
CHAPTER III

QUANTUM DYNAMICS AND PATH INTEGRALS

3.1 TIME EVOLUTION AND THE SCHRODINGER EQUATION

3.1.1 Time Evolution Operator

Our basic concern in this section IS, how does a state ket change 
with time. Suppose we have a physical system whose state ket at t 0 IS represented 
by \ ^ )  which corresponds to wave function 1/f(*)- A t later times, we do not, 
lm general, expect the system to remain in the same state i 'î ')  .Le t US denote 
the ket corresponding to the state at some later by

t  > ( 1. ,
1 0 '  0 (3.1.1)

where we have written T , t 0 to remind ourselves that the system used to be 
in state 1^ ) at some earlier reference tim e t0. Because time is assumed to 
be a continuous parameter, we expect

l im  I'P  t  •A  =  | 'p \C T  T ’ 0 ’ |T /'o n  1 ว\

and we may as well use a shorthand notation,
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(3.1.3)

for this. Our basic task IS to study the time evolution o f a state ket.

I XT/ t  \ _ | u / \  time evolution  i v y  t
IT ’ซ/ IT /—   ๆ V v >)• (314)

Put in another way, we are interested in asking how the state ket changes under 
a time displacement *0 > tm

As in the case o f translation, the two kets are related by an operator 

which we call the time-evo lu tion operator £/(Mo):

¥ , * 0 ; * )  =  t / ( * ,*0 ) ! ¥ , * 0 ), (3.1.5a)

or we can rewnte

) ¥ ( * ) )  =  £ /(* ,*0 ) ! ¥ , ( * 0 )). (3.1.5b)

Stated another way, i f  the state ket is in itia lly  normalized to unity, It must 
remain normalized to unity at all later times:
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( ^ 0) ^ ( , 0)) = ! ^ <>}'(,)|'i'(,)) = l.
(3.1.6)

As in the translation case, this property is guaranteed i f  the time-evolution operator 
is taken to be unitary. For this reason we take unitarity,

to be one o f the fundamental properties o f the บ  operator

Another feature we require the บ  operator IS the composition

property;

This equation says that i f  we are interested in obtaining time evolution from t0 
t o t j ,  then we can obtain the same result by firs t considering time evolution from  
t0 to t j ,  then from t t to Lj - a reasonable requirement. Note that we read (3.1.8) 
from right to left

I t also turns out to be advantageous to consider an infinitesimal

time-evolution operator บ (*0 + £■>*(>)■

(3.1.7)

(3.1.9)

Because o f continuity [see (3.1.2)], the infinitesimal time-evolution operator must

reduce to the identity operator as dt goes to zero.
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(3.1.10)

and as in the translation case, we expect the difference between d ( t0 + d t,t0): 

and 1 to be o f first order in a

With the infinitesimal time - displacement operator satisfies the composition 
property

บ (t0 + £ 1 + ร 2, t(̂ = U ( t Q + s l  + s  2 , t0 + e ^ u ( t 0 + €1,

it differs from the identity operator by a term o f  order a . The infinitesimal 
time - evolution operator is wnten as

+  £5/0 ) =  1 - i d i

ท (3.1.11b)

3.1.2 The Schrodinger Equa tion

We are now in a position to derive the fundamental differential

equation for the time-evolution operator ^ (M o).W e exploit the composition property 
o f the time-evolution operator by letting tj—^ . t , ^ ---->.t + a in (3.1.8):

บ ( เ + ร , ' 0 ) - U ( t + ร ุ, r) บ  (>,>0) =  ( ‘ ~  S r )  บ {>,>0 ), (3.1.12)
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where the time difference t - t 0 need not be infinitesimal. We have

บ ( t + £ , t ^ - U ( t , t ^ (3.1.13)

which can be written in differential equation form:

i h ^ U ( t , t 0 ) = H U { t ,  (0 ).
(3.1.14)

This is the Schrôdinger Equation for the time-evolution operator. Everything  
that has to do w ith time development follows this fundamental equation.

