CHAPTER 1lI
QUANTUM DYNAMICS AND PATH INTEGRALS

31 TIME EVOLUTION AND THE SCHRODINGER EQUATION

311 Time Evolution Operator

Our hasic concern in this section s, how does a state ket change
with time. Suppose we have a physical system whose state ket at to 1s represented
by \~) which corresponds to wave function a4(*)- At later times, we do not,

Im general, expect the system to remainin the same state i'"') .Let us denote
the ket corresponding to the state at some later by

| = (3.1.1)

where we have written T ,t0to remind ourselves that the system used to be

in state 1") at some earlier reference timet0. Because time is assumed to
be a continuous parameter, we expect

¢ 1Frioth =[P

nilhy

and we may as well use a shorthand notation,
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for this. Our basic task IS to study the time evolution of a state ket

I|>T<T/,l }_|H_\/_timeevolution ivy\t/ v o (314)

Put in another way, we are interested in asking how the state ket changes under
a time displacement 0 >m

As in the case of translation, the two kets are related by an operator

which we call the time-evolution operator £/(Mo):

¥.00%) = t(*¥0)1¥,*0), (3.15)

or we can rewnte

(3.1.5b)

Stated another way, if the state ket is initially normalized to unity, It must
remain normalized to unity at all later times:
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(" 0)~(,0) =1t~ <Y = 1. (3.1.6)

As in the translation case, this property is guaranteed if the time-evolution operator
is taken to be unitary. For this reason we take unitarity,

U*(t.1,)U(t:85) =1, 317

to be one of the fundamental properties of the  operator

Another feature we require the  operator 1s the composition
property;

Ulty.to) = Ultyty JU {13,100 (1, > 1y > 1)

This equation says that if we are interested in obtaining time evolution fromt0
totj, then we can obtain the same result by first considering time evolution from
t0to tj, then from ttto Lj- a reasonable requirement. Note that we read (3.1.8)
from right to left

It also turns out to be advantageous to consider an infinitesimal

time-evolution operator (Ot sepm

[Pty +e))=  Ulty+5.1,)F(1p)) (3.1.9)

Because of continuity [see (3.1.2)], the infinitesimal time-evolution operator must

reduce to the identity operator as dt goes to zero.
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Jim Ulty +&rtg) =1 3.1.10)

and as in the translation case, we expect the difference between d(to+ dt,to).
and 1 to be of first order in a
With  the infinitesimal time - displacement operator satisfies the composition

property

(t0+£1+ 2,tf=U (tQ+sl+s2,t0+e u(t0+€1

it differs from the identity operator by a term of order a. The infinitesimal
time - evolution operator is wnten as

Uty +£50)=1- "
(3.1.11h)

3.1.2 The Schrodinger Equation

We are now in a position to derive the fundamental differential

equation for the time-evolution operator * (Mo).We exploit the composition property
of the time-evolution operator by letting tj—".t,*--->t+ a in (3.1.8):

(+ ,0)-U(t+ .0 0= ("~ST) {»0) (3.1.12)



where the time difference t-t0 need not be infinitesimal. We have

el
(t+ £, -0 (Lt =T\ JU(bG) (3.1.13)
which can be written in differential equation form:

ih AU (t,t0)=H U {t, (0).

(3.1.14)

This is the Schrbdinger Equation for the time-evolution operator. Everything
that has to do with time development follows this fundamental equation.
Equation (3.1.14) immediately leads to the Schrddinger equation for

a state ket. Multiplying both sides of (3.1.14) by I"00)} on the right, we
obtain

ml U(MO)|>}% ))=HU (t, 0)](/0)).
(3.1.15)

But |m)> does not depend on t, so this is the same as

ihA"m t))=H \ -(1),

(3.1.16)

where (3.1.5) has been used.
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If we are given *(Mo) and. in addition, know how *(Mo) acts on

the initial state ket ift/ , it 1s not necessary to bother with the Schrodinger

equation for the state ket (3.1.16). All we have to do s apply 0/(/,t0) to |% (*0}
in this manner we can obtain a state ket at any t. Our first task is therefore

to derive formal solutions to the Schrodinger equation for the time evolution

operator (3.1.14). There are three cases to be treated separately:

The Hamiltonian operator 1s independent of time. By this We mean

that even when the parameter t 1s changed, the H operator remains unchanged.

