
วิธีการการใหแสงและเงาแบบทันทขีองฉากริมน้าํที่มีคอสติกสโดยใชแผนภาพระดับชั้น

นายณัฐชัย ทพิยประเสริฐ

วิทยานิพนธนี้เปนสวนหนึ่งของการศึกษาตามหลกัสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

สาขาวิชาวิศวกรรมคอมพิวเตอร ภาควิชาวิศวกรรมคอมพิวเตอร

คณะวิศวกรรมศาสตร จุฬาลงกรณมหาวิทยาลัย

ปการศึกษา 2549

ISBN 974-17-5158-3

ลิขสิทธิ์ของจฬุาลงกรณมหาวทิยาลยั

AN INTERACTIVE RENDERING METHOD FOR WATER-SIDE SCENE WITH

CAUSTICS USING LEVEL MAP METHOD

Mr. Nuttachai Tipprasert

A Thesis Submitted in Partial Fulfillment of the Requirements

for the Degree of Master of Engineering Program in Computer Engineering

Department of Computer Engineering

Faculty of Engineering

Chulalongkorn University

Academic Year 2006

ISBN 974-17-5158-3

Copyright of Chulalongkorn University

vi

ACKNOWLEDGEMENTS

My first thanks goes to Pizzanu Kanongchaiyos, PhD., my thesis advisor. Without

his help my life as a Master Degree student would have been much more complicated, if

not almost impossible. The second thanks goes to my thesis committee , Associate

Professor Prabhas Chongstitvat, Vishnu Kotrajaras, PhD., Supatana Auethavekiat, PhD.,

for their beneficial guidance and suggestion.

Moreover, I also want to extend this thank to every 20th floor members, my friends

and all computer engineering staffs who give me invaluable advices. I particularly am

please to thank every member of computer graphics research lab (CG Lab) for their

generous helps, and great relationship which fulfill happiness to this life.

Finally, I deeply wish to thank my parents for their love, understanding and

invaluable support throughout my graduate study

TABLE OF CONTENTS

 Page

Abstracts (Thai)...iv

Abstracts (English)...v

Acknowledgements...vi

Table of Contents...vii

List of Figures ...xi

List of Tables ...xvii

Chapter 1 Introduction ...1

1.1 Background ..1

1.2 Objectives of Study..3

1.3 Scopes of Study..3

1.4 Research Procedures ..3

1.5 Expected Benefits ..4

1.6 Thesis Outline ..4

1.7 Publications..4

Chapter 2 Theories...5

2.1 Graphics Rendering Pipeline ...5

2.1.1 Vertex Transformation.. 6

2.1.2 Primitive Assembly and Rasterization.. 6

2.1.3 Fragment Texturing and Coloring .. 7

2.1.4 Raster Operations.. 8

2.2 Programmable Graphics Hardware..8

2.2.1 The Evolution of Computer Graphics Hardware 8

2.3 Local Illumination Model ..10

2.3.1 Ambient light .. 10

2.3.2 Diffuse reflection .. 10

2.3.3 Specular reflection .. 11

2.3.4 Derived local illumination model ... 12

viii

2.4 Ray-tracing...13

 2.5 Projective Texture Mapping ..14

2.6 Snell’s Law ..16

2.7 Image Comparison ...17

Chapter 3 Related works..19

3.1 Ray-Tracing Based Algorithm...19

3.2 Beam-Tracing Based Algorithm..20

3.3 Texture Mapping Based Algorithm ...21

Chapter 4 Refractive Water Caustics Rendering Method Using Level Map...............22

4.1 Algorithm Overview ..22

4.2 Level Map Creation ...23

4.2.1 Reference Plane Creation.. 23

Bounding Box Creation.. 24

Plane Slicing... 29

4.2.2 Position Map and Diffuse Map Creation ...31

4.3 Illumination Volume Creation ...33

4.4 Intersection Testing..35

4.5 Caustics Map Creation...36

4.6 Caustics Casting...37

4.7 Algorithm Improvement ..38

4.7.1 Handle Multiple Light Sources... 38

4.7.2 Smart Slicing... 40

Chapter 5 Algorithm Analysis ...44

5.1 Memory Usage Comparison ..44

5.2 Rendering Speed Comparison..45

5.2.1 Volumetric Based Rendering Procedure... 45

5.2.2 Level Map Rendering Procedure with Normal Slicing....................... 48

5.2.3 Level Map Rendering Procedure with Smart Slicing 50

5.2.4 Algorithm Comparison ... 51

 Page

ix

Chapter 6 Discussion, Conclusions and Further Improvements..................................69

6.1 Discussion ..69

 6.2 Conclusion ...71

6.3 Further Improvement ...71

Appendix..73

1. Teapot... 74

2. Dolphin... 75

3. Sphere... 76

4. Angle Fish .. 77

5. Box ... 78

6. Horse .. 79

7. Manta.. 80

8. Red Betta .. 81

9. Shark... 82

10. Siamese Tiger ... 83

11. Sink... 84

12. Car .. 85

13. Sofa... 86

14. Helicopter ... 87

15. UFO.. 88

16. Chair ... 89

17. Barramundi... 90

18. Brown Trout ... 91

19. Leopard Shark .. 92

20. Lion Head... 93

21. Sand Bar Shark... 94

22. Steel Head .. 95

23. Sun Fish.. 96

24. Whale ... 97

 Page

x

25. Camera ... 98

26. Cross... 99

27. Bass .. 100

28. Plane ... 101

29. Plane ... 102

30. Hammer .. 103

References..104

Biography...106

 Page

LIST OF FIGURES

 Page

Figure 1-1: Image of swimming pool (a) computer generated (Courtesy of Cynthia
Kelsey) and (b) real world.. 1

Figure 1-2: Reflective caustics (image by Don Mitchell) and refractive caustics
(image by Chris Wyman). .. 2

Figure 2-1: The 3D objects construction process. .. 5

Figure 2-2: The graphics rendering pipeline... 6

Figure 2-3: Stage of vertex transformation... 6

Figure 2-4: Primitive assembly steps.. 7

Figure 2-5: Diffuse reflection. .. 11

Figure 2-6: Specular reflection model. ... 12

Figure 2-7: Ray-tracing rendering method. .. 13

Figure 2-8: Rendering method for reflective and refractive image at water surface. . 14

Figure 2-9: Transformations for Conventional Camera vs. Projective Texture
Mapping ... 15

Figure 2-10: Sample program using projective texture mapping. 16

Figure 2-11: Snell’s law.. 17

Figure 3-1: Results from Wand et al. proposed algorithm.. 20

Figure 3-2: Example result from texture mapping based technique (image by Jose
Stam). ... 21

Figure 4-1: Reference plane.. 23

Figure 4-2: Bounding box... 24

Figure 4-3: Problem when planes are not aligned. ... 25

Figure 4-4: Refracted light ray at wavy surface.. 25

Figure 4-5: Reference plane alignment process.. 26

Figure 4-6: Plane alignment with various U
r

 and W
r

 specifications. 27

Figure 4-7: Reference plane alignment process (point light source version). 28

Figure 4-8: The initial step for plane slicing... 30

Figure 4-9: Process of reference plane creation.. 30

Figure 4-10: View volume specification for position map rendering......................... 32

xii

 Page

Figure 4-11: Example of position map. .. 33

Figure 4-12: Illumination volume... 33

Figure 4-13: Illumination volume representation. .. 34

Figure 4-14: Diagram of the intersection test algorithm... 35

Figure 4-15: Caustics rendering procedure... 38

Figure 4-16: Problem when the plane is not correctly aligned. 38

Figure 4-17: Caustics rendering process for multiple light sources. 39

Figure 4-18: Problem when plane is equally sliced. ... 41

Figure 4-19: Bar graph represents pixel’s density for each depth level. 42

Figure 5-1: Flowchart shows rendering passes of volumetric based technique.......... 45

Figure 5-2: Illumination map creation. ... 46

Figure 5-3: Flow chart shows illumination map creation process. 47

Figure 5-4: Caustics map creation process. .. 47

Figure 5-5: Rendering passes of normal slicing algorithm... 48

Figure 5-6: Rendering passes of normal slicing when using MRT. 48

Figure 5-7: Flowchart shows normal slicing caustics map creation procedure 49

Figure 5-8: Rendering procedure of smart slicing. ... 50

Figure 5-9: Depth profiling... 51

Figure 5-10: Line graph shows comparison of rendering time between level map and
volumetric algorithm. ... 57

Figure 5-11: Line graph shows comparison of rendering time when smart slicing is
turn on and off. ... 61

Figure 5-12: Depth profiles from sample models. .. 62

Figure 5-13: Comparing result when smart slicing is turned on and off. 67

Figure 6-1: Bounding volume collision testing. ... 70

Figure 6-2: Multi-resolution air plane. Image by Hugues Hoppe............................... 70

Figure 6-3: LOD in action... 70

Figure A - 1: Sample results from teapot model..74

Figure A - 2: Rendering speed comparison graph while using teapot as an input.......74

Figure A - 3: Depth histogram of teapot model...74

Figure A - 4: Sample results from dolphin model. ..75

xiii

 Page

Figure A - 5: Rendering speed comparison graph while using dolphin as an input. ...75

Figure A - 6: Depth histogram of dolphin model. ...75

Figure A - 7: Sample results from sphere model. ..76

Figure A - 8: Rendering speed comparison graph while using sphere as an input......76

Figure A - 9: Depth histogram of sphere model. ...76

Figure A - 10: Sample results from angle fish model. ...77

Figure A - 11: Rendering speed comparison graph while using angle fish as an input.

 ..77

Figure A - 12: Depth histogram of angle fish model. ..77

Figure A - 13: Sample results from box model..78

Figure A - 14: Rendering speed comparison graph while using box as an input.78

Figure A - 15: Depth histogram of box model...78

Figure A - 16: Sample results from horse model...79

Figure A - 17: Rendering speed comparison graph while using horse as an input......79

Figure A - 18: Depth histogram of horse model. ...79

Figure A - 19: Sample results from manta model..80

Figure A - 20: Rendering speed comparison graph while using manta as an input.....80

Figure A - 21: Depth histogram of manta model...80

Figure A - 22: Sample results from red betta model..81

Figure A - 23: Rendering speed comparison graph while using red betta as an input.

 ..81

Figure A - 24: Depth histogram of red betta model...81

Figure A - 25: Sample results from shark model...82

Figure A - 26: Rendering speed comparison graph while using shark as an input......82

Figure A - 27: Depth histogram of shark model. ...82

Figure A - 28: Sample results from Siamese tiger model..83

Figure A - 29: Rendering speed comparison graph while using Siamese tiger as an
input..83

Figure A - 30: Depth histogram of Siamese tiger model. ..83

Figure A - 31: Sample results from sink model...84

Figure A - 32: Rendering speed comparison graph while using sink as an input........84

xiv

 Page

Figure A - 33: Depth histogram of sink model. ...84

Figure A - 34: Sample results from car model...85

Figure A - 35: Rendering speed comparison graph while using car as an input.85

Figure A - 36: Depth histogram of car model..85

Figure A - 37: Sample results from sofa model...86

Figure A - 38: Rendering speed comparison graph while using sofa as an input........86

Figure A - 39: Depth histogram of sofa model. ...86

Figure A - 40: Sample results from helicopter model..87

Figure A - 41: Rendering speed comparison graph while using helicopter as an input.

 ..87

Figure A - 42: Depth histogram of sofa model. ...87

Figure A - 43: Sample results from UFO model..88

Figure A - 44: Rendering speed comparison graph while using UFO as an input.88

Figure A - 45: Depth histogram of UFO model...88

Figure A - 46: Sample results from chair model..89

Figure A - 47: Rendering speed comparison graph while using chair as an input.89

Figure A - 48: Depth histogram of chair model...89

Figure A - 49: Sample results from barramundi model. ..90

Figure A - 50: Rendering speed comparison graph while using barramundi as an input.

 ..90

Figure A - 51: Depth histogram of barramundi model. ...90

Figure A - 52: Sample results from brown trout model...91

Figure A - 53: Rendering speed comparison graph while using brown trout as an input.

 ..91

Figure A - 54: Depth histogram of brown trout model..91

Figure A - 55: Sample results from leopard shark model..92

Figure A - 56: Rendering speed comparison graph while using leopard shark as an
input..92

Figure A - 57: Depth histogram of leopard shark model. ..92

Figure A - 58: Sample results from lion head model...93

xv

 Page

Figure A - 59: Rendering speed comparison graph while using lion head as an input.

 ..93

Figure A - 60: Depth histogram of lion head model..93

Figure A - 61: Sample results from sand bar shark model. ...94

Figure A - 62: Rendering speed comparison graph while using sand bar shark as an
input..94

Figure A - 63: Depth histogram of sand bar shark model..94

Figure A - 64: Sample results from steel head model..95

Figure A - 65: Rendering speed comparison graph while using steel head as an input.

 ..95

Figure A - 66: Depth histogram of steel head model...95

Figure A - 67: Sample results from sun fish model. ..96

Figure A - 68: Rendering speed comparison graph while using sun fish as an input.

 ..96

Figure A - 69: Depth histogram of sun fish model. ...96

Figure A - 70: Sample results from whale model. ...97

Figure A - 71: Rendering speed comparison graph while using whale as an input.....97

Figure A - 72: Depth histogram of whale model. ..97

Figure A - 73: Sample results from camera model. ...98

Figure A - 74: Rendering speed comparison graph while using camera as an input.

 ..98

Figure A - 75: Depth histogram of camera model. ..98

Figure A - 76: Sample results from cross model. ..99

Figure A - 77: Rendering speed comparison graph while using cross as an input.99

Figure A - 78: Depth histogram of cross model. ...99

Figure A - 79: Sample results from bass model...100

Figure A - 80: Rendering speed comparison graph while using bass as an input.100

Figure A - 81: Depth histogram of bass model..100

Figure A - 82: Sample results from plane model...101

Figure A - 83: Rendering speed comparison graph while using plane as an input.

