CHAPTER |

INTRODUCTION TO TWO-DIMENSIONAL SYSTEM

Introduction and Historical Review

In an ideal two-dimensional system amagnetic field perpendicular to the plane
of electrical confinement leads to full quantization of the electron motion (1). The
energy spectrum consists of sharp Landau levels separated by the cyclotron energy fifl.
In real system the Landau levels are broadened due to scattering by impurities, phonon
or other scattering mechanisms (2). In the simplest approximation the levels are
described by alevel width . In the case of a high magnetic field, where fiQ » T,
real gaps appear between the Landau levels. This leads to an oscillatory structure for

practically all physical quantities as a function of the magnetic field.

Examples of real two-dimensional electron systems (2DES) are electrons
confined to interfaces in GaAs-GaAlAs layered heterostructures and electrons at
surfaces in Si metal-oxide semiconductor field effect transistors (M OSFETS). The
most fundamental quantity underlying all the physical properties of these systems is the
form of the density of states (DOS), n(E). Earliest interest was in electron transport
properties, the integer quantum Hall effect (3,4) and the fractional quantum Hall effect
(3,5), and in distinguishing localized from delocalized states. However, transport
measurements do not readily observe the density of states available to the electrons.
Recently several experiments (6-13) measuring single electron behaviour determine the
density of states directly. These find that the Landau levels are significantly broadened,
due to disorder in the sample, and there is a substantial density of states lying between

Landau levels notobtained in existing calculations (2,14,15). An important outstanding



problem (9,14), is to identify the origin of the large density of states bhetween Landau
levels in a direct and consistent manner. Indeed recentexperiments of specific heat (6-
9), capacitance (10,11), magnetization (12,13) and radiative recombination spectra (16),
of atwo-dimensional system show that Landau levels have large widths and a large
density of states between Landau levels (approximately 25% of the density of states of

afree two-dimensional electron, n0).

Begining with the pioneering work of Ando and Uemura (2), there have been
several calculations (2,14) of the broadening of the Landau levels due to disorder.
Most use a perturbative approach, the self consistent Born approximation. This leads to
anarrow density of states centered ateach Landau level with (E) = 0 between Landau
levels. A numerical simulation (15) exhibits a large Landau level width and an
asymmetric shape presumably due to bound states. W egner (L7) has obtained the
density of states for the lowest Landau level centered atEQO = (1/2) fiQ.. Most theories
consider electrons interacting with disorder having an interaction of zero range.
Typically they use the white noise model in which the varianceW (r-r')-<V(r)v(r') >
-<V(r)>2ofthe fluctuating potential V( r) has zero correlation length, (r-f") =

(0)8( r-r"e None of these theories predict a significant density of states lying

between Landau levels.

To overcome this defect, Gornik et al. (9) added a constant density of states,
xnQ, to the Landau level values with X adjusted to fit experiment (x = 0.25). Similarly,
Gudmundsson and Gerhardts (14) have added additional disorder, attributed to long
range sample inhomogeneity, to further broaden the Landau levels. However, the
origin of the additional inhomogeneity and why it must be added separately is not

entirely clear nor satisfactory.



We present here a straightforward evaluation of the density of states in the
presence of disorder by using the Feynman path integral. The essential pointis to keep
the correlation length, L, of disorder finite from the outset. The white noise model is

then obtained by letting L — 0. The detailed evaluation will be contained in chapter Il

Two-Dimensional Electron System in a Strong M agnetic Field

Two-dimensional electron systems can be realized in several classes of systems.
One example is the electrons trapped on the surface of liquid helium below 4.2 K.
Since we can not make the concentration of electrons too high in this system, chiefly
hecause the liquid surface can not sustain too many electrons pressed to the surface by
an electric field, the electrons form a classical gas with the Boltzmann distribution.
There are two classes of system in which we can make degenerate two-dimensional
electrons with electrons occupied up to the Fermi energy Ep: metal-oxide-
semiconductor (M OS) space charge layers (Fig. 1) and semiconductor heterojunctions
(Fig. 2).