The Hamiltonian for a spin-magnetic moment interacting with a time-independent
magnetic field s an example of this. The solution to (3.1.14) in such a case

IS given hy

0)

(/5/0) = exp

To prove this let us expand the exponential as follows:

ep — "o 1 H )2]nu - o)

= | = h

[N —

Because the time derivative of this expansion IS given by

oep

I||{((0) e ()< )+..

(3.1.17)

(3.1.18)

(3 119)



expression (3.1.17) obviously satisfies differential equation (3.1.14). The boundary
condition is also satisfied because as t---0,(3.1.17) reduces to the identity
operator. An alternative way to obtain (3.1.17) is to compound successively
infinitesimal  time - evolution  operators just as we did to obtain for finite
translation:

N
. iH/h -(0 - il{(-(0
i 1. (RO T GO

N (3.1.20)

The Hamiltonian operator H 1s  time - dependent but the H's at
different time commute. As an example, let us consider the spin - magnetic
moment subjected to a magnetic field whose strength varies with time but whose
direction is always unchanged. The formal solution to (3.1.14) in this case s

(t, (0) = EXP _(|XW ) (3.1.21)

This can be proved in a similar way. We simply replace H(t-tQ in (3.1.18) and

(3.1.19) by \hdtH
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3u Probability Amplitudes and Events Occurring in Succession

In quantum mechanics, an experiment is set up to give result a of the
measurement A followed by the measurement ¢ giving the result ¢, but no
effort IS made to make measurement B 5then eqg. (2.0.4) is found to be false
and has to Dbe relpaced. This is done by assigning a quantity called
probability amplitude v to every route or path, say vac to the path form A
to c, that the probability for this path is eg. (2.0.3). The probability
amplitude v (*a>0 and v (*e>0 at any Space'time points are known as

the wave function satisfying the Schrodinger wave equation.5

The probability rc to go from a point xa at the time ta to
the point at tc is the absotute square

P AK lc.af.

(3.1.22)
So that we can obtain

Y =K ,a).
r oc (\}: 2)

(3.1.23)

In the rule for two events, we have an important law for the composition
of amplitudes for events which occur successively in time. Suppose tbis Ssome
time between ta and tc .Then the probabilly amplitude along any path
between a and ¢ can be written as
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K(c,a)= \K(c,b) K(b,a) d x
(3.1.24)

which we can compare with eq.(2.05). In the rule for several events, it is
perfectly possible to make two divisions in all the path: these at

and the end at, say, tj. Then the probabilily amplitude or the kernel for a
particle going from a to h can wnten as

K(k,a)= | | | ] K(K,j)...K(f,e)K (e,d)K(d,c)K (c,b)K(b,a)dxldx aXj...dx

e'd 3

(3.1.25)

This means that we look at a particle which goes from a to « as if it
went first from a to b, then from b to ¢, and finally from j to k. The
amplitude to follow such a path s the product of the kernels for each part
of the path. The kemel taken over all such paths that go from a to A is
obtained by integrating this  product over all possible values  of

xh,x¢,xd...and Xj
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3.14 The Path Integral From The Operator Formalism

We start from the position to position amplitude for Heisenberg
eigenstates:

/ \
\% % |90, )

Recall that for a Heisenberg eigenstate:

NI)=eXp A (q.p)tng) 5126

H being a Hermitean operator and " the state at time zero, and so:

(V¥VO=kh  { - -PK) 4

At this stage an assumption is made to disassemble the exponential:
form equation (3.1.20) we obtain

(viik' 0 = ( > - k)

(3.1.28)

where k~vYb ~ )1
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Inserting position and momentum resolutions of unity;

