ความสัมพันธระหวางโครงสรางและสมบัติของกึ่งพอลิเมอรผสม โครงสรางร่างแหของพอลิยูรีเทนและพอลิไวนิลคลอไรค์

นางสาว ชิคชนก มิตรอุปถัมภ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต ภาควิชาวัสดุศาสตร์ บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2539 ISBN 974-634-968-6 ลิขสิทธิ์ของบัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย

STRUCTURE AND PROPERTY RELATIONSHIP OF SEMI-INTERPENETRATING POLYMER NETWORKS OF POLYURETHANE AND POLY(VINYL CHLORIDE)

Miss Chidchanok Mitupatham

A Thesis submitted in Partial Fulfillment of the Requirements

for the degree of Master of Science

Department of Materials Science

Graduate School

Chulalongkorn University

Academic year 1996

ISBN 974-634-968-6

Thesis Title Structure and Property Relationship of Semi-Interpenetrating Polymer Networks of Polyurethane and Poly(vinyl chloride) Miss Chidchanok Mitupatham By Department Materials science Thesis Advisor Associate Professor Werasak Udomkichdecha, Ph.D Thesis Co-Advisor Anucha Euapermkiati, Ph.D. Accepted by the Graduate School, Chulalongkorn University in Partial fulfillment of the Requiredments for the Master's Degree. Sant. Throngsunan Dean of Graduate School (Associate Professor Santi Thoongsuwan, Ph.D) Thesis Committee Paipan Sankh Chairman (Assistant Professor Paiparn Santisuk) (Associate Professor Werasak Udomkichdecha, Ph.D) Thesis Co-Advisor (Anucha Euapermkiati, Ph.D) S. Chuay puljit Member (Associate Professor Saowaroj Chuayjuljit) Nuayphin Chartan sini Member

(Nuanphun Chantarasiri, Ph.D)

พิมพ์ต้นฉบับบทคัดย่อวิทยานิพนธ์ภายในกรอบสีเขียวนี้เพียงแผ่นเดียว

ชิดชนก มิตรอุปถัมภ์ : ความสัมพันธ์ระหว่างโครงสร้างและสมบัติของกึ่งพอลิเมอร์ผสมโครงสร้าง ร่างแหของพอลิยูรีเทนและพอลิไวนิลคลอไรด์ (STRUCTURE AND PROPERTY RELATIONSHIP OF SEMI-INTERPENETRATING POLYMER NETWORKS OF POLYURETHANE AND POLY(VINYL CHLORIDE) ว่อ.ที่ปรึกษา : รศ.ดร. วีระศักดิ์ อุดมกิจเดชา อ.ที่ปรึกษาร่วม : ดร. อนุชา เอื้อเพิ่มเกียรติ , 144 หน้า. ISBN 974-634-968-6

ได้เตรียมกึ่งพอลิเมอร์ผสมโครงสร้างร่างแหของพอลิไวนิล คลอไรด์และพอลิยูรีเทนซึ่งเกิดจากการทำ
ปฏิกิริยาระหว่างพอลิคาร์โปรแลคโตนไกลคอล, ไตรเอทานอลเอมืน และ มทิลีนไดไอโซไซยาเนตชนิดปรับปรุง โดย
กระบวนการเตรียมแบบวันชอต และพรีพอลิเมอร์ กระบวนการเตรียมแบบพรีพอลิเมอร์ทำให้ได้ผลิตภัณฑ์ที่มีความ
เข้ากันได้ของวัฏภาคอย่างสมบูรณ์ ในขณะที่กระบวนการเตรียมแบบแบบวันชอต จะไม่เกิดความเข้ากันได้ของ
วัฏภาค ความเข้ากันได้นี้สามารถสังเกตได้จากความใสของชิ้นงาน, วัฏภาคเดี๋ยวที่สามารถดูได้จากเครื่องสแกนนิ่ง
อิเลคตรอนไมโครสโคป(Scanning Electron Microscope) และกราฟของอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วที่
แคบซึ่งสามารถดูได้จากเทคนิคไดนามิกส์แมคคานิคอลแอลนอลไลซิส(Dynamic Mechanical Analysis) ความเข้า
กันได้นี้เกิดขึ้นเนื่องจากพันธะไฮโดรเจนระหว่างไฮโดรเจนของพอลิไวนิลคลอไรด์กับคาร์บอนิลของพอลิยูรีเทน
พรีพอลิเมอร์และกับคาร์บอนิลของพอลิคาร์โปรแลคโตนไกลคอล