A MOS inversion layer consists of a metallic layer as electrode, an oxide layer
as an insulator and a semiconductor layer. The mostwidely used MOS inversion layer
is made from p-type silicon with Si02 as an insulator. W hen we apply avoltage Vg,
which is called the gate voltage, across the metal and the semiconductor, the valence and

conduction bands of the semiconductor are bent as is shown in Fig. L

W hen the bottom of the conduction band is pushed down below Ep near the
interface of p-type Si and SiOo, electrons are accumulated at the bottom of the
conduction band there. The electron system may be regarded as two-dimensional (2D),
since the electrons are confined within the interface region and move relatively freely

along the interface. This type of MOS system is called an inversion layer, because the



Distance from interface (2)

Fig.l Two-dimensional electron system in the metal-oxide-semiconductor
(MOS) inversion layer. The and D represent source and drain
(usually n-type doped region) respectively, Vg gate voltage and Ep
Fermienergy. Bending in valence and conduction bands is depicted

together with wave function \|/(z) and density of states n(E).
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Fig.2 Two-Dimensional electron system in the semiconductor heterostructure,

The figure depicts the case of selective doping in AIGaAs.



carrier in this sample is the electron while the bulk semiconductor is p-type. The

motion of an electron in this situation is described by the Schrodinger ' equation,

HMA(r) = E ¥ (1), (1.1)

where H = p2l2m* + V(z), (1.2)

and m* is the effective mass of the carrier, z is the direction perpendicular to the
interface and V (z ) represents the bottom of the conduction band and a Schottky barrier
of the oxide layer. If we ignore scatterers or other imperfections in the system, the

motion within the xy-plane is free with the wave function given by

"F(r) oe exp [i(kxx + kyy)]lfn(z), (1.3)

where f (z)is the wavefunction in a potential well formed by V(z ) with aquantum
number . For the bound statesquantized with V(z), fn(z) has discrete energy levels
El V£ 2, Since the density of states for free electrons in 2D space is a constant,
the total density of states comprises a series of step functions (Fig. 3). When Ep < &1,
the electrons behave as apurely 2D system. The current within the 2D system is driven
by a voltage applied across the two electrodes in Fig. 1 by (source) and D (drain).
The MOS system is quite convenient in that the concentration of 2D electrons can be
varied in the same sample in arange as wide as =0 - 1013 ¢cm "2by varying the gate

voltage, which changes the degree of bending of the conduction band. The

concentration is proportional to Vg apart from a small threshold.

Similar 2D electrons can be realized in semiconductor heterostructures (Fig.2),

in which two kind of semiconductors are put together. The most typical one is the



GaAs-Al xGai-x As (0< X< 1) heterostructure. The lattice constant of GaAs and

AlxGai-x As are almost the same (the difference being = 0.1 %), so that when one
material is grown on top of another by molecular beam epitaxy, we have a well defined
interface between the two materials with little disorder. Unlike M QS system, itis rather
difficult to attach gate electrodes to heterostructures, so that the electron concentration
may not be varied by Vg. Thus semiconductor heterostructures are characterized by
small degree of randomness, whereas MOS inversion layers have the virtue of variable

electron concentration.

The quantum Hall effect is adirect consequence of the Landau quantization, the
quantum states in amagnetic field. W e first consider the quantum motion of electrons
in magnetic fields. Like aclassical Larmor motion, the quantum state of an electron in a
magnetic field corresponds to a rotation called cyclotron motion. An easy way to

represent this state is to express the coordinates of an electron as

X = X +£1 7y = Y+ (1.4)

where (X,Y) is the coordinate of the center of the cyclotron motion, while (£3;T|) is the
relative coordinate around the center. The Hamiltonian of a free electron system in a

magnetic field is given by

Ho z (H2m *)[ p + (elc)A ]2 (1.5)
where p is the momentum of an electron and A is the vector potential with VxA = E.
One can verify that (£3,1) rotates with an angular frequency equal to the cyclotron

frequency

Q eB/m*c. (16)



Note that ~ and are subjected to an uncertainty of order| because of the commutation

relation

where | is the cyclotron radius given by

= (ileB)t2, (1.8)

The Hamiltonian is in turn written in termsof (», ) as

Ho = (hQR2)[r2+ 2], (1.9)

so that the energies of the Hamiltonian are quantized into discrete Landau levels,

En = [n+ L2160 (=0,1,2.). (1.10)

The key aspect of this quantization is obviously the completely discrete energy
spectrum, which is hard to concieve in anormal bulk system. Ifwe apply a magnetic
field to a 3D system, for instance, an electron can move freely along the direction of the
magnetic field with the corresponding orbit being a helix. The density of states of the
3D quantum system, shown in Fig.3, comprises a series of continous band arising from
the motion along the magnetic field, unlike the 2D case. In this sense the Landau

quantization is perfect in 2D.
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Fig.3 Density of states for two and three-dimensional electron system in

magnetic field.