 ..101

xvi

 Page

Figure A - 84: Depth histogram of plane model. ...101

Figure A - 85: Sample results from tank model...102

Figure A - 86: Rendering speed comparison graph while using tank as an input.102

Figure A - 87: Depth histogram of tank model..102

Figure A - 88: Sample results from hammer model. ...103

Figure A - 89: Rendering speed comparison graph while using hammer as an input.

 ..103

Figure A - 90: Depth histogram of hammer model..103

LIST OF TABLES

 Page

Table 5-1: Results from experiment 1. ..54

Table 5-2: Number of polygons of sample models..56

Table 5-3: Results from experiment 2. ..58

Table 5-4: The number of actual planes required when smart slicing is used.............63

Table 5-5: Intensity difference when smart slicing is turned on and off.65

CHAPTER 1

INTRODUCTION

1.1 Background

Realistic natural phenomena rendering is one of the most important subjects in

computer graphics. Among several research topics, the realistic rendering of scenes with

water is a challenge. To enhance the realism of this kind of scenes, caustics rendering is

one of the most important aspects that must be taken into account. The absence of

caustics in water-side scene, such as a swimming pool, makes the computer generated

images look unrealistic (see Figure 1-1). But the rendering process of this phenomenon

involves many path tracings and intersection tests. Therefore, it usually cannot be done in

real-time. Moreover, to generate complete underwater scene as viewed from above water

surface, the rendering of refracted and reflected objects images at the water surface is

another subject that must be taken into consideration. Similarly, these effects also require

a lot of intersection tests. As a result, the rendering of a realistic water scene seems to be

more suitable for off-line rendering rather than real-time rendering. However, there are

many applications, such as video games and virtual realities which require realistic real-

time rendering of such scene. Therefore, the traditional rendering algorithm cannot be

employed at these applications.

Figure 1-1: Image of swimming pool (a) computer generated (Courtesy of Cynthia Kelsey) and (b)

real world.

(a)

2

To reduce the computation cost, several methods have been published. Many

researchers use special hardware setting [1, 2, 3, 4, 5], such as parallel architecture, to

maximize rendering speed of conventional ray-tracing algorithm. This approach can give

high quality result but they are too far from reaching interactive time frame. Furthermore,

the special setting for hardware means extra expense, thus, these optimization techniques

are not suited with ordinary PCs. Rather than finding optimization method for ray-tracing

based techniques, some researchers develop other approaches to render interactive

caustics. Many research topics [6, 7] contribute themselves to texture based or image

based rendering method. These methods can achieve real-time rendering capability;

however, they are far from realism. Some papers [8, 9] have shown novel rendering

technique which can handle both reflective and refractive caustics interactively but they

are not suited for water-side scene.

In recent years, volumetric texture based water caustics rendering algorithm has

been proposed [10, 11]. This technique uses volumetric textures to represent the objects

in the scene and perform the intersection test on these textures instead. Even though the

algorithm can achieve interactive rendering capability, it requires a lot of memory. As a

consequence, this technique is limited to a simple scene that does not have many objects.

Figure 1-2: Reflective caustics (image by Don Mitchell) and refractive caustics (image by Chris

Wyman).

Due to this limitation, we introduce a new interactive method for rendering

underwater scene with caustics as viewed from above water. Our technique requires less

memory usage. In our proposed method, an the object is represented by pairs of color and

depth texture .These textures are used in both caustics casting and refracted objects

rendering processes to enhance performance. Color texture is used to store the object

3

image viewed from viewing rays which refracted at water surface. The depth texture is

used to represent 3D position of each pixel in color texture. The algorithm is accelerated

by performing intersection and computing intensity distribution on texture-space instead

of object-space. We are able to show that this technique can generate complex

underwater scene with caustics at interactive time-rate.

1.2 Objectives of Study

The objective of this study is to present water caustics rendering algorithm that

1. Achieve interactive rendering time-rate (1 – 24 frames per second).

2. Able to cast caustics on arbitrary objects.

3. Require low memory usage.

1.3 Scopes of Study

1. This study only covers the area of water caustics rendering algorithm. Other

kind of caustics or realistic water rendering method will not be the subject here.

2. This proposed algorithm requires GPU which supports shader model 3.0

1.4 Research Procedures

1. Study theories

a. The Fundamental Graphics theories

b. Global illumination theories

c. Ray-tracing theories

2. Research and study the previous works and analyse the advantages and

disadvantages.

3. Design the algorithm.

4. Implement.

5. Develop the program as planned.

6. Test, improve and correct the program.

7. Analyse and evaluate the proposed algorithm.

8. Do the conclusion, suggestions and plan the future works.

4

1.5 Expected Benefits

1. This method can be used to generated water-side scene with caustics in

interactive time-rate.

2. This method can reduce the memory usage that is required for rendering

caustics significantly.

3. This method is suitable for interactive applications that require realistic water-

side scene, such as virtual realities and games.

1.6 Thesis Outline

This thesis is organized as follows. Next chapter, theories used in this thesis are

discussed. Chapter 3 gives a briefly discussion about related works. Chapter 4 presents

my new rendering strategy. In the chapter 5, analysis of experimental results will shown.

Conclusion and further improvement are then discussed in the final chapter.

1.7 Publications

Nuttachai Tipprasert and Pizzanu Knongchaiyos 2006. An Interactive Method for
Refractive Water Caustics Rendering using Color and Depth Textures. The 1st
International Conference on Computer Graphics Theory and Applications
(GRAPP 2006), February, Setubal, Portugal.

CHAPTER 2

THEORIES

2.1 Graphics Rendering Pipeline

In the field of 3D computer graphics, every object is represented by a collection of

primitives: typically polygon, line and point. Similarly, each primitive is also represented

by a set of vertices. By assigning a position to each vertex and connecting them together,

we can construct 3D objects. Figure 3 shows a rough sketch of this process. In this Figure,

the vertices for each primitive are defined as shown in Figure (a). Next, the object

primitives are then defined by connecting nearby vertices together (shown in Figure (b)).

Finally, the cube object is represented by rendering a collection of primitives.

Figure 2-1: The 3D objects construction process.

In order to render 3D object, 3D graphics software must send vertices and

primitives data to graphics hardware (GPU). When the GPU receives these data, it

processes these data by sending them through a rendering pipeline. The rendering

pipeline is a sequence of stages which is used to process incoming raw primitive data.

After these data get through every stage of rendering pipeline, they can be used to render

to the screen. Figure 4 shows graphics rendering pipeline used by today’s graphics

hardware. In the following subsection, these stages will be briefly discussed.

6

Figure 2-2: The graphics rendering pipeline.

2.1.1 Vertex Transformation

Vertex transformation is the first processing stage of the graphics rendering pipeline.

It performs math operations on each vertex. The vertices which pass through this stage

will be transformed from their position in local coordinate system to position in world

coordinate, camera coordinate and screen coordinate system respectively. These

processes of transformation are performed by various transformation matrices which

shown in Figure 2-3. After the screen coordinate position of input vertex is determined, it

is then used by the rasterizer and primitive assembler for computing the final color of

each pixel. These operations are performed in primitive assembly and rasterization stage

which will be discussed shortly.

Figure 2-3: Stage of vertex transformation.

2.1.2 Primitive Assembly and Rasterization

The primitive assembly and rasterization is the next stage following vertex

transformation in graphics rendering pipeline. This stage bears responsibility for

primitive assembling and rasterizing task. The primitive assembly step assembles vertices

into geometric primitives based on primitive batching information which accompanies

7

vertex collection, as shown in Figure 2-4. After that, the assembled primitive will be

clipped by clipping algorithm to determine which part of primitive will be actually seen.

The clipping regions are determined by a viewing frustum or by user specified clipping

planes. Moreover, each primitive might be tested for its visibility by determining its

facing direction. The primitive assembler may discard some polygons facing toward or

away from the observer (monitor screen), depending on user specified direction. This

process is known as culling. By default, the polygon facing away from the observer will

be discarded (back face culling). The primitives which survive from clipping and culling

will be sent to the rasterizer. The rasterizer bear the task for rasterizing polygon. The

rasterization is a process of determining the set of pixels covered by a primitive. After

passing through this stage, geometric primitives will be transformed into pixels and ready

to be used by next stage.

Figure 2-4: Primitive assembly steps. From this Figure, each vertex is connected together in a

specific order to form a geometric primitive.

2.1.3 Fragment Texturing and Coloring

After a set of pixels has been obtained via the rasterization, their color and the

relative depth value will be assigned in the following stage. The fragment texturing and

coloring stage is responsible for assigning a color and relative depth value to newly

created pixels. The color of each pixel is obtained by performing lighting calculation and

texturing on each primitive’s vertex. The result color value is then interpolated and

assigned to every pixel. In this process, not only vertex color is interpolated, but also

relative depth value is calculated. This depth value will be used to perform depth testing

in the raster operations, final stage of the rendering pipeline. If these pixels can survive

8

after some testing in the final stage, their result color value will be used to paint to frame

buffer.

2.1.4 Raster Operations

The raster operations stage performs a final sequence of per-pixel operations

immediately before updating frame buffer. The previously obtained depth value of each

pixel is used in this stage to perform hidden surface removal technique known as depth

testing. Beside depth testing, there are many per-pixel testing steps, such as scissor, alpha

and stencil, performed in this stage as shown in Figure 2-4. If the incoming pixel can pass

every test, its color will be blended with the previously stored pixel’s color value, if

blending operation is enabled, and finally painted to the frame buffer. But if the blending

operation is disabled by the application, the frame buffer will be painted by the newly

incoming pixel value instead.

2.2 Programmable Graphics Hardware

In this section, the concept of programmable graphics hardware is explained. A

brief description on how graphics hardware evolves is given and programmable graphics

pipeline is discussed in detail.

2.2.1 The Evolution of Computer Graphics Hardware

In the past decade, graphics hardware only took responsibilities for transferring

pixels data to the display device and decoding video input. At that time, they were

referred to as “VGA controller” and the term “GPU” was not yet introduced. But in the

past few years, graphics hardware has drastically evolved, both in term of complexity and

functionality. Thus, the term “VGA controller” was no longer an accurate description of

graphics hardware. In the late 1990s, NVDIA ® Corporation introduced the term “GPU”

which is an abbreviation for “Graphics Processing Unit” and the term has been used to

refer to graphics rendering hardware since then.

Industry observers have identified four generations of GPU. Each generation

delivers better performance and evolving programmability of the GPU feature set. The

evolution of each generation is as follows.

9

First-Generation GPU

The GPUs in the first generation, for example, NVIDIA TNT2 ATI Rage and

3dfx’s Vodoo3, are capable of rasterizing pre-transform triangles and applying one or

two textures. Although these GPU can reduce the work load on CPU by moving some

tasks to them, they still suffer from two limitations. First, they do not perform vertex

transformation, which is the most time consuming task in graphics pipeline. Second, they

have a limited set of mathematical operation for combining textures or compute final

color of each pixel. As a result, CPU must take care of these works by itself.

Second-Generation GPU

The second generation of GPUs offloads 3D vertex transformation and lighting

(T&L) from CPU which used to be the trademark of workstation GPU. Although, the

coming of these features make PC’s GPU able to handle 3D applications faster, the set of

math operation for combining textures and coloring pixels are still limited. This

generation is more configurable than the first generation but still not yet programmable.

The examples of GPUs in this generation are NVIDIA’s Geforce 256, Geforce 2, ATI’s

Radeon 7500 and S3’s Savage3D.

Third-Generation GPU

The GPUs in this generation includes NVIDIA Geforce3 and Geforce4 Ti,

Microsoft’s Xbox and ATI’s Radeon 8500. Rather than offering more configurations, the

GPUs in this generation provide truly programmable vertex program. These GPUs let

applications specify their own operation sequence for manipulating vertex data.

Considerably more pixel-level configurability is available, but this mode is not powerful

enough to be considered truly programmable.

Fourth-Generation GPU

This is the current generation of GPUs. The examples of GPU in this generation are

NVIDIA’s Geforce FX, Geforce6, Geforce7 series and ATI’s Radeon 9700 and so on.

These GPUs offer both vertex-level and pixel-level programmability. This level of

programmability opens up the possibility of offloading complex vertex transformation

10

and pixel shading from CPU to GPU. This thesis also makes an advantage from these

programmability features.

2.3 Local Illumination Model

The illumination model for real world lighting involved energy transfer

computation between incident light ray and object surface material. Therefore, the

calculation for accurate illumination is somewhat complicated. In the field of computer

graphics, we use simplified illumination model to represent lighting effects on computer

generated image at interactive time-rate. This illumination model simulates real-world

lighting mechanism by classifying lighting component into three reflection models,

ambient light, diffuse reflection and specular reflection. The following subsections will

discuss about these models in details.

2.3.1 Ambient light

In the real-world, the light ray which emitted from the light source may directly hit

the object surface or indirectly hit by bouncing off more than one surfaces. This bouncing

light is assumed to be so scatter that there is no way to tell its original source. We call this

kind of light ambient light. The ambient light has so many impacts on background

lighting. It is used to illuminate some part of object that cannot be directly lit by light

source. In a basic illumination model, we can incorporate background lighting by setting

a general brightness level for a scene. This produces a uniform ambient lighting that is

the same for all objects. The ambient light illumination equation is represented as follow

aaambient IkI = (2-1)

where Iambient is a resulting intensity from ambient light, k a is the ambient light

reflection-coefficient of surface material and I a is the intensity of ambient light source.

2.3.2 Diffuse reflection

Diffuse reflection (also known as Lambertian reflection) is the light reflection

model which is usedto represent material property of dull or matte surfaces such as chalk.