ค่าอุณหภูมิการเปลี่ยนสถานะคล้ายแก้วของพอลิยูรีเทนมีค่าเท่ากับ 7 องศาเซลเซียส และของ กึ่งพอลิเมอร์ผสมโครงสร้างร่างแหมีค่าอยู่ในช่วง -4.0 ถึง 8.6 องศาเซลเซียส ซึ่งขึ้นอยู่กับปริมาณของ พอลิไวนิลคลอไรด์

ได้ทำการวัดสมบัติเชิงกลของพอลิยูรีเทน และกึ่งพอลิเมอร์ผสมโครงสร้างร่างแหของพอลิยูรีเทนและ พอลิไวนิลคลอไรด์ ที่เตรียมจากทั้งสองกระบวนการ ได้แก่ ความทนต่อแรงดึง, เปอร์เซนต์การยึดตัว ณ จุดขาด และความแข็ง กึ่งพอลิเมอร์ผสมโครงสร้างร่างแหของพอลิไวนิลคลอไรด์และพอลิยูรีเทนที่เข้ากันจะมีสมบัติเชิงกลที่ ดี โดยมีค่าความทนต่อแรงดึงอยู่ในช่วง 3.46 ถึง 6.10 นิวตันต่อตารางมิลลิเมตร, เปอร์เซนด์การยึดตัว ณ จุดขาด มีค่าอยู่ในช่วง 385.4 ถึง 557.3 เปอร์เซนด์ และความแข็ง(ชอร์เอ) มีค่าอยู่ในช่วง 59.6 ถึง 64.3 ซึ่งขึ้นอยู่กับ ปริมาณของพอลิไวนิลคลอไรด์ โดยถ้ามีปริมาณพอลิไวนิลคลอไรด์มากขึ้นจะมีสมบัติเชิงกลที่ดีขึ้น ยกเว้นความแข็ง ของชิ้นงานซึ่งจะมีค่าไม่แตกต่างกันมากนัก เมื่อปริมาณพอลิไวนิลคลอไรด์เพิ่มจาก 5 ถึง 30 เปอร์เซนต์โดย น้ำหนัก

ภาควิชา	วัสคุศาสตร์
สาขาวิชา	วิทยาศาสตร์พอลิเมอร์ประยุกต์ ฯ
ปีการศึกษา	2.5.3.9

ลายมือชื่อนิสิต.	วิสานก	มิดางปกับภ์.	
ลายมือชื่ออาจาร			lek
ลายมือชื่ออาจาร	ย์ที่ปริกษา	เร่วม	

C626089 **MAJOR APPLIED POLYMER SCIENCE AND TEXTILE TECHNOLOGY

KEY WORD: SEMI-IPN / POLYURETHANE / POLY(VINYL CHLORIDE)

CHIDCHANOK MITUPATHAM : STRUCTURE AND PROPERTY RELATIONSHIP OF

SEMI-INTERPENETRATING POLYMER NETWORKS OF POLYURETHANE AND

POLY(VINYL CHLORIDE). THESIS ADVISOR = ASSO.PROF.WERASAK

UDOMKICHDECHA, Ph. D. THESIS CO-ADVISOR : ANUCHA EUAPERMKIATI, Ph. D.