Fig.4 The degeneracy (total number of states) in a Landau level in a

two- dimensional system is roughly equal to the number of circles

ofradius| (cyclotron radius) covering the system,



For every Landau level in a 2D system, the degeneracy (number of states

belonging to the level) is given by (Fig.4),

N L - L2/(2el 2), (1.11)

where L is the linear dimension of the system. This degeneracy comes from the fact that
all cyclotron motions with different center coordinates have the same energy. Note that

X and Y, too, have an uncertainty of order | because of the commutation relation,

[(X.Y] = 2. (1.12)

By using the degeneracy concept, we can specify the concentration of electrons by the

Landau level filling factor, which is defined as

=N, (1.13)

This dimensionless quantity indicates the filling Landau level, e.g. 1 = 3 means

that the lowest three Landau levels are just filled.

So far, we have mentioned the free system. In real, say, semiconductor
systems, there always exists randomness arising from impurities and the roughness of

the semiconductor interfaces. In the presence of randomness, the Ham iltonian is given

by

H Ho + V (f), (1.14)
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where V( r)is the random potential. Now the system is dominated by the dynamics of
the center coordinate (X,Y) of the cyclotron motion. The degeneracy of the states with
different (X,Y) in aLandau level is now lifted. Thisimplies that the density of states is
no longer a series of sharp lines, each Landau level becomes a band with width r. We
call this band a Landau sub-band, the nature of these sub-bands depends quite strongly

on the mode of spatial variation of the random potential. Ando and Uemura (2)
assumed that V( r) varies rapidly within a length scale of cyclotron radius | .Such a

potential may be constructed as

V(r) - VoEl (T -1, (1.15)

where g is the position of the ith scatterer. In this case, the motion of the electron may

be regarded as a quantum hopping of the center of the cyclotron motion with the

hopping distance = | for each jump. The potential equation (1.15), is characterized by

the dimensionless concentration of scatterers,

Cj - 27 2 1, (L16)

where niis the original concentration of the scatterers and Ci represents the average
number of scatterers within a circle of radius 1. The electronic structure of the system
depends strongly on Cj. When Ci»l(dense scatterers), the description of the system
by the self-consistent Born approximation (Ando and Uemura 1974) hecomes
applicable (Fig.5). In this case, the density of states for each Landau sub-band is semi-

elliptic with awidth given by

[ 20 (VOI272) . (1.17)
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Fig.5 Density of states (semi-elliptic) for the disordered two-
dimensional electron system in a strong magnetic field in the self-

consistent Bom approximation (SCBA).

The Quantum Hall Effect

In 1980 von Klitzing, Dora and Pepper (18) found quite a remarkable
phenomenon for 2D electrons in Si MOS inversion layers. Fig.6 shows a typical
result. In this figure we show the diagonal resistance Rxx and the Hall resistance R Xy
as a function of the gate voltage Vg (« electron concentration) in a Si (100) MOS

inversion layer in a magnetic field B = 19T.

Itisremarkable that the resistance Rxx vanishes in regions of finite width of Vg
hetween adjacent Landau sub-bands. Ifwe turn to the RXy, the Hall resistance takes a
constant value over the region in which Rxx =0. This phenomenon has already been
observed by Kawaji and akabayashi (19). The region where Rxx = 0 and RXy =

constant is called a plateau. Whatvon Klitzing et al. found is that the value of R Xy in
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Experimental result for the quantum Hall effect in a Si(100) MOS
inversion layer in a magnetic field of B = 19T atT = 1.5K. The
diagonal resistance Rxx and Hall resistance R Xy are shown as a function
of gate voltage Vg, which is proportional to the electron concentration.
The oscillation in Rxx is labelled by the Landau index N, spin ( ) and
valley (x). The upper scale indicates the Landau filling factor 27 2 .
The inset shows a detail of the plateau between N = 0 and N = 1 Landau

levels.



