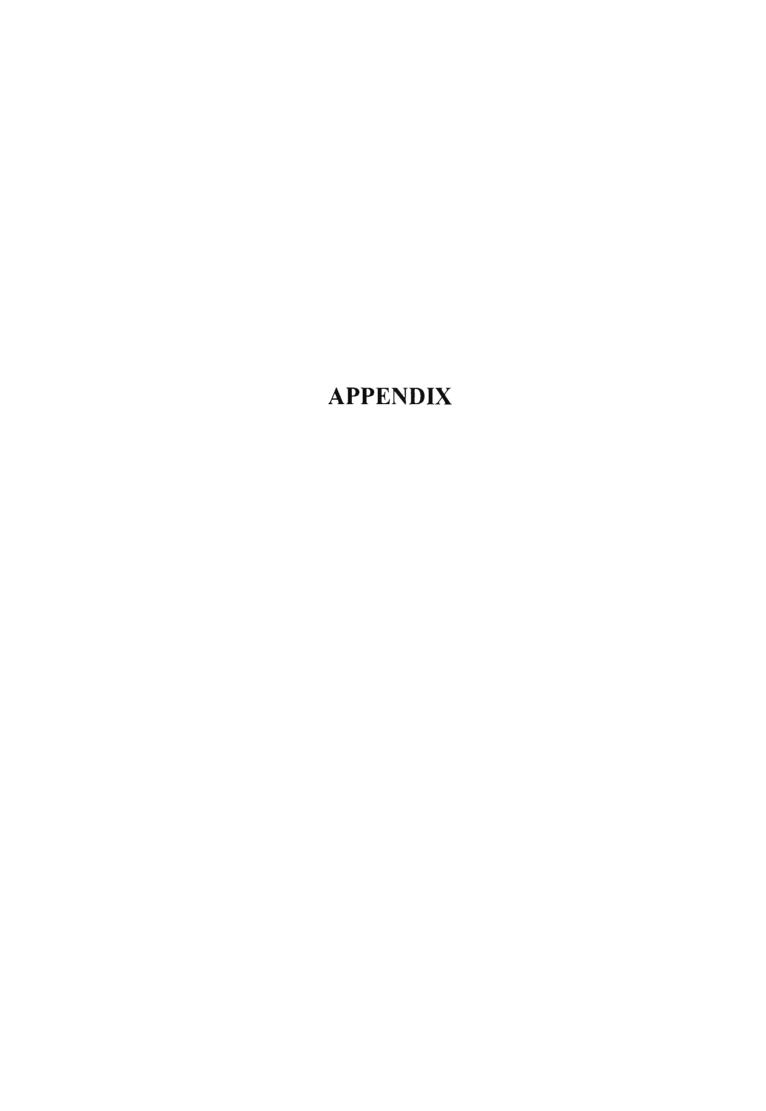
REFERENCES

- Amsden, D.M., Butler, H.E., and Amsden, R.T.(1991). SPC Simplified for services, Practical Tools for Continuous Quality Improvement. U.S.A.: Quality resources Press.
- Aritonang, Y. M. Kinley. (1996). **Optimization Of On-Line Quality Control.** Ph.D. Dissertation Of New Mexico State University, U.S.A.
- Atichartakarn, Suebpong. (1997). **Design Methods For Shewhart Control Charts**Under Unknown Process. Ph.D. Dissertation Of The University Of Texas At Arlington, U.S.A.
- Atienza, O.O., Ang, B.W. and Tang, L.C. (1997). Statistical process control and forecasting, International Journal of Quality Science Vol. 2, No. 1: 37-51.
- Bennett, Richard Lynn. (1998). An Investigation And Measurement Of The Effectiveness Of Adding Continuous Quality Improvement Problem-Solving Teams To The Assembly Plant Floor. Ed.D. Dissertation Of Wayne State University, U.S.A.
- Bourke, Patrick D. (1991). Detecting a Shift in Fraction Nonconforming Using Run-Length Control Charts with 100% inspection, Journal of Quality Technology Vol. 23, No. 3: 225-238.
- Cassady, Charles Richard. (1997). Statistical Quality Control Techniques Using Multilevel Discrete Product Quality Measures. Ph.D. Dissertation Of Virginia Polytechnic Institute And State University, U.S.A.
- Caulcutt, Roland. (1996). **Statistical Process Control, Assembly Automation**Volume 16, Number 4: 10–14.
- Cheng, Chih-Yuan. (1997). The Design And Evaluation Of The Adaptive X-Bar Chart When It Is Used With Either Zone Control Chart Criteria Or At&T Runs Rules. Ph.D. Dissertation Of Oklahoma State University, U.S.A.
- Chi, Hsin. (2000). Computer Simulation Model for sustainability, International Journal of Sustainability in higher Education Vol.1, No. 2: 154-167.
- Dyer, John Nelson. (1997). Evaluation Of Control Charting Techniques For Monitoring autocorrelated Processes. Ph.D. Dissertation Of The University Of Alabama, U.S.A.