This model assumes that the incident light is scattered with equal intensity in all

11

directions, independent of the viewing point. The intensity of light reflected from diffuse

reflector can be computed from this equation

)(LNIkI dddiffsuse

rr
•= (2-2)

where Idiffuse is a resulting intensity from diffuse reflection, k d is the diffuse light

reflection-coefficient of surface material, I d is the intensity of a diffuse light coming from

light source, N is the normal vector of the diffused surface and L is a normalized

direction vector which points from current surface position toward light source as shown

in Figure 2-5.

Figure 2-5: Diffuse reflection.

2.3.3 Specular reflection

Specular reflection can be observed as bright spot on a shiny surface (e.g. white dot

on an apple). The specular reflection model is visualized in Figure 2-6. From this Figure,

angle ф is a viewing angle relative to specular-reflection direction, R. L is a unit vector

that point from incident point toward light source, and the normalized vector that directed

to the viewer is represented by V. For ideal reflectors (a perfect mirror), incident light is

reflected only in the specular-reflection direction, and we can see reflected light only

when the viewing direction and reflected direction is coincide (angle ф = 0). For non

ideal reflectors, specular reflection exhibits over a finite field of view around vector R

(shade area in Figure 2-6 (b)). Shiny surfaces have a narrow reflection angle while dull

12

surfaces have a wider one. The intensity of specular reflection from a light source can be

obtained by this equation

 (2-3)

where ns is a specular-reflection coefficient which determined by the type of

surface. A shiny surface is represented by using large value of ns while smaller values are

used for the duller. For a perfect mirror, ns is infinite. A rough surface has ns value close

to 1.

Figure 2-6: Specular reflection model.

2.3.4 Derived local illumination model

By combining previously discuss light reflection models together, basic local-

illumination model can be derived as

specdiffuseambient IIII ++= (2-4)

where I is a resulting light intensity.

For multiple light sources, the resulting intensity at each object surface can be

computed by summing up Idiffuse and Ispec of each light. Equation (2-4) can be rewritten as

follows

Ispec = {
ns

dd RVIk)(
rr

• if 0>• RV
rr

 and 0>• LN
rr

0, if 0<• RV
rr

 and 0>• LN
rr

13

 ∑
=

++=
numlight

i
specdiffuseambient IIII

0

)((2-5)

2.4 Ray-tracing

Ray-tracing is a rendering technique which simulates perception mechanism of

human eyes. In this technique, 3D scene is rendered by casting viewing rays from

observer’s eye through screen pixel, and then tracing their transmission path.

Contributions to the pixel intensity are then accumulated at the intersected point (see

Figure 2-7).

Figure 2-7: Ray-tracing rendering method.

In the case of water-side scene rendering, ray-tracing is used to generate refractive

and reflective image of object on water surface. Figure 2-7 illustrates the approach. When

viewing rays hit water surface, they are separated into two rays; reflected and refracted

(transmitted) viewing ray. After that, we continue tracing these rays and check for their

intersection. The final color of water surface at the incident point is then accumulates by

combining the color of intersection point of each ray. By using this method, the reflective

and refractive image at the water surface can be displayed.

14

Figure 2-8: Rendering method for reflective and refractive image at water surface.

2.5 Projective Texture Mapping

Projective texture mapping is a technique for generating texture coordinates

dynamically via a projection of 3D geometry into a (usually 2D) texture map. This

technique shares the same concept with world-to-window transformation. The object

geometry is transformed from world coordinate to texture space coordinate via the

transformation matrices just like conventional transformation steps discussed in section

2.1.1. However, because the valid range of texture coordinate and window coordinate are

different (range of [0,1] and [-1,1] respectively), some modification of transformation

pipeline must be taken into account. Figure 2-9 shows the comparison between two

rendering pipelines.

15

Figure 2-9: Transformations for Conventional Camera vs. Projective Texture Mapping

From Figure 2-9, when a vertex position passes through “Projection

Transformation” stage, it enters the stage of range modification. After this stage, the

projection space coordinate of that vertex then becomes a texture space coordinate which

is valid for using index texture. Equation (2-6) shows the sequence of transformation

discussed earlier.

(2-6)

16

There are several effects which can be created by projective texture mapping, for

example, rendering projector like effect and shadow casting. In the field of caustics

rendering, some researchers use this technique to simulate effects of water caustics [18].

Figure 2-10 shows some sample of effects created by applying this technique.

Figure 2-10: Sample program using projective texture mapping. The left image shows an image of

texture used to represent projector beam. The right image shows resulting image when this texture is

projected onto teapot.

2.6 Snell’s Law

Snell’s Law describes what happens to the wave at a boundary between two media,

as shown in Figure 2-11. In the case of light wave, the example of this boundary may be

the interface area between water surface and the air. When the wave changing its

medium, its velocity is changed. This change in velocity also changes the moving

direction of the wave. In the case of light wave, we called this phenomenon as fraction.

Snell’s Law is expressed mathematically by Equation 2-7.

TI θηθη sinsin 21 = (2-7)

17

Figure 2-11: Snell’s law.

where η 1 and η 2 are index of refraction of the first and the second medium

respectively. Iθ is an angle of incident. Tθ is an angle of refraction. Generally, the usage

of Snell’s Law in computer graphics is to compute refracted vector T from a given

incident vector I. In order to do this, Equation 2-7 must be revised. Equation 2-8 shows

the revised equation.

INT TI

vrr

2

1

2

1 coscos
η
η

θθ
η
η

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−= (2-8)

2.7 Image Comparison

Image comparison is an error metric used to measure how two images are different

from each other. There are many image comparison techniques. Some methods are

based on comparing color of pixels one by one. The others also use distance between

pixels in the computation. Usually, all the pixels are put into the computation. The

output is the average intensity difference of the two images.

This research uses pixel-by-pixel comparison basis. It is straightforward to tell the

difference between two images by looking at the number of different pixels on the images

and the amount of intensity difference between corresponding pixels. Each pixel in the

two images is tested to find the color difference between each other. The comparison is

18

performed in CIE Luv color model because this model can compute the intensity

difference. If the color is stored in RGB color format, it has to be converted to CIE Luv

format. The formula for finding the average intensity difference between two images is

as follow.

Average intensity difference =
() () ()()

pixels

vvuuLL
pixels

i
iiiiii∑ −+−+− 2

21
2

21
2

21

 (2-9)

where

• pixels is the number of the object pixels in the image.

• iL1 is the L component of the pixel in the first image.

• iL2 is the L component of the pixel in the second image.

• iu1 is the u component of the pixel in the first image.

• iu2 is the u component of the pixel in the second image.

• iv1 is the v component of the pixel in the first image.

• iv2 is the v component of the pixel in the second image.

The average intensity difference has the range between 0 to 580. The value 580 is

the difference between the red color and the blue color. These two colors are the most

distinct colors.

CHAPTER 3

RELATED WORKS

Caustics rendering has been one of the major global illumination rendering problem

for more than a decade. Many algorithms have been developed to simulate this

phenomenon. In this chapter, the previously proposed algorithm which related to this

thesis will be briefly discussed. These works can be categorized into three classes, that is,

ray-tracing based, beam-tracing based and texture mapping based algorithm. The

advantage and disadvantage of each algorithm classes will be described.

3.1 Ray-Tracing Based Algorithm

Arvo [12] rendered caustics using backward ray-tracing algorithm. In this algorithm,

unlike traditional ray-tracing, light rays are traced backward from light sources to the

objects in the scene. This technique can be applied to various global illumination effects.

There are many proposed methods extend from it. Heckbert [13] introduced the adaptive

radiosity textures (rexes) for storing light distribution pattern of diffuse surfaces in the

scene. Mitchell and Hanrahan [14] proposed the method for rendering caustics from

curve reflectors. Jensen [15] developed a flexible global illumination rendering

framework called “Photon Mapping” and demonstrated how to use it to handle caustics

on arbitrary surfaces [16]. Even though these techniques can render realistic caustics,

they require high computational time. There were several proposed methods that

contributed toward the rendering speed optimization of these techniques [1, 2, 3, 4, 5] but

these methods require special hardware setting; therefore, they limit themselves from

being used on ordinary PC. Recently, Shah et al. [8] presented real-time caustics

rendering algorithm based on backward ray-tracing. In order to speed up the algorithm,

they created position texture and used it to store 3D world coordinate of each object in

the scene, then, performed the intersection tests in the image-space. The caustics pattern

is rendered by using point primitive. Though the main concept of their algorithm is

similar to our work, the whole idea has so many differences in details. Besides, their

algorithm suffers from alias problem, just like any other image-space algorithms.

20

Wand et al. [9] presented real-time caustics rendering method by discretizing the

specular surfaces into sample points and projecting incoming light through these points to

the diffuse receiver. In order to receive more accurate result, the large number of sample

points is required, thus, this prone to scalability problem.

Figure 3-1: Results from Wand et al. proposed algorithm. The quality of resulting images is

dramatically improved when more sample points used. Figure (a) Show the case when 100

sample points are used, Figure (b) 1,000 sample points and Figure (c) 10,000 sample points.

3.2 Beam-Tracing Based Algorithm

Watt [17] introduced underwater caustics rendering algorithm using backward

beam-tracing, which was extended from the algorithm originally proposed by Heckbert

[18]. Rather than tracing individual light rays, the backward beam-tracing traces light

beam that emerge from light source and then refracts them at each polygons of water

mesh. The caustics patterns are generated by accumulated light intensity that each

receiver polygons receives from each participated light beam. Though the beautiful

images of underwater scene can be generated from this algorithm, the computation time

is also extremely long. The main problem about beam-tracing based caustics rendering

algorithm is the intersection test between light beam and diffuse receiver. Nishita and

Nakamae [19] solved this problem by subdividing light beam and using scan-line

algorithm to determine intersection point. Their algorithm was then improved by Iwasaki

et al. [20]. Iwasaki optimized the previously proposed algorithm by using hardware

stencil buffer and alpha blending function to calculate caustics pattern. In the following

works, Iwasaki et al. applied volume rendering technique to handle the case where the

observers are above the water [10]. Their proposed method creates slice image of each

receiver object in which the caustics pattern that cast on these objects can be depicted by

21

performing the intersection test of light beam on these images. They continue working on

this method by presenting the extended algorithm for casting caustics from arbitrary

refractive medium [11]. By performing intersection test on the collection of slice images

instead of object mesh, the computation time is greatly reduced. However, these

algorithms require large amount of texture memories; as a consequence, they are not

suitable for using with complex scene.

3.3 Texture Mapping Based Algorithm

There are several methods developed for underwater caustics rendering. Stam [7]

simulated underwater caustics by generating caustics textures and mapping them onto

objects in the scene, Crespo [6] has proposed a method that was extended from this

concept and implemented it on programmable graphics hardware, although these methods

can simulate underwater caustics in real-time, the results are not visually correct due to

the fact that they perform light intensity distribution calculation on flat surface.

Figure 3-2: Example result from texture mapping based technique (image by Jose Stam).

CHAPTER 4

REFRACTIVE WATER CAUSTICS RENDERING METHOD USING

LEVEL MAP

4.1 Algorithm Overview

This chapter explains refractive water caustics rendering using level map method.

In order to optimize the rendering speed of caustics rendering algorithm, the method for

testing intersection between light beam and objects must be improved. Iwasaki et al. [9]

solved this problem by using volumetric textures. These textures are used to represent an

object and the intersection testing is performed on these textures instead of object

polygon. Because the number of textures used in this step is much less than the number

of polygons, the number of iteration steps required for finding intersection point are

extremely reduced. However, this algorithm still has a memory usage problem because

large amount of texture memory is required to store these images. From our observation,

the heart of this strategy is a usage of these textures as a reference plane for intersection

testing, not textures itself. Therefore, the volumetric texture is absolutely not necessary

for testing an intersection However, if the plane does not contain any information about

an object, how do we know when light beam will hit the objects? That is where level map

come into play. In this thesis, the problem mentioned above is solved via the use of

“Level Map”.

Level map referred in this thesis is a color texture which has a depth information

associates with it. A level map is consisted of three components, diffuse map, position

map and reference planes. The level map plays an important role in the intersection test

process. By applying level map to this process, the water-side scene with caustics can be

rendered in interactive time. A Brief overview of level map rendering algorithm will be

given shortly. In the first step of algorithm, the reference planes are defined for each

object. Reference planes are a set of planes which virtually slices along some given major

axis of object, as shown in Figure 4-1. These planes are used as “reference point” in the

intersection test. After reference planes are defined, position map is then created. In this

thesis, position map is a 2D texture storing position of every pixels of caustics receiver.

23

When the position map is created, the algorithm then proceeds to the next step. In this

step, the refracted light ray at every water vertex is determined. These rays are used to

form a collection of light beam called illumination volume which will be used in the

intersection test step. In the intersection test step, intersection points are estimated by

using position map and reference planes. These intersection points are used for forming

intersection area between light beam and object surface. In the next process, we calculate

light intensity distribution for each intersection area and store the result in color texture

called caustics map. The caustics map is used to casting caustics to the scene in the

caustics casting step. Finally, the result is then rendered to user screen. In the following

subsection, we will describe the caustics casting process in detail.

Figure 4-1: Reference plane

4.2 Level Map Creation

The level map creation process begins with the creation of reference planes and

then position map. The process for creating these components will be described in the

following subsection.

4.2.1 Reference Plane Creation

The reference planes are created by determining a bounding box for each object and

slicing this box along a major axis. The creation process of reference planes can be

divided into two sub-processes, that is, bounding box creation and plane slicing. The

24

bounding box creation is a step for specifying reference plane dimension and orientation.

After bounding box is created, it is then sliced along its local y axis. We will use these

sliced planes as our reference plane. The discussion about each process is given below.

Bounding Box Creation

The first step in the reference planes creation process is bounding box creation. In

the field of computer graphics, the bounding box refers to a volume specifying box shape

bounding region of an object. Figure 4-2 shows a bounding box of a sphere. In the

reference planes creation process, this bounding box is used to specify reference plane

dimension and orientation, which will be discussed in the upcoming subsection. This

bounding box will also be used to define orthogonal view-volume which used to create

position map discussed in section 4.2.2.