any plateau quantized into a universal quantity with an astonishing accuracy. For a

plateau between Nth and (N+I)th level, the Hall resistance is given by

R Xy = hINe2 (N integer), (1.18)

where the right-hand side only contains physical constants. This is the quantum Hall
effect. The experimental accuracy for the above formula is of the order 1 PPM (= 10~6)
which is subsequently reduced to as small as 0.1 PPM (20). In other words, a plateau
is flat within this accuracy, and the value of a plateau itselfis given by (1.18) within this
accuracy for any sample of Si MOS inversion layer, or, in later experiments, for any

sample of GaAs-AlGaAs heterostructures.

Explanation of the Quantum Hall Effect (21)

The main features of quantum Hall effect which require a physical
understanding are the existence of the Hall plateau and the dissipationless current flow

in the region of a Hall plateau (Rxx=0).

A simple explanation is as follows. As mentioned above the electrons subjected
to a high magnetic field perpendicular to the plane of the system occupy discrete energy
levels called Landau levels. Each Landau level is highly degenerate. The number of
electrons per unit area in a Landau level (ignoring spin for simplicity) is eB/h . In a

situation when iLandau levels are completely full, the carrier density is given by

ieB/h . (1.19)
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The Hall resistivity is related to the Lorentz force acting on the electrons drifting in the

applied magnetic and electric fields. Itis given by

Rh = B/ne. (1.20)

Eq. (1.19) and (1.20) give the quantum Hall condition in Eq. (1.18). The quantum Hall
effectis observed when the thermal energy kT is very small compared to the magnetic
energy HQ so that the excitation of electrons from tile last full Landau level i to the next
higher Landau level can be neglected. To satisfy this condition one needs low
temperatures and high magnetic fields to observe the quantum Hall effect. In GaAs
heterojunctions this condition can be satisfied at relatively lower magnetic field or
higher temperature because of the smaller effective mass of carriers and hence a larger

magnetic energy as compared to the Si-MOS.

The above explanation does not hold in reality however. The probability thati
Landau levels will be found completely full in a real physical system is zero because the
carrier density is specified. As soon as an extra electron is added to the 2D system with
iLandau levels completely full, the extra electron fills the (i+1)th Landau level and the
Fermienergy jumps discontinously. What is required then is a reservior of electrons
which would keep i Landau levels completely full by transfering electrons to and from

the 2D system when the electron density is varied over a limited range.

The above explanation ignores any impurities present in the system. The
presence of impurities can explain the existence of a dissipationless current flow
(vanishing of linear resistance) in the region of Hall plateaus. The impurities broaden

gach Landau level into an energy band of finite width. Itis expected that states near the
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Fig.7 A schematic diagram showing Landau levels broadened into bands by
impurities. Only the states near the center of the bands are extended
states. The Fermilevel is shown to lie in the mobility gap between two

Landau levels.

center of such a band will be delocalized (extended in space) whereas a strong enough
impurity potential will cause the appearance of localized states in the gap between the
Landau levels (Fig. 7). Only the delocalized states take partin transport processes and
can carry current for example. In the presence of localized states the Fermi level
remains pinned in the gap between two Landau levels for finite range of (or B). The
impurity levels act as the reservoir which keeps i Landau levels completely full by
transfering electrons to and from the 2D system of the extended states (current carrying
states) when the electron density is varied over a limited range. Thus the density of

delocalized states at the Fermi level n(Ep) remains zero for this range of (or B). The

010700
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scattering of electrons (which is responsible for electrical resistance) is proportional to
(Ep). Hence, whenever the Fermi level is pinned in a gap (also called a mobility gap
because of the absence of current carrying extended states near the Fermi level), the
diagonal component of the resistivity vanishes and the transport properties remain

constant explaining the presence of aHall plateau.

