydrocarbons — benzene, toluene, ethylbenzene and xylene
(BTEX), other alkyl-substituted benzene compounds and
condensed aromatic benzene rings called polycyclic aromatic
hydrocarbons (PAHs).

Resins and Asphaltenes, which are typically concentrated in
heaviest fraction of oils, are polar compounds or heteroatom
constituents which bearing nitrogen, sulfur and oxygen atoms
(also called NSO compounds) (Lundegard and Knott, 2014). In
petroleum industry, resins are called for groups of small polar
compounds such as NOS compounds containing in PAHs,

phenols, acids, alcohol and monoaromatic steroids.



o Asphaltenes are large heteroatomic compounds which not
dissolve in oil, but are dispersed as colloids. The quantity of
asphaltenes has a significant effect on oil behavior. Table 2.2
shows that heavy oils comprise more aromatics and heteroatomic
compound such as N-, O-, S- and metal containing (Wang et al.,

2006; Speight, 2007; Lundegard and Knott, 2001).

Table 2.2 Typical composition of crude oil and petroleum products (Wang et al.,
2006)

Group Compound Gasoline  Diesel Light Heavy IFO Bunker C
Class crude crude
Saturates 50-60 65-95 55-90 25-80 25-45 20-40
alkanes 45-55 35-45
cyclo-alkanes ~5 30-50
waxes 0-1 0-20 0-10 2-10 5-15
Olefins 5-10 0-10 - - - -
Aromatics 25-40 5-25 10-35 15-40 40-60 30-50
BTEX 15-35 0.5-2 0.1-2.5 0.01-2 0.05-1 0-1
PAHs 0.5-5 0.5-3 1-4 1-10 1-10
Polar - 0-2 1-15 5-40 15-25 10-30
compounds resins - 0-2 0-10 2-25 10-15 10-20
asphaltenes - - 0-10 0-20 5-10 5-20
Sulphur <0.05 0.05 0-2 0-5 0.5-2 2-4
Metals 30-50 100-500  100-1000  100-2000

(ppm)

BTEX = benzene, toluene, ethylbenzene, and xylenes; PAHs = polycyclic aromatic hydrocarbons.

2.2.2 PAHs
Polycyclic aromatic hydrocarbons or polynuclear aromatic hydrocarbons
(PAHSs) are consisted of two or more benzene rings which are condensed together.
Commonly, PAHs are the molecules contain two to seven benzene rings. Table 2.3
shows a part of physical and chemical properties of some PAHs which vary with

molecular weight. PAHs resistance to oxidation, reduction and vaporization are
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increased with increasing molecular weight. From these reasons, PAHs are different in
distribution in environment, their behavior and effect on biological system (Nagpal,
1993). PAHs may cause a health hazard as most of these class of chemicals are toxic,
carcinogenic and relatively persistent in the environment. Naphthalene, anthracene and
phenanthrene are three simple compound in this class. Naphthalenes are the smallest
and lowest molecular weight of all PAHs that structured by condensing two benzene
rings together also called as bicyclic. Anthracene and phenanthrene are tricyclic
aromatic hydrocarbon which contained of 3 benzene rings. PAHs are an important

fingerprinting for the characterization and identification of spilled oil.

naphthalene anthracene phenanthrens

Figure 2.5 The structures of naphthalene anthracene and phenanthrene (Reusch,

2013).

2.2.2.1 Characterization PAHSs in Heavy Qil

The concentration and distribution of PAHs present and
differentiate the composition of original crude oil feedstock from its intermediates or
residuals refined products. Phenanthrenes are dominant aromatic hydrocarbon
presenting in the most of oils and typically used to distinguish between combustion
and petroleum source (Yunker et al., 2002). Comparing crude oil with heavy fuel oil
(HFO) using the relative of phenanthrene (Phe), anthracene (Ant), methyl-
phenanthrene (MP) and methyl-anthracene (MA). As shown in Figure 2.6, the relative
of 2-methyl-anthracene in crude oil is much less abundant than HFO. Methyl-
anthracenes, particular 2-MA, are pyrolytic organic materials which may be produced
under pyrolytic condition e.g. thermal cracking (Zhang et al., 2016). The alkylated
phenanthrene indices are interesting measures for maturity of sedimentary organic
matter and there are several related ratios used in petroleum geochemistry field. Zhang

et al. (2016) also studied on double ratio plots of diagnostic indices based on
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phenanthrene, anthracene and their alkylation for distinguish HFOs and crude oils as

shown in Figure 2.7.

Figure 2.6 Phe, Ant, MP and MA mass-chromatograms of HFO and crude oil
(Zhang et al., 2016).