144 pp. ISBN 974-634-968-6

Semi-Interpenetrating polymer networks (semi-IPN) of poly(vinyl chloride) (PVC) disperse phase and a continuous matrix crosslinked polyurethane (PU) based on polycaprolactone glycol (PCL), triethanolamine(TEA) and modified methylene diisocyanate (MMDI) was prepared using either one-shot or prepolymer process. The latter gave completely phase compatibility while the former incompatibility. The compatibility could be observed from the optically transparent, a homogeneous phase as observed by SEM technique and a sharp $T_{\rm q}$ peak as observed by DMA technique. It is attributed to the hydrogen-bonding between PVC hydrogen with PU prepolymer carbonyl and with PCL carbonyl.

The value of T_g of PU (the equivalent ratios of NCO/OH = 1.05 and of PCL:MMDI:TEA = 1:3:2) is reported to be -7.0 °C while that of the compatible Semi-IPN be in the ranges of -4.0 °C to 8.6 °C, dependent upon the amount of PVC presented.

The mechanical properties including tensile strength, elongation at break and hardness of PU and Semi-IPN prepared by those two processes were also measured. In general the partially uncompatible dispersed phase PVC with the continuous matrix PU gave poor mechanical properties than the completely compatible Semi-IPN. The values of tensile strength, elongation at break and hardness(shore A) of the Semi-IPN are reported respectively in these studies in the ranges of $3.46-6.10\,$ N/mm², 385.4-557.3~%, and 59.6-64.3, dependent upon the amount of PVC presented. In general, the larger the amount of PVC gave the better those mechanical properties except the hardness of the materials was not significantly different even the variation of amount of PVC from 5 to 30% by weight.

ภาควิชาวัสดุศาสตร์	ลายมือชื่อนิสิต โดงนก มิตางปกัมภ์
สาขาวิชา วิทยาค่าสตร์พอลิเมอร์ประยุกต์ ฯ	ลายมือชื่ออาจารย์ที่ปรึกษา blld Wales
	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

ACKNOWLEDGEMENT

I would like to express my gratitude to Assoc. Prof. Dr. Werasak Udomkichdecha, my advisor, and Dr. Anucha Euapermkiati, my co-advisor, for their invaluable guidance, advice and encouragement throughout this research. In addition, I am also grateful to Asst. Prof. Paiparn Santisuk, Assoc. Prof. Saowaroj Chuayjuljit, and Dr. Nuanphun Chantarasiri for serving as chairman and members of thesis committee, respectively, whose comments have been especially helpful.

An indebtness is also felt for the financial support for this research from the Graduate School of Chulalongkorn University and National Metal and Materials Technology Center (MTEC). And the raw materials in this reserch were supported by Thai Polyurethane Co.,Ltd. and Thai Plastic and Chemicals Co.,Ltd. These supports are gratefully acknowledged.

I also wish to express my thanks to Scientific and Technological Research Equipment Center (STREC) and MTEC for their supports in testing of polymer synthesized. And many thanks to Materials Science Department for supporting the apparatus used in this research.

Furthermore, many thanks are going to my friends and all those who help and encourage me over the years of my study.

Finally, I wish to express my deep appreciation to my family members who always mean so much to my life.

CONTENTS

PAGE

ABSTRACT (THAI)iv
ABSTRACT (ENGLISH)v
ACKNOWLEDGEMENTvi
CONTENTSvii
LIST OF TABLESx
LIST OF FIGURESxii
CHAPTER
1. INTRODUCTION1
2. THEORY AND LITERATURE REVIEW4
2.1 Interpenetrating Polymer Networks(IPN)4
2.2 Polyurethanes14
2.2.1 Basic chemistry of polyurethanes16
2.2.2 Raw materials for polyurethanes19
- Isocyanates20
- Polyols23
- Additives29
2.2.3 Methods for preparation of polyurethanes 34
- Prepolymer process34
- One-shot process35
2.2.4 Basic structure of polyurethanes36
2.3 Poly(vinyl chloride)41
2.3.1 Polymerization process42
2.3.2 Structure and property43

CONTENTS (continue)