Direct Measurementofthe Density of StatesofaTwo-Dimensional Electron Gas

In summary, from the explanation of the quantum Hall effect, the region
between the Landau levels has a finite density of states but these states cannot take part
in the transport because they are localized, non-current-carrying states. Recently, the
expectation of non zero density of states between Landau levels was confirmed by
experiments of specific heat (6-9), capacitance (10,11) and magnetization (12,13) of a
two-dimensional electron gas. However, most of these experiments deal with the
density of states dn/dEp measured on the Fermi surface, also called the thermodynamic
density of states and it is different from (E). Recently, Kukushkin and Timofeev(16)
proposed to determine the density of 2D electron states in a transverse magnetic field by
a direct method based on measurements of the luminescence spectra connected with
radiative recombination of 2D electrons with nonequilibrium photoexcited holes in the
Si(100) MOS structure. In this method they measured the energy distribution of the
intensity of radiation spectra 1(E) (1(E) < (E)) at a fixed filling of the Landau levels by

electrons. The experimental result is shown in Fig.8.

From Fig.8, it is shown that the density of states between Landau levels is not
vanishingly small and the width r depends on both the filling factor 1 and the Landau
index N. The evaluation of the density of states of our model and the comparison with

the direct measurement of Kukushkin and Timofeev will be contained in chapter Il
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Fig.8 2D-electron radiative recombination spectra obtained atB = 7T,

T=1.6K atdifferent fillings of the Landau levels (i ).

Theoretical Models of the Density of Statesofa Two-Dimensional Electron Gas (3)

As we have mentioned in the introduction of this chapter, there have been
several calculations of the broadening of the Landau levels due to disorder. Among
them the so called self-consistent-Bom approximation (SCBA) is known to be most
established and the simplest one free from various difficulties of divergence caused by
the singular nature of the density of states. In the SCBA, effects of scattering from
each scatterer are taken into accountin the lowest Born approximation, while those of
the level broadening are considered in a self-consistent way within the frame work of

the Green's function formalism. So that in this section we first briefly review the theory



and summarise the characteristic results. According to Ando et al.’s ideas(2), the

Hamiltonian is given by

H Ho + Hi, (1.21)
with  Ho = (II2m)[p2 + eAlc]2, (1.22)
Hi = Z 1 M o-fi,zi), (1.23)

where wi1( - i"zj) is the effective two-dimensional potential of the |ith kind of scatterer
located at (rj, Zi). By choosing the symmetric gauge A = (-By/2, Bx/2), an eigen

function of Ho is given by

= (IIWL)exp [~ =™ - ]JXN(x-X), (1.24)

with  XN(x) = (NNyjnl)'"mexp[- ~ -] HN(x/)), (1.25)

where HN(y) is Hermite' polynomial and 12 is the area of the system. The

Hamiltonian is rewritten as

Ho = Z E NaNXaNX, (1-26)
H, = Z 7 7 Z (NXIV(r-ri,zi) lwé) aNx (1-27)
i Z1 NX wx

where alNx and aNx are the creation and destruction operators, respectively. The

Green's function can be written as

GN(E)6NNOxx'= < (ri laNx(E'H) 1 aNx 10) > (1-28)
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where 10) represents the vaccuum state and <...> means an average over all
configurations of scatterers. The Green's function is diagonal with respect to the
Landau level index N and center coordinate X and independentof X. The density of
states is given by

(E) = -(I1jt)Z Im Gn(E + i0)
NX

= Clire) 4/ -11m G N(E+i0), (1.29)

The Green' function is calculated perturbationally, using iteratively
(E-H)-L = (E-Ho)-1 + (E-H om (E-H)-I, (1.30)
and is usually written in terms of the self-energy £n(E) as
Gn(E) = Gn(E) + cfN(E)ZN(E) Gn(E), (1.31)

with Gn(E) = (E-EN)'l. In sufficiently a strong magnetic field one can neglect

couplings between different Landau levels . When E EN,one gets

| n(E) (1/£)Tn Gn(E), (1.32)

=
=
=
—
=
1

427 2) Bj dzNi(2)g [(Nm IV (2) INm) ]2, (1.33)

and Ni (z) is the density of scatterers of the pth kind. The density of states becomes

(E) 'ﬁ d Z (" I'\/I : all (1.34)
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The density of states for each Landau level has a semielliptic form with the width r N.

The nature of level broadening r N depends strongly on the range of scattering
potentials. In the case of short range scatterers, one can replace v*(r,z) by v 05(r) and
get a constant width rN=r as in Eq. (1.17), the level broadening is essentially
independent of the Landau level as shown in Fig. 5. In the case of long range

scatterers, on the other hand, one gets

rN A 41 Jdz Ni(z)Jdr [v¥(r,z)]2
= 4 <(V(r) - <V (r)>>2>, (1.35)
where V(r) is the local potential energy due to scatterers and <....> means the average

over their configurations. The level width is independent of the Landau level and is

expressed by the fluctuation of the local potential energy.

