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APPENDIX |
A Michaelis - Menten Equation

For many enzymes, the rate of catalysis V varies with the
substrate concentration [ ]. At a fixed concentration of the enzyme,
V is nearly linearly proportional to [ ], when the substrate
concentration is small. At high substrate concentration, V is
nearly independent of substrate concentration. In 193, Leonor
Michaelis and Maud Menten, proposed a simple model to account for
these kinetic observations. The Michaelis-Menten equation is;

V=] J (1)
Karts
where V The initial velocity of the reaction
Virax The maximal velocity obtained at high substrate
concentration
[ ] = Initial substrate concentration

= The Michaelis-Menten constant

The  Michaelis-Menten constant (K is  the substrate
concentration at half its maximal velocity.  can also be expressed
as the equilibrium constant of the reversible combination of an
enzyme with its substrate.

It is convenient to transform the Michaelis-Menten equation
into one that gives a straight line plot. This can be done by taking
the reciprocal of both sides of equation (1), to give,



] =) +10C x 1 (2)
T Viax VR ]
This equation is known as the Lineweaver-Burk plot.
Aplot of 1/V versus 1/[ ], vyields a straight line, with a
sloge 0f K/Vimay and with an intercept on the y-axis of 1V, —and
an intercept on the x-axis of -1/K* (Fig. 1).

B. Determination of Enzyme-Inhibitor Dissociation Constants

The inhibition of an enzyme can provide an insight into the
mechanism of enzyme activity. Enzyme inhibition may be either a
reversible or irreversible process. In irreversible inhibition, the
inhibitor is covalently bound to the enzyme or hound so tightly
that its dissociation from the enzyme is very slow. Reversible
inhibition on the other hand is characterized by a rapid equilibrium
of the inhibitor and enzyme. Only reversible inhibition will be
discussed here.

There are three simple types of ‘inhibition mechanism;
competitive, non-competitive and uncompetitive.

a. Competitive Inhibition
This  inhibition assumes that both substrate and
inhibitor compete for the same active site of the enzyme. The
reactions involved are expressed by,

K
E+ " iES }% > E + Product

E

El
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where is the dissociation constant of the enzyme-inhibitor
complex, EI.

l&) Is the specific rate of chemical reaction of ES

There are various forms of competitive inhibition;

1. Classical model where substrate () and inhibitor (I)
compete for the same binding site. |In this situation, | must

resemble structurally.

2. | and are mutually exclusive because of steric
hindrance.

3. | and share a common binding region on the enzyme.

4. The binding site for | and are distinct, but

overlapping.
5. Binding of | to a distinct inhibitor site causes a
conformational change in the enzyme that distorts or masks the

substrate binding site.

The Michaelis-Menten equation for competitve inhibition

becomes;

rUNIVE] )
K(L+[1]/K.) + [ ]

based on the Lineweaver-Burk plot, equation 3, is transformed to;

%/ :J({/,@;XX (4 [[I]{K 1) +JV_ (4)

max

A plot of LV versus 1/[s] (Fig. 2) shows that V.. is essentially
constant and K steadily increases. The increase in K is because at

any concentration of inhibitor, a portion of the enzyme is in the
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Fig.l1.2 Lineweaver-Burk plots of competitive inhibition
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inactive EI form which has no affinity for . Vg, remains constant

because all the enzyme is converted to the ES foﬁna?(

The dissociation constant (KJ of the enzyme-inhibitor
complex can be determined from secondary plots, of the primary
double reciprocal plot versus inhibitor concentration (Fig. 3). A
straight line is obtained which extrapolates to the x-axis. The
intercept on the x-axis is the  value of the inhibitor. B

expressed in concentration units.

b.  Non-Competitive Inhibition
A second type of inhibition which is identified on the
basis of kinetic analysis is non-competitive inhibition. A classical
non-competitive inhibitor has no effect on substrate hinding.
The inhibitor and substrate bind reversibly,  randomly and
independently at different sites on the enzyme. All of the
reactions taking place are summarized by,

K K
E+ V m ==NES -2 * E + Product
K + | + |
K %
El + m ESI

For the sake of simplicity, it is assumed that  and Kj are
the dissociation of inhibitor from EI and ESI respectively. The
Michaelis-Menten equation which describes the velocity of this
reaction is

Vo= (Ve DIC+ [1TIK) (%)
Km + [s]
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The Lineweaver-Burk transformation of this equation is;