- Freeman, Jim and Evangeliou, Nikolaos. (1996). Simulation for training in quality control, Training for Quality Volume 4, Number 1: 27–31.
- Freeman, Jim and Mintzas, George. (1999). Simulating c and u control schemes,

 The TQM Magazine Volume 11, Number 4: 242-247.
- Grant, E.L. and Leavenworth, R.S. (1999). Statistical Quality Control. Singapore: McGraw-Hill.
- Hamada, M., Mackey, R.J., and Whitney, J.B. (1993). Continuous Process Improvement with Observational Studies, Journal of Quality Technology Vol. 25, No. 2: 118-127.
- Ho, Chuanching and Case, K.E. (1994). Economic Design of Control Charts,

 Journal of Quality Technology Vol. 26, No. 1: 39-53.
- Levinson, W.A. and Tumbelty, F. (1997). SPC Essentials and Productivity Improvement. U.S.A.: Harris Corporation.
- Liu, Ta-Chung. (1997). Economic Statistical Design Of X Control Charts With


 Loss Function Application. Ph.D. Dissertation Of The University Of

 Pittsburgh, U.S.A.
- Melloy, Brian J. (1991). Determining the Optimal Process Mean and Screening Limits for Packages Subject to Compliance Testing, Journal of Quality Technology Vol. 23, No. 4: 318-323.
- Montgomery, D.C. (1997). Introduction to Statistical Quality Control. U.S.A.:

 John Wiley & Sons, inc.
- Montgomery, D.C. (1999). Applied Statistics and Propability for Engineers.
 U.S.A.: John Wiley & Sons, inc.
- Montgomery, Douglas C. and Keats, J. Bert. (1994). Integrating Statistical Process

 Control and Engineering Process Control, Journal of Quality Technology

 Vol. 26, No. 2: 79-87.
- Neave, Henry R. (1997). There's nothing normal about SPC, Training for Quality Vol. 5, No. 3: 106-111.
- Queensberry, C.P. (1997). SPC Methods for Quality Improvement. U.S.A.: John Wiley & Sons, inc.
- Regional Centre for Manufacturing Systems Engineering. (1999). Handbook of Quality Management and Techniques, Faculty of Engineering, Chulalongkorn University and The Warwick Manufacturing Group, University of Warwick.

- Rocke, David M. (1990). The adjusted p Chart and u Chart for Varying Sample Sizes, Journal of Quality Technology Vol. 22, No. 3: 206-209.
- Samuel, Thomas Raj. (1997). Change Point Estimation In Quality Control Applications. Ph.D. Dissertation Of Texas A&M University, U.S.A.
- Spedding, T.A. and Rawlings, P.L. (1994). Non-normality in Statistical Process

 Control Measurements, International Journal of Quality& Reliability

 Management Vol. 11, No. 6: 27-37.
- Tannock, James D.T. (1999). An economic comparison of inspection and control charting using simulation, International Journal of Quality & Reliability Management Vol. 14, No. 7: 687-699.
- Thanasarnaksorn, Chuthin. (1999). Post module assignment of Quality

 Management and Technique. Faculty of Engineering, Chulalongkorn

 University and The Warwick Manufacturing Group, University of Warwick.
- Wadsworth, H.M., Stephens, K.S., and Godfrey, A.B. (1986). Modern methods for quality control and improvement. Singapore: John Wiley & Sons, inc.
- Wang, Reay-Chen and Chen, Chung-Ho. (1995). Economic statistical np-control chart designs based on fuzzy optimization, International Journal of Quality & Reliability Management Vol. 12, No. 1: 82-92.
 - Watson, Gene. (1997). Attribute Analysis Of Finished Product Defect Data. M.S. Dissertation Of California State University, Dominguez Hills, U.S.A.
 - Wiliams, W.W., Looney, S.W., and Peters, M.H. (1990). Improved Curtailed Sampling Plans for np Control Charts, Journal of Quality Technology. Vol. 22, No. 2: 118-127.
 - Wood, Michael. (1995). Three suggestions for improving control charting procedures, International Journal of Quality & Reliability Management Vol. 12, No. 5: 61-74.
 - Wright, Christine M. (1997). Effectiveness Of Joint Estimation Outlier Detection Method For Short Time Series With Quality Control Applications. Ph.D. Dissertation Of Kent State University, U.S.A.
 - Wu, Zhang. (1996). Diagnosis of assignable cause in statistical process control, International Journal of Quality & Reliability Management Vol. 13, No. 5: 61-76.