In order to see explicitly the range dependence of the level width, take for

instance scatterers with the Gaussian potential v~r, z) = exp[-(r/L)2], which

approaches to a 5-potential as the range L goes to zero. After a little manipulation, for a

ground Landau level N =0, one has

e - ii8jT -- <L.36)

The absolute value of the level width depends not only on the functional form of the
potential, i. e. its range, but also on the multiplicative factor which appears in the
potential. The level width decreases as the range increases, because the model potential

which becomes weaker with larger L has been assumed.
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However, the SCBA is not sufficient in the energy region close to the spectral

edges, which is clear if we consider the unphysical sharp cutoff of the density of states

(see Fig. 5).

Gerhardts (22) used the method of cumulant expansion in calculating the

density of states. The Green' function is written as

Gn(E)

Ldtexp[-i(Et/fl) (0 1aNXK (t) arjx 10)

with  K(t) = <exp [- (il)Ht 1> .

In the interaction representation one gets

K(t) = K(t) < T exp [ - (idfi) jrdt Hi(t) ] >,

with T being a time-ordering operator,

Hi(t) = exp [ (ifi)HOt] Hi exp [- (ilfi)HOt ],

and  K(t) exp [- (/E)HOL ].

(1.37)

(1.38)

(1.39)

(1.40)

(1.41)

A cumulant expansion of the time-ordered exponential in Eq. (1.39) gives

< Texp [- (i) jMATHICO 1> = exp [ (WD) cv .

The first-order term,

(1.42)
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Cl

- (it/fi)<H i>, (1.43)

is trivial and can be neglected. The second-order term is nontrivial and is given by

2

(-If02TlodT jdx "[<Hi()Hi(t")> -< Hi>2J  (1.44)

If the the lowest nontrivial term is retained and in a sufficiently strong magnetic field,

one gets

KN(t) = (0 1aNx K(t) aNX10).

exp [- (itHENt]Jexp [-T r . (1.45)

Thus, the density of states takes on a Gaussian form

(E) = 2 R 2 | )2], (1.46)

which is shown by the dotted line in Fig. 9. This approximation, called the lowest-
order cumulant approximation(LOCA), can take into account higher order effects
partially and does not cause the unphysical sharp cutoffof the density of states. It gives
therefore, a theoretical basis, together with the calculation of Ando, for using the

Gaussian form of the density of states in qualitative line shape analysis.

W e see that the simple theories of Ando et al.(2) and Gerhardts (22) predict for
the density of states broadened Landau levels of an elliptical or a Gaussian shape,
depending on the approximation in which the interaction of the electrons with randomly
distributed scatterers is taken into account. For a sufficiently strong magnetic field B,
the Landau levels are energetically welled separated and the density of states is expected

to be zero or exponentially small in the gap between the Landau levels. A number of
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Fig. 9 The density-of-states profile of the ground Landau level calculated by

using the self-consistent-Bom approximation (dashed line) and the

lowest order cumulant approximation (dotted line). 1
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recent experiments produce, however, strong evidence for an unexpectedly large
density of states in the Landau gap for the 2DEG in both GaAs-(GaAl)As
heterostructures and the M OS-inversion layer . For the evaluation of thermally
activated transport in the quantum Hall regime, Gomik et al. (9) and Gudmundsson

and Gerhardts (14) proposed the following model of the density of states,

n(E) = (1-x) [ (117 2) 3jG(E, En;r )] + xn0, (1.47)

where only a fraction 1-x of the total states is described by a Gaussian-shaped Landau

DOS. HereEn=/i0O(n+1/2) is the Landau-level energy, r the level broadening, and

G(z,2¢c) = NMexp [-(112) (z~ )2 ], (1.48)

anormalized Gaussian distribution. A constant background is represented by a fraction
X of the zero-field DOS, nG. Measurements of equilibrium properties such as
magnetization and specific heat seem to support this picture. However, the physical

origin of the background DOS remains unclear.

The next chapter we will devote to review the Feynman path integral theory

including some exact solutions of solvable -2D problems.
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