[ = Kn(l + CI3KE) + (L+  IKe) (6)
v Vinay * [ Vinax

A plot of 1V versus 1/[s] (Fig. 4), shows that v, is reduced.
This is because the ESI complex is inactive, hence some of the
enzyme is tied up as the inactive form. The independent hinding of
and  results in an unchanged K"

The dissociation constant of the enzyme-inhibitor complex
for non-competitive inhibitors can be determined from the previously
described secondary plot for competitive inhibitors (Fig.3). Another
method of determining the dissociation constant for non-competitive
inhibitors is from a secondary plot, of the intercept of the primary

double reciprocal plot (y-axis) versus inhibitor concentration
(Fig. 5).

. Uncompetitive Inhibition
The third type of inhibition is uncompetitive. A
classical uncompetitive inhibitor reversibly binds only to the ES
complex, resulting in an inactive ESI complex. The reactions which
take place are,

K
E+ - M eeeeees 1ES e ¥ E + Product
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Fig.1.3 Plot of slope (from Lineweaver-Burk plot) versus

inhibitor concentration.
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Fig,1.4 Lineweaver-Burk plots of non-competitive inhibition.




The Michaelis-Menten equation for uncompetitive inhibition is;

Vo= el TO LK) (7)
Kk ( + [1]/K.) + ]
The Lineweaver-Burk transformation of this equation is;

L= K (Us]) + (+[IJK;) 8)
Vv Voo /"

A plot of 1/V versus 1/[s], for uncompetitive inhibition, gives
parallel lines (Fig. 6). From the plot, it is evident that hoth Vi
and Ky are effected,

The dissociation constant of the enzyme-inhibitor complex
(Kd for uncompetitive inhibitors can be determined from the
secondary plots of the intercept of the primary double reciprocal
plot (y-axis) versus inhibitor concentration (Fig. 5), previously
described for non-competitive inhibition.
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Fig.1.5 Plot of I/Vjnax (from Lineweaver-Burk plot) versus

inhibitor concentration.
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Fig.l.6 Lineweaver-Burk plots of uncompetitive inhibition.
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APPENDIX 11

DATA FOR THE DETERMINATION OF TYPES OF INHIBITION

Table 1.1 Lineweaver-Burk data of compound I (chymotrypsin)

[1m

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

[] =0
Ul |

10.00
12.50
16.67
25.00
50.00

Vv

0.0627
0.0577
0.0458
0.0367
0.0220

[1] =7 xM

10.00
12.50
16.67
25.00
50.00

0.0500
0.0461
0.0364
0.0276
0.0156

[1] =84 kM

10.00
12.50
16.67
25.00
50.00

0.0484
0.0416
0.0356
0.0256
0.0144

IV

15.95
1733
21.83
21.25
4545

20.00
21.69
26.04
36.23
64.10

20.67
24.04
28.09
39.06
69.44

Regression analysis

slope (KfVipax) = 0.7369
x =-11.8539

y = 8.7353
correlation coefficient  0.9991

slope (K/Vipax) = 1.1200
x =-1.1758

y =8.0371
correlation coefficient  0.9996

slope (Ki/Vinay) r 1.2205
x = -6.8759

y =8.3918
correlation coefficient = 0.9998



Table 11

[] M

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

2

[1] =0
e

10.00
12.50
16.67
25.00
50.00

0.0615
0.0510
0.0429
0.0345
0.0204

[1] =3xM

10.00
12.50

16.67
25.00
50.00

0.0549
0.0489
0.0381
0.0308

0.0173

[1] =3.6 5)u

10.00
12.50
16.67
25.00
50.00

0.0512
0.0480
0.0364
0.0291
0.0164

16.26
19.61
23.31
28.99
49.02

18.21
20.45
26.25
32.47
57.80

19.53
20.83
21.47
34.36
60.97

96

Lineweaver-Burk data of compound Il (chymotrypsin)