W-00"kX?! i=Cod M pl
leads to;
(V ik 'kr
0" IO n dg.u4a>. N {gk\pipk\ p)fi] It 1
1=1 WV/RL '
(3.1.29)
where -~ =#0" and are not integrated over.
Define a function as.
(I>1% %)
q.p)-=
<pk) (3.1.30)

noting that general flr (q,p) ™ // (q,p). To evaluate H one should commute
factors in the Hamiltonian operator (using [£,/?]=in1), such that o operators
are shifted to the right and can then be applied to the position eigenstate, while
p operators (now on the left) apply to their eigenstates. Then noting that even

though it 1s intended to take the £->0 Ilimit, one must work to order e ,since
there are N such terms, where are = 7 (the ‘time of flight’).
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We proceed by making a further assumption to reassemble the

exponential:

form equation (3.1.20) we obtain

(V 'y k-0 =
\/ 7 | >£\
1™j, j n dn. (g i.1"P*
oo T K P 10 i «'1Py
(3.1.31)
Now recall that
exp
(<A» > -
(3.1.32)
Substituting this into the above leads to:
(V ik 'O -
(i' N ( AN
lim Eo0-C,- . ndq.nﬂT--?fe)(p( /\>£'
Af -0 7=1 izl k= vy
(3.1.33)

which is the traditional phase space (Hamiltonian) Path Integral, and can be formally

written  as;

R (3.1.34)
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32 THE HEISENBERG EQUATION AND THE BAKER-HAUSDORFF LEMMA

We shall ofer be interested in knowing how expectation values of

operators, inthe state 17(0) 5 change in the course oftime. If A is an operators, then
its expectation value at time t is

(ny1= (H'(/)[X14'(0). (3.2.1)

Assume A notto depend on time explicitly. [The operator pt depends on t explicitly.]
Using |'r(0)=e",*tn0))gnri<y(r)|={'F(0)|<!* /'Lwe have

(A)t = {¥(O)\ Htih A ,>-« *I'I'(0)).

|f we define atime-dependent operator A (t) by

A (t)=jH ,InA e-‘Hi,h, (323)

then we can also write

(aya= 0)] (0]'1,(0)).

In this equation we can regard the time developmentof<  asoccurring because
the operator changes in time, while the state remains the same at all times. This way of
regarding the time development ofthe system iscalled the Heisenberg picture.  OUur
old way of looking at the time development, asin EQ. (3.2.1), where the operators

remain constand m time, but the states change according to equation (3.1.16) IS called
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the Schrodinger picture. At t =0. the states and operators ae the sanme in both
pictures. Both pictures give the same results for time dependent expectation values;

we can sove for either the tune dependence of the dates in the  Schrodinger
pictures, or the time dependence of the operators in the Heisenberg pictures

Differentiating (3.2.3) with respect to t and assumng that A does
not depend explicitly on time, we find

d iHt'ih  \'e-ibhih+ jfcilt h4 d61Ht/h

dt dt

(3.25)

..eth"Z TR -Hi'h

1 HA+AE]e
Snce H commuteswith g-'Htlh ,(3.2.5) is simply

=T 30017

ih——==|A(1),H |
dt [ i | (3.2.6)

This is the equation of motion obeyed by operators in the Heisenberg
picture.

In particular, H(t) s independent of time in the Heisenberg
picture, if it IS independent of time in the Schrodinger picture since

H(n =e iHrhH eiHt'h = e iHtlheiH ,!hH = H (327)

This is the quantum mechanical statement that the energy is a constant ofthe

motion.
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The Heisenberg picture position operator for a particle in one
dimension obeys

Laxin =[5c(t)f1]' (3.2.8)

Let us assume that H IS of the form

H="f-+V(
2m

Because H IS independent of time, we can write it as

< )= "N+ V(x,i
om0 *329)

In the commutator in (3.2.8), x(t) commutes with V(x(t) since an operator always

commutes with a function of ifself. x(t) fails to commute, however, with p 2(t)/2m.
To evaluate their commutator, let US notice that,

X (), p ()] =x()p ()~ p(t)x(t) =j HtIn(x{t)p(t)- pit)x(t))e~iHt/"

= etHt! hih e-iHtlh (3210)

Thus x(r) and pii) obey the same commutation relation as X and p in the

Sehiluiiiger picture. By simple calculation then



py)inpit
2 m

so that

dx(t) _pit)
dt ~ m (3.2.11)

The position operator in the Heisenberg picture obeys the usual classical equation
of motion.

To find the equation of motion of pi0 we must evaluate

Pit), Vv(x(t)], which equals
j Htih[p,V{y)]le-iH tlh.