Figure 4-2: Bounding box.

A bounding box is defined by its dimension and orientation. As shown in Figure 4-2,

this bounding box has width, height and depth equal to w, h and d respectively. Its

orientation is defined by vectors U
v

, V
v

 and W
v

. These vector are referred to local axes of

this bounding box. The bounding box creation algorithm is divided into two steps. First

we must determine the orientation of a box. Next, we specify its dimension.

In order to get the most accurate result, the reference planes must be as

perpendicular to refracted light ray as possible. Otherwise, some light beam will miss the

plane and undesirable result may be noticed, as shown in Figure 4-3.

25

Figure 4-3: Problem when planes are not aligned.

Figure 4-4: Refracted light ray at wavy surface.

Considering this issue, a problem arises, that is; how do reference planes aligned?

When light ray hits the wavy water surface, it can be refracted in any direction, thus, it is

difficult to determine which direction will be used to align the plane Figure 4-4 illustrates

this problem. In this research, this problem is addressed assuming that the water surface

is flat. In the case of flat surface, the refracted ray can be easily determined. The

algorithm for reference plane alignment is as follows. Let S be a parallel light source and

26

B be a bounding box of an object which have vectors U
v

, V
v

 and W
v

refer to its x, y and z

local axis respectively. We define the direction of light rays emitted from S as vector L
r

.

In order to compute refracted vector T
r

, the vector L
r

 will be used as incident vector in

Equation 2-8. After T
r

 is determined, we then align the bounding box B by setting V
r

 to

be equal to T
r

− . Figure 4-5 visualizes the reference plane alignment process we are

mentioning.

Figure 4-5: Reference plane alignment process.

In our algorithm, we do not care about how vector U
r

 and W
r

 of B is specified,

therefore, we just assign them randomly. The vector U
r

and W
r

of B are determined by

selecting a random vector N
r

such that N
r

must not be parallel to V
r

. Then we compute U
r

and W
r

 from this equation

27

VUW

NVU
vrs

vrr

×=

×= (4-1)

It is safe to randomly specify these two vectors, because no matter how they are

aligned, the resulting planes can perform its task perfectly, as shown in Figure 4-6. In this

figure, the various plane’s alignments are shown. As you can see, no matter how U
r

 and

W
r

 are specified, they cause no problem with our reference plane creation process.

Figure 4-6: Plane alignment with various U
r

 and W
r

 specifications.

The algorithm explained earlier, only handles the case when parallel light source is

used. When light source is a point light, some modification must be taken. Because, in

the case of point light source, the light source itself does not contain any information

about light direction. Thus, the direction of incident light must be determined separately.

For the point light source, the direction of incident light is determined by shooting a light

ray from light source to the origin point of caustics receiver objects. Let us refer to this

light as I
r

. After I
r

 hit water surface, the refracted vector T
r

 is then computed from

Equation 2-8 as before. The modified version of the algorithm is shown in Figure 4-7.

28

Figure 4-7: Reference plane alignment process (point light source version).

After bounding box is aligned, its dimension is determined. Let vi be the ith vertex

of object O and di be a distance from vi to the point at origin 0P
r

, the algorithm begin by

first transforming every vertex to local coordinate space of the object which is expressed

by vectors VU
rr

, and W
r

computed earlier. Next, we search through every vertex to find

three vertices vx, vy and vz which are the vertices located in the most distance along local

axis x, y and z respectively. The dimension of our bounding box can be determined from

this equation:

29

||||2

||||2

||||2

0

0

0

PPd

PPh

PPw

z

y

x

rr

rr

rr

−=

−=

−=

 (4-2)

where Px, Py and Pz are coordinates of vx, vy and vz respectively. But because we

calculate these values at local coordinate space, the coordinate of 0P
r

 will be equal to

(0,0,0). Thus, Equation 4-2 can be revised as follow:

||||2

||||2

||||2

z

y

x

Pd

Ph

Pw

r

r

r

=

=

=

 (4-3)

Plane Slicing

After a bounding box is created, the reference planes are then defined by slicing the

bounding box along its transformed y axis. Every reference plane used in this thesis can

be easily defined by plane equation shown below:

DkNjNiNRP zyx +++=
vvv

 (4-4)

where Nx, Ny and Nz are coefficients of unit vectors i, j and k of plane’s normal

respectively and D is the distance between a reference point on a plan and the origin.

Although this equation is sufficient for representing our reference planes, it is easier to

represent them in bounding box’s space. Because reference planes are aligned by making

them perpendicular to the bounding box’s local y axis, each normal vector now

becomes)0,1,0(N
r

. Equation (4-4) is revised as follows:

DjRP +=
v

 (4-5)

From equation above, we now can create reference planes. Assuming that we have a

bounding box B and want to slice it to n pieces which will create n + 1 planes, the

definition of the ith reference plane can be computed from the following formula:

iDjRP +=
v

 (4-6)

30

where Di is the distance from a reference point on a plane ith to the origin.

Parameter Di from Equation (4-6) can be computed from Equation (4-7) to Equation (4-9)

presented below:

))1((max −×−= isDDi (4-7)

n
hs = (4-8)

2max
hD = (4-9)

where Dmax is a distance from the most distance plane to the origin and s the

displacement between each plane. The process of plane creation is presented in Figure

4-8 and Figure 4-9.

Figure 4-8: The initial step for plane slicing.

 (a) (b) (c)

Figure 4-9: Process of reference plane creation. Figure (a) shows the most distance plane which will

be use as a reference. The bounding box is then sliced in Figure (b). Figure (c) shows a final result.

31

4.2.2 Position Map and Diffuse Map Creation

After the reference plane is specified, the algorithm proceeds to the next step, that

is, position map and diffuse map creation. These two textures store depth and diffuse

color value of an object respectively. These textures play an important role in our caustics

casting process which will be described shortly. The position map is created by rendering

object by using orthographic projection and stores its depth to the texture memory.

Diffuse map also uses the same strategy, however, instead of storing depth, it store

diffuse color. In order to create these two maps, we must first determine the dimension

and orientation of orthographic view volume. The view volume OV of an object is

defined by:

),,,,,,,,(NVUfpnpbptprplpOV
rrr

= (4-10)

where:

• lp is the coordinate for the left clipping plane.

• rp is the coordinate for the right clipping plane.

• tp is the coordinate for the top clipping plane.

• bp is the coordinate for the bottom clipping plane.

• np is the coordinate for the near clipping plane.

• fp is the coordinate for the far clipping plane.

• U
r

 is the vector representing local x axis for the view volume.

• V
r

 is the vector representing local y axis for the view volume.

• N
v

 is the vector representing local z axis for the view volume.

The dimension of OV can be easily specified by applying the dimension of the

bounding box B created in the previous step. That is, we define the dimension of OV by

applying this equation:

32

2

2

2

2

2

2

dfp

dnp

htp

hbp

wrp

wlp

=

−
=

=

−
=

=

−
=

 (4-11)

where w, h, and d is a width, height, and depth of B respectively.

In the case of orientation, it is defined the same way as dimension. But, we cannot

directly map U
r

, V
r

, and N
v

to x, y and z of B. In order to create position map, we want to

render the object as if we are looking along its negative y axis. Figure 4-10 illustrates this

issue. In this figure, the desired result is as figure (a). But if we define the orientation of

OV by directly mapping with local axis of B, the camera will look in the wrong direction

as shown in figure (b).

(a) (b)

Figure 4-10: View volume specification for position map rendering.

Equation 4-13 shows the specification of OV’s orientation.

33

yN

zV

xU

rr

rr

rr

−=

=

=

 (4-13)

After OV is specified, the object is then rendered to the depth and color texture

memory and the creation of position and diffuse map are finished. The example of

position map is shown in Figure 4-11.

Figure 4-11: Example of position map.

4.3 Illumination Volume Creation

Figure 4-12: Illumination volume.

34

When light passes through the boundary between air and water, the incident light is

refracted. The caustics pattern are formed by multiple refracted light rays converge to a

single point on diffuse object geometry. This behavior can be emulated by representing

water surface as triangular mesh. When the incident light rays intersect with each water

triangle, they create refracted light beam. We called this beam illumination volume, as

shown in Figure 4-12. In this process, we let vi represent the ith vertex and Fj is the jth

polygon face of water mesh. Water polygon Fj is a set of three integer value l, m and n

where these values are indexing number of vertex forming this face. iI
r

 and iT
r

 is an

incident light ray and a refraction vector at vertex vi. And ILj is an illumination volume at

the jth polygon face. The illumination volume creation process begins with the calculation

of iT
r

. We calculate iT
r

 by using Equation 2-8. After iT
r

 is determined, we extrude them

by setting its size to infinity. The illumination volume ILj is then defined by following

equation:

 },,{ nmlj TTTIL
vvv

= (4-14)

where l, m and n jF∈ . Figure 4-13 shows the representation of illumination volume.

Figure 4-13: Illumination volume representation.

35

4.4 Intersection Testing

In the intersection test step, the level map created in previous steps is used for

estimating intersection point. The intersection testing algorithm proceeds as follows.

Assuming there is an object O which is associated to reference planes RP and position

texture PT. The algorithm begins by casting every refracted light ray Ti through each

plane Pj in a set RP. And for each intersection point P(x, y, z)ij, we transform them into

texture space coordinate. This point then becomes a point P(x’, y’, z’)ij in the texture

space coordinate. The x’ and y’ coordinate are used to index appropriate entry of PT. We

refer to this entry as p’. After p’ is retrieved, it is then compared against value of z’. If the

differences between this two values are less than some specific threshold ε, this

intersection point is then accepted, as shown in Figure 4-14. Normally, we set this

acceptance threshold to be equal to the half-distance between two reference planes. If the

gap between plane P1 and plane P2 have a length d then the value of ε will be equal to:

2
d

=ε (4-15)

Figure 4-14 visualizes the concept of intersection test algorithm explained here.

Figure 4-14: Diagram of the intersection test algorithm. The opaque lines represent reference

planes, dash lines represent acceptance range of each reference plane and gray curve represents

object surface. From this image, the intersection point that will be accepted is the second point.

36

4.5 Caustics Map Creation

Caustics map is a color texture which is used to store light intensity distribution on

diffuse receiver. In order to cast caustics pattern onto receiver surface, each receiver must

have its own caustics map. The caustics map creation process begins with finding

intersection area of each illumination volume and object geometry. After we find the

intersection areas, we compute light intensity for each of them. The intensity of

intersection area can be computed from radiant equation:

td

t
c A

I
θ

φ
cos

= (4-16)

where Φt is the total flux at intersection area, Ad and θt are the angle between the

refracted light ray and the normal of intersection area (see Figure 4-12). The value of Φt

in Equation (4-1) can be obtained by finding total flux Φi that passes through water

triangle. When light travels through water, some of its energy are absorbed. Thus, the

relationship between Φt and Φi can be written as:

)(Kd
it e −= φφ (4-17)

where K is the absorption coefficient and d is the distant light travels through the

water. Let Ii be incident light intensity. By substituting Equation 4-1 with Equation 4-2

and representing Φi in term of Ii, we get:

)()
cos
cos

(Kd

td

iw
ic e

A
A

II −=
θ
θ

 (4-18)

where Aw is an area of water triangle and θ i is an incident light angle. By

accumulating the intensity of each participated intersection area, caustics pattern can be

depicted.

In order to render an image of caustics pattern on underwater receivers, the

intersection area between each illumination volume and each reference plane must be

found. After that, the intersection triangle of each area is then drawn to a caustics map by

using additive blending function. The color of each triangle vertex is determined by

37

calculating intensity at the intersection point. After the intersection triangle is rasterized,

each pixels of the triangle is transformed into the position map coordinate. The process of

transformation from world coordinate to texture coordinate has already been described in

the topic of “Projective Texture Mapping” in section 2.6. The transformed coordinate of

this pixel will be used to index the value of position map. This indexed value is then

compared with pixel’s transformed z coordinate. If the differences of these two values are

less than specific threshold, this pixel is accepted; otherwise, it will be discarded. When

this process finishes, the caustics map is completed. This texture will be used in the final

step of underwater caustics rendering process, that is, caustics casting. This process will

be discussed in detail in the upcoming sections.

4.6 Caustics Casting

To create complete image of underwater scene, the caustics due to refractive light

beam must be cast onto object surface. This can be done by applying the concept of

projective texture mapping. After caustics intensity is acquired from caustics map, the

final color of each pixel on diffuse receiver is computed from following equation:

adco IIII +×=)((4-19)

where Io is the final color of the object Id is diffuse light intensity and Ia is ambient

light intensity. The following steps describe how caustics can be casted.

1. Render caustics receiver objects by applying texture space transformation

matrices to them.

2. Use transformed position to index caustics map previously created in

“Caustics Creation” step.

3. Compute color by using Equation 4-4.

Figure 4-15 shows the complete list of process for casting caustics

38

Caustics Rendering

1. Create illumination volume for each water triangle

2. Loop through these steps for each reference plane

 2.1. Find intersection area between illumination volume and reference plane

 2.2. Draw intersection triangle by using additive blending function. Specify the color of triangle

with light intensity at this intersection area.

 2.3. Repeat following process for each fragment of intersection triangle

 2.3.1. Transform each fragment to depth texture space and index depth value.

 2.3.2. Compare indexed value and the transformed z coordinate. If the differences of these two

values are less than specific threshold, we accepted it; otherwise, we discard it.

 3. Render the complete scene with caustics by projecting caustics map to all caustics receivers.

Figure 4-15: Caustics rendering procedure

4.7 Algorithm Improvement

The algorithm explained so far can cast underwater caustics quite well but not

perfect. To enhance the algorithm, we must make it able to handle multiple light sources

and automatically slice plane. The modification process for making algorithm handle

these two cases will be made in upcoming subsections.

4.7.1 Handle Multiple Light Sources.

Figure 4-16: Problem when the plane is not correctly aligned.