Regression analysis

slope (K /N0 =07978
x =-11.5574
y = 9.2205
correlation coefficient  0.9987

slope (K{Vipay) =0.9824
x = -8.7575
y = 8.6034
correlation coefficient  0.9989

slope (KhV pay) = 1.0412
x =-8.5073
y = 8.8578
correlation coefficient  0.9987



Table 11.3 Lineweaver-Burk data of compound Il (chymotrypsin)
[1] - 0
[1 ™ 1/[S] Vv IV Regression anylysis
0.10 1000 0.0592 16.89 slope (Ky/Viay - 0.9364
0.08 1250 0.0469 21.32 x - -9.1114
006 1667 0.0433 23.00 y - 8.5319
004  26.00 0.0300 3333 correlation coefficient 0.9971
0.02 5000 00182 54.04
010  10.00 0.0379  26.38 slope. (KfVipay - 15787
0.08 1250 o0.0316  31.64 x - -6.8446
0.06 16.67  0.0241  36.90 y - 10.8055
004 2500 o0.0203 49.26 correlation coefficient  0.9995
0.02  50.00 0.0111 90.09
[1] - 63xM
0.10 10.00 0.0346  28.90 slope (Km/vmax] - 1.9342
0.08 1250 0.0205 33.90 x - -4.5791
006 1667 00244 4098 y . 8.8568
004 2500 00182 s4.95 correlation coefficient 0.9991
0.02 5000 o0.0004 106.38
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Table I'1.4 Lineweaver-Burk data of compound IV (chymotrypsin)

[1] =0
[T 1] ] Vv
0.10  10.00 0.0566
0.08 1250 0.0500
0.06 1667 0.0431
0.04  25.00 0.0353
0.02  50.00 0.0210

[1] - k iaM
0.10  10.00 0.0433
0.08 1250 0.0400
006 1667 0.0328
0.04 2500 0.0244
0.02  50.00 '0.0138

[1] = 4.8 iau
0.10  10.00 0.0386
0.08 1250 0.0327
006  16.67 0.0288
0.04  25.00 0.0204
0.02 5000 0.0115

IV

17.67
20.00
23.20
28.33
47.62

23.09
25.00
30.49
40.98
12.46

25.91
30.58
34.72
49.02
86.96

Regression analysis

slope (KfVinayx) = 0.7399
x =-14.1483

y = 10.4683

.correlation coefficient = 0.9994

slope (K 1Y,) = 1.2494
x = -1.9041
y = 9.8754
correlation coefficient  0.9997

slope (KyfViay) = 15263
X =-6.9354

y = 10.5858
correlation coefficient = 0.9995
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Table 11.5 Lineweaver-Burk data of compound V (chymotrypsin)

[1] =0
[ 1M 1/[S] Vv
001 1000 0.0677
0.08 1250 0.0579
006  16.67 0.0483
0.04  25.00 0.0372
0.02  50.00 0.0211

[1] = 3yXM
0.10  10.00  0.0520
0.08 1250 0.0448
006  16.67 0.0350
0.04  25.00 0.0260
0.02 5000 0.0147

[1] =.3.6 Ju
0.10  10.00 0.0451
008 1250 0.0390
006  16.67 0.0305
0.04  25.00 0.0221
0.02  50.00 0.0122

IV

14.99
17.27
20.70
26.88
47.39

19.23
22.32

28.57
38.46

68.03

22.17
25.64
32.79
45.25
81.97

Regression analysis

slope (KyfViay) = 0.8052
x =-8.7692

y = 7.0610
correlation coefficient  0.9999

slope (KyfViay) = 12145
x =-6.2500

y = 7.5906
correlation coefficient = 0.9996

slope (K/Vimey) = 1.4952
x = -4.9646

y = 7.4231
correlation coefficient = 0.9998
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Table I'1.6 Lineweaver-Burk data of compound VI (chymotrypsin)

[ ] M

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

[] =0
L]

10.00
12.50
16.67
25.00
50.00

Vv

0.0692
0.0567
0.0471
0.0367
0.0231

[1] =45 uM

10.00
12.50
16.67
25.00
50.00

0.0570
0.0480
0.0400
0.0308
0.0174

[1] =54

10.00
12.50
16.67
25.00
50.00

0.0508
0.0438

0.0377
0.0286

0.0163

IV

14.45
17.64
21.23
21.25
43.29

17.54
20.83
25.00
32.47
57.47

19.69
22.83
26.53
34.97
61.35

Regression analysis

slope (KIQNW) = 0.6999
x = -12.5592
y = 8.7902

correlation coefficient = 0.9966

slope (K/Vipay) = 0.9857
x = -8.2741

y = 8.-1554
correlation coefficient  0.9997

slope (KfViax) = 1.0362
X =-9.0856

y = 9.4145
correlation coefficient = 0.9998
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Table I'1.7 Lineweaver-Burk data of compound VII (chymotrypsin)

