Please use this identifier to cite or link to this item: https://cuir.car.chula.ac.th/handle/123456789/50822
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorปารเมศ ชุติมาen_US
dc.contributor.authorทัศนีย์ ทองจันทร์en_US
dc.contributor.otherจุฬาลงกรณ์มหาวิทยาลัย. คณะวิศวกรรมศาสตร์en_US
dc.date.accessioned2016-12-02T02:04:20Z
dc.date.available2016-12-02T02:04:20Z
dc.date.issued2558en_US
dc.identifier.urihttp://cuir.car.chula.ac.th/handle/123456789/50822
dc.descriptionวิทยานิพนธ์ (วศ.ม.)--จุฬาลงกรณ์มหาวิทยาลัย, 2558en_US
dc.description.abstractการจัดลำดับสายการประกอบผลิตภัณฑ์ผสมแบบขนาน เป็นการแก้ปัญหาที่พิจารณาวัตถุประสงค์หลายวัตถุประสงค์พร้อมกันจัดเป็นปัญหาแบบ NP-Hard (Non-deterministic Polynomial-Hard) ในการค้นหาคำตอบจำเป็นต้องนำวิธีการทางฮิวริสติก (Heuristic) มาช่วยเพื่อให้ได้คำตอบที่มีความเหมาะสมที่สุด งานวิจัยนี้ได้นำเสนออัลกอลิทึมที่มีชื่อว่า วิธีการหาค่าเหมาะสมแบบการกระจายของสิ่งมีชีวิตตามภูมิศาสตร์ (Biogeography Based Optimization: BBO) โดยพิจารณาฟังก์ชันวัตถุประสงค์ 3 ฟังก์ชัน คือ ความแปรผันในการผลิตที่น้อยที่สุด ปริมาณงานที่ทำไม่เสร็จที่น้อยที่สุด และ เวลาการปรับตั้งเครื่องจักรที่น้อยที่สุด ตามลำดับ พร้อมทั้งทำการเปรียบเทียบกับอัลกอริทึมที่ได้รับการยอมรับในการจัดลำดับการผลิต ทั้งหมด 3 อัลกอริทึม คือ การหาค่าที่เหมาะสมที่สุดแบบวิธีการบรรจวบแบบขยาย (COIN-E) วิธีเชิงพันธุกรรมแบบการจัดลำดับที่ไม่ถูกครอบงำ (NSGA-II) และการหาค่าที่เหมาะสมที่สุดแบบฝูงอนุภาคไม่ต่อเนื่อง (DPSO) ผลการทดลองพบว่า COIN-E มีสมรรถนะในการแก้ปัญหาที่ดีกว่า BBO, NSGA-II และDPSO ทั้งในดัชนีการลู่เข้าสู่คำตอบที่เหมาะสมที่สุดแบบพาเรโต ดัชนีด้านอัตราส่วนของจำนวนกลุ่มคำตอบที่หาได้เทียบกับกลุ่มคำตอบที่แท้จริง และดัชนีการกระจายตัวของกลุ่มคำตอบ NSGA-II ในส่วนของใช้เวลาในการค้นหาคำตอบ COIN-E ใช้เวลาที่เร็วกว่า BBOen_US
dc.description.abstractalternativeMulti-objective sequencing on mixed-model parallel assembly lines is known as an NP-hard problem. Hence, to optimize this problem, heuristic approaches need to be developed. In this research, a Biogeography-Based Optimization (BBO) algorithm is adapted to optimize three objectives simultaneously, i.e. minimum variance of production rates, minimum utility work, and minimum setup times. The performance of BBO is compared with the well-known algorithm, i.e. Combinatorial Optimization with Coincidence Extended: COIN-E), Non-dominated Sorting Genetic Algorithms II (NSGA-II), and Discrete Particle Swarm Optimization (DPSO) The experimental results show that COIN-E outperforms BBO, NSGA-II and DPSO in terms of convergence, ratios of non-dominated solutions and the spread metric. In contrast, it is found that computation time to solution of is a marginally better than BBOen_US
dc.language.isothen_US
dc.publisherจุฬาลงกรณ์มหาวิทยาลัยen_US
dc.relation.urihttp://doi.org/10.14457/CU.the.2015.1321-
dc.rightsจุฬาลงกรณ์มหาวิทยาลัยen_US
dc.subjectสายการผลิต
dc.subjectการจัดสมดุลสายการผลิต
dc.subjectชีวภูมิศาสตร์
dc.subjectAssembly-line methods
dc.subjectAssembly-line balancing
dc.subjectBiogeography
dc.titleการจัดลำดับการผลิตที่มีหลายวัตถุประสงค์บนสายการประกอบแบบขนานผลิตภัณฑ์ผสมด้วยการหาค่าที่เหมาะสมที่สุดแบบการกระจายตัวของสิ่งมีชีวิตตามภูมิศาสตร์en_US
dc.title.alternativeMulti-objective sequencing on mixed-model parallel assembly lines with biogeography-based optimizationen_US
dc.typeThesisen_US
dc.degree.nameวิศวกรรมศาสตรมหาบัณฑิตen_US
dc.degree.levelปริญญาโทen_US
dc.degree.disciplineวิศวกรรมอุตสาหการen_US
dc.degree.grantorจุฬาลงกรณ์มหาวิทยาลัยen_US
dc.email.advisor[email protected],[email protected]en_US
dc.identifier.DOI10.14457/CU.the.2015.1321-
Appears in Collections:Eng - Theses

Files in This Item:
File Description SizeFormat 
5670210921.pdf10.33 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.