Four- to six- ring PAHs, for example, fluoranthenes, pyrenes
and benzofluoranthenes are usually exist at only low concentration or not detectable in
most crude oil and distillate fuels, but these compounds are found and detectable in
HFOs as they are concentrated within distilled residual and/or produced during the
process (Uhler et al., 2016). Moreover, 4, 5- and 6- ring PAHs are the most PAH
compound environmentally stable and their relative ratios are potential use in source
identification (Emsbo-Mattingly et al., 2006).

For lubricating oil, most of aromatic hydrocarbons including
PAHs are removed during refining base oil process in order to improve the
performance characteristics of lube oil. Consequently, PAHs in fresh lube oil is
presented in very little concentration. However, PAHs concentration in used lube oil

(ULO) are usually higher than fresh lube oil due to the formation of pyrogenic high
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molecular weight PAHs (4- to 6- rings) during heating while in use and contaminating
by low molecular weight PAHs (dominant 3- rings alkylated phenanthrenes) from
unburned fuel oil and combustion residue. Uhler et al.(2016) suggested that as the
common use of diesel fuel in marine industry, some unburnt fuels from middle

distillate, specifically diesel fuel may be mixed with lubricating oil (Uhler et al., 2016
and Yang et al, 2016).

Figure 2.7 Double ratio plots of Phe, Ant and their alkylation of HFOs and crude oils
(Zhang et al., 2016).
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2.2.3 Biomarkers

Biomarkers or biological markers are complex organic hydrocarbon
molecules or known as molecule fossils which derived from living organisms in the
source rock (Misselwitz et al., 2013). Biomarkers are one of the most useful and
important hydrocarbon groups in petroleum for oil characterization and identification
as they preserve all or most prominent structure of original natural product and their
similarly structure. Biomarkers are also more resistant to weathering and degradation
than other hydrocarbon groups. Furthermore, biomarkers are formed under varieties of
geological condition and ages which may exhibit a unique biomarker fingerprint in
every crude oil. Chemical analysis of biomarkers is an essential information of forensic
investigation included of tracing the source of spilled oil, differentiating oils,
monitoring the degradation process and weathering state of oils (Wang et al., 2004).

Pristane (2,6,10,14- tetramethyl pentadecane) and phytane (2,6,10,14-
tetramethyl hexadecane) are the common aliphatic biomarker that became dominant
highly weathered compounds in crude oils until they are degraded. The
pristane/phytane (Pr/Ph) ratio is one of the most commonly used correlation parameters
which have been used as an indicator of biodegradation (Moustafa et al., 2012 and Liv-
Guri Faksness et al., 2002)

2.2.3.1 Biomarker Distribution in Heavy Oil (Wang et al., 2004)

Various biomarkers can be detected in different carbon ranger
of crude oil as illustrated in Figure 2.8. Hopanes (pentacyclic terpanes) and steranes
are the most common biomarkers observed in crude oil (Mulabagal, 2013). Finished
or refined petroleum products, which are obtained from crude oil, can have wide
variety in chemical compositions depending on their parent crude oil feed stocks and
the variety of refining approach and conditions, applications, economic requirements.
Some cases, two oils are given similarly or comparably n-

alkane and isoprenoid distributions which observed from GC-FID whereas their
biomarkers distribution may give differently. The biomarker distribution patterns are
generally different from crude oil to refined products. The differences in the relative
distribution of terpanes in crude oil and refined products are presented in Figure 2.9.

The concentration and variety distribution of terpane in finished products are lower
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than crude oils since refining process have removed or concentrated high molecular

mass biomarkers from their parent crude oil feedstock.

Intensi

»
»

Time

Figure 2.8 Carbon number range of common cyclic biomarkers present in crude oils

and refined products (Wang et al., 2004).

Some cases, two oils are given similarly or comparably n-
alkane and isoprenoid distributions which observed from GC-FID whereas their
biomarkers distribution may give differently. The biomarker distribution patterns are
generally different from crude oil to refined products. The differences in the relative
distribution of terpanes in crude oil and refined products are presented in Figure 2.9.
The concentration and variety distribution of terpane in finished products are lower
than crude oils since refining process have removed or concentrated high molecular

mass biomarkers from their parent crude oil feedstock.
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Figure 2.9 Distribution of biomarker terpane compounds (at m/z 191) in different

oils (Wang et al., 2004).

For lubricate oil, biomarkers are usually located in the high carbon
range, contained in high level when compared with other petroleum products and can
be detected in equivalent or higher concentrations in comparison with their crude oils
feedstock as these compounds remain in the residual fraction during the distillation
(Uhler et al., 2016) as shown in Figure 2.10. Lubricants are refined from middle to
heavy fraction base oil, thus they are rich in high carbon range of terpane and steranes
but contain relatively low lighter tricyclic terpanes (C21-Ca24). Furthermore, smaller
biomarkers including bicyclic sesquiterpanes (Ci4-Ci6) and diamondoid hydrocarbon

(adamantanes, C10-C14 and adamantanes, C14-Cj¢) are rarely detected in virgin (fresh)
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lubricants, but they are detectable in used and waste lube oil due to the diesel

contamination (Yang et al., 2016).