[ ] mM

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

(] =0
LIT ]

10.00
12.50
16.67
25.00
50.00

Vv

0.0549
0.0500

0.0407
0.0326
0.0182

[1] = 0.6 M

10.00
12.50

16.67
25.00

50.00

0.0490
0.0416
0.0360
0.0267
0.0156

[1] =0.72 1w

10.00
12.50
16.67
25.00
50.00

0.0457
0.0390
0.0338
0.0253
0.0143

IV

18.21
20.00
24.57
30.67
54.95

20.41
24.04
21.18
37.45
64.10

21.88
25.64
29.59
39.53
69.93

Regression analysis

slope (Ki/Vimay) = 0.9194
x =-9.4481
y = 8.6866
correlation coefficient = 0.9991

slope (KyfVipay) = 1.0843
x =-9.2205

y = 9.9978
correlation coefficient  0.9997

sloge (KyfVipay) = 11948
x =-8.3958

y = 10.0313
correlation coefficient = 0.9997
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Table I'1.8 Lineweaver-Burk data of compound VIII (chymotrypsin)

[ ] m

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

(] =0
L]

10.00
12.50

16.67
25.00
50.00

Vv

0.0465
0.0409
0.0320
0.0250
0.0143

[I] = 0.5 uxvi

10.00
12.50
16.67
25.00
50.00

0.0390
0.0360
0.0298
0.0211
0.0119

[1] =06 /M

10.00
12.50

16.67
25.00
50.00

0.0378
0.0343
0.0277
0.0205
0.0112

IV

21,51
24.45
31.25
40.00

69.93

25.64
21.18
33.56
47.39
84.03

26.46

29.15
36.10
48.18

89.29

Regression analysis

slope (K/Vimay) = 1.2023
x =-8.2968

y =9.9753
correlation coefficient = 0.9993

slope (K/Vipay) = 14849
x =-6.5819

y = 9.7735
correlation coefficient  0.9995

slope (KfViay) = 1.9852
X =-6.156

y =9.7585
correlation coefficient  0.9997
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Table I'1.9 Lineweaver-Burk data of compound IX (chymotrypsin)

[ ] mM

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

[1] =0
1 ]

10.00
12.50
16.67
25.00
50.00

Vv

0.0683
0.0588
0.0471
0.0350
0.0210

[1] =25uM

10.00
12.50
16.67
25.00
50.00

0.0582
0.0521
0.0410
0.0305
0.0176

[1] =30 uu

10.00
12.50
16.67
25.00
50.00

0.0571
0.0484
0.0391
0.0294
0.0162

IV

14.64
17.01
21.23

28.57
47.62

17.18
19.19
24.39
32.79
56.82

17.51
20.66
25.58
34.01

61.73

Regression analysis

slope (Ky/Vimay) = 0.8183
X =-8.7120

y = 7.1290
correlation coefficient  0.9986

slope (Ky/Vimay) = 0.9936
x = -1.4335

y = 7.3859
correlation coefficient = 0.9995

slope (Ky/Vinay) = 1.0975
x =-6.2312

y = 6.8387
correlation coefficient = 0.9999
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Table 11.10 Lineweaver-Burk data of compound X (chymotrypsin)

[]

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

0.10
0.08
0.06
0.04
0.02

(] =0
[ ]

10.00
12.50
16.67
25.00
50.00

Vv

0.0667
0.0579
0.0483
0.0372
0.0211

[1] =40 sxvt

10.00
12.50
16.67
25.00
50.00

0.0545
0.0447
0.0376

0.0273
0.0154

[1] = 48 um

10.00
12.50
16.67
25.00
50.00

0.0468
0.0390
0.0327
0.0229
0.0128

IV

14.99
17.27
20.70
26.88

47.39

18.35
22.37
26.60
36.63
64.94

21.37
25.64
30.58
43.67
18.13

Regression analysis

slope (KfVipay) = 0.8052
x = -8.7692

y = 7.0610
correlation coefficient = 0.9999

slope (KyfViay) = 1.1527
x -6.4691

y = 7.4569
correlation coefficient = 0.9997

slope (KyfVppax) = 14155
x = -5.3386

y  7.5568
correlation coefficient = 0.9997
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