- Wu, Zhang. (1995). Process shift modes, International Journal of Quality & Reliability Management Vol. 12, No. 1: 53-60.
- Xie, M. and Goh, T.N. (1997). The use of probability limits for process control based on geometric distribution, International Journal of Quality & Reliability Management Vol. 14, No. 1: 64-73.
- Yang, Su-Fen. (1997). The economic design of control charts when there are dependent process steps, International Journal of Quality & Reliability Management Vol. 14, No. 6: 606-615.
- Yi, Junsub. (1997). Comparisons Of Neural Networks, Shewhart X, And Cusum Control Charts Under The Condition Of Nonnormality. Ph.D. Dissertation Of University Of North Texas, U.S.A.
- Zaslavsky, Alan. (1998). Estimating Nonconformity Rates in c-defect Sampling, Journal of Quality Technology Vol. 20, No. 4: 248-259.
- Zimmer, Lora Susan. (1997). Contributions To Adaptive Control Charts, Ph.D.,
 Dissertation Of Arizona State University, U.S.A.

*

Data of percent nonconforming from one electrical tester. 15 shifts of operation. Each point represent percent reject in 1 hour of operation.

Day	Shift	Hour	Percent Reject
1	1	1	0.19
		2	0.13
		3	0.23
		4	0.1
		5	0.22
		6	0.04
		7	0.2
		8	0.16
	2	1	0.08
		2	0.41
		3	0.26
		4	0.26
		5	0.28
		6	0.21
		7	0.3
		8	0.25
	3	1	0.37
		2	0.2
		3	0.23
		4	0.14
		5	0.12
		6	0.2
		7	0.12
		8	0.23

Day	Shift	Hour	Percent Reject
2	1	1	0.07
		2	0.09
		3	0.15
		4	0.13
		5	0.1
		6	0.13
		7	0.08
		8	0.18
	2	1	0.23
		2	0.3
		3	0.1
		4	0.19
		5	0.03
		6	0.14
		7	0.17
r		8	0.12
	3	1	0.14
		2	0.11
		3	0.18
		4	0.14
		5	0.15
		6	0.14
		7	0.09
		8	0.13

Day	Shift	Hour	Percent Reject
3	1	1	0.11
		2	0.28
		3	0.21
		4	0.07
		5	0.18
		6	0.24
		7	0.2
		8	0.06
	2	1	0.17
		2	0.13
		3	0.2
		4	0.27
		5	0.17
		6	0.13
		7	0.16
		8	0.16
	3	1	0.27
		2	0.24
		3	0.2
		4	0.2
		5	0.26
		6	0.21
		7	0.17
		8	0.24

Day	Shift	Hour	Percent Reject
4	1	1	0.14
		2	0.15
		3	0.15
		4	0.38
		5	0.4
		6	0.3
	1	7	0.21
		8	0.15
	2	1	0.27
		2	0.28
		3	0.23
		4	0.18
		5	0.29
		6	0.23
		7	0.17
-		8	0.24
	3	1	0.24
		2	0.1
	3	0.24	
		4	0.1
		5	0.24
	Ì	6	0.24
		7	0.2
		8	0.23

Day	Shift	Hour	Percent Reject
5	1	1	0.18
		2	0.22
		3	0.18
,		4	0.24
		5	0.19
		6	0.19
		7	0.18
		8	0.21
	2	1	0.21
		2	0.19
		3	0.19
		4	0.23
		5	0.22
		6	0.16
		7	0.21
-		8	0.25
	3	1	0.19
		2	0.27
		3	0.19
		4	0.29
		5	0.43
		6	0.34
		7	0.27
		8	0.16

7

BIOGRAPHY

Mr. Chuthin Thanasarnaksorn was born in July 13th, 1976 in Bangkok, Thailand. he was graduated from The department of Metallurgical Engineering, Faculty of Engineering of Chulalongkorn University with a Bachelor of Engineering degree.