Diesel

Figure 2.10 Chromatogram of biomarker terpane (m/z 191) in different lube oils

(Yang et al., 2016).

Table 2.3 A part of physics and chemical properties of some PAHs (Nagpal, 1993)

Benzene Solubility Vap. Pressure
MW Carcino-
PAH (total) at 25 °C at 25 °C
® genicity
rings (ng/L) (mm Hg)
Naphthalene 128.2 2 12500 -34000 1.8x 102 NC
Acenaphthylene 1522 2 3420 10-3-104 NC
Acenaphthene 154.2 2 NC
Fluorene 166.2 2(3) 800 NC
Anthracene 178.2 3 59 2.4x 10 NC
Phenanthrene 178.2 3 435 6.8x 10 NC
Acridine 179.2 3 NC
2-Methylanthracene 1923 3 213 NC
9-Methylphenanthrene 1923 3 261 NC
1-Methylphenanthrene 1923 3 269 NC
Fluoranthene 202.3 34) 260 NC
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Table 2.3 (cont.) A part of physics and chemical properties of some PAHs (Nagpal,
1993)

Benzene Solubility Vap. Pressure
PAH MW (total) at 25 °C at25°C Carcino-
(® genicity
rings (ng/L) (mm Hg)

9,10-Dimethylanthracene 206.3 3 56 NC
Benzo[a]fluorene 216.3 34) 45 NC
Benzo[b]fluorene 2163 3(4) 29.6 NC
Pyrene 202.1 4 133 6.9x 107 NC
Benz[a]anthracene 228.3 4 11.0 1.1x 107 C
Naphthacene 228.3 4 1.0 NC
Chrysene 2283 4 1.9 wC
Triphenylene 2283 4 43

Benzo[b]fluoranthene 252.3 4(5) 2.4 C
Benzo[j]fluoranthene 2523 4(5) 2.4 C
Cholanthrene 2543 4(5) 2.0 C
7,12-Dimethylbenz[a]anthracene 2563 4 1.5 SC
Dibenzo[a,h]fluorene 266.3 4(5) 0.8 wC
Dibenzo[a,g]fluorene 266.3 4(5) 0.8 C
Dibenzo[a,c]fluorene 266.3 4(5) 0.8 WC
3-Methylcholanthrene 2673 4(5) 0.7 SC
Benzo|ghi]fluoranthene 2142 4(5) 0.5 NC
Benzo[a]pyrene 2523 5 3.8 5.5x 10 SC
Benzo[e]pyrene 2523 5 2.4 5.5x 10”? NC
Perylene 2523 5 24 NC
Indeno(1,2,3-cd)pyrene 2763 5(6) - C
Dibenz|a,h]anthracene 2783 5 0.4 C
Benzo[ghi]perylene 2764 6 0.3 1.0x 1010 NC
Coronene 300.3 7 0.14 1.5x 101! NC

Note: NC = Non-carcinogenic, WC = Weakly carcinogenic, C = Carcinogenic, SC = Strongly carcinogen

2.2.4 Weathering Process (ITOPF, 2011)

Once oil spill into the sea, it is subject to a number of physical and
chemical changes because of various natural processes namely weathering include of
spreading, evaporation, dispersion, emulsification, dissolution, photo-oxidation,
sedimentation and sinking, biodegradation. The natural weathering processes are

complicated and have many important factors for example, duration time of
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weathering, quantity and type of spilled oil, prevailing weather and sea condition.
(Wanget al., 2013).
2.2.4.1 Spreading
Spreading of the oil occurs immediately after oil is discharged
into the sea. The rate of spreading depends on winds, turbulence, waves, tidal stream
and current and the most directly influent factories are viscosity and volume of spilled
oil. The less viscosity fluid, the faster it will spread and increase the sea surface area

covered by oil slick.

Figure 2.11 Weathering processes (ITOPF, 2011).

2.2.4.2 Evaporation
Evaporation involves with losing low components. Generally,
oil components with having boiling point below 200°C will evaporate to the
atmosphere within 24 hours. The evaporating rate depends on ambient temperature,
wind speed and the rate of spreading. Because the increasing surface area of the spill
allows more light component evaporated. Additionally rough seas, high wind speeds

and warm temperatures also increase evaporation rates.


http://www.eoearth.org/article/Molecule
http://www.eoearth.org/article/Seas_of_the_world
http://www.eoearth.org/article/Velocity
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2.2.4.3 Dispersion
Dispersion is the action of wave and turbulence at the sea
surface break all or part of oil slick into droplets. The oil droplets can be either remain
in suspension if they are in very small si