Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/32282
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorSuwat Athichanagorn-
dc.contributor.authorNattaphon Temkiatvises-
dc.contributor.otherChulalongkorn University. Faculty of Engineering-
dc.date.accessioned2013-06-18T14:17:26Z-
dc.date.available2013-06-18T14:17:26Z-
dc.date.issued2010-
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/32282-
dc.descriptionThesis (M.Eng.)--Chulalongkorn University, 2010en
dc.description.abstractNowadays, more and more fields all over the world are trying to improve gas recovery factor. Infill drilling is one effective method for this purpose. The expected gas production rate and cumulative gas production is a key component in determining whether or not to drill a well. The success of adding a new well to the field depends on the accuracy of prediction of the gas production, as the more accurate the prediction is, the better the decision on drilling location will be. One interesting technique to predict an appropriate location for infill well is Artificial Neural Network (ANN) which can learn from the historical data to create a representation of complex relationship between input and output samples. In this study, the ANN is applied in conjunction with numerical reservoir simulation. Production data generated from a numerical simulator were used to train the network to forecast gas production at undrilled location. Many input parameters were considered, screened, and chosen in order to study their effect on the result. A few case studies were performed to highlight the importance of these input parameters. Finally, the prediction performance of ANN was evaluated. The results show that the ANN can be effectively used to predict gas production with accurate prediction performance. However, substantial errors still occurred at some well locations due to the inaccuracies when using ANN to predict the output based on an extrapolation basis.en_US
dc.description.abstractalternativeในปัจจุบันนี้ แหล่งผลิตก๊าซทั่วโลกพยายามที่จะเพิ่มปริมาณการผลิตก๊าซขึ้นมาจากแหล่งกักเก็บด้านล่างให้ได้มากที่สุด การเจาะหลุมผลิตเพิ่มนั้นถือว่าเป็นวิธีที่มีประสิทธิภาพวิธีหนึ่ง ซึ่งตัวแปรที่จะเป็นตัวช่วยในการตัดสินใจว่าจะทำการเจาะหลุมผลิตเพิ่มหรือไม่นั้นก็คืออัตราการไหลเริ่มต้นและปริมาณก๊าซสะสมที่ผลิตได้นั่นเอง การเจาะหลุมผลิตเพิ่มจะประสบความสำเร็จมากน้อยเพียงใดนั้นก็ขึ้นอยู่กับความแม่นยำของการทำนายค่าเหล่านี้ ยิ่งทำนายได้แม่นยำเท่าไหร่ก็ยิ่งทำให้การตัดสินใจในการเจาะนั้นทำได้ดีมากขึ้นเท่านั้น ซึ่งมีวิธีหนึ่งที่น่าจะช่วยในการทำนายตำแหน่งที่เหมาะสมในการเจาะได้ก็คือโครงข่ายประสาทเทียมนั่นเอง โดยโครงข่ายประสาทเทียมนี้นั้นสามารถที่จะเรียนรู้ข้อมูลในอดีตเพื่อที่จะหาความสัมพันธ์ที่ซับซ้อนระหว่างตัวแปรที่ป้อนเข้าไปให้กับโครงข่ายกับตัวแปรที่ออกมาจากโครงข่ายได้อย่างมีประสิทธิภาพ ในการศึกษานี้จะทำร่วมกับการสร้างแบบจำลองของแหล่งกักเก็บก๊าซธรรมชาติ โดยจะนำข้อมูลทางการผลิตจากแบบจำลองมาใช้ในการสอนโครงข่ายเพื่อที่จะทำนายการผลิตก๊าซที่คาดว่าจะได้ในบริเวณที่ยังไม่ได้เจาะ มีตัวแปรที่จะป้อนเข้าไปในโครงข่ายมากมายที่ถูกพิจารณาคัดกรอง และเลือกเพื่อก่อนนำมาใช้งาน ทำการทดลองโดยแบ่งเป็นหลายๆกรณีเพื่อศึกษาถึงความสำคัญของตัวแปรแต่ละตัวที่มีต่อผลการทดลอง และท้ายสุดทำการประเมินความแม่นยำของค่าที่ทำนายได้จากโครงข่ายประสาทเทียมจากผลที่ได้จะเห็นว่าโครงข่ายประสาทเทียมสามารถทำนายการผลิตก๊าซได้อย่างแม่นยำ อย่างไรก็ตามพบว่ามีความคลาดของการทำนายอยู่มากเมื่อนำมาใช้ทำนายผลการทดลองที่ต้องมีการประมาณค่านอกช่วงของข้อมูลที่มีen_US
dc.language.isoenes
dc.publisherChulalongkorn Universityen
dc.relation.urihttp://doi.org/10.14457/CU.the.2010.1171-
dc.rightsChulalongkorn Universityen
dc.subjectNeural networks (Computer science)en_US
dc.subjectGas industryen_US
dc.subjectGases -- Productionen_US
dc.subjectนิวรัลเน็ตเวิร์ค (คอมพิวเตอร์)en_US
dc.subjectอุตสาหกรรมก๊าซen_US
dc.subjectก๊าซ -- การผลิตen_US
dc.titleUsing artificial neural network to predict gas production for infill wellsen_US
dc.title.alternativeการใช้โครงข่ายประสาทเทียมทำนายการผลิตก๊าซในกรณีที่มีการเจาะหลุมผลิตเพิ่มen_US
dc.typeThesises
dc.degree.nameMaster of Engineeringes
dc.degree.levelMaster's Degreees
dc.degree.disciplinePetroleum Engineeringes
dc.degree.grantorChulalongkorn Universityen
dc.email.advisor[email protected]-
dc.identifier.DOI10.14457/CU.the.2010.1171-
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
nattaphon_te.pdf3.52 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.