The overall process discussed is based on the assumption that there is only one light

source in the scene. The issue this thesis not yet covered is the rendering method for

caustics casted from multiple light sources. This issue leads to two new problems. That is,

39

how many set of reference planes should each object have and are there any solutions to

align reference planes. In order to answer the first question, the second question must be

answered first. If we can find any solution to align reference planes such that they are

perpendicular for every light source, there is no need to create multiple set of reference

planes. It is obvious that there is no way to align the planes to make them perpendicular

to every light source. And if we choose to fix reference planes to some specific direction,

the crack will be noticed (shown in Figure 4-16). This means that, the reference plane

must be aligned to every light source. From this reason, this thesis uses multiple reference

planes. For each object the number of a set of reference planes its owns must be equal to

the number of light source. This issue leads to some modifications of algorithm. The

Equation 4-19 then becomes:

∑
=

+×=
numlight

i
adco IIII

0
)((4-20)

while Ic and Id is an intensity from all caustics map and diffuse light sources. And

the modified version of caustics rendering process is shown in Figure 4-17.

Figure 4-17: Caustics rendering process for multiple light sources.

Caustics Rendering

1. Create reference planes for each light source.

2. Loop through these steps for each light source:

2.1. Create illumination volume for each water triangle.

2.2. Loop through these steps for each reference plane:

2.2.1. Find intersection area between illumination volume and reference plane.

2.2.2. Draw intersection triangle by using additive blending function. Specify the color of

triangle with light intensity at this intersection area.

2.2.3. Repeat following process for each fragment of intersection triangle.

2.2.3.1. Transform each fragment to depth texture space and index depth value.

2.2.3.2. Compare indexed value and the transformed z coordinate. If the difference of

these two values are less than specific threshold, we accepted it; otherwise, we

discard it.

3. Render the complete scene with caustics by projecting caustics map to all caustics receivers.

40

4.7.2 Smart Slicing

The process of plane slicing described in section 4.2 is performed by letting users

specify number of reference planes they prefer and slicing object’s bounding box by

making every plane have a uniform distance between their neighbor. In some situation,

this slicing strategy works fine. But in most situations, it is not necessary to equally slice

the box. The reason is, reference planes used in this thesis are acted as reference points

for polygon near them. If every plane represents to the same amount of polygon, using

this slicing strategy for creating reference plane is reasonable. However, this situation

rarely exists in practice; it does not make any senses to slice the plane the way shown in

Figure 4-18. Figure 4-18 (a) shows a position map of a sphere. The dark gray zone

represents relative position of each pixel of the sphere as viewed from light source. The

darker the pixel, the closer it is. Notice that, there is no light gray pixel present in this

figure. This means that, there are some parts of object which cannot be seen form light

source. This is shown in Figure 4-18 (b), where the dashed lines represent reference

planes, the gray zone of sphere is absolutely occluded form the light source, thus, the

existence of plane 3 is absolutely useless. From this reason, the algorithm must be

improved to make them more suitable for generic cases.

41

(a)

(b)

Figure 4-18: Problem when plane is equally sliced.

Because we do not want to position planes in the regions where light beam cannot

intersect, the most important thing we must do is to find out where those regions are

located. We, therefore, developed a new algorithm for plane slicing called “Smart Slice”.

The smart slice algorithm proceeds as follows. First we uniformly divide level map into

some amount of intervals. We refer to each interval as a depth level. The number of

42

divided depth level is specified by user. Then we collect data from the position map to

profile the pixel density for each level. Therefore, the level which contains no data will

be known. In this research, we refer to such a level as “Empty Level”. We then classify

each empty level by setting every nearby empty level to the same group. By doing this,

we are able to know which depth level is not necessary to position planes. Figure 4-19

shows this idea. In this figure, the 4th and 5th level of a level map contain no pixel, thus,

we do not need to assign any reference plane in these two levels.

Figure 4-19: Bar graph represents pixel’s density for each depth level.

After we can determine the regions where reference planes are unnecessary, the

next important task is to determine the position of each reference plane. As in a case of

empty level, we refer to a level which there are some pixels contained as “Valid Level”.

By grouping nearby valid level together, we can now determine the region where the

reference plane should exist.

By using this new approach, the new method for positioning reference plane must

be invented. The previous method assumed that object’s bounding box is a single piece

box. However, because we now know that there might be some depth level absolutely

occluded from light source, it is not necessary to represent this bounding box into single

piece. The new bounding box is represented by dividing the original box into sub-boxes.

43

These sub-boxes position are determined from sets of valid level created from previous

step. Assuming that we want to create level map for object in Figure 4-19, after position

map is created and analyzed, the height of bounding sub-boxes be computed from this

equation:

ii hrhh ×= (4-21)

 where h is the height of bounding box computed from Equation 4-3 and hri is a

height ratio of ith sub-box. The value of hri is computed by counting number of valid

level in each set and dividing it with a number of total depth levels. After the dimension

of each sub-box is computed, we then specified reference planes for every box. In this

new plane slicing process, we let user specify the acceptance threshold they need. Let ε

is an acceptance threshold users specify, the number of reference plane in for each sub-

box is computed as follow:

ε×
=

2
i

i
hr

n (4-22)

After the number of reference plane is determined, the plane slicing process

discussed in section 4.2.1 is then used to create reference plane for this object.

CHAPTER 5

ALGORITHM ANALYSIS

We have already described our caustics rendering algorithm in the previous chapter.

In this chapter, some comparison analysis between our algorithm and previously

proposed volumetric texture based rendering technique will be provided. These

comparisons will mainly focus on efficiency of the algorithm; in term of rendering speed

and memory consumption. The next section will provide a full description of how

memory usage is greatly reduced by using our algorithm. And the final section will

analyze the rendering process of each rendering algorithm in details and make a

conclusion why our algorithm is the faster.

5.1 Memory Usage Comparison

Volumetric texture based rendering technique [10], [11] overcomes the problem of

interactive caustics rendering by using a series of sample plane for estimating intersection

point. As described in section 4.1, because the number of these sample planes is much

less than the number of objects polygon, testing intersection this way is much faster than

per vertex basis. At the same time, the usage of color texture for representing sample

plane causes a large memory consumption problem. Consider the case where there are

100 objects in the scene, each object owns 100 sample planes and each sample plane is

represented by a 16 bits color texture with 512 bytes width and 512 bytes height; it is

obvious that enormous amount of memory is required to handle this scene (100 x 100 x

512 x 512 x 2 bytes). Compare to our proposed technique, it requires only 2 textures per

objects no matter how many reference planes used. To handle a scene mentioned above,

assuming that both color and depth textures use 16 bits format, our algorithm uses only

100 MB rather than those gigantic 5000 MB required in the first algorithm. There is only

one situation where our algorithm uses more memory than volumetric based algorithm,

that is, when each object owns only one plane. In this situation, however, both volumetric

based and our proposed algorithms are not perfect choices. The best candidates are

texture mapping based techniques which are described in section 3.3. Because if only one

plane is supplied for intersection testing, both algorithms give the result which has no

45

differences with the texture mapping based methods, besides, they require extra

computational step. From this reason, it can be safely concluded that, when comparing

with volumetric texture based algorithm, the algorithm proposed in this thesis has a better

memory management. Although there is a rare situation where volumetric based

outperform our algorithms, it is not a wise decision to choose both algorithm for

generating such caustics in the first place.

5.2 Rendering Speed Comparison

In this section, we will compare the rendering time from each three rendering

algorithms. The comparison performed by a benchmark program developed for this

purpose. It is written in C++ and OpenGL API. The input of this program is a set of 3D

object model created from external authoring tools. The number of slice plane used for

each algorithm is used as an independent variable. Controlled variable for this program is

a water mesh and its wave function. The outputs are resulting image of each model and

the rendering time for each image. This program run on Intel® Pentium® IV 2.8 GHz

CPU PC with 1.25 GB system RAM and NVDIA® Geforce® 6800 display card with 128

MB of memory. In the following sub sections, we will give a description of render

procedure of each rendering algorithm. And then some of the experimental results are

shown in the followed subsection. The final subsection analyzes result and gives a

detailed discussion of how our rendering technique can cause rendering speed gained.

5.2.1 Volumetric Based Rendering Procedure

Figure 5-1: Flowchart shows rendering passes of volumetric based technique.

46

Figure 5-1 shows broad scope of volumetric based rendering procedure. It begins

with sample plane locating. Sample planes are located by using the same strategy of

locating reference plane as described in section 4.2.1. After sample planes are defined,

the next step is an illumination map creation process. Illumination map in this rendering

technique is a volumetric texture which stores a set of slice images of diffuse receiver.

The creation process of these slice images is performed by drawing the portion of the

receiver surface onto nearest sample planes. In this drawing process, the near and far

clipping plane of the orthogonal view volume is defined by the distance half way through

the previous and next sample plane respectively. Figure 5-2 shows this drawing operation.

In this figure, all sub surfaces that exist between the dashed box are rendered to the

second sample plane. A flowchart of illumination map creation process is shown in

Figure 5-3.

Figure 5-2: Illumination map creation.

After the illumination map is created, the algorithm proceeds to caustics map

creation step. Caustics map is created by finding intersection point between each

illumination volume and sample plane and rendering intersection triangle onto a color

texture. After caustics map is created, it is then multiplied with illumination map and the

result is stored back to the illumination map again. This process loops until every

illumination map has caustics pattern casted on them. When it finishes, all illumination

maps are combined together to create final result. Flowchart in Figure 5-4 shows the

inner process of how caustics map is created.

47

Figure 5-3: Flow chart shows illumination map creation process.

Figure 5-4: Caustics map creation process.

48

5.2.2 Level Map Rendering Procedure with Normal Slicing

Figure 5-5: Rendering passes of normal slicing algorithm.

The process for rendering caustics using our level map algorithm has been already

described in detailed in Chapter 4. It begins with reference plane defining and follows by

position and diffuse map creation. The creation process of these two textures is just two

rendering passes which use color and depth texture as a render target respectively. In

some modern graphics hardware, these processes can be done in a single rendering pass

by using multiple render target (MRT) feature. When using MRT, the rendering process

presented in Figure 5-5 can be rewritten as shown in the following figure.

Figure 5-6: Rendering passes of normal slicing when using MRT.

49

After diffuse and caustics map are created, the algorithm proceeds to caustics map

creation process. This process uses the same procedure as in volumetric based technique.

Its flow chart is shown in Figure 5-7.

Figure 5-7: Flowchart shows normal slicing caustics map creation procedure

50

When finish with caustics map, same process is applied to combine caustics map

with diffuse map.

5.2.3 Level Map Rendering Procedure with Smart Slicing

Figure 5-8: Rendering procedure of smart slicing.

As shown in Figure 5-8, smart slicing rendering procedure is very similar to normal

slicing except that there is an additional depth profiling process. Depth profiling process

is performed by reading depth data from graphics hardware depth buffer and then looping

through every pixel for profiling it distribution density. A flowchart in Figure 5-9 shows

operation step of this process.

51

Figure 5-9: Depth profiling.

After depth profiling is finish, the caustics map creation is performed as in the other

rendering algorithm. Flowchart in Figure 5-7 is, again, used to represent rendering step

for caustics map creation.

5.2.4 Algorithm Comparison

Two experiments are performed in this thesis. The objective of the first experiment

is to compare the rendering time between level map and volumetric based algorithm. The

second experiment compares the rendering time when smart slicing is turn on and off.

The test cases for both two experiments use 30 different input models as inputs. For

clarity of comparison, results from three input models, teapot, sphere and dolphin, are

chosen to be presented and discussed here. The experimental program is written in C++

using OpenGL API and run on Intel® Pentium® IV 2.8 GHz CPU with 1.25 GB system

RAM and NVDIA® Geforce® 6800 display card with 128 MB of memory. To achieve

interactive rendering time rate, the proposed rendering technique is implemented by

52

taking an advantage of programmability of the GPU. We use NVIDIA® Cg® shader to

create vertex and fragment program.

Experiment 1

In this experiment, we have an assumption that, when compare to volumetric base

algorithm, our level map algorithm can handle an underwater scene with caustics faster.

This assumption comes from the algorithm analysis discussed in previous sub sections.

When take a close look at flowcharts in Figure 5-1 and Figure 5-3, we can evaluate

equations for determining rendering time for both algorithms as follows:

)()()()(TCTCTILTVT ++= (5-1)

)()()()(TCTCTLTLMT ++= (5-2)

where:

• T(V) is the rendering time for overall caustics rendering process used in

volumetric algorithm.

• T(IL) is the processing time used for illumination map creation step.

• T(C) is the processing time used for caustics map creation step.

• T(TC) is the processing time used for texture combining step.

• T(L) is the processing time used for level map creation step.

As we discussed earlier, the process for caustics map creation and texture

combining used in both algorithms are the same. Thus, the rendering time for these

processes can use the same variable in both equations. From this point, if we want to

compare the rendering time of both algorithms, we must compare the processing time

used for illumination map creation with the rendering time used for level map creation.

As shown in Figure 5-1, the illumination map creation process can be further divided into

two sub processes; plane defining and slice image creation. Thus, we can re assign T(IL)

in Equation 5-1 as:

)()()(ITPTILT += (5-3)

53

where T(P) is the processing time used for plane defining, and T(I) is the processing

time used for slice image creation. The variable T(L) in Equation 5-2 can be replaced by:

)()()()(PMTDMTPTLT ++= (5-4)

where T(DM) and T(PM) are the processing time used for diffuse map and position

map creation respectively. But as we have already discussed, the diffuse map and

position map can be created in a single rendering pass. Thus, the Equation 5-4 can be re

written as:

)()()(DPTPTLT += (5-5)

As shown in Equation 5-3 and Equation 5-5, the major differece of both algorithms

are the diffuse map and caustics map and slice image creation step. Diffuse map and

position map in level map technique are color texture and depth texture respectively. And

slice images for illumination map are color textures. The number of slice images used in

volumetric based algorithm depends on the number of sample planes used for intersection

test. This means that, if 50 sample planes are required, the 50 slice images must be

created. It is obvious that the processing time for illumination map creation has a direct

variation with number of sample planes. On the other hand, the level map algorithm

needs only two textures no matter how many planes are needed. From this reason, we can

safely conclude that:

)()(ITDPT <= (5-6)

and:

)()(VTLMT <= (5-7)

Table 5-2 shows a number of polygon counts of each model. Figure 5-10 shows line

graphs comparing results from this experiment.

