Please use this identifier to cite or link to this item:
https://cuir.car.chula.ac.th/handle/123456789/35931
Title: | การจัดกลุ่มผลิตภัณฑ์เพื่อการพยากรณ์สินค้าใหม่ด้วยแบบจำลองดิฟฟิวชั่น กรณีศึกษา ผลิตภัณฑ์เครื่องสำอาง |
Other Titles: | Product clustering for new product forecasting using diffusion model: a case study of cosmetic products |
Authors: | มรกต คงนคร |
Advisors: | สมพงษ์ ศิริโสภณศิลป์ |
Other author: | จุฬาลงกรณ์มหาวิทยาลัย. บัณฑิตวิทยาลัย |
Advisor's Email: | [email protected] |
Subjects: | ผลิตภัณฑ์ใหม่ -- พยากรณ์ วงจรชีวิตผลิตภัณฑ์ การจัดการผลิตภัณฑ์ อุตสาหกรรมเครื่องสำอาง New products -- Forecasting Product life cycle Product management Cosmetics industry |
Issue Date: | 2554 |
Publisher: | จุฬาลงกรณ์มหาวิทยาลัย |
Abstract: | การพยากรณ์ผลิตภัณฑ์นั้นเป็นขั้นตอนที่มีความสำคัญต่อธุรกิจ โดยหนึ่งในความท้าทายของการพยากรณ์คือ การพยากรณ์ความต้องการผลิตภัณฑ์ที่ออกใหม่ เนื่องจากการขาดข้อมูลย้อนหลังในอดีตสำหรับการพยากรณ์ การพยากรณ์สินค้าใหม่จึงมักจะอ้างอิงกับลักษณะของความต้องการของสินค้าเดิม งานวิจัยฉบับนี้จึงได้นำเสนอวิธีการจัดกลุ่มลักษณะของความต้องการผลิตภัณฑ์เพื่อใช้ประโยชน์เป็นข้อมูลอ้างอิงสำหรับการพยากรณ์สินค้าใหม่ ด้วยการวิเคราะห์วงจรชีวิตผลิตภัณฑ์ด้วยแบบจำลองดิฟฟิวชั่น 3 วิธี ได้แก่ - แบบจำลองดิฟฟิวชั่น Logistics - แบบจำลองดิฟฟิวชั่น Gompertz - แบบจำลองดิฟฟิวชั่น Bass ค่าพารามิเตอร์ที่ได้จากวิเคราะห์ด้วยแบบจำลองทั้ง 3 แบบจะถูกนำมาใช้จัดกลุ่มผลิตภัณฑ์ ด้วยเทคนิคการวิเคราะห์ทางสถิติที่เรียกว่า “การวิเคราะห์การรวมกลุ่ม” ในการทดสอบแนวทางการจัดกลุ่มดังกล่าวกับผลิตภัณฑ์เครื่องสำอาง พบว่า การจัดกลุ่มของผลิตภัณฑ์เครื่องสำอางที่ออกจำหน่ายทั่วไป เกิดรูปแบบการจัดกลุ่มที่ชัดเจน สามารถใช้ข้อมูลย้อนหลังในอดีตของผลิตภัณฑ์ในกลุ่มนั้นๆเป็นพื้นฐานในการพยากรณ์ความต้องการสินค้าใหม่ได้ ส่วนผลิตภัณฑ์เครื่องสำอางที่ออกจำหน่ายเฉพาะในช่วงเทศกาล ไม่พบรูปแบบการจัดกลุ่มผลิตภัณฑ์ที่ชัดเจน กล่าวคือการพยากรณ์ความต้องการสินค้าใหม่ประเภทนี้ ยังต้องอาศัยประสบการณ์ของผู้พยากรณ์ควบคู่กับข้อมูลทางสถิติ |
Other Abstract: | Product demand forecasting is an important activity for the business. One of the challenges in forecasting is estimating the demand for new products. As there are no direct historical sales data to rely on, the demands for new products have therefore been forecasted utilizing the characteristics of the past demands of existing products. This research proposes an approach for product groupings to be used for further reference in the new product forecasting. In our approach, three diffusion models namely including Logistics model, Gompertz model and Bass model are applied to characterize the product life cycles. The cluster analysis is subsequently applied to group products based on the values of parameters associated with the three models. In testing the proposed approach against collections of cosmetic products, the results indicate that for products launched for general sales the clusters of products are clearly defined implying that the historical characteristics of analogous products can be adopted for new product forecasting. On the other hand, for event-based products the clustering seems indiscriminate and the forecasting of these new products has to rely to a large extent on expert judgments combined with statistical analyses. |
Description: | วิทยานิพนธ์ (วท.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2554 |
Degree Name: | วิทยาศาสตรมหาบัณฑิต |
Degree Level: | ปริญญาโท |
Degree Discipline: | การจัดการด้านโลจิสติกส์ (สหสาขาวิชา) |
URI: | http://cuir.car.chula.ac.th/handle/123456789/35931 |
URI: | http://doi.org/10.14457/CU.the.2011.654 |
metadata.dc.identifier.DOI: | 10.14457/CU.the.2011.654 |
Type: | Thesis |
Appears in Collections: | Grad - Theses |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
morrakot_ko.pdf | 2.65 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.