Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/28602
Title: | การจำแนกระดับการติดเกมคอมพิวเตอร์ออนไลน์ของนักเรียนชั้นมัธยมศึกษาตอนต้นโดยใช้นิวรอลเน็ตเวิร์ก |
Other Titles: | Classification of online game addiction for students in secondary education (m.1-3) using neural networks |
Authors: | สกุลทิพย์ ตุ่ยสิมา |
Advisors: | สุกรี สินธุภิญโญ |
Other author: | จุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์ |
Advisor's Email: | [email protected] |
Subjects: | เกมคอมพิวเตอร์ เกมอินเตอร์เน็ต นิวรัลเน็ตเวิร์ค (คอมพิวเตอร์) นักเรียนมัธยมศึกษา |
Issue Date: | 2554 |
Publisher: | จุฬาลงกรณ์มหาวิทยาลัย |
Abstract: | งานวิจัยนี้นำเสนอการจำแนกระดับการติดเกมคอมพิวเตอร์ของนักเรียนชั้นมัธยม ศึกษาตอนต้น จากกลุ่มตัวอย่าง 33 คน ที่เล่นเกมคอมพิวเตอร์ภายในบ้านพักอาศัยในแต่ละวัน ข้อมูลถูกจัดเก็บตั้งแต่ 18 พฤษภาคม 2554 ถึง 26 กรกฎาคม 2554 โดยสังเคราะห์ความรู้ด้วยอัลกอริทึมโครงข่ายประสาทเทียมหลายชั้นแบบแบ็กพรอพาเกชัน และ อัลกอริทึมการสร้างต้นไม้ตัดสินใจ ซึ่งจัดอยู่ในอัลกอริทึมการเรียนรู้แบบมีผู้สอน และทดสอบความแม่นยำของตัวแบบด้วยเทคนิควิธีการไขว้ข้าม 10 กลุ่ม งานวิจัยนี้จัดประเภทของเกมคอม พิวเตอร์ที่แบ่งตามลักษณะการเล่นมี 4 ประเภทคือ แบบระยะยาว แบบง่าย แบบทันกาล และแบบสลับกันเล่น ผลการวิจัยพบว่า การจำแนกระดับการติดเกมคอมพิวเตอร์ โดยใช้ตัวแบบอัลกอริทึมโครงข่ายประสาทเทียมหลายชั้นแบบแบ็กพรอพาเกชันมีเปอร์เซนต์ความถูกต้องเฉลี่ยของประเภทเกมคอมพิวเตอร์ได้แก่ แบบระยะยาว แบบสลับกันเล่น แบบง่าย และแบบทันกาล คือ 95.50, 93.18, 89.42 และ 87.91 ตามลำดับ และการจำแนกระดับการติดเกมคอมพิวเตอร์โดยใช้อัลกอริทึมสร้างต้นไม้ตัดสินใจมีเปอร์เซนต์ความถูกต้องเฉลี่ยของประเภทเกมคอมพิวเตอร์ได้แก่ แบบระยะยาว แบบสลับกันเล่น แบบง่าย และแบบทันกาล คือ 88.76, 90.91,91.13 และ 87.50 ตามลำดับ และผลการวิเคราะห์ข้อมูลทางสถิติพบว่า กลุ่มเด็กที่มีระดับติดเกมโดยเฉลี่ยเล่นเกมคอมพิวเตอร์มีระยะเวลาเฉลี่ยต่อวัน 101.15 นาที รองลงมาเป็นกลุ่มเด็กที่มีระดับคลั่งไคล้เล่นเกมคอมพิวเตอร์ระยะเวลาเฉลี่ยต่อวัน 55.66 นาที และกลุ่มเด็กระดับปกติเล่นเกมคอมพิวเตอร์มีระยะเวลาเฉลี่ยต่อวัน 52.46 นาที |
Other Abstract: | This research presents the classification of game addiction level in secondary school students (M.1-3) with a sample group of 33 students who play game in the residence daily. Data was collected during 18 May – 26 July 2011. The knowledge was synthesized using Multi-Layer Backpropagation Neural Networks and Decision Tree Algorithms, which are Supervised Learning Algorithms. The accuracy of the obtained model was tested by 10-fold Cross Validation approach. This research classifies computer games, based on their characteristic, into four categories: Long Term, Casual, Real Time and Turn Base. The experimental results revealed that classification of game addiction level using Multi-Layer Backpropagation Neural Networks Algorithm provided percentage of accuracy for Long Term Game, Turn Base Game, Casual Game, and Real Time Game as 95.50, 93.18, 89.42, and 87.91 ,respectively. Classification of game addiction level using Decision Tree Algorithm gave percentage of accuracy for Long Term Game,Turn Base Game, Casual Game and Real Time Game as 88.76, 90.91, 91.13 and 87.50 ,respectively. And the result of statistical analysis found that the addicted childrens play game at average 101.15 minutes per day, the average play time of the fanaticize group is 55.67 minutes per day, and that of the normal group is 52.46 minutes per day. |
Description: | วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2554 |
Degree Name: | วิทยาศาสตรมหาบัณฑิต |
Degree Level: | ปริญญาโท |
Degree Discipline: | วิทยาศาสตร์คอมพิวเตอร์ |
URI: | http://cuir.car.chula.ac.th/handle/123456789/28602 |
URI: | http://doi.org/10.14457/CU.the.2011.1534 |
metadata.dc.identifier.DOI: | 10.14457/CU.the.2011.1534 |
Type: | Thesis |
Appears in Collections: | Eng - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
sakoontip_tu.pdf | 1.95 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.