Now

[p,F(x)]=-2JV(x),
(3.2.12)

since for any IP)

(xtp kN = £ WY A ) £ (x]y)
Ci& I &K

=it ¢ F(X)(X ITX=I[Xj~ i 2-v (xfv\
ék ' ' \! ck o
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Thus

[p{t),V{x{t))] = -inéHtlh~"-V {x)e-iHtlh = -tfi— F(XO),

dx dx
(3.2.13)
and pity obeys the equation of motion
dPI vV (*(0).
ot (3.2.14)

Again, this is the usual classical equation of motion; we can interpret

& as the operator for the force on the particle.

The similarity between the Heisenberg equations of motion and
the classical Hamiltonian equations of motion arises from the fact that
[A,B], the commutator of the operators for the physical quantites A and B,
divided by ", plays a similar role in quantum mechanics, to that of the Poisson
bracket of the classical quantites A and B, in classical mechanics.

Generally, the Heisenberg equations of motion are more difficult
to solve than the corresponding classical equations because of the lack ofcommu -
tation of quantum mechanical operators. There are afew cases, however, that we can
easily solve.

For a free particle, the Heisenberg equation of motion for pit) is

dm 0
dt (3.2.15)
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Thus the momentum operator is a constant of the motion,

pit) = Pi0)

and the position operator obeys

_ ¥ Pi0)
YO=*(0)+ Ty 3216

It AM) is the wave packet of the particle at time 0, then the center of
the wave packet ,<x>1 ,1s given by

< >0
<x>t=<x>0+/° P

(3.2.17)

a familiar result.

The Heisenberg equation of motion for a simple harmonic
oscillator are

dxjt) _ Pit
dt  m (3.2.18)

dpjt) - -mco2x(t),
and they have the solutions

(/) = -Y(0)cosr<;/ + A A sin cot
ma) (3.2.19)



p(t) = p(o)coscot-moex(0)sinoot

Taking the expectation value of the first equation in an arbitrary state 1"}
of the oscillator, we see that <x>,=< x>o0coscot* (<" >0/mcusinltf;  the

expectation value of the position oscillates exactly as ina classical oscillator.

These look the as the classical equations of motion.  We see
that the x and » operators “oscillate” just like their classical analogues.

For pedagogical reasons we now present an alternative derivation
of (3.1.19). Instead of solving the Heisenberg equation of motion, we attempt
to evaluate

x(t):expf| @ "x(O)expl e

) (3.2.20)

To this end we record a very useful formula.

eXp(/GA)dexp(-JG/l) =a +iate a7+

2 p2 . »V
IA [G[G.4+...+IA
2! \
\ y

[9.[G.[G..[G,

(3.2.21)



where G is a Hermitian operator and x is a real pararater. We can prove this
formula as follows :

Consider

f{P ) = epGAe~pG

Make a Taylor senes expansion of / (/?), observing that

~ =G /0?)-1(1)G =[G,/(/?)]

dp
w - 6 9P 26 16 102
dp2 dp

etc. Since f(0) = A, and p=isi , we get

f(P)=A+E[G, ]+ " -[G,[G,4+...

known as the Baker-HausdorfT Lemma. Applying this formula to (3.2.20),
we obtain

exp x(O)exp "

\ ft \ i



i &% 2.2 n il o
= Je(0) + (%){H,xm)] + [;’?IH [H,x(O)H+...

(3.2.22)

Eachterm on the right-hand side can be reduced to either x or p by repeatedly

using
m (3.2.23)
and
) 0) =ifim x (0).
H,p{0) fim co2x(0) (3224)
Thus
exp - mO)expf It . LU
{ ) { ) m {21]
t3(D2p(0)
\2J m (3.2.25)
= x(0)cosatf + m ‘Sincot,
@]

in agreement with (3.2.19).
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From cqg. (3.2.25), if we assume that frequency = 0, it can be written that

x(t) = x(0) + A~ t
m

which has been equal to the solution of Heisenberg equation of motion for free -
particle eqg. (3.2.16)

In the chapter IV. we play obviously the important role of Baker- Hausdorff Lemma
or Rule on solving the problem about non - quadratic potentials of path integration.

It is also used for finding free - particle and simple harmonic oscillator
propagator.
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