Equation (3.1.14) immediately leads to the Schrôdinger equation for 
a state ket. M u ltip ly ing  both sides o f (3.1.14) by I^O o )} on the r ig h t, we 
obtain

m  I  U ( M 0 ) | > } % ) ) = H U ( t ,  10  ) | ^ ( / 0 )).
(3.1.15)

But | m ) >  does not depend on t, so this is the same as

i h ^ m t ) ) = H \ ฯ - ( t ) ) ,
(3.1.16)

where (3.1.5) has been used.
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I f  we are given ^ (M o )  and. in addition, know how ^ (M o ) acts on 
the in itia l state ket i'-f't/ ท, it IS not necessary to bother w ith the Schrôdinger

equation for the state ket (3.1.16). A ll we have to do IS apply 0 /(/,t0) to |% (*0)}รํ 
in this manner we can obtain a state ket at any t. Our first task is therefore

to derive formal solutions to the Schrôdinger equation for the time evolution 
operator (3.1.14). There are three cases to be treated separately:

The Hamiltonian operator IS independent o f  time. By this W'e mean 
that even when the parameter t IS changed, the H operator remains unchanged. 
The Hamiltonian fo r a spin-magnetic moment interacting with a time-independent 
magnetic field IS an example o f this. The solution to (3.1.14) in such a case 
is given by

ข ( / 5/0 ) = exp
0 )

(3.1.17)

To prove this let us expand the exponential as follows:

exp T T O _ 1 โ H ) 2 ] ' n u -  >0 ) '

1----

1

1
r\|
___1 h

+ . . .

(3.1.18)

Because the time derivative o f this expansion IS given by

ôexp
-ill {(-(0) 

ti -  - i I  !  -t ( - / ') • <11
ท

1 -  /ท )+..
(3 1 19)
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expression (3.1.17) obviously satisfies differential equation (3.1.14). The boundary

condition is also satisfied because as t ----- 0 ,(3.1.17) reduces to the identity

operator. An alternative way to obtain (3.1.17) is to compound successively 
infinitesimal time - evolution operators just as we did to obtain for finite 
translation:

l im
j V - » o o

1 -
( i H / h ) ( ( - (0 )

N

N
=  exp

- i l l  { ( - ( 0 )

(3.1.20)

The Hamiltonian operator H IS time - dependent but the H ’s at 
different time commute. As an example, let us consider the spin - magnetic 
moment subjected to a magnetic fie ld whose strength varies w ith time but whose 
direction is always unchanged. The formal solution to (3.1.14) in this case IS

บ  ( t ,  (0 ) =  exp -(iX W ) (3.1.21)

This can be proved in a similar way. We simply replace H(t-t0) in (3.1.18) and

(3.1.19) by \h d t 'H
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3.u  Probability Amplitudes and Events Occurring in Succession

In quantum mechanics, an experiment is set up to give result a o f the 
measurement A  followed by the measurement c  giving the result c , but no 
effort IS made to make measurement B 5 then eq. (2.0.4) is found to be false 
and has to be relpaced. This is done by assigning a quantity called 
probability amplitude Y  to every route or pa th , say Yac to the path form A  
to c  , that the probability for this path is eq. (2.0.3). The probability

amplitude Y  (*a>0 and Y  (*e>0 at any space 'tim e points are known as 

the wave function satisfying the Schrodinger wave equation.5

The probability Pgc to go from a point xa at the time ta to 
the point at tc is the absotute square

P ^ K l c . a f . (3.1.22)

So that we can obtain

Y  = K ( c , a ) .
r  oc v '  (3.1.23)

In the rule for two events, we have an important law fo r the composition 
o f amplitudes for events which occur successively in time. Suppose tb I S  some 
time between ta and tc .Then the probabilily amplitude along any path

between a and c can be written as
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K ( c , a ) =  \ K ( c , b )  K ( b , a ) d x
X h

(3.1.24)

which we can compare with eq.(2.0.5). In the rule for several events, it is 
perfectly possible to make two divisions in all the path: these at 
and the end a t , say, t j . Then the probabilily amplitude or the kernel for a 
particle going from a to h can wnten as