54

Table 5-1: Results from experiment 1

Rendering Time
Teapot Dolphin Sphere Num Plane

Level Map Volumetric Level Map Volumetric Level Map Volumetric
3 0.068 0.13 0.063 0.12 0.063 0.13
4 0.083 0.184 0.08 0.16 0.079 0.184
5 0.099 0.22400001 0.095 0.199 0.093 0.22400001
6 0.115 0.27900001 0.111 0.24 0.109 0.27900001
7 0.12899999 0.31 0.127 0.279 0.123 0.31
8 0.14399999 0.361 0.142 0.33 0.14 0.361
9 0.16599999 0.39700001 0.15899999 0.353 0.156 0.39700001

10 0.17900001 0.42699999 0.175 0.396 0.17 0.42699999
11 0.191 0.46900001 0.19 0.433 0.18700001 0.46900001
12 0.205 0.53600001 0.229 0.476 0.20299999 0.53600001
13 0.22499999 0.57599998 0.222 0.513 0.21699999 0.57599998
14 0.245 0.61799997 0.244 0.553 0.236 0.61799997
15 0.25400001 0.66000003 0.25 0.592 0.25 0.66000003
16 0.26499999 0.72500002 0.26699999 0.631 0.264 0.72500002
17 0.285 0.74900001 0.28 0.67 0.28099999 0.74900001
18 0.29499999 0.75300002 0.29699999 0.711 0.29699999 0.75300002
19 0.315 0.83999997 0.31299999 0.75 0.31200001 0.83999997
20 0.32699999 0.86699998 0.33500001 0.789 0.324 0.86699998
21 0.34799999 0.87599999 0.36300001 0.829 0.34200001 0.87599999
22 0.359 0.95999998 0.366 0.867 0.35499999 0.95999998
23 0.382 0.99699998 0.38499999 0.907 0.37200001 0.99699998
24 0.39199999 1.09300005 0.39199999 0.945 0.389 1.09300005
25 0.40900001 1.08099997 0.40599999 0.989 0.40099999 1.08099997
26 0.42199999 1.14999998 0.42500001 1.028 0.41800001 1.14999998
27 0.43799999 1.14400005 0.442 1.064 0.43700001 1.14400005
28 0.44999999 1.222 0.45500001 1.106 0.447 1.222
29 0.47 1.26400006 0.47 1.149 0.47499999 1.26400006
30 0.48300001 1.36199999 0.484 1.184 0.479 1.36199999
31 0.51200002 1.37100005 0.51300001 1.222 0.495 1.37100005
32 0.51300001 1.39100003 0.51999998 1.263 0.50999999 1.39100003
33 0.52999997 1.42900002 0.52899998 1.302 0.528 1.42900002
34 0.54500002 1.47500002 0.54900002 1.347 0.53899997 1.47500002
35 0.56800002 1.55900002 0.56300002 1.409 0.55900002 1.55900002
36 0.59799999 1.53699994 0.57800001 1.421 0.57200003 1.53699994
37 0.59200001 1.63600004 0.59399998 1.477 0.588 1.63600004
38 0.60799998 1.66900003 0.61000001 1.497 0.60100001 1.66900003
39 0.62199998 1.75300002 0.62599999 1.544 0.63499999 1.75300002
40 0.667 1.73599994 0.66500002 1.591 0.63700002 1.73599994
41 0.653 1.81200004 0.671 1.682 0.64999998 1.81200004
42 0.67699999 1.82500005 0.67400002 1.664 0.667 1.82500005

55

Rendering Time
Teapot Dolphin Sphere Num Plane

Level Map Volumetric Level Map Volumetric Level Map Volumetric
43 0.69599998 1.91100001 0.68800002 1.701 0.704 1.91100001
44 0.69700003 1.91299999 0.704 1.739 0.69800001 1.91299999
45 0.71499997 1.96899998 0.71899998 1.776 0.713 1.96899998
46 0.72899997 1.99899995 0.73500001 1.82 0.72600001 1.99899995
47 0.74400002 2.1329999 0.75300002 1.853 0.741 2.1329999
48 0.76200002 2.102 0.76499999 1.891 0.75800002 2.102
49 0.77499998 2.1559999 0.77999997 1.939 0.77100003 2.1559999
50 0.79299998 2.25 0.79900002 1.982 0.787 2.25
51 0.80699998 2.22300005 0.81099999 2.019 0.80299997 2.22300005
52 0.82099998 2.2980001 0.82800001 2.049 0.81900001 2.2980001
53 0.838 2.34800005 0.84299999 2.096 0.833 2.34800005
54 0.852 2.40700006 0.86400002 2.172 0.85000002 2.40700006
55 0.86900002 2.45000005 0.87400001 2.177 0.86400002 2.45000005
56 0.88499999 2.49799991 0.88800001 2.218 0.88200003 2.49799991
57 0.89600003 2.50099993 0.90600002 2.25 0.91000003 2.50099993
58 0.91399997 2.60400009 0.92199999 2.29 0.91900003 2.60400009
59 0.93300003 2.59500003 0.93900001 2.342 0.92699999 2.59500003
60 0.94400001 2.63400006 0.95200002 2.371 0.94400001 2.63400006
61 0.96799999 2.73900008 0.96899998 2.407 0.958 2.73900008
62 0.97299999 2.67400002 0.98000002 2.446 0.97299999 2.67400002
63 0.991 2.78900003 1.00699997 2.506 0.99199998 2.78900003
64 1.00699997 2.80500007 1.01699996 2.542 0.99900001 2.80500007
65 1.02499998 2.88599992 1.02999997 2.637 1.02400005 2.88599992
66 1.04299998 2.88599992 1.04499996 2.847 1.03600001 2.88599992
67 1.05299997 2.97000003 1.06299996 2.695 1.05599999 2.97000003
68 1.06700003 2.95799994 1.08200002 2.77 1.06299996 2.95799994
69 1.08000004 3.13000011 1.09899998 2.831 1.08000004 3.13000011
70 1.09599996 3.13100004 1.10599995 2.8 1.10000002 3.13100004
71 1.12699997 3.079 1.125 2.851 1.11099994 3.079
72 1.13100004 3.2809999 1.14199996 2.86 1.12699997 3.2809999
73 1.148 3.14599991 1.16499996 2.893 1.15499997 3.14599991
74 1.15999997 3.35899997 1.16999996 2.956 1.15699995 3.35899997
75 1.17799997 3.3269999 1.18700004 2.972 1.17200005 3.3269999
76 1.20200002 3.46099997 1.20099998 2.997 1.18799996 3.46099997
77 1.21399999 3.24399996 1.21899998 3.073 1.20299995 3.24399996
78 1.22300005 3.43600011 1.24300003 3.265 1.21800005 3.43600011
79 1.24000001 3.39499998 1.28900003 3.162 1.23500001 3.39499998
80 1.25100005 3.54500008 1.30599999 3.201 1.25300002 3.54500008
81 1.27199996 3.54500008 1.31700003 3.27 1.26400006 3.54500008
82 1.28699994 3.50300002 1.29700005 3.238 1.27900004 3.50300002
83 1.29900002 3.93400002 1.30999994 3.27 1.29700005 3.93400002
84 1.31500006 3.83999991 1.32500005 3.333 1.31099999 3.83999991

56

Rendering Time
Teapot Dolphin Sphere Num Plane

Level Map Volumetric Level Map Volumetric Level Map Volumetric
85 1.33099997 3.66400003 1.34500003 3.353 1.32599998 3.66400003
86 1.34800005 3.9000001 1.36199999 3.407 1.34300005 3.9000001
87 1.35899997 3.76600003 1.37300003 3.472 1.35399997 3.76600003
88 1.37300003 3.852 1.403 3.486 1.37100005 3.852
89 1.38999999 3.77800012 1.41799998 3.511 1.38800001 3.77800012
90 1.41900003 3.98799992 1.421 3.57 1.40199995 3.98799992
91 1.44400001 3.88100004 1.49800003 3.629 1.41900003 3.88100004
92 1.44799995 4.01100016 1.47399998 3.67 1.43599999 4.01100016
93 1.45599997 3.99600005 1.51100004 3.701 1.449 3.99600005
94 1.47099996 4.12699986 1.48800004 3.728 1.46300006 4.12699986
95 1.48199999 4.10599995 1.50199997 3.783 1.48000002 4.10599995
96 1.53499997 4.12599993 1.52999997 3.799 1.49699998 4.12599993
97 1.54200006 4.23799992 1.528 3.835 1.51499999 4.23799992
98 1.52999997 4.21199989 1.55400002 3.927 1.52699995 4.21199989
99 1.54400003 4.38399982 1.56099999 4.168 1.54100001 4.38399982

100 1.56200004 4.24300003 1.57500005 4.016 1.55299997 4.24300003
101 1.574 4.41300011 1.60099995 4.089 1.57200003 4.41300011

Table 5-2: Number of polygons of sample models.

Object No. Polygon
Teapot 6,320
Dolphin 4,442
Sphere 1,984

From graphs and table, the result from experimental program supports our

assumption; the level map algorithm outperforms volumetric algorithm in all cases. This

lead to the conclusion that, our level map algorithm can handle underwater scene with

caustics faster than volumetric based algorithm.

57

Rendering Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)

(a)

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)

(b)

Rendering Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)

(c)

Figure 5-10: Line graph shows comparison of rendering time between level map and volumetric

algorithm. Figure (a), (b) and (c) show the result when teapot, dolphin and sphere is used as an input

respectively.

58

Experiment 2

In this sub-section, we perform an experiment to compare the rendering time when

smart slicing is turned on and off. Table 5-3 shows some example results from this

experiment. The Normal columns in this table refer to rendering time when smart slicing

is not used. And Smart columns mean the smart slicing is turned on. Figure 5-11 shows

comparison graphs.

 Table 5-3: Results from experiment 2.

Rendering Time
Teapot Dolphin Sphere Num Plane

Normal Smart Normal Smart Normal Smart
3 0.068 0.053 0.063 0.049 0.063 0.032
4 0.083 0.069 0.08 0.066 0.079 0.05
5 0.099 0.069 0.095 0.081 0.093 0.048
6 0.115 0.084 0.111 0.096 0.109 0.064
7 0.12899999 0.101 0.127 0.113 0.123 0.066
8 0.14399999 0.104 0.142 0.12800001 0.14 0.082
9 0.16599999 0.102 0.15899999 0.14300001 0.156 0.08
10 0.17900001 0.117 0.175 0.15700001 0.17 0.098
11 0.191 0.133 0.19 0.176 0.18700001 0.111
12 0.205 0.133 0.229 0.189 0.20299999 0.114
13 0.22499999 0.15099999 0.222 0.205 0.21699999 0.114
14 0.245 0.155 0.244 0.22499999 0.236 0.131
15 0.25400001 0.16500001 0.25 0.24699999 0.25 0.131
16 0.26499999 0.168 0.26699999 0.259 0.264 0.14399999
17 0.285 0.185 0.28 0.26800001 0.28099999 0.14399999
18 0.29499999 0.197 0.29699999 0.287 0.29699999 0.164
19 0.315 0.198 0.31299999 0.30000001 0.31200001 0.18799999
20 0.32699999 0.20299999 0.33500001 0.31400001 0.324 0.177
21 0.34799999 0.213 0.36300001 0.33199999 0.34200001 0.19499999
22 0.359 0.23100001 0.366 0.34599999 0.35499999 0.19499999
23 0.382 0.229 0.38499999 0.361 0.37200001 0.197
24 0.39199999 0.244 0.39199999 0.37900001 0.389 0.213
25 0.40900001 0.26800001 0.40599999 0.39399999 0.40099999 0.212
26 0.42199999 0.27599999 0.42500001 0.412 0.41800001 0.226
27 0.43799999 0.28 0.442 0.426 0.43700001 0.23100001
28 0.44999999 0.29100001 0.45500001 0.44100001 0.447 0.24699999
29 0.47 0.30899999 0.47 0.45699999 0.47499999 0.248
30 0.48300001 0.30700001 0.484 0.47400001 0.479 0.25999999
31 0.51200002 0.32600001 0.51300001 0.49700001 0.495 0.26699999
32 0.51300001 0.34 0.51999998 0.509 0.50999999 0.27900001
33 0.52999997 0.34099999 0.52899998 0.52999997 0.528 0.27399999