PAGE

2.3.3 Miscibility of PVC44
2.4 Polymers in automotive47
2.5 Relevant literature review52
3. EXPERIMENTAL56
3.1 Raw materials56
3.2 Raw materials characterisation58
3.2.1 Determination of Hydroxyl number of PCL.58
3.2.2 Determination of Acid number of PCL5
3.2.3 Determination of Hydroxyl number of TEA.6
3.2.4 Determination of Isocyanate content of
Modified MDI61
3.3 Calculation62
3.4 Formulation of polyurethane and semi-IPN65
3.5 Preparation of PCL/MMDI/TEA-based PU
and semi-IPN69
3.6 Materials Characterisation72
4. RESULT AND DISCUSSION78
4.1 Sample nomenclature78
4.2 Chemical structure of PCL/MMDI/TEA-based
PU83
4.3 The Glass Transition of PU and the semi-IPN85
4.4 Thermogravimetric Analysis of PU and the
the semi-IPN104

CONTENTS (continue)

PAGE
4.5 Mechanical property of PU and the semi-IPN108
4.5.1 Effect of the equivalent ratio of
PCL:MMDI:TEA on the mechanical
property of PU108
4.5.2 Effect of the equivalent ratio of NCO/OH
on the mechanical property of PU115
4.5.3 Effect of the equivalent ratio of NCO/OH
on the mechanical property of the
the semi-IPN120
4.5.4 Effect of the amount of PVC dispersed
phase on the mechanical property of
the semi-IPN126
5. CONCLUSION AND SUGGESTION FOR FURTHER
WORK135
5.1 Conclusion135
5.2 Suggestion for further work139
REFERENCES141
VITA144

LIST OF TABLES

TABLE	PAG
2.1 Classification of IPNs	10
2.2 Ranges of MDI variants	24
2.3 Conventional and high molecular weight polycaprolacton	e
polyesters for PU synthesis	29
2.4 Reasons for using additive	30
2.5 Chain-extending agents, crosslinking agents and their	
diisocyanate equivalents	32
2.6 Effect of PVC additives on product properties	41
2.7 Typical Modifiers for PVC	46
2.8 U.S. Plastics usage in the automotive industry 1983-1993	47
3.1 Average-Hydroxyl number of PCL	59
3.2 Average-Acid number of PCL	60
3.3 Average-Hydroxyl number of TEA	61
3.4 Average-Isocyanate content of Modified MDI	62
3.5 Equivalent weight of PCL,TEA and MMDI	64
3.6 Weights of reagents for various equivalent ratio of	
PCL/MMDI/TEA-based PU	65
3.7 Weights of reagents for various NCO/OH ratio of	
PCL/MMDI/TEA-based PU	66
3.8 Weights of reagents for various NCO/OH ratio for the	
preparation of Semi-IPNs of PU and PVC	67
3.9 Weights of PVC for various weight composition of	
Semi-IPNs of PU and PVC	68

LIST OF TABLES (continue)

TABLE	PAGE

4.1	Ten-character nomenclature of samples prepared in
	these studies81
4.2	Values of Tg of the semi-IPNs measured by DMA technique
	at various equivalent ratios of NCO/OH98
4.3	Values of Tg of the semi-IPNs measured by DMA technique
	at various weight percentage of PVC99
4.4	The tensile strength, the elongation at break and the Shore A
	hardness of Pus and the semi-IPNs prepared in these studies.109

LIST OF FIGURES

FIGURE	PAGE
2.1 Ideal intermomentating malumon naturals (IDN)	Λ
2.1 Ideal interpenetrating polymer network (IPN)	
2.2 Mixed polymer structures	
2.3 Synthesis of IPNs	9
2.4 Structure-property relationship in polyurethanes	15
2.5 TDI isomers	20
2.6 Structures of 4,4'-MDI and 2,4'-MDI	21
2.7 Modified pure MDI	22
2.8 Modified pure MDI	22
2.9 Structure of polymeric MDI	23
2.10 The manufacture of polyether polyols	26
2.11 Prepolymer route for the formation of polyurethane	35
2.12 One-shot process for polyurethane preparation	36
2.13 The basic unit in a urethane block copolymer	36
2.14 Flexible and rigid segments in a polyurethane elastom	er37
2.15 Strain-induced elongation crystallization of polyether	soft
segments in segmented polyurethane elastomer by elor	igating
it to 200% extension	38
2.16 Location of plastic parts in Toyota Camry car	51
3.1 Sinusoidal stress with the strain response	75
4.1 Chemical reaction and chemical structures of the repea	ting
units of the hard and soft segments of PCL/MMDI/TE	A-
1 1 1 1 1 1 1	0.4