K ( k , a ) =  l  j  j  ... j  K ( k , j ) . . .K ( f ,e ) K ( e ,d ) K ( d ,c ) K ( c ,b ) K ( b ,a ) d x l dx a X j...d x
X  X X  X
b e d  J

(3.1.25)

This means that we look at a particle which goes from a to k as i f  it 
went first from a to b , then from b to c , and fina lly from j  to k . The 
amplitude to fo llow  such a path IS the product o f the kernels for each part 
o f the path. The kernel taken over all such paths that go from a to A is 
obtained by integrating this product over all possible values o f

xh,x c,xd...and Xj
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3.1.4 The Path Integral From The Operator Formalism

We start from the position to position amplitude for Heisenberg

eigenstates:

Recall that fo r a Heisenberg eigenstate:

^,/) = exp ^ H ( q , p ) t ^ q )
(3.1.26)

H  being a Hermitean operator and เ ^  the state at time zero, and so:

(v* IvO = k  h { - -  'j)k ) (3.1.27)

A t this stage an assumption is made to disassemble the exponential: 
form equation (3.1.20) we obtain

( v ' i k ' 0 = ( > - k )
(3.1.28)

where K ~ Yb ~ ) 1
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Inserting position and momentum resolutions o f  unity;

W - o o ^ k X ? !  i = C o 4 M p I

leads to;

( V i k ' k r

J—00 ''' i—CO n  d q . U 4 > .  n  { q k \p 11)( p k \ p ) f i j
J = 1 /■ = 1 ^ =  1

'J t -  1, 

(3.1.29)

where ~ = #0’ and are not integrated over.

Define a function as:

q , p )  = ( / > ! % . % )

< p k ) (3.1.30)

noting that general flr (q,p) ^  / /  (q,p). To evaluate H  one should commute 

factors in the Hamiltonian operator (using [£,/?] = ih l) , such that q operators 
are shifted to the right and can then be applied to the position eigenstate, while  
p  operators (now on the left) apply to their eigenstates. Then noting that even 
though it IS intended to take the £ ->  0 lim it, one must work to order E  , since 
there are N  such terms, where Ar£ = T (the ‘time o f f lig h t’ ).

I  1
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We proceed by making a further assumption to reassemble the

exponential:

form equation (3.1.20) we obtain

( v ' » k - 0 =

1™ j , j n  dq.dp. n  (g t
N -> 00 . -1  -1  t  -1

\ / 7 ( > \
k

q,jbJ

Pi «i-1"P* £
l  n y

(3.1.31)

Now recall that

exp

(<?l/ » > - น
(3.1.32)

Substituting this into the above leads to:

( V i k ’ O -

l im  E o - C , -  n d q . n  n  - ^ f e x p
Af —» 00 7 = 1 i = l  k =

(  . ,, (  i  N
T- 2 ^ ( เ ^ >

(3.1.33)

A 'N 
£•

y y

which is the traditional phase space (Hamiltonian) Path Integral, and can be form ally

written as:

พ - 1 * » )
(3.1.34)
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3.2 THE HEISENBERG EQUATION AND THE BAKER-HAUSDORFF LEMMA

We shall ofer be interested in knowing how expectation values o f  
operators, in the state 1 ^ (0 ) 5 change in the course o f time. I f  A  is an operators, then 
its expectation value at time t is

( A )  1 =  (H '( / ) |X |4 '( 0 ) . (3.2.1)

Assume A  not to depend on time explicitly. [The operator pt depends on t explicitly.] 

Using | ' r ( 0 ) = e ' " ,,'* ! >nO ))qnrf< y (r)|= { 'F (0 )|< !i“ / '1 we have

( Â ) t =  {'¥(.0)\๙H t l h Â  , > - « ๗ * ! ' ! ' ( 0)).

I f  we define a time-dependent operator A  (t) by

Â ( t ) = j H , l h Â  e- ‘H i , h , (3.2.3)

then we can also write

( A )  1= พ 0 ) |ฬ ( 0 | '1 , (0)).