59

Rendering Time
Teapot Dolphin Sphere Num Plane

Normal Smart Normal Smart Normal Smart
34 0.54500002 0.34 0.54900002 0.53600001 0.53899997 0.30399999
35 0.56800002 0.359 0.56300002 0.55500001 0.55900002 0.29300001
36 0.59799999 0.373 0.57800001 0.57099998 0.57200003 0.30599999
37 0.59200001 0.373 0.59399998 0.583 0.588 0.32100001
38 0.60799998 0.389 0.61000001 0.61500001 0.60100001 0.32699999
39 0.62199998 0.38999999 0.62599999 0.61199999 0.63499999 0.32600001
40 0.667 0.40400001 0.66500002 0.63499999 0.63700002 0.34999999
41 0.653 0.40599999 0.671 0.64499998 0.64999998 0.37
42 0.67699999 0.42199999 0.67400002 0.65899998 0.667 0.35299999
43 0.69599998 0.43700001 0.68800002 0.67699999 0.704 0.35699999
44 0.69700003 0.44 0.704 0.69300002 0.69800001 0.373
45 0.71499997 0.44299999 0.71899998 0.70700002 0.713 0.37200001
46 0.72899997 0.456 0.73500001 0.72299999 0.72600001 0.38800001
47 0.74400002 0.46799999 0.75300002 0.73900002 0.741 0.40599999
48 0.76200002 0.47 0.76499999 0.75400001 0.75800002 0.405
49 0.77499998 0.486 0.77999997 0.76800001 0.77100003 0.41600001
50 0.79299998 0.5 0.79900002 0.78500003 0.787 0.42300001
51 0.80699998 0.51899999 0.81099999 0.80199999 0.80299997 0.417
52 0.82099998 0.51599997 0.82800001 0.81900001 0.81900001 0.43900001
53 0.838 0.53299999 0.84299999 0.84399998 0.833 0.44100001
54 0.852 0.546 0.86400002 0.84899998 0.85000002 0.44999999
55 0.86900002 0.55199999 0.87400001 0.86299998 0.86400002 0.46799999
56 0.88499999 0.56300002 0.88800001 0.87900001 0.88200003 0.46799999
57 0.89600003 0.57999998 0.90600002 0.89399999 0.91000003 0.46799999
58 0.91399997 0.58099997 0.92199999 0.91299999 0.91900003 0.48500001
59 0.93300003 0.58099997 0.93900001 0.92799997 0.92699999 0.48699999
60 0.94400001 0.59600002 0.95200002 0.94499999 0.94400001 0.51099998
61 0.96799999 0.611 0.96899998 0.95999998 0.958 0.50599998
62 0.97299999 0.61299998 0.98000002 0.97500002 0.97299999 0.51599997
63 0.991 0.63099998 1.00699997 0.99400002 0.99199998 0.51599997
64 1.00699997 0.62900001 1.01699996 1.00300002 0.99900001 0.53200001
65 1.02499998 0.653 1.02999997 1.01999998 1.02400005 0.53200001
66 1.04299998 0.64499998 1.04499996 1.03699994 1.03600001 0.55000001
67 1.05299997 0.65899998 1.06299996 1.05200005 1.05599999 0.56400001
68 1.06700003 0.67900002 1.08200002 1.06900001 1.06299996 0.56800002
69 1.08000004 0.68199998 1.09899998 1.08299994 1.08000004 0.56599998
70 1.09599996 0.676 1.10599995 1.10000002 1.10000002 0.583
71 1.12699997 0.69400001 1.125 1.11399996 1.11099994 0.57999998
72 1.13100004 0.70899999 1.14199996 1.13199997 1.12699997 0.59799999
73 1.148 0.70999998 1.16499996 1.14900005 1.15499997 0.611
74 1.15999997 0.72299999 1.16999996 1.16199994 1.15699995 0.61299998
75 1.17799997 0.74199998 1.18700004 1.19000006 1.17200005 0.61199999

60

Rendering Time
Teapot Dolphin Sphere Num Plane

Normal Smart Normal Smart Normal Smart
76 1.20200002 0.75599998 1.20099998 1.20099998 1.18799996 0.62800002
77 1.21399999 0.75599998 1.21899998 1.21500003 1.20299995 0.63200003
78 1.22300005 0.81900001 1.24300003 1.24600005 1.21800005 0.64600003
79 1.24000001 0.829 1.28900003 1.25300002 1.23500001 0.66299999
80 1.25100005 0.83999997 1.30599999 1.25800002 1.25300002 0.66500002
81 1.27199996 0.815 1.31700003 1.27600002 1.26400006 0.67900002
82 1.28699994 0.824 1.29700005 1.28900003 1.27900004 0.67900002
83 1.29900002 0.829 1.30999994 1.29999995 1.29700005 0.68400002
84 1.31500006 0.824 1.32500005 1.31700003 1.31099999 0.70899999
85 1.33099997 0.84299999 1.34500003 1.33700001 1.32599998 0.699
86 1.34800005 0.86500001 1.36199999 1.35000002 1.34300005 0.71799999
87 1.35899997 0.86000001 1.37300003 1.36399996 1.35399997 0.72299999
88 1.37300003 0.87199998 1.403 1.38199997 1.37100005 0.72500002
89 1.38999999 0.87300003 1.41799998 1.398 1.38800001 0.72600001
90 1.41900003 0.89099997 1.421 1.41100001 1.40199995 0.741
91 1.44400001 0.90399998 1.49800003 1.426 1.41900003 0.74400002
92 1.44799995 0.90399998 1.47399998 1.44299996 1.43599999 0.75999999
93 1.45599997 0.92299998 1.51100004 1.46000004 1.449 0.77399999
94 1.47099996 0.92000002 1.48800004 1.47800004 1.46300006 0.77399999
95 1.48199999 0.917 1.50199997 1.49399996 1.48000002 0.792
96 1.53499997 0.93300003 1.52999997 1.50600004 1.49699998 0.792
97 1.54200006 0.94700003 1.528 1.52199996 1.51499999 0.79299998
98 1.52999997 0.95099998 1.55400002 1.53699994 1.52699995 0.81
99 1.54400003 0.96399999 1.56099999 1.55700004 1.54100001 0.80900002

100 1.56200004 0.98000002 1.57500005 1.57000005 1.55299997 0.82099998
101 1.574 1 1.60099995 1.57099998 1.57200003 0.82499999

61

Rendering Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Level Map (Normal)
Level Map (Smart)

(a)

Rendering Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Level Map (Normal)
Level Map (Smart)

(b)

Rendering Time

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Level Map (Normal)
Level Map (Smart)

(c)

Figure 5-11: Line graph shows comparison of rendering time when smart slicing is turn on and off.

Figure (a), (b) and (c) show the result when teapot, dolphin and sphere is used as an input respectively

62

When considering these results, it can be seen that the benefit from using smart

slicing varies from one kind of model to another kind of model. When using sphere as an

input, the algorithm gives the best performance, however, using with dolphin gives no

difference. This comes from the fact that the smart slicing algorithm can perform at its

best when there are “many” empty levels. When there are many empty levels, the

algorithm can eliminate many unnecessary planes. Figure 5-12 show depth profiles from

each sample input. There is only one empty level in dolphin model while the others have

several. This is the reason why smart slicing cannot perform well with dolphin. Table 5-4

proves the earlier statement by showing the number of actual planes used when

performing smart slicing.

(a) (b)

(c)

Figure 5-12: Depth profiles from sample models. Figure (a) shows depth profile of teapot. Figure (b)

shows dolphin. And figure (c) shows sphere.

63

Table 5-4: The number of actual planes required when smart slicing is used.

Num Actual Plane Num Specified
Plane Teapot Dolphin Sphere

3 2 2 1
4 3 3 2
5 3 4 2
6 4 5 3
7 5 6 3
8 5 7 4
9 5 8 4

10 6 9 5
11 7 10 6
12 7 11 6
13 8 12 6
14 8 13 7
15 9 14 7
16 9 15 8
17 10 16 8
18 11 17 9
19 11 18 10
20 11 19 10
21 12 20 11
22 13 21 11
23 13 22 11
24 14 23 12
25 15 24 12
26 16 25 13
27 16 26 13
28 17 27 14
29 18 28 14
30 18 29 15
31 19 30 15
32 20 31 16
33 20 32 16
34 20 33 17
35 21 34 17
36 22 35 18
37 22 36 19
38 23 37 19
39 23 38 19
40 24 39 20
41 24 40 21
42 25 41 21
43 26 42 21

64

Num Actual Plane Num Specified
Plane Teapot Dolphin Sphere

44 26 43 22
45 26 44 22
46 27 45 23
47 28 46 24
48 28 47 24
49 29 48 24
50 30 49 25
51 31 50 25
52 31 51 26
53 32 52 26
54 33 53 27
55 33 54 28
56 34 55 28
57 35 56 28
58 35 57 29
59 35 58 29
60 36 59 30
61 37 60 30
62 37 61 31
63 38 62 31
64 38 63 32
65 39 64 32
66 39 65 33
67 40 66 34
68 41 67 34
69 41 68 34
70 41 69 35
71 42 70 35
72 43 71 36
73 43 72 37
74 44 73 37
75 45 74 37
76 46 75 38
77 46 76 38
78 47 77 39
79 48 78 40
80 48 79 40
81 49 80 41
82 50 81 41
83 50 82 41
84 50 83 42
85 51 84 42
86 52 85 43

65

Num Actual Plane Num Specified
Plane Teapot Dolphin Sphere

87 52 86 44
88 53 87 44
89 53 88 44
90 54 89 45
91 54 90 45
92 55 91 46
93 56 92 47
94 56 93 47
95 56 94 48
96 57 95 48
97 58 96 48
98 58 97 49
99 59 98 49

100 60 99 50
101 61 99 50

There is a question we have not yet answered, that is, does smart slicing affect the

quality of output image? Because the development of smart slicing is intended for

eliminating unnecessary plane, theoretical answer for this question is “No”. This answer

can be easily proved and presented in Table 5-5. This table shows the intensity difference

of the result image when smart slicing is turned on and off. Equation (2-9) presented in

Section 2-7 is used for computing intensity difference of resulting images. Table 5-5

shows that enabling smart slicing do not affect the quality in any cases.

Table 5-5: Intensity difference when smart slicing is turned on and off.

Intensity Diff. Num Specified
Plane Teapot Dolphin Sphere

3 0 0 0
4 0 0 0
5 0 0 0
6 0 0 0
7 0 0 0
8 0 0 0
9 0 0 0

10 0 0 0
11 0 0 0
12 0 0 0
13 0 0 0
14 0 0 0

66

Intensity Diff. Num Specified
Plane Teapot Dolphin Sphere

15 0 0 0
16 0 0 0
17 0 0 0
18 0 0 0
19 0 0 0
20 0 0 0
21 0 0 0
22 0 0 0
23 0 0 0
24 0 0 0
25 0 0 0
26 0 0 0
27 0 0 0
28 0 0 0
29 0 0 0
30 0 0 0
31 0 0 0
32 0 0 0
33 0 0 0
34 0 0 0
35 0 0 0
36 0 0 0
37 0 0 0
38 0 0 0
39 0 0 0
40 0 0 0
41 0 0 0
42 0 0 0
43 0 0 0
44 0 0 0
45 0 0 0
46 0 0 0
47 0 0 0
48 0 0 0
49 0 0 0
50 0 0 0

67

Figure 5-13: Comparing result when smart slicing is turned on and off. The left image is the result

when smart slicing is turned off, while in the right image, smart slicing is turned on.

68

There is another interesting issue that should be discussed. As discussed in section

5.2, when using smart slicing there is an additional cost to pay, that is, the processing

time to perform depth profiling. Depth profile is generated by looping through every

pixel in the position map. Considering the case when the dimension of position map is

512x512, this means that there are extra 262144 iteration steps to perform each frame.

Thus, it is interesting to understand how much this extra operation costs. When

thoroughly examining Table 5-3 and Table 5-4, we can see that at the same number of

reference planes, the rendering time used when smart slicing turn on is a little bit longer.

But this additional processing time has a very little significance when compared to the

processing time used for intersection test. Because the intersection test is performed on

GPU, which has much less processing power than CPU. When comparing with benefit

gained from unnecessary plane elimination, this price is worth to pay. From this reason,

we can safely conclude that smart slicing algorithm can greatly reduce rendering time for

level map algorithm in most situations. While there are some cases where smart slicing

cannot perform well, the processing time is not much different from when smart slicing is

disabled.

CHAPTER 6

DISCUSSION, CONCLUSIONS AND FURTHER IMPROVEMENTS

This chapter gives a detailed discussion about limitations of proposed algorithm.

And then we give the conclusion about what we’ve done so far is also given. Finally,

possible improvement methods are summarized.

6.1 Discussion

Although the level map algorithm can bring caustics to interactive time-frame, there

are so many areas to be improved. The first one is high amount of polygon fill-rate. In the

intersection test step, we render intersection triangle on each plane and then rasterize

them and check which pixel should be accepted. Consider the case where water mesh

consists of 10,000 polygons, which is the common polygon count in real-time

application, and the caustics receiver object has 100 reference planes, this mean that there

are about 1,000,000 polygons to be filled per frame. This extremely high polygon fill-rate

will use long computational time and, in many case, this cannot be done in interactive

time frame. Consider the same case with 100 objects on the scene, the situation is worse.

In this case, there are 100,000,000 polygons to be filled, even though it is processed on a

very high-end PC, it is nearly impossible to handle this scene in real-time.

To address this problem, the number of polygon fill-rate must be reduced. To

achieve this goal, the bounding volume collision detection scheme can be used. This

algorithm can be used to discard unnecessary rendering of intersection triangles that are

fully outside the caustics receiver bounding box. Figure 6-1 presents this idea. As you can

see from this figure, it is wasteful rendering the intersection triangle of left beam, because

it misses the object. By performing early intersection test, we can reduce numerous

numbers of polygons to be filled.

70

Figure 6-1: Bounding volume collision testing. The dash line represents a reference plane.

The second approach, which can be applied for reducing the number of polygon

fill-rate, is based on Level of Details (LOD) method. In computer graphics, LOD is used

for reducing the number of polygons in any model when the high detail version of that

model is unnecessary. For example, when objects are in the close distant relative to the

viewer, we render them with high detail version. However, when they are far away, we

can not see much detail from them because the detail is relatively small to the viewer

eyes, we use the low detail version to render them. Figure 6-2 and Figure 6-3 demonstrate

the usage of LOD. Notice that when object is further away, the need for high detail

representation is reduced. We can apply the concept of level of details to our level map

algorithm by reducing the number of reference plane for testing intersection when objects

are far. This approach can help organizing complex scene easier.

Figure 6-2: Multi-resolution air plane. Image by Hugues Hoppe.

Figure 6-3: LOD in action.

