Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/61784
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zhang, Mengyuan | - |
dc.contributor.author | Qin, Jiaqian | - |
dc.contributor.author | Yu, Pengfei | - |
dc.contributor.author | Zhang, Bing | - |
dc.contributor.author | Ma, Mingzhen | - |
dc.contributor.author | Zhang, Xinyu | - |
dc.contributor.author | Liu, Riping | - |
dc.contributor.other | Chulalongkorn University. Metallurgy and Materials Science Research Institute | - |
dc.date.accessioned | 2019-05-14T09:52:49Z | - |
dc.date.available | 2019-05-14T09:52:49Z | - |
dc.date.issued | 2018-03-05 | - |
dc.identifier.citation | Beilstein Journal of Nanotechnology. Vol.9, Issue 1 (2018), p. 789-800 | en_US |
dc.identifier.issn | 2190-4286 | - |
dc.identifier.uri | http://cuir.car.chula.ac.th/handle/123456789/61784 | - |
dc.description.abstract | In this paper, an efficient method to produce a ZnO/BiOI nano-heterojunction is developed by a facile solution method followed by calcination. By tuning the ratio of Zn/Bi, the morphology varies from nanoplates, flowers to nanoparticles. The heterojunction formed between ZnO and BiOI decreases the recombination rate of photogenerated carriers and enhances the photocatalytic activity of ZnO/BiOI composites. The obtained ZnO/BiOI heterostructured nanocomposites exhibit a significant improvement in the photodegradation of rhodamine B under visible light (λ ≥ 420 nm) irradiation as compared to single-phase ZnO and BiOI. A sample with a Zn/Bi ratio of 3:1 showed the highest photocatalytic activity (≈99.3% after 100 min irradiation). The photodegradation tests indicated that the ZnO/BiOI heterostructured nanocomposites not only exhibit remarkably enhanced and sustainable photocatalytic activity, but also show good recyclability. The excellent photocatalytic activity could be attributed to the high separation efficiency of the photoinduced electron–hole pairs as well as the high specific area. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Beilstein-Institut Zur Forderung der Chemischen Wissenschaften | en_US |
dc.relation.uri | https://doi.org/10.3762/bjnano.9.72 | - |
dc.relation.uri | https://www.beilstein-journals.org/bjnano/articles/9/72 | - |
dc.rights | © 2018 Zhang et al.; licensee Beilstein-Institut. This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. | en_US |
dc.title | Facile synthesis of a ZnO–BiOI p–n nano-heterojunction with excellent visible-light photocatalytic activity | en_US |
dc.type | Article | en_US |
dc.email.author | No information provided | - |
dc.email.author | No information provided | - |
dc.email.author | [email protected] | - |
dc.email.author | No information provided | - |
dc.email.author | No information provided | - |
dc.email.author | No information provided | - |
dc.email.author | No information provided | - |
dc.subject.keyword | BiOI | en_US |
dc.subject.keyword | photocatalytic degradation | en_US |
dc.subject.keyword | p–n heterojunction | en_US |
dc.subject.keyword | ZnO | en_US |
dc.identifier.DOI | 10.3762/bjnano.9.72 | - |
Appears in Collections: | Foreign Journal Article |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
html_submission_64713.html | Link to Fulltext | 2.82 kB | HTML | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.