In this equation we can regard the time development o f  < as occurring because 
the operator changes in time, while the state remains the same at all times. This way o f  
regarding the time development o f  the system IS called the Heisenberg picture. Our
old way o f looking at the time development, as in Eq. (3.2.1), where the operators 

remain constand m time, but the states change according to equation (3.1.16) IS called
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the Schrodinger picture. At t = 0. the states and operators are the same in both 
pictures. Both pictures give the same results for time dependent expectation values;

we can solve for either the tune dependence of the states in the Schrodinger 
pictures, or the time dependence of the operators in the Heisenberg pictures

Differentiating (3.2.3) with respect to t and assuming that A does

not depend explicitly on time, we find

d  iH t ' ih

dt ๙ ' \ e-ibh i  h +  j f c ü l t  ร h 4  d  6 1 H t  /  h
dt

(3.2.5)
~ e tHt ' ?iโ

■ H Â + À È ] e
- 1 Hi ! h

Since H  commutes with g-'H t1 h ,(3.2.5) is simply

ih
(3.2.6)

This is the equation of motion obeyed by operators in the Heisenberg 

picture.

In particular, H (t) IS independent of time in the Heisenberg 

picture, i f  it IS independent o f time in the Schrodinger picture since

H ( n  =  e  i H r h H e i H t ' h  = e  i H t ! h e i H , ! h H  = H (3.2.7)

This is the quantum mechanical statement that the energy is a constant o f  the

motion.
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The Heisenberg picture position operator for a particle in one

dimension obeys

ih
à x j t )

(3.2.8)

Let us assume that H  IS o f the form

H  = f - + V (
2 m

Because H  IS independent o f time, we can write it as

H=H{ < ) = ^ + V(x , i )
2 m  (3.2.9)

In the commutator in (3.2.8), x ( t )  commutes with V(x(t) since an operator always

commutes with a function o f ifself. x( t )  fails to commute, however, w ith p 2 (t) /2m.  
To evaluate their commutator, let US notice that,

[ x ( t ) , p ( t ) ]  =  x ( t ) p ( t ) ~  p ( t ) x ( t )  =  j H t  1 n ( x { t ) p ( t ) -  p i t ) x ( t ) ) e ~ iH t  /  ^

=  e tH t  !  h i h  e - iH t  I  h  ( 3 2 1 0 )

= ih .

Thus x( r )  and p i i ) obey the same commutation relation as X and p  in the

Sehiüuiiigcr picture. By simple calculation then
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m
p y )

2m
j n p { t )

m

so that

d x ( t)  _  p i t )
d t  ~  m  (3.2.11)

The position operator in the Heisenberg picture obeys the usual classical equation

o f motion.

To find the equation o f motion o f p i0  we must evaluate 
P it) ,  V(x(t))], which equals

j H t lh [p ,V { y ) ]e - iH t lh .

Now

[p ,F ( x ) ]  =  - 1•ร J V ( x ) ,
(3.2.12)

( x [p ,K ( x ) ] | ' l ' \  =  f  £  \ V M { ^ ) \-  -£- ( x jy )
* C7& l  CK.

h d

= - i f ใ cl  F ( x ) ( x  lT x ---- /xj~ i t i  ? - V ( x f v \
ék ' ' \  ! ck ' I

since for any I'P)
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Thus

[ p { t ) , V { x { t ) ) ]  =  - i n é H t l h ^ - V { x ) e - iH t lh  =  - t f i — F ( X O ) ,
dx  dx

(3.2.13)

and p it )  obeys the equation o f  motion

d p j t )  _ 
d t

- J V ( * ( 0 ) .
(3.2.14)

Again, this is the usual classical equation o f motion; we can interpret 

6̂  as the operator fo r the force on the particle.

The sim ilarity between the Heisenberg equations o f motion and 
the classical Hamiltonian equations o f motion arises from the fact that 
[A , B ], the commutator o f the operators for the physical quantities A  and B, 
divided by ^ ,  plays a sim ilar role in quantum mechanics, to that o f  the Poisson 
bracket o f the classical quantities A  and B, in classical mechanics.