LIST OF FIGURES (continue)

4.2	The dynamic mechanical response of PU prepared by one-shot
	and prepolymer processes86
4.3	DSC scans of diol chain-extended polyurethane elastomers87
4.4	Possible three-dimensional network of crosslinked PU
	prepared in these studies87
4.5	The dynamic mechanical response of the semi-IPN prepared
	by one-shot and prepolymer processes90
4.6	SEM micrographs of semi-IPNs PU and PVC
	(one-shot process) in various amount of PVC91
4.7	SEM micrographs of semi-IPNs PU and PVC
	(prepolymer process) in various amount of PVC94
4.8	The plots of E'and tan δ against temperature of the semi-IPN
	of PU and PVC prepared by one-shot process with the variation
	of the NCO/OH ratio100
4.9	The plots of E'and tan δ against temperature of the semi-IPN
	of PU and PVC prepared by prepolymer process with the
	variation of the NCO/OH ratio101
4.1	0 The plots of E'and tan δ against temperature of the semi-IPN
	of PU and PVC prepared by one-shot precess with the
	variation of the amount of PVC102
4.1	1 The plots of E'and tan δ against temperature of the semi-IPN
	of PU and PVC prepared by prepolymer process with the
	variation of the amount of PVC103

LIST OF FIGURES (continue)

FIGURE	PAGE
4.12 TG	A thermogram of PCL/MMDI/TEA-based PU
(on	e-shot process)105
4.13 TG	A thermogram of PCL/MMDI/TEA-based PU
(pı	repolymer proces)106
4.14 TG	A thermogram of the semi-IPN PU/PVC
(on	e-shot process)106
4.15 TG	A thermogram of the semi-IPN PU/PVC
(pr	epolymer process)107
4.16 TG	A thermogram of PVC resin107
4.17 Eff	ect of the amount of crosslinking on the tensile strength
of	PUs112
4.18 Eff	ect of the amount of crosslinking on the Shore A hardness
of	PUs113
4.19 Eff	ect of the amount of crosslinking on the elongation at break
of	PUs114
4.20 Eff	Fect of the equivalent ratio of NCO/OH on the tensile
stre	ength of PUs117
4.21 Eff	Fect of the equivalent ratio of NCO/OH on the Shore A
har	dness of PUs118
4.22 Eff	Fect of the equivalent ratio of NCO/OH on the elongation
at l	oreak of PUs119
4.23 Eff	Fect of the equivalent ratio of NCO/CH on the tensile

strength of the semi-IPNs......123

LIST OF FIGURES (continue)

FIGURE	PAGE	
4.24 Effect of the equivalent ratio of NCO/OH on the elongation		
at break of the semi-IPNs	124	
4.25 Effect of the equivalent ratio of NCO/OH on the Shore A		
hardness of the semi-IPNs	125	
4.26 Effect of the PVC content in the resulting semi-IPNs on		
the tensile strength	129	
4.27 Effect of the PVC content in the resulting semi-IPNs on		
the elongation at break	130	
4.28 Effect of the PVC content in the resulting semi-IPNs on		
the Shore A hardness	131	
4.29 The tensile strength and elongation at break of		
PCL/MDI/TEA-based PU blended with various amount of	-	
PVC	133	
4.30 The tensile strength and elongation at break of polyblend	of	
PCL/MDI/TEA-based PU with PVC prepared by		
Bandyopadhyay and Shaw and of the semi-IPNs prepared		
in these studied	124	