71

6.2 Conclusion

This thesis has presented the algorithm for presenting caustics in real-time

applications. Level map algorithm presents new approach for testing intersection between

light beam and object. This new algorithm is the heart of our algorithm which can

increase rendering speed drastically. The level map algorithm not only handle underwater

caustics in interactive time, but also reduce memory usage which is the main limitation of

previously proposed volumetric based algorithm significantly. The memory usage, when

a color texture used for representing a sample plane, in the volumetric based algorithm

are incomparable to the level map algorithm, of which only twos texture are used for each

object. Moreover, the smart slicing technique presented here can eliminate unnecessary

intersection test, which can further improve the rendering speed of level map algorithm.

Smart slicing technique is not limited to level map algorithm, any height field or depth

map based intersection testing algorithm can benefit from smart slicing. In term of

quality, our experiments have already proven that the resulting images from level map are

per-pixel identical to volumetric based algorithm.

For the down side of level map, this algorithm requires high polygon fill-rate and

programmability feature, which limits its usage to this generation medium or high-end

hardware. Various enhancing techniques are proposed, but they need some time to prove

themselves.

6.3 Further Improvement

The main improvement we need to do next is reducing number of polygon filled.

Algorithms presented in section 6.1 must be implemented in the next version of program.

Exploration of algorithm that places intersection triangle on actually hit is worth to try.

REFERENCES

[1] Guenther, J., Wald, I., & Slusallek, P. 2004. Realtime Caustics Using Distributed

Photon Mapping. Rendering Techniques 2004 : Eurographics Symposium on

Rendering: 111-121.

[2] Purcell, T. J., Donner, C., Cammarano, M., Jensen, H.W., & Hanrahan, P. 2003.

Photon Mapping on Programmable Graphics Hardware. Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware

(2003): 41-50.

[3] Trendall, C., & Stewart, A.J. 2000. General Calculation Using Graphics Hardware,

with Application to Interactive Caustics. Proceedings of the Eurographics

Workshop on Rendering Techniques 2000 (2000): 287-298.

[4] Wald, I., Kollig, T., Benthin, C., Keller, A., & Slusallek P. 2002. Interactive Global

Illumination Using Fast Ray Tracing. Proceedings of the 13th Eurographics

workshop on Rendering (2002): 15-24.

[5] Wyman, C., Hansen, C. D., & Shirley, P. 2004. Interactive Caustics Using Local

Precomputed Irradiance. Proceedings of the Computer Graphics and

Applications, 12th Pacific Conference on (PG'04) 00 (2004): 143-151.

[6] Crespo, D. S., & Guaydado, J. 2004. Rendering Water Caustics. Fernando, R., GPU

Gems: Programming Techniques, Tips and Tricks for Real-Time Graphics,

31-44. Addison Wesley.

[7] Stam, J. 1996. Random Caustics: Natural, Textures and Wave Theory Revisited.

ACM SIGGRAPH 96 Visual Proceedings: The art and interdisciplinary

programs of SIGGRAPH '96 (1996): 150.

[8] Shah, M. A., & Pattanaik, S. 2005. Caustics Mapping: An Image-Space Technique

for Real-Time Caustics. IEEE Transactions on Visualization and Computer

Graphics: (To be appeared).

[9] Wand, M., & Straßer, W. 2003. Real-Time Caustics. Computer Graphics Forum 22

(2003): 610-619.

105

[10] Iwasaki, K., Dobashi, Y., & Nishita, T. 2003. A Fast Rendering Method for

Refractive and Reflective Caustics Due To Water Surfaces. Computer

Graphics Forum 22 (September 2003): 601-609.

[11] Iwasaki, K., Yoshimoto, F., Dobashi, Y., & Nishita, T. 2005. A Method for Fast

Rendering of Caustics from Refraction by Transparent Objects. IEICE

Transactions on Information and Systems 2005 E88-D 5 (2005): 904-911.

[12] Arvo, J. 1986. Backwards Ray Tracing. SIGGRAPH' 86 Course Note 12(August

1986): 259-263.

[13] Heckbert, P. S. 1990. Adaptive Radiosity Textures for Bidirectional Ray Tracing.

Proceedings of the 17th annual conference on Computer graphics and

interactive techniques 17 (1990): 145-154.

[14] Mitchell, D., & Hanrahan, P. 1992. Illumination from Curved Reflectors.

Proceedings of the 19th annual conference on Computer graphics and

interactive techniques (1992): 283-291.

[15] Jensen, H. W. 1996. Global Illumination Using Photon Maps. Proceedings of the

Eurographics Workshop on Rendering Techniques '96 (1996): 21-30.

[16] Jensen, H. W. 1996. Rendering Caustics on Non-Lambertian Surfaces. Proceedings

of the conference on Graphics interface '96 (1996): 116-121.

[17] Watt, M. 1990. Light-Water Interaction Using Backward Beam Tracing.

Proceedings of the 17th annual conference on Computer graphics and

interactive techniques (1990): 377-385.

[18] Heckbert, P. S., & Hanrahan, P. 1984. Beam Tracing Polygonal objects.

Proceedings of the 11th annual conference on Computer graphics and

interactive techniques 11 (1984): 119-127.

[19] Nishita, T., & Nakamae, E. 1994. Method of Displaying Optical Effects within

Water Using Accumulation-Buffer. Proceedings of the 21st annual conference

on Computer graphics and interactive techniques (1994): 373-379.

[20] Iwasaki, K., Dobashi, Y., & Nishita, T. 2002. An Efficient Method for Rendering

Underwater Optical Effects Using Graphics Hardware. Computer Graphics

Forum 21 (November 2002): 701-711.

APPENDIX

This chapter shows results of level map algorithm from experimental program. The

number of test case is 30. Each input model is selected randomly to make them cover

various kinds of surface.

Results are shown as three sample images. The first image presents the result from

volumetric texture, the second is from level map when smart slicing turn-off and the third

is from level map when smart slicing turn-on. Rendering speed comparison graph and

depth histogram also provided.

74

1. Teapot

Polygon Count: 6,320

Figure A - 1: Sample results from teapot model.

Rendering Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 2: Rendering speed comparison graph while using teapot as an input.

Figure A - 3: Depth histogram of teapot model.

75

2. Dolphin

Polygon Count: 4,442

Figure A - 4: Sample results from dolphin model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 5: Rendering speed comparison graph while using dolphin as an input.

Figure A - 6: Depth histogram of dolphin model.

76

3. Sphere

Polygon Count: 1,984

Figure A - 7: Sample results from sphere model.

Rendering Time

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Normal
Smart

Figure A - 8: Rendering speed comparison graph while using sphere as an input.

Figure A - 9: Depth histogram of sphere model.

77

4. Angle Fish

Polygon Count: 6,996

Figure A - 10: Sample results from angle fish model.

Rendering Time

0

1

2

3

4

5

6

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 11: Rendering speed comparison graph while using angle fish as an input.

Figure A - 12: Depth histogram of angle fish model.

78

5. Box

Polygon Count: 12

Figure A - 13: Sample results from box model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 14: Rendering speed comparison graph while using box as an input.

Figure A - 15: Depth histogram of box model.

79

6. Horse

Polygon Count: 4314

Figure A - 16: Sample results from horse model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 17: Rendering speed comparison graph while using horse as an input.

Figure A - 18: Depth histogram of horse model.

80

7. Manta

Polygon Count: 6820

Figure A - 19: Sample results from manta model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 20: Rendering speed comparison graph while using manta as an input.

Figure A - 21: Depth histogram of manta model.

81

8. Red Betta

Polygon Count: 6760

Figure A - 22: Sample results from red betta model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 23: Rendering speed comparison graph while using red betta as an input.

Figure A - 24: Depth histogram of red betta model.

82

9. Shark

Polygon Count: 942

Figure A - 25: Sample results from shark model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 26: Rendering speed comparison graph while using shark as an input.

Figure A - 27: Depth histogram of shark model.

83

10. Siamese Tiger

Polygon Count: 6822

Figure A - 28: Sample results from Siamese tiger model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 29: Rendering speed comparison graph while using Siamese tiger as an input.

Figure A - 30: Depth histogram of Siamese tiger model.

84

11. Sink

Polygon Count: 1068

Figure A - 31: Sample results from sink model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 32: Rendering speed comparison graph while using sink as an input.

Figure A - 33: Depth histogram of sink model.

85

12. Car

Polygon Count: 9907

Figure A - 34: Sample results from car model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 35: Rendering speed comparison graph while using car as an input.

Figure A - 36: Depth histogram of car model.

86

13. Sofa

Polygon Count: 10360

Figure A - 37: Sample results from sofa model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 38: Rendering speed comparison graph while using sofa as an input.

Figure A - 39: Depth histogram of sofa model.

87

14. Helicopter

Polygon Count: 5138

Figure A - 40: Sample results from helicopter model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 41: Rendering speed comparison graph while using helicopter as an input.

Figure A - 42: Depth histogram of sofa model.

88

15. UFO

Polygon Count: 20663

Figure A - 43: Sample results from UFO model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 44: Rendering speed comparison graph while using UFO as an input.

Figure A - 45: Depth histogram of UFO model.

89

16. Chair

Polygon Count: 190

Figure A - 46: Sample results from chair model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 47: Rendering speed comparison graph while using chair as an input.

Figure A - 48: Depth histogram of chair model.

90

17. Barramundi

Polygon Count: 6524

Figure A - 49: Sample results from barramundi model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 50: Rendering speed comparison graph while using barramundi as an input.

Figure A - 51: Depth histogram of barramundi model.

91

18. Brown Trout

Polygon Count: 6828

Figure A - 52: Sample results from brown trout model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 53: Rendering speed comparison graph while using brown trout as an input.

Figure A - 54: Depth histogram of brown trout model.

92

19. Leopard Shark

Polygon Count: 5200

Figure A - 55: Sample results from leopard shark model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 56: Rendering speed comparison graph while using leopard shark as an input.

Figure A - 57: Depth histogram of leopard shark model.

93

20. Lion Head

Polygon Count: 6602

Figure A - 58: Sample results from lion head model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 59: Rendering speed comparison graph while using lion head as an input.

Figure A - 60: Depth histogram of lion head model.

94

21. Sand Bar Shark

Polygon Count: 5200

Figure A - 61: Sample results from sand bar shark model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 62: Rendering speed comparison graph while using sand bar shark as an input.

Figure A - 63: Depth histogram of sand bar shark model.

95

22. Steel Head

Polygon Count: 7226

Figure A - 64: Sample results from steel head model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 65: Rendering speed comparison graph while using steel head as an input.

Figure A - 66: Depth histogram of steel head model.

96

23. Sun Fish

Polygon Count: 4912

Figure A - 67: Sample results from sun fish model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 68: Rendering speed comparison graph while using sun fish as an input.

Figure A - 69: Depth histogram of sun fish model.

97

24. Whale

Polygon Count: 6288

Figure A - 70: Sample results from whale model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 71: Rendering speed comparison graph while using whale as an input.

Figure A - 72: Depth histogram of whale model.

98

25. Camera

Polygon Count: 15496

Figure A - 73: Sample results from camera model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 74: Rendering speed comparison graph while using camera as an input.

Figure A - 75: Depth histogram of camera model.

99

26. Cross

Polygon Count: 76

Figure A - 76: Sample results from cross model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 77: Rendering speed comparison graph while using cross as an input.

Figure A - 78: Depth histogram of cross model.

100

27. Bass

Polygon Count: 2253

Figure A - 79: Sample results from bass model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 80: Rendering speed comparison graph while using bass as an input.

Figure A - 81: Depth histogram of bass model.

101

28. Plane

Polygon Count: 3030

Figure A - 82: Sample results from plane model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 83: Rendering speed comparison graph while using plane as an input.

Figure A - 84: Depth histogram of plane model.

102

29. Plane

Polygon Count: 25812

Figure A - 85: Sample results from tank model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 86: Rendering speed comparison graph while using tank as an input.

Figure A - 87: Depth histogram of tank model.

103

30. Hammer

Polygon Count: 13478

Figure A - 88: Sample results from hammer model.

Rendering Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Num Plane

Ti
m

e
(s

ec
on

d)

Volumetric
Level Map (Normal)
Level Map (Smart)

Figure A - 89: Rendering speed comparison graph while using hammer as an input.

Figure A - 90: Depth histogram of hammer model.

106

BIOGRAPHY

Nuttachai Tipprasert was born on November 3, 1980, Bangkok, Thailand. Receive a

Bachelor’s of Computer engineering Degree from Faculty Engineering, Chulalongkorn

University in March 2003. After that he has studied a Master’s degree of Computer

Engineering at Department of Computer Engineering, Faculty of Engineering,

Chulalongkorn University.

	Cover (Thai)
	Cover (English)
	Accepted
	Abstract (Thai)
	Abstract (English)
	Acknowledgements
	Contents
	Chapter I Introduction
	1.1 Background
	1.2 Objectives of Study
	1.3 Scopes of Study
	1.4 Research Procedures
	1.5 Expected Benefi
	1.6 Thesis Outline
	1.7 Publications

	Chapter II Theories
	2.1 Graphics Rendering Pipeline
	2.2 Programmable Graphics Hardware
	2.3 Local Illumination Model
	2.4 Ray-tracing
	2.5 Projective Texture Mapping
	2.6 Snell’s Law
	2.7 Image Comparison

	Chapter III Related works
	3.1 Ray-Tracing Based Algorithm
	3.2 Beam-Tracing Based Algorithm
	3.3 Texture Mapping Based Algorithm

	Chapter IV Refractive Water Caustics Rendering Method Using Level Map
	4.1 Algorithm Overview
	4.2 Level Map Creation
	4.3 Illumination Volume Creation
	4.4 Intersection Testing
	4.5 Caustics Map Creation
	4.6 Caustics Casting
	4.7 Algorithm Improvement

	Chapter V Algorithm Analysis
	5.1 Memory Usage Comparison
	5.2 Rendering Speed Comparison

	Chapter VI DISCUSSION, CONCLUSIONS AND FURTHER IMPROVEMENTS
	6.1 Discussion
	6.2 Conclusion
	6.3 Further Improvement

	References
	Appendix
	Vita