Generally, the Heisenberg equations o f motion are more d ifficu lt 
to solve than the corresponding classical equations because o f the lack o f commu - 
tation o f quantum mechanical operators. There are a few cases, however, that we can 
easily solve.

For a free particle, the Heisenberg equation o f  motion for p it)  is

d m  0
d t (3.2.15)
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Thus the momentum operator is a constant o f  the motion,

pit) = Pi 0)

and the position operator obeys

.Y (0 =  * ( 0 )  +  / Pi0)
m (3.2.16)

I f  เ^,^ )  is the wave packet o f  the particle at time 0, then the center o f  
the wave packet , < X  >1 , IS given by

< x > t=<x  >0 + / < p > 0
ไท (3.2.17)

a fam iliar result.

The Heisenberg equation o f  motion fo r a simple harmonic

oscillator are

dxjt) _  Pit)
dt m (3.2.18)

d p jt ) = -mco2x(t),

and they have the solutions

„Y( / )  =  -Y(0)cosr<;/ +  ^ ^  s in  cot
m a) (3.2.19)
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p(t) = p(0 ) cos cot-mœx(0 ) sin cot.

Taking the expectation value o f the first equation in an arbitrary state 1^}  
o f the oscillator, we see that < x > ,= <  X  > 0 coscot + ( < ^  > 0 / mCù)sinûtf; the

expectation value o f  the position oscillates exactly as in a classical oscillator.

These look the as the classical equations o f motion. We see 
that the X  and p  operators “ oscillate”  just like their classical analogues.

For pedagogical reasons we now present an alternative derivation 
o f (3.1.19). Instead o f solving the Heisenberg equation o f motion, we attempt 
to evaluate

x ( t ) = exp f i H t '

l  ท )
x(0)exp - H i t

l  ท (3.2.20)

To this end we record a very useful fo rm u la .

exp(/GA),4exp(-jG/l) = A  + i À [ G , A ]  +

,2 .2i  A
2!

[G [G .4 +...+
( .ท  5» 'V

i  A

ท \
\  y

[g ,[G,[G...[G,
(3.2.21)
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where G is a Hermitian operator and X  is a real pararater. We can prove this 
formula as follows :

Consider

f { P )  =  epG A e ~ pG

Make a Taylor senes expansion o f / (/?), observing that

~  =  G / 0 ? ) - / ( / ) ) G  =  [G , / ( / ? ) ]  
d p

dU -
d p 2

G , d f ( P )

d p
=  [G , [G , / ( / ? ) ] ]

etc. Since f(0) = A , and p = i / i  , we get

f ( P )  =  A  +  Ë [ G ,  ฬ ] + ^ - [G ,[G , 4 + . . .

known as the B a ke r- HausdorfT Lem m a. App ly ing this formula to (3.2.20), 
we obtain

exp x(0)exp - i H f

\  ft \  t i
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=  Jc(0) + +

(3.2.22)

Each term on the right-hand side can be reduced to either X or p by repeatedly 
using

and

m (3.2.23)

H , p {  0 ) = if im c o 2x (  0).
(3.2.24)

Thus

f  iff/ไ r nexp —  m0)expj _ = m + t -
{ ท )  { ท ) m { 2 \ J

t 2a>2x (  0 )

\ 2 J

t 3 ( D 2 p ( 0)
+ . . .

m (3.2.25)

= x (0 )c o s û tf +
m '

ทนO
sin c o t,

in agreement with (3.2.19).
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From cq. (3.2.25), i f  we assume that frequency พ = 0, it can be written that

x ( t )  =  x ( 0 )  +  ^ t  
m

which has been equal to the solution o f Heisenberg equation o f motion for free - 
particle eq. (3.2.16)

In the chapter IV . we play obviously the important role o f Baker - Hausdorff Lemma 
or Rule on solving the problem about non - quadratic potentials o f path integration. 
It is also used fo r finding free - particle and simple harmonic oscillator